Diff for /imach/src/imach.c between versions 1.42 and 1.87

version 1.42, 2002/05/21 18:44:41 version 1.87, 2003/06/18 12:26:01
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.87  2003/06/18 12:26:01  brouard
      Version 0.96
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.86  2003/06/17 20:04:08  brouard
   first survey ("cross") where individuals from different ages are    (Module): Change position of html and gnuplot routines and added
   interviewed on their health status or degree of disability (in the    routine fileappend.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.85  2003/06/17 13:12:43  brouard
   (if any) in individual health status.  Health expectancies are    * imach.c (Repository): Check when date of death was earlier that
   computed from the time spent in each health state according to a    current date of interview. It may happen when the death was just
   model. More health states you consider, more time is necessary to reach the    prior to the death. In this case, dh was negative and likelihood
   Maximum Likelihood of the parameters involved in the model.  The    was wrong (infinity). We still send an "Error" but patch by
   simplest model is the multinomial logistic model where pij is the    assuming that the date of death was just one stepm after the
   probability to be observed in state j at the second wave    interview.
   conditional to be observed in state i at the first wave. Therefore    (Repository): Because some people have very long ID (first column)
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    we changed int to long in num[] and we added a new lvector for
   'age' is age and 'sex' is a covariate. If you want to have a more    memory allocation. But we also truncated to 8 characters (left
   complex model than "constant and age", you should modify the program    truncation)
   where the markup *Covariates have to be included here again* invites    (Repository): No more line truncation errors.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
   The advantage of this computer programme, compared to a simple    place. It differs from routine "prevalence" which may be called
   multinomial logistic model, is clear when the delay between waves is not    many times. Probs is memory consuming and must be used with
   identical for each individual. Also, if a individual missed an    parcimony.
   intermediate interview, the information is lost, but taken into    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   account using an interpolation or extrapolation.    
     Revision 1.83  2003/06/10 13:39:11  lievre
   hPijx is the probability to be observed in state i at age x+h    *** empty log message ***
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.82  2003/06/05 15:57:20  brouard
   states. This elementary transition (by month or quarter trimester,    Add log in  imach.c and  fullversion number is now printed.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices  */
   and the contribution of each individual to the likelihood is simply  /*
   hPijx.     Interpolated Markov Chain
   
   Also this programme outputs the covariance matrix of the parameters but also    Short summary of the programme:
   of the life expectancies. It also computes the prevalence limits.    
      This program computes Healthy Life Expectancies from
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
            Institut national d'études démographiques, Paris.    first survey ("cross") where individuals from different ages are
   This software have been partly granted by Euro-REVES, a concerted action    interviewed on their health status or degree of disability (in the
   from the European Union.    case of a health survey which is our main interest) -2- at least a
   It is copyrighted identically to a GNU software product, ie programme and    second wave of interviews ("longitudinal") which measure each change
   software can be distributed freely for non commercial use. Latest version    (if any) in individual health status.  Health expectancies are
   can be accessed at http://euroreves.ined.fr/imach .    computed from the time spent in each health state according to a
   **********************************************************************/    model. More health states you consider, more time is necessary to reach the
      Maximum Likelihood of the parameters involved in the model.  The
 #include <math.h>    simplest model is the multinomial logistic model where pij is the
 #include <stdio.h>    probability to be observed in state j at the second wave
 #include <stdlib.h>    conditional to be observed in state i at the first wave. Therefore
 #include <unistd.h>    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 #define MAXLINE 256    complex model than "constant and age", you should modify the program
 #define GNUPLOTPROGRAM "gnuplot"    where the markup *Covariates have to be included here again* invites
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    you to do it.  More covariates you add, slower the
 #define FILENAMELENGTH 80    convergence.
 /*#define DEBUG*/  
 #define windows    The advantage of this computer programme, compared to a simple
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    multinomial logistic model, is clear when the delay between waves is not
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    account using an interpolation or extrapolation.  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     hPijx is the probability to be observed in state i at age x+h
 #define NINTERVMAX 8    conditional to the observed state i at age x. The delay 'h' can be
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    split into an exact number (nh*stepm) of unobserved intermediate
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    states. This elementary transition (by month, quarter,
 #define NCOVMAX 8 /* Maximum number of covariates */    semester or year) is modelled as a multinomial logistic.  The hPx
 #define MAXN 20000    matrix is simply the matrix product of nh*stepm elementary matrices
 #define YEARM 12. /* Number of months per year */    and the contribution of each individual to the likelihood is simply
 #define AGESUP 130    hPijx.
 #define AGEBASE 40  
     Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
 int erreur; /* Error number */    
 int nvar;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;             Institut national d'études démographiques, Paris.
 int npar=NPARMAX;    This software have been partly granted by Euro-REVES, a concerted action
 int nlstate=2; /* Number of live states */    from the European Union.
 int ndeath=1; /* Number of dead states */    It is copyrighted identically to a GNU software product, ie programme and
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    software can be distributed freely for non commercial use. Latest version
 int popbased=0;    can be accessed at http://euroreves.ined.fr/imach .
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int maxwav; /* Maxim number of waves */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int jmin, jmax; /* min, max spacing between 2 waves */    
 int mle, weightopt;    **********************************************************************/
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  /*
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    main
 double jmean; /* Mean space between 2 waves */    read parameterfile
 double **oldm, **newm, **savm; /* Working pointers to matrices */    read datafile
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    concatwav
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    freqsummary
 FILE *ficgp,*ficresprob,*ficpop;    if (mle >= 1)
 FILE *ficreseij;      mlikeli
   char filerese[FILENAMELENGTH];    print results files
  FILE  *ficresvij;    if mle==1 
   char fileresv[FILENAMELENGTH];       computes hessian
  FILE  *ficresvpl;    read end of parameter file: agemin, agemax, bage, fage, estepm
   char fileresvpl[FILENAMELENGTH];        begin-prev-date,...
     open gnuplot file
 #define NR_END 1    open html file
 #define FREE_ARG char*    stable prevalence
 #define FTOL 1.0e-10     for age prevalim()
     h Pij x
 #define NRANSI    variance of p varprob
 #define ITMAX 200    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 #define TOL 2.0e-4    Variance-covariance of DFLE
     prevalence()
 #define CGOLD 0.3819660     movingaverage()
 #define ZEPS 1.0e-10    varevsij() 
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    if popbased==1 varevsij(,popbased)
     total life expectancies
 #define GOLD 1.618034    Variance of stable prevalence
 #define GLIMIT 100.0   end
 #define TINY 1.0e-20  */
   
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))   
    #include <math.h>
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #include <stdio.h>
 #define rint(a) floor(a+0.5)  #include <stdlib.h>
   #include <unistd.h>
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #include <sys/time.h>
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #include <time.h>
   #include "timeval.h"
 int imx;  
 int stepm;  #define MAXLINE 256
 /* Stepm, step in month: minimum step interpolation*/  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int estepm;  #define FILENAMELENGTH 132
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  /*#define DEBUG*/
   /*#define windows*/
 int m,nb;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 double dateintmean=0;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 double *weight;  #define NINTERVMAX 8
 int **s; /* Status */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double *agedc, **covar, idx;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define YEARM 12. /* Number of months per year */
 double ftolhess; /* Tolerance for computing hessian */  #define AGESUP 130
   #define AGEBASE 40
 /**************** split *************************/  #ifdef unix
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define DIRSEPARATOR '/'
 {  #define ODIRSEPARATOR '\\'
    char *s;                             /* pointer */  #else
    int  l1, l2;                         /* length counters */  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
    l1 = strlen( path );                 /* length of path */  #endif
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows  /* $Id$ */
    s = strrchr( path, '\\' );           /* find last / */  /* $State$ */
 #else  
    s = strrchr( path, '/' );            /* find last / */  char version[]="Imach version 0.96, June 2003, INED-EUROREVES ";
 #endif  char fullversion[]="$Revision$ $Date$"; 
    if ( s == NULL ) {                   /* no directory, so use current */  int erreur; /* Error number */
 #if     defined(__bsd__)                /* get current working directory */  int nvar;
       extern char       *getwd( );  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
       if ( getwd( dirc ) == NULL ) {  int nlstate=2; /* Number of live states */
 #else  int ndeath=1; /* Number of dead states */
       extern char       *getcwd( );  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif  int *wav; /* Number of waves for this individuual 0 is possible */
          return( GLOCK_ERROR_GETCWD );  int maxwav; /* Maxim number of waves */
       }  int jmin, jmax; /* min, max spacing between 2 waves */
       strcpy( name, path );             /* we've got it */  int gipmx, gsw; /* Global variables on the number of contributions 
    } else {                             /* strip direcotry from path */                     to the likelihood and the sum of weights (done by funcone)*/
       s++;                              /* after this, the filename */  int mle, weightopt;
       l2 = strlen( s );                 /* length of filename */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       strcpy( name, s );                /* save file name */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       strncpy( dirc, path, l1 - l2 );   /* now the directory */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       dirc[l1-l2] = 0;                  /* add zero */  double jmean; /* Mean space between 2 waves */
    }  double **oldm, **newm, **savm; /* Working pointers to matrices */
    l1 = strlen( dirc );                 /* length of directory */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #ifdef windows  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  FILE *ficlog, *ficrespow;
 #else  int globpr; /* Global variable for printing or not */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  double fretone; /* Only one call to likelihood */
 #endif  long ipmx; /* Number of contributions */
    s = strrchr( name, '.' );            /* find last / */  double sw; /* Sum of weights */
    s++;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    strcpy(ext,s);                       /* save extension */  FILE *ficresilk;
    l1= strlen( name);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    l2= strlen( s)+1;  FILE *ficresprobmorprev;
    strncpy( finame, name, l1-l2);  FILE *fichtm; /* Html File */
    finame[l1-l2]= 0;  FILE *ficreseij;
    return( 0 );                         /* we're done */  char filerese[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 /******************************************/  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 void replace(char *s, char*t)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   int i;  
   int lg=20;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   i=0;  char filelog[FILENAMELENGTH]; /* Log file */
   lg=strlen(t);  char filerest[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char fileregp[FILENAMELENGTH];
     (s[i] = t[i]);  char popfile[FILENAMELENGTH];
     if (t[i]== '\\') s[i]='/';  
   }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 }  
   #define NR_END 1
 int nbocc(char *s, char occ)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   int i,j=0;  
   int lg=20;  #define NRANSI 
   i=0;  #define ITMAX 200 
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #define TOL 2.0e-4 
   if  (s[i] == occ ) j++;  
   }  #define CGOLD 0.3819660 
   return j;  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 void cutv(char *u,char *v, char*t, char occ)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   int i,lg,j,p=0;  #define TINY 1.0e-20 
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  static double maxarg1,maxarg2;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
   lg=strlen(t);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   for(j=0; j<p; j++) {  #define rint(a) floor(a+0.5)
     (u[j] = t[j]);  
   }  static double sqrarg;
      u[p]='\0';  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  int imx; 
   }  int stepm;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 /********************** nrerror ********************/  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void nrerror(char error_text[])  
 {  int m,nb;
   fprintf(stderr,"ERREUR ...\n");  long *num;
   fprintf(stderr,"%s\n",error_text);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   exit(1);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
 /*********************** vector *******************/  double dateintmean=0;
 double *vector(int nl, int nh)  
 {  double *weight;
   double *v;  int **s; /* Status */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  double *agedc, **covar, idx;
   if (!v) nrerror("allocation failure in vector");  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   return v-nl+NR_END;  
 }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   free((FREE_ARG)(v+nl-NR_END));  {
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   int *v;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    if ( ss == NULL ) {                   /* no directory, so use current */
   if (!v) nrerror("allocation failure in ivector");      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   return v-nl+NR_END;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /******************free ivector **************************/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 void free_ivector(int *v, long nl, long nh)        return( GLOCK_ERROR_GETCWD );
 {      }
   free((FREE_ARG)(v+nl-NR_END));      strcpy( name, path );               /* we've got it */
 }    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
 /******************* imatrix *******************************/      l2 = strlen( ss );                  /* length of filename */
 int **imatrix(long nrl, long nrh, long ncl, long nch)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;      dirc[l1-l2] = 0;                    /* add zero */
   int **m;    }
      l1 = strlen( dirc );                  /* length of directory */
   /* allocate pointers to rows */    /*#ifdef windows
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   if (!m) nrerror("allocation failure 1 in matrix()");  #else
   m += NR_END;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m -= nrl;  #endif
      */
      ss = strrchr( name, '.' );            /* find last / */
   /* allocate rows and set pointers to them */    ss++;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    strcpy(ext,ss);                       /* save extension */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    l1= strlen( name);
   m[nrl] += NR_END;    l2= strlen(ss)+1;
   m[nrl] -= ncl;    strncpy( finame, name, l1-l2);
      finame[l1-l2]= 0;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    return( 0 );                          /* we're done */
    }
   /* return pointer to array of pointers to rows */  
   return m;  
 }  /******************************************/
   
 /****************** free_imatrix *************************/  void replace(char *s, char*t)
 void free_imatrix(m,nrl,nrh,ncl,nch)  {
       int **m;    int i;
       long nch,ncl,nrh,nrl;    int lg=20;
      /* free an int matrix allocated by imatrix() */    i=0;
 {    lg=strlen(t);
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    for(i=0; i<= lg; i++) {
   free((FREE_ARG) (m+nrl-NR_END));      (s[i] = t[i]);
 }      if (t[i]== '\\') s[i]='/';
     }
 /******************* matrix *******************************/  }
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  int nbocc(char *s, char occ)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  {
   double **m;    int i,j=0;
     int lg=20;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    i=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    lg=strlen(s);
   m += NR_END;    for(i=0; i<= lg; i++) {
   m -= nrl;    if  (s[i] == occ ) j++;
     }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    return j;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  void cutv(char *u,char *v, char*t, char occ)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    /* cuts string t into u and v where u is ended by char occ excluding it
   return m;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 }       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
 /*************************free matrix ************************/    i=0;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    for(j=0; j<=strlen(t)-1; j++) {
 {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    }
   free((FREE_ARG)(m+nrl-NR_END));  
 }    lg=strlen(t);
     for(j=0; j<p; j++) {
 /******************* ma3x *******************************/      (u[j] = t[j]);
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    }
 {       u[p]='\0';
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  /********************** nrerror ********************/
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  void nrerror(char error_text[])
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    fprintf(stderr,"ERREUR ...\n");
   m[nrl] -= ncl;    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   /*********************** vector *******************/
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  double *vector(int nl, int nh)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  {
   m[nrl][ncl] += NR_END;    double *v;
   m[nrl][ncl] -= nll;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for (j=ncl+1; j<=nch; j++)    if (!v) nrerror("allocation failure in vector");
     m[nrl][j]=m[nrl][j-1]+nlay;    return v-nl+NR_END;
    }
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /************************ free vector ******************/
     for (j=ncl+1; j<=nch; j++)  void free_vector(double*v, int nl, int nh)
       m[i][j]=m[i][j-1]+nlay;  {
   }    free((FREE_ARG)(v+nl-NR_END));
   return m;  }
 }  
   /************************ivector *******************************/
 /*************************free ma3x ************************/  int *ivector(long nl,long nh)
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  {
 {    int *v;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if (!v) nrerror("allocation failure in ivector");
   free((FREE_ARG)(m+nrl-NR_END));    return v-nl+NR_END;
 }  }
   
 /***************** f1dim *************************/  /******************free ivector **************************/
 extern int ncom;  void free_ivector(int *v, long nl, long nh)
 extern double *pcom,*xicom;  {
 extern double (*nrfunc)(double []);    free((FREE_ARG)(v+nl-NR_END));
    }
 double f1dim(double x)  
 {  /************************lvector *******************************/
   int j;  long *lvector(long nl,long nh)
   double f;  {
   double *xt;    long *v;
      v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   xt=vector(1,ncom);    if (!v) nrerror("allocation failure in ivector");
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    return v-nl+NR_END;
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  /******************free lvector **************************/
 }  void free_lvector(long *v, long nl, long nh)
   {
 /*****************brent *************************/    free((FREE_ARG)(v+nl-NR_END));
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  }
 {  
   int iter;  /******************* imatrix *******************************/
   double a,b,d,etemp;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double fu,fv,fw,fx;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double ftemp;  { 
   double p,q,r,tol1,tol2,u,v,w,x,xm;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double e=0.0;    int **m; 
      
   a=(ax < cx ? ax : cx);    /* allocate pointers to rows */ 
   b=(ax > cx ? ax : cx);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   x=w=v=bx;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   fw=fv=fx=(*f)(x);    m += NR_END; 
   for (iter=1;iter<=ITMAX;iter++) {    m -= nrl; 
     xm=0.5*(a+b);    
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    /* allocate rows and set pointers to them */ 
     printf(".");fflush(stdout);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    m[nrl] += NR_END; 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    m[nrl] -= ncl; 
 #endif    
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       *xmin=x;    
       return fx;    /* return pointer to array of pointers to rows */ 
     }    return m; 
     ftemp=fu;  } 
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  /****************** free_imatrix *************************/
       q=(x-v)*(fx-fw);  void free_imatrix(m,nrl,nrh,ncl,nch)
       p=(x-v)*q-(x-w)*r;        int **m;
       q=2.0*(q-r);        long nch,ncl,nrh,nrl; 
       if (q > 0.0) p = -p;       /* free an int matrix allocated by imatrix() */ 
       q=fabs(q);  { 
       etemp=e;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       e=d;    free((FREE_ARG) (m+nrl-NR_END)); 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  } 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  /******************* matrix *******************************/
         d=p/q;  double **matrix(long nrl, long nrh, long ncl, long nch)
         u=x+d;  {
         if (u-a < tol2 || b-u < tol2)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
           d=SIGN(tol1,xm-x);    double **m;
       }  
     } else {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    m -= nrl;
     fu=(*f)(u);  
     if (fu <= fx) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (u >= x) a=x; else b=x;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       SHFT(v,w,x,u)    m[nrl] += NR_END;
         SHFT(fv,fw,fx,fu)    m[nrl] -= ncl;
         } else {  
           if (u < x) a=u; else b=u;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           if (fu <= fw || w == x) {    return m;
             v=w;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
             w=u;     */
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /*************************free matrix ************************/
             v=u;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
             fv=fu;  {
           }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         }    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   nrerror("Too many iterations in brent");  
   *xmin=x;  /******************* ma3x *******************************/
   return fx;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 }  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 /****************** mnbrak ***********************/    double ***m;
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             double (*func)(double))    if (!m) nrerror("allocation failure 1 in matrix()");
 {    m += NR_END;
   double ulim,u,r,q, dum;    m -= nrl;
   double fu;  
      m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   *fa=(*func)(*ax);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *fb=(*func)(*bx);    m[nrl] += NR_END;
   if (*fb > *fa) {    m[nrl] -= ncl;
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   *fc=(*func)(*cx);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   while (*fb > *fc) {    m[nrl][ncl] += NR_END;
     r=(*bx-*ax)*(*fb-*fc);    m[nrl][ncl] -= nll;
     q=(*bx-*cx)*(*fb-*fa);    for (j=ncl+1; j<=nch; j++) 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      m[nrl][j]=m[nrl][j-1]+nlay;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    
     ulim=(*bx)+GLIMIT*(*cx-*bx);    for (i=nrl+1; i<=nrh; i++) {
     if ((*bx-u)*(u-*cx) > 0.0) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       fu=(*func)(u);      for (j=ncl+1; j<=nch; j++) 
     } else if ((*cx-u)*(u-ulim) > 0.0) {        m[i][j]=m[i][j-1]+nlay;
       fu=(*func)(u);    }
       if (fu < *fc) {    return m; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
           SHFT(*fb,*fc,fu,(*func)(u))             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
           }    */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  }
       u=ulim;  
       fu=(*func)(u);  /*************************free ma3x ************************/
     } else {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       u=(*cx)+GOLD*(*cx-*bx);  {
       fu=(*func)(u);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     SHFT(*ax,*bx,*cx,u)    free((FREE_ARG)(m+nrl-NR_END));
       SHFT(*fa,*fb,*fc,fu)  }
       }  
 }  /***************** f1dim *************************/
   extern int ncom; 
 /*************** linmin ************************/  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 int ncom;   
 double *pcom,*xicom;  double f1dim(double x) 
 double (*nrfunc)(double []);  { 
      int j; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    double f;
 {    double *xt; 
   double brent(double ax, double bx, double cx,   
                double (*f)(double), double tol, double *xmin);    xt=vector(1,ncom); 
   double f1dim(double x);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    f=(*nrfunc)(xt); 
               double *fc, double (*func)(double));    free_vector(xt,1,ncom); 
   int j;    return f; 
   double xx,xmin,bx,ax;  } 
   double fx,fb,fa;  
    /*****************brent *************************/
   ncom=n;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   pcom=vector(1,n);  { 
   xicom=vector(1,n);    int iter; 
   nrfunc=func;    double a,b,d,etemp;
   for (j=1;j<=n;j++) {    double fu,fv,fw,fx;
     pcom[j]=p[j];    double ftemp;
     xicom[j]=xi[j];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   }    double e=0.0; 
   ax=0.0;   
   xx=1.0;    a=(ax < cx ? ax : cx); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    b=(ax > cx ? ax : cx); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    x=w=v=bx; 
 #ifdef DEBUG    fw=fv=fx=(*f)(x); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    for (iter=1;iter<=ITMAX;iter++) { 
 #endif      xm=0.5*(a+b); 
   for (j=1;j<=n;j++) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     xi[j] *= xmin;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     p[j] += xi[j];      printf(".");fflush(stdout);
   }      fprintf(ficlog,".");fflush(ficlog);
   free_vector(xicom,1,n);  #ifdef DEBUG
   free_vector(pcom,1,n);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 /*************** powell ************************/  #endif
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
             double (*func)(double []))        *xmin=x; 
 {        return fx; 
   void linmin(double p[], double xi[], int n, double *fret,      } 
               double (*func)(double []));      ftemp=fu;
   int i,ibig,j;      if (fabs(e) > tol1) { 
   double del,t,*pt,*ptt,*xit;        r=(x-w)*(fx-fv); 
   double fp,fptt;        q=(x-v)*(fx-fw); 
   double *xits;        p=(x-v)*q-(x-w)*r; 
   pt=vector(1,n);        q=2.0*(q-r); 
   ptt=vector(1,n);        if (q > 0.0) p = -p; 
   xit=vector(1,n);        q=fabs(q); 
   xits=vector(1,n);        etemp=e; 
   *fret=(*func)(p);        e=d; 
   for (j=1;j<=n;j++) pt[j]=p[j];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for (*iter=1;;++(*iter)) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     fp=(*fret);        else { 
     ibig=0;          d=p/q; 
     del=0.0;          u=x+d; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);          if (u-a < tol2 || b-u < tol2) 
     for (i=1;i<=n;i++)            d=SIGN(tol1,xm-x); 
       printf(" %d %.12f",i, p[i]);        } 
     printf("\n");      } else { 
     for (i=1;i<=n;i++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      } 
       fptt=(*fret);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 #ifdef DEBUG      fu=(*f)(u); 
       printf("fret=%lf \n",*fret);      if (fu <= fx) { 
 #endif        if (u >= x) a=x; else b=x; 
       printf("%d",i);fflush(stdout);        SHFT(v,w,x,u) 
       linmin(p,xit,n,fret,func);          SHFT(fv,fw,fx,fu) 
       if (fabs(fptt-(*fret)) > del) {          } else { 
         del=fabs(fptt-(*fret));            if (u < x) a=u; else b=u; 
         ibig=i;            if (fu <= fw || w == x) { 
       }              v=w; 
 #ifdef DEBUG              w=u; 
       printf("%d %.12e",i,(*fret));              fv=fw; 
       for (j=1;j<=n;j++) {              fw=fu; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);            } else if (fu <= fv || v == x || v == w) { 
         printf(" x(%d)=%.12e",j,xit[j]);              v=u; 
       }              fv=fu; 
       for(j=1;j<=n;j++)            } 
         printf(" p=%.12e",p[j]);          } 
       printf("\n");    } 
 #endif    nrerror("Too many iterations in brent"); 
     }    *xmin=x; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    return fx; 
 #ifdef DEBUG  } 
       int k[2],l;  
       k[0]=1;  /****************** mnbrak ***********************/
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for (j=1;j<=n;j++)              double (*func)(double)) 
         printf(" %.12e",p[j]);  { 
       printf("\n");    double ulim,u,r,q, dum;
       for(l=0;l<=1;l++) {    double fu; 
         for (j=1;j<=n;j++) {   
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    *fa=(*func)(*ax); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    *fb=(*func)(*bx); 
         }    if (*fb > *fa) { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      SHFT(dum,*ax,*bx,dum) 
       }        SHFT(dum,*fb,*fa,dum) 
 #endif        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
       free_vector(xit,1,n);    while (*fb > *fc) { 
       free_vector(xits,1,n);      r=(*bx-*ax)*(*fb-*fc); 
       free_vector(ptt,1,n);      q=(*bx-*cx)*(*fb-*fa); 
       free_vector(pt,1,n);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       return;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      if ((*bx-u)*(u-*cx) > 0.0) { 
     for (j=1;j<=n;j++) {        fu=(*func)(u); 
       ptt[j]=2.0*p[j]-pt[j];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       xit[j]=p[j]-pt[j];        fu=(*func)(u); 
       pt[j]=p[j];        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     fptt=(*func)(ptt);            SHFT(*fb,*fc,fu,(*func)(u)) 
     if (fptt < fp) {            } 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       if (t < 0.0) {        u=ulim; 
         linmin(p,xit,n,fret,func);        fu=(*func)(u); 
         for (j=1;j<=n;j++) {      } else { 
           xi[j][ibig]=xi[j][n];        u=(*cx)+GOLD*(*cx-*bx); 
           xi[j][n]=xit[j];        fu=(*func)(u); 
         }      } 
 #ifdef DEBUG      SHFT(*ax,*bx,*cx,u) 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        SHFT(*fa,*fb,*fc,fu) 
         for(j=1;j<=n;j++)        } 
           printf(" %.12e",xit[j]);  } 
         printf("\n");  
 #endif  /*************** linmin ************************/
       }  
     }  int ncom; 
   }  double *pcom,*xicom;
 }  double (*nrfunc)(double []); 
    
 /**** Prevalence limit ****************/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double brent(double ax, double bx, double cx, 
 {                 double (*f)(double), double tol, double *xmin); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    double f1dim(double x); 
      matrix by transitions matrix until convergence is reached */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
   int i, ii,j,k;    int j; 
   double min, max, maxmin, maxmax,sumnew=0.;    double xx,xmin,bx,ax; 
   double **matprod2();    double fx,fb,fa;
   double **out, cov[NCOVMAX], **pmij();   
   double **newm;    ncom=n; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    pcom=vector(1,n); 
     xicom=vector(1,n); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    nrfunc=func; 
     for (j=1;j<=nlstate+ndeath;j++){    for (j=1;j<=n;j++) { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      pcom[j]=p[j]; 
     }      xicom[j]=xi[j]; 
     } 
    cov[1]=1.;    ax=0.0; 
      xx=1.0; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     newm=savm;  #ifdef DEBUG
     /* Covariates have to be included here again */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      cov[2]=agefin;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    #endif
       for (k=1; k<=cptcovn;k++) {    for (j=1;j<=n;j++) { 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      xi[j] *= xmin; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      p[j] += xi[j]; 
       }    } 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free_vector(xicom,1,n); 
       for (k=1; k<=cptcovprod;k++)    free_vector(pcom,1,n); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  } 
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /*************** powell ************************/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/              double (*func)(double [])) 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  { 
     void linmin(double p[], double xi[], int n, double *fret, 
     savm=oldm;                double (*func)(double [])); 
     oldm=newm;    int i,ibig,j; 
     maxmax=0.;    double del,t,*pt,*ptt,*xit;
     for(j=1;j<=nlstate;j++){    double fp,fptt;
       min=1.;    double *xits;
       max=0.;    pt=vector(1,n); 
       for(i=1; i<=nlstate; i++) {    ptt=vector(1,n); 
         sumnew=0;    xit=vector(1,n); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    xits=vector(1,n); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    *fret=(*func)(p); 
         max=FMAX(max,prlim[i][j]);    for (j=1;j<=n;j++) pt[j]=p[j]; 
         min=FMIN(min,prlim[i][j]);    for (*iter=1;;++(*iter)) { 
       }      fp=(*fret); 
       maxmin=max-min;      ibig=0; 
       maxmax=FMAX(maxmax,maxmin);      del=0.0; 
     }      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     if(maxmax < ftolpl){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       return prlim;      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     }      for (i=1;i<=n;i++) {
   }        printf(" %d %.12f",i, p[i]);
 }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
 /*************** transition probabilities ***************/      }
       printf("\n");
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      fprintf(ficlog,"\n");
 {      fprintf(ficrespow,"\n");
   double s1, s2;      for (i=1;i<=n;i++) { 
   /*double t34;*/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   int i,j,j1, nc, ii, jj;        fptt=(*fret); 
   #ifdef DEBUG
     for(i=1; i<= nlstate; i++){        printf("fret=%lf \n",*fret);
     for(j=1; j<i;j++){        fprintf(ficlog,"fret=%lf \n",*fret);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #endif
         /*s2 += param[i][j][nc]*cov[nc];*/        printf("%d",i);fflush(stdout);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fprintf(ficlog,"%d",i);fflush(ficlog);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        linmin(p,xit,n,fret,func); 
       }        if (fabs(fptt-(*fret)) > del) { 
       ps[i][j]=s2;          del=fabs(fptt-(*fret)); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          ibig=i; 
     }        } 
     for(j=i+1; j<=nlstate+ndeath;j++){  #ifdef DEBUG
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        printf("%d %.12e",i,(*fret));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fprintf(ficlog,"%d %.12e",i,(*fret));
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        for (j=1;j<=n;j++) {
       }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       ps[i][j]=s2;          printf(" x(%d)=%.12e",j,xit[j]);
     }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   }        }
     /*ps[3][2]=1;*/        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
   for(i=1; i<= nlstate; i++){          fprintf(ficlog," p=%.12e",p[j]);
      s1=0;        }
     for(j=1; j<i; j++)        printf("\n");
       s1+=exp(ps[i][j]);        fprintf(ficlog,"\n");
     for(j=i+1; j<=nlstate+ndeath; j++)  #endif
       s1+=exp(ps[i][j]);      } 
     ps[i][i]=1./(s1+1.);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for(j=1; j<i; j++)  #ifdef DEBUG
       ps[i][j]= exp(ps[i][j])*ps[i][i];        int k[2],l;
     for(j=i+1; j<=nlstate+ndeath; j++)        k[0]=1;
       ps[i][j]= exp(ps[i][j])*ps[i][i];        k[1]=-1;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        printf("Max: %.12e",(*func)(p));
   } /* end i */        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          printf(" %.12e",p[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){          fprintf(ficlog," %.12e",p[j]);
       ps[ii][jj]=0;        }
       ps[ii][ii]=1;        printf("\n");
     }        fprintf(ficlog,"\n");
   }        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      printf("%lf ",ps[ii][jj]);          }
    }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     printf("\n ");          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }        }
     printf("\n ");printf("%lf ",cov[2]);*/  #endif
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/        free_vector(xit,1,n); 
     return ps;        free_vector(xits,1,n); 
 }        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
 /**************** Product of 2 matrices ******************/        return; 
       } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 {      for (j=1;j<=n;j++) { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        ptt[j]=2.0*p[j]-pt[j]; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        xit[j]=p[j]-pt[j]; 
   /* in, b, out are matrice of pointers which should have been initialized        pt[j]=p[j]; 
      before: only the contents of out is modified. The function returns      } 
      a pointer to pointers identical to out */      fptt=(*func)(ptt); 
   long i, j, k;      if (fptt < fp) { 
   for(i=nrl; i<= nrh; i++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for(k=ncolol; k<=ncoloh; k++)        if (t < 0.0) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          linmin(p,xit,n,fret,func); 
         out[i][k] +=in[i][j]*b[j][k];          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
   return out;            xi[j][n]=xit[j]; 
 }          }
   #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /************* Higher Matrix Product ***************/          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )            printf(" %.12e",xit[j]);
 {            fprintf(ficlog," %.12e",xit[j]);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          }
      duration (i.e. until          printf("\n");
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          fprintf(ficlog,"\n");
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #endif
      (typically every 2 years instead of every month which is too big).        }
      Model is determined by parameters x and covariates have to be      } 
      included manually here.    } 
   } 
      */  
   /**** Prevalence limit (stable prevalence)  ****************/
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double **newm;  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   /* Hstepm could be zero and should return the unit matrix */       matrix by transitions matrix until convergence is reached */
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){    int i, ii,j,k;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double min, max, maxmin, maxmax,sumnew=0.;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double **matprod2();
     }    double **out, cov[NCOVMAX], **pmij();
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double **newm;
   for(h=1; h <=nhstepm; h++){    double agefin, delaymax=50 ; /* Max number of years to converge */
     for(d=1; d <=hstepm; d++){  
       newm=savm;    for (ii=1;ii<=nlstate+ndeath;ii++)
       /* Covariates have to be included here again */      for (j=1;j<=nlstate+ndeath;j++){
       cov[1]=1.;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)     cov[1]=1.;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];   
       for (k=1; k<=cptcovprod;k++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
       /* Covariates have to be included here again */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/       cov[2]=agefin;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        for (k=1; k<=cptcovn;k++) {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       savm=oldm;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       oldm=newm;        }
     }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(i=1; i<=nlstate+ndeath; i++)        for (k=1; k<=cptcovprod;k++)
       for(j=1;j<=nlstate+ndeath;j++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
          */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   } /* end h */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   return po;  
 }      savm=oldm;
       oldm=newm;
       maxmax=0.;
 /*************** log-likelihood *************/      for(j=1;j<=nlstate;j++){
 double func( double *x)        min=1.;
 {        max=0.;
   int i, ii, j, k, mi, d, kk;        for(i=1; i<=nlstate; i++) {
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          sumnew=0;
   double **out;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double sw; /* Sum of weights */          prlim[i][j]= newm[i][j]/(1-sumnew);
   double lli; /* Individual log likelihood */          max=FMAX(max,prlim[i][j]);
   long ipmx;          min=FMIN(min,prlim[i][j]);
   /*extern weight */        }
   /* We are differentiating ll according to initial status */        maxmin=max-min;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        maxmax=FMAX(maxmax,maxmin);
   /*for(i=1;i<imx;i++)      }
     printf(" %d\n",s[4][i]);      if(maxmax < ftolpl){
   */        return prlim;
   cov[1]=1.;      }
     }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /*************** transition probabilities ***************/ 
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
       for(d=0; d<dh[mi][i]; d++){    double s1, s2;
         newm=savm;    /*double t34;*/
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    int i,j,j1, nc, ii, jj;
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for(i=1; i<= nlstate; i++){
         }      for(j=1; j<i;j++){
                for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          /*s2 += param[i][j][nc]*cov[nc];*/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         savm=oldm;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         oldm=newm;        }
                ps[i][j]=s2;
                /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       } /* end mult */      }
            for(j=i+1; j<=nlstate+ndeath;j++){
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       ipmx +=1;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       sw += weight[i];        }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        ps[i][j]=s2;
     } /* end of wave */      }
   } /* end of individual */    }
       /*ps[3][2]=1;*/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    for(i=1; i<= nlstate; i++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */       s1=0;
   return -l;      for(j=1; j<i; j++)
 }        s1+=exp(ps[i][j]);
       for(j=i+1; j<=nlstate+ndeath; j++)
         s1+=exp(ps[i][j]);
 /*********** Maximum Likelihood Estimation ***************/      ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        ps[i][j]= exp(ps[i][j])*ps[i][i];
 {      for(j=i+1; j<=nlstate+ndeath; j++)
   int i,j, iter;        ps[i][j]= exp(ps[i][j])*ps[i][i];
   double **xi,*delti;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   double fret;    } /* end i */
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for (j=1;j<=npar;j++)      for(jj=1; jj<= nlstate+ndeath; jj++){
       xi[i][j]=(i==j ? 1.0 : 0.0);        ps[ii][jj]=0;
   printf("Powell\n");        ps[ii][ii]=1;
   powell(p,xi,npar,ftol,&iter,&fret,func);      }
     }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
     /*   for(ii=1; ii<= nlstate+ndeath; ii++){
 }      for(jj=1; jj<= nlstate+ndeath; jj++){
        printf("%lf ",ps[ii][jj]);
 /**** Computes Hessian and covariance matrix ***/     }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      printf("\n ");
 {      }
   double  **a,**y,*x,pd;      printf("\n ");printf("%lf ",cov[2]);*/
   double **hess;  /*
   int i, j,jk;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   int *indx;    goto end;*/
       return ps;
   double hessii(double p[], double delta, int theta, double delti[]);  }
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /**************** Product of 2 matrices ******************/
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   hess=matrix(1,npar,1,npar);  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   printf("\nCalculation of the hessian matrix. Wait...\n");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for (i=1;i<=npar;i++){    /* in, b, out are matrice of pointers which should have been initialized 
     printf("%d",i);fflush(stdout);       before: only the contents of out is modified. The function returns
     hess[i][i]=hessii(p,ftolhess,i,delti);       a pointer to pointers identical to out */
     /*printf(" %f ",p[i]);*/    long i, j, k;
     /*printf(" %lf ",hess[i][i]);*/    for(i=nrl; i<= nrh; i++)
   }      for(k=ncolol; k<=ncoloh; k++)
          for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for (i=1;i<=npar;i++) {          out[i][k] +=in[i][j]*b[j][k];
     for (j=1;j<=npar;j++)  {  
       if (j>i) {    return out;
         printf(".%d%d",i,j);fflush(stdout);  }
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/  /************* Higher Matrix Product ***************/
       }  
     }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   }  {
   printf("\n");    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         nhstepm*hstepm matrices. 
   a=matrix(1,npar,1,npar);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   y=matrix(1,npar,1,npar);       (typically every 2 years instead of every month which is too big 
   x=vector(1,npar);       for the memory).
   indx=ivector(1,npar);       Model is determined by parameters x and covariates have to be 
   for (i=1;i<=npar;i++)       included manually here. 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);       */
   
   for (j=1;j<=npar;j++) {    int i, j, d, h, k;
     for (i=1;i<=npar;i++) x[i]=0;    double **out, cov[NCOVMAX];
     x[j]=1;    double **newm;
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    /* Hstepm could be zero and should return the unit matrix */
       matcov[i][j]=x[i];    for (i=1;i<=nlstate+ndeath;i++)
     }      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
   printf("\n#Hessian matrix#\n");      }
   for (i=1;i<=npar;i++) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for (j=1;j<=npar;j++) {    for(h=1; h <=nhstepm; h++){
       printf("%.3e ",hess[i][j]);      for(d=1; d <=hstepm; d++){
     }        newm=savm;
     printf("\n");        /* Covariates have to be included here again */
   }        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   /* Recompute Inverse */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (i=1;i<=npar;i++)        for (k=1; k<=cptcovage;k++)
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   ludcmp(a,npar,indx,&pd);        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /*  printf("\n#Hessian matrix recomputed#\n");  
   
   for (j=1;j<=npar;j++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     for (i=1;i<=npar;i++) x[i]=0;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     x[j]=1;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     lubksb(a,npar,indx,x);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1;i<=npar;i++){        savm=oldm;
       y[i][j]=x[i];        oldm=newm;
       printf("%.3e ",y[i][j]);      }
     }      for(i=1; i<=nlstate+ndeath; i++)
     printf("\n");        for(j=1;j<=nlstate+ndeath;j++) {
   }          po[i][j][h]=newm[i][j];
   */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
            */
   free_matrix(a,1,npar,1,npar);        }
   free_matrix(y,1,npar,1,npar);    } /* end h */
   free_vector(x,1,npar);    return po;
   free_ivector(indx,1,npar);  }
   free_matrix(hess,1,npar,1,npar);  
   
   /*************** log-likelihood *************/
 }  double func( double *x)
   {
 /*************** hessian matrix ****************/    int i, ii, j, k, mi, d, kk;
 double hessii( double x[], double delta, int theta, double delti[])    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 {    double **out;
   int i;    double sw; /* Sum of weights */
   int l=1, lmax=20;    double lli; /* Individual log likelihood */
   double k1,k2;    int s1, s2;
   double p2[NPARMAX+1];    double bbh, survp;
   double res;    long ipmx;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    /*extern weight */
   double fx;    /* We are differentiating ll according to initial status */
   int k=0,kmax=10;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double l1;    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   fx=func(x);    */
   for (i=1;i<=npar;i++) p2[i]=x[i];    cov[1]=1.;
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){    if(mle==1){
       delt = delta*(l1*k);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       p2[theta]=x[theta] +delt;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       k1=func(p2)-fx;        for(mi=1; mi<= wav[i]-1; mi++){
       p2[theta]=x[theta]-delt;          for (ii=1;ii<=nlstate+ndeath;ii++)
       k2=func(p2)-fx;            for (j=1;j<=nlstate+ndeath;j++){
       /*res= (k1-2.0*fx+k2)/delt/delt; */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
 #ifdef DEBUG          for(d=0; d<dh[mi][i]; d++){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            newm=savm;
 #endif            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            for (kk=1; kk<=cptcovage;kk++) {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         k=kmax;            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         k=kmax; l=lmax*10.;            savm=oldm;
       }            oldm=newm;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          } /* end mult */
         delts=delt;        
       }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     }          /* But now since version 0.9 we anticipate for bias and large stepm.
   }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   delti[theta]=delts;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   return res;           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
 }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
 double hessij( double x[], double delti[], int thetai,int thetaj)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 {           * -stepm/2 to stepm/2 .
   int i;           * For stepm=1 the results are the same as for previous versions of Imach.
   int l=1, l1, lmax=20;           * For stepm > 1 the results are less biased than in previous versions. 
   double k1,k2,k3,k4,res,fx;           */
   double p2[NPARMAX+1];          s1=s[mw[mi][i]][i];
   int k;          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   fx=func(x);          /* bias is positive if real duration
   for (k=1; k<=2; k++) {           * is higher than the multiple of stepm and negative otherwise.
     for (i=1;i<=npar;i++) p2[i]=x[i];           */
     p2[thetai]=x[thetai]+delti[thetai]/k;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          if( s2 > nlstate){ 
     k1=func(p2)-fx;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                 to the likelihood is the probability to die between last step unit time and current 
     p2[thetai]=x[thetai]+delti[thetai]/k;               step unit time, which is also the differences between probability to die before dh 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;               and probability to die before dh-stepm . 
     k2=func(p2)-fx;               In version up to 0.92 likelihood was computed
            as if date of death was unknown. Death was treated as any other
     p2[thetai]=x[thetai]-delti[thetai]/k;          health state: the date of the interview describes the actual state
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          and not the date of a change in health state. The former idea was
     k3=func(p2)-fx;          to consider that at each interview the state was recorded
            (healthy, disable or death) and IMaCh was corrected; but when we
     p2[thetai]=x[thetai]-delti[thetai]/k;          introduced the exact date of death then we should have modified
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          the contribution of an exact death to the likelihood. This new
     k4=func(p2)-fx;          contribution is smaller and very dependent of the step unit
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          stepm. It is no more the probability to die between last interview
 #ifdef DEBUG          and month of death but the probability to survive from last
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          interview up to one month before death multiplied by the
 #endif          probability to die within a month. Thanks to Chris
   }          Jackson for correcting this bug.  Former versions increased
   return res;          mortality artificially. The bad side is that we add another loop
 }          which slows down the processing. The difference can be up to 10%
           lower mortality.
 /************** Inverse of matrix **************/            */
 void ludcmp(double **a, int n, int *indx, double *d)            lli=log(out[s1][s2] - savm[s1][s2]);
 {          }else{
   int i,imax,j,k;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double big,dum,sum,temp;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double *vv;          } 
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   vv=vector(1,n);          /*if(lli ==000.0)*/
   *d=1.0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for (i=1;i<=n;i++) {          ipmx +=1;
     big=0.0;          sw += weight[i];
     for (j=1;j<=n;j++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if ((temp=fabs(a[i][j])) > big) big=temp;        } /* end of wave */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      } /* end of individual */
     vv[i]=1.0/big;    }  else if(mle==2){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (j=1;j<=n;j++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1;i<j;i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       sum=a[i][j];          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            for (j=1;j<=nlstate+ndeath;j++){
       a[i][j]=sum;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     big=0.0;            }
     for (i=j;i<=n;i++) {          for(d=0; d<=dh[mi][i]; d++){
       sum=a[i][j];            newm=savm;
       for (k=1;k<j;k++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         sum -= a[i][k]*a[k][j];            for (kk=1; kk<=cptcovage;kk++) {
       a[i][j]=sum;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if ( (dum=vv[i]*fabs(sum)) >= big) {            }
         big=dum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         imax=i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     }            oldm=newm;
     if (j != imax) {          } /* end mult */
       for (k=1;k<=n;k++) {        
         dum=a[imax][k];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         a[imax][k]=a[j][k];          /* But now since version 0.9 we anticipate for bias and large stepm.
         a[j][k]=dum;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       }           * (in months) between two waves is not a multiple of stepm, we rounded to 
       *d = -(*d);           * the nearest (and in case of equal distance, to the lowest) interval but now
       vv[imax]=vv[j];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     indx[j]=imax;           * probability in order to take into account the bias as a fraction of the way
     if (a[j][j] == 0.0) a[j][j]=TINY;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     if (j != n) {           * -stepm/2 to stepm/2 .
       dum=1.0/(a[j][j]);           * For stepm=1 the results are the same as for previous versions of Imach.
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           * For stepm > 1 the results are less biased than in previous versions. 
     }           */
   }          s1=s[mw[mi][i]][i];
   free_vector(vv,1,n);  /* Doesn't work */          s2=s[mw[mi+1][i]][i];
 ;          bbh=(double)bh[mi][i]/(double)stepm; 
 }          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
 void lubksb(double **a, int n, int *indx, double b[])           */
 {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int i,ii=0,ip,j;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double sum;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   for (i=1;i<=n;i++) {          /*if(lli ==000.0)*/
     ip=indx[i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     sum=b[ip];          ipmx +=1;
     b[ip]=b[i];          sw += weight[i];
     if (ii)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        } /* end of wave */
     else if (sum) ii=i;      } /* end of individual */
     b[i]=sum;    }  else if(mle==3){  /* exponential inter-extrapolation */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (i=n;i>=1;i--) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     sum=b[i];        for(mi=1; mi<= wav[i]-1; mi++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          for (ii=1;ii<=nlstate+ndeath;ii++)
     b[i]=sum/a[i][i];            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 /************ Frequencies ********************/          for(d=0; d<dh[mi][i]; d++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            newm=savm;
 {  /* Some frequencies */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double ***freq; /* Frequencies */            }
   double *pp;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double pos, k2, dateintsum=0,k2cpt=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   FILE *ficresp;            savm=oldm;
   char fileresp[FILENAMELENGTH];            oldm=newm;
            } /* end mult */
   pp=vector(1,nlstate);        
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   strcpy(fileresp,"p");          /* But now since version 0.9 we anticipate for bias and large stepm.
   strcat(fileresp,fileres);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   if((ficresp=fopen(fileresp,"w"))==NULL) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
     printf("Problem with prevalence resultfile: %s\n", fileresp);           * the nearest (and in case of equal distance, to the lowest) interval but now
     exit(0);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * probability in order to take into account the bias as a fraction of the way
   j1=0;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
   j=cptcoveff;           * For stepm=1 the results are the same as for previous versions of Imach.
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * For stepm > 1 the results are less biased than in previous versions. 
             */
   for(k1=1; k1<=j;k1++){          s1=s[mw[mi][i]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){          s2=s[mw[mi+1][i]][i];
       j1++;          bbh=(double)bh[mi][i]/(double)stepm; 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          /* bias is positive if real duration
         scanf("%d", i);*/           * is higher than the multiple of stepm and negative otherwise.
       for (i=-1; i<=nlstate+ndeath; i++)             */
         for (jk=-1; jk<=nlstate+ndeath; jk++)            /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
           for(m=agemin; m <= agemax+3; m++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             freq[i][jk][m]=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                /*if(lli ==000.0)*/
       dateintsum=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       k2cpt=0;          ipmx +=1;
       for (i=1; i<=imx; i++) {          sw += weight[i];
         bool=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if  (cptcovn>0) {        } /* end of wave */
           for (z1=1; z1<=cptcoveff; z1++)      } /* end of individual */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    }else if (mle==4){  /* ml=4 no inter-extrapolation */
               bool=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (bool==1) {        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=firstpass; m<=lastpass; m++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             k2=anint[m][i]+(mint[m][i]/12.);            for (j=1;j<=nlstate+ndeath;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==1) agev[m][i]=agemax+2;            }
               if (m<lastpass) {          for(d=0; d<dh[mi][i]; d++){
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            newm=savm;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               }            for (kk=1; kk<=cptcovage;kk++) {
                            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            }
                 dateintsum=dateintsum+k2;          
                 k2cpt++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             }            savm=oldm;
           }            oldm=newm;
         }          } /* end mult */
       }        
                  s1=s[mw[mi][i]][i];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
       if  (cptcovn>0) {            lli=log(out[s1][s2] - savm[s1][s2]);
         fprintf(ficresp, "\n#********** Variable ");          }else{
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         fprintf(ficresp, "**********\n#");          }
       }          ipmx +=1;
       for(i=1; i<=nlstate;i++)          sw += weight[i];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresp, "\n");  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
              } /* end of wave */
       for(i=(int)agemin; i <= (int)agemax+3; i++){      } /* end of individual */
         if(i==(int)agemax+3)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           printf("Total");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         else        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           printf("Age %d", i);        for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for (j=1;j<=nlstate+ndeath;j++){
             pp[jk] += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pos=0; m <=0 ; m++)          for(d=0; d<dh[mi][i]; d++){
             pos += freq[jk][m][i];            newm=savm;
           if(pp[jk]>=1.e-10)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            for (kk=1; kk<=cptcovage;kk++) {
           else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            }
         }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            savm=oldm;
             pp[jk] += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
         
         for(jk=1,pos=0; jk <=nlstate ; jk++)          s1=s[mw[mi][i]][i];
           pos += pp[jk];          s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           if(pos>=1.e-5)          ipmx +=1;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          sw += weight[i];
           else          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           if( i <= (int) agemax){        } /* end of wave */
             if(pos>=1.e-5){      } /* end of individual */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    } /* End of if */
               probs[i][jk][j1]= pp[jk]/pos;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             else    return -l;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  }
           }  
         }  /*************** log-likelihood *************/
          double funcone( double *x)
         for(jk=-1; jk <=nlstate+ndeath; jk++)  {
           for(m=-1; m <=nlstate+ndeath; m++)    /* Same as likeli but slower because of a lot of printf and if */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    int i, ii, j, k, mi, d, kk;
         if(i <= (int) agemax)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           fprintf(ficresp,"\n");    double **out;
         printf("\n");    double lli; /* Individual log likelihood */
       }    double llt;
     }    int s1, s2;
   }    double bbh, survp;
   dateintmean=dateintsum/k2cpt;    /*extern weight */
      /* We are differentiating ll according to initial status */
   fclose(ficresp);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /*for(i=1;i<imx;i++) 
   free_vector(pp,1,nlstate);      printf(" %d\n",s[4][i]);
      */
   /* End of Freq */    cov[1]=1.;
 }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {  /* Some frequencies */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for(mi=1; mi<= wav[i]-1; mi++){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***freq; /* Frequencies */          for (j=1;j<=nlstate+ndeath;j++){
   double *pp;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double pos, k2;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
   pp=vector(1,nlstate);        for(d=0; d<dh[mi][i]; d++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          newm=savm;
            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for (kk=1; kk<=cptcovage;kk++) {
   j1=0;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            }
   j=cptcoveff;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            savm=oldm;
   for(k1=1; k1<=j;k1++){          oldm=newm;
     for(i1=1; i1<=ncodemax[k1];i1++){        } /* end mult */
       j1++;        
              s1=s[mw[mi][i]][i];
       for (i=-1; i<=nlstate+ndeath; i++)          s2=s[mw[mi+1][i]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)          bbh=(double)bh[mi][i]/(double)stepm; 
           for(m=agemin; m <= agemax+3; m++)        /* bias is positive if real duration
             freq[i][jk][m]=0;         * is higher than the multiple of stepm and negative otherwise.
               */
       for (i=1; i<=imx; i++) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         bool=1;          lli=log(out[s1][s2] - savm[s1][s2]);
         if  (cptcovn>0) {        } else if (mle==1){
           for (z1=1; z1<=cptcoveff; z1++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        } else if(mle==2){
               bool=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         }        } else if(mle==3){  /* exponential inter-extrapolation */
         if (bool==1) {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for(m=firstpass; m<=lastpass; m++){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
             k2=anint[m][i]+(mint[m][i]/12.);          lli=log(out[s1][s2]); /* Original formula */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          lli=log(out[s1][s2]); /* Original formula */
               if(agev[m][i]==1) agev[m][i]=agemax+2;        } /* End of if */
               if (m<lastpass) {        ipmx +=1;
                 if (calagedate>0)        sw += weight[i];
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 else  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        if(globpr){
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
               }   %10.6f %10.6f %10.6f ", \
             }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       }            llt +=ll[k]*gipmx/gsw;
       for(i=(int)agemin; i <= (int)agemax+3; i++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          fprintf(ficresilk," %10.6f\n", -llt);
             pp[jk] += freq[jk][m][i];        }
         }      } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){    } /* end of individual */
           for(m=-1, pos=0; m <=0 ; m++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             pos += freq[jk][m][i];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
            if(globpr==0){ /* First time we count the contributions and weights */
         for(jk=1; jk <=nlstate ; jk++){      gipmx=ipmx;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      gsw=sw;
             pp[jk] += freq[jk][m][i];    }
         }    return -l;
          }
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  
          
         for(jk=1; jk <=nlstate ; jk++){      void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           if( i <= (int) agemax){  {
             if(pos>=1.e-5){    /* This routine should help understanding what is done with 
               probs[i][jk][j1]= pp[jk]/pos;       the selection of individuals/waves and
             }       to check the exact contribution to the likelihood.
           }       Plotting could be done.
         }     */
            int k;
       }  
     }    if(*globpri !=0){ /* Just counts and sums no printings */
   }      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        printf("Problem with resultfile: %s\n", fileresilk);
   free_vector(pp,1,nlstate);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
        }
 }  /* End of Freq */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");
 /************* Waves Concatenation ***************/      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    }
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    *fretone=(*funcone)(p);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    if(*globpri !=0){
      and mw[mi+1][i]. dh depends on stepm.      fclose(ficresilk);
      */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk,fileresilk);
       fflush(fichtm); 
   int i, mi, m;    } 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    return;
      double sum=0., jmean=0.;*/  }
   
   int j, k=0,jk, ju, jl;  /*********** Maximum Likelihood Estimation ***************/
   double sum=0.;  
   jmin=1e+5;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   jmax=-1;  {
   jmean=0.;    int i,j, iter;
   for(i=1; i<=imx; i++){    double **xi;
     mi=0;    double fret;
     m=firstpass;    double fretone; /* Only one call to likelihood */
     while(s[m][i] <= nlstate){    char filerespow[FILENAMELENGTH];
       if(s[m][i]>=1)    xi=matrix(1,npar,1,npar);
         mw[++mi][i]=m;    for (i=1;i<=npar;i++)
       if(m >=lastpass)      for (j=1;j<=npar;j++)
         break;        xi[i][j]=(i==j ? 1.0 : 0.0);
       else    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         m++;    strcpy(filerespow,"pow"); 
     }/* end while */    strcat(filerespow,fileres);
     if (s[m][i] > nlstate){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       mi++;     /* Death is another wave */      printf("Problem with resultfile: %s\n", filerespow);
       /* if(mi==0)  never been interviewed correctly before death */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
          /* Only death is a correct wave */    }
       mw[mi][i]=m;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     }    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
     wav[i]=mi;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     if(mi==0)    fprintf(ficrespow,"\n");
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }    powell(p,xi,npar,ftol,&iter,&fret,func);
   
   for(i=1; i<=imx; i++){    fclose(ficrespow);
     for(mi=1; mi<wav[i];mi++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       if (stepm <=0)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         dh[mi][i]=1;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {  }
           if (agedc[i] < 2*AGESUP) {  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  /**** Computes Hessian and covariance matrix ***/
           if(j==0) j=1;  /* Survives at least one month after exam */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           k=k+1;  {
           if (j >= jmax) jmax=j;    double  **a,**y,*x,pd;
           if (j <= jmin) jmin=j;    double **hess;
           sum=sum+j;    int i, j,jk;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    int *indx;
           }  
         }    double hessii(double p[], double delta, int theta, double delti[]);
         else{    double hessij(double p[], double delti[], int i, int j);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    void lubksb(double **a, int npar, int *indx, double b[]) ;
           k=k+1;    void ludcmp(double **a, int npar, int *indx, double *d) ;
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;    hess=matrix(1,npar,1,npar);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  
           sum=sum+j;    printf("\nCalculation of the hessian matrix. Wait...\n");
         }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         jk= j/stepm;    for (i=1;i<=npar;i++){
         jl= j -jk*stepm;      printf("%d",i);fflush(stdout);
         ju= j -(jk+1)*stepm;      fprintf(ficlog,"%d",i);fflush(ficlog);
         if(jl <= -ju)      hess[i][i]=hessii(p,ftolhess,i,delti);
           dh[mi][i]=jk;      /*printf(" %f ",p[i]);*/
         else      /*printf(" %lf ",hess[i][i]);*/
           dh[mi][i]=jk+1;    }
         if(dh[mi][i]==0)    
           dh[mi][i]=1; /* At least one step */    for (i=1;i<=npar;i++) {
       }      for (j=1;j<=npar;j++)  {
     }        if (j>i) { 
   }          printf(".%d%d",i,j);fflush(stdout);
   jmean=sum/k;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          hess[i][j]=hessij(p,delti,i,j);
  }          hess[j][i]=hess[i][j];    
 /*********** Tricode ****************************/          /*printf(" %lf ",hess[i][j]);*/
 void tricode(int *Tvar, int **nbcode, int imx)        }
 {      }
   int Ndum[20],ij=1, k, j, i;    }
   int cptcode=0;    printf("\n");
   cptcoveff=0;    fprintf(ficlog,"\n");
    
   for (k=0; k<19; k++) Ndum[k]=0;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   for (k=1; k<=7; k++) ncodemax[k]=0;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    a=matrix(1,npar,1,npar);
     for (i=1; i<=imx; i++) {    y=matrix(1,npar,1,npar);
       ij=(int)(covar[Tvar[j]][i]);    x=vector(1,npar);
       Ndum[ij]++;    indx=ivector(1,npar);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    for (i=1;i<=npar;i++)
       if (ij > cptcode) cptcode=ij;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     }    ludcmp(a,npar,indx,&pd);
   
     for (i=0; i<=cptcode; i++) {    for (j=1;j<=npar;j++) {
       if(Ndum[i]!=0) ncodemax[j]++;      for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
     ij=1;      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
     for (i=1; i<=ncodemax[j]; i++) {      }
       for (k=0; k<=19; k++) {    }
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;    printf("\n#Hessian matrix#\n");
              fprintf(ficlog,"\n#Hessian matrix#\n");
           ij++;    for (i=1;i<=npar;i++) { 
         }      for (j=1;j<=npar;j++) { 
         if (ij > ncodemax[j]) break;        printf("%.3e ",hess[i][j]);
       }          fprintf(ficlog,"%.3e ",hess[i][j]);
     }      }
   }        printf("\n");
       fprintf(ficlog,"\n");
  for (k=0; k<19; k++) Ndum[k]=0;    }
   
  for (i=1; i<=ncovmodel-2; i++) {    /* Recompute Inverse */
       ij=Tvar[i];    for (i=1;i<=npar;i++)
       Ndum[ij]++;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     }    ludcmp(a,npar,indx,&pd);
   
  ij=1;    /*  printf("\n#Hessian matrix recomputed#\n");
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){    for (j=1;j<=npar;j++) {
      Tvaraff[ij]=i;      for (i=1;i<=npar;i++) x[i]=0;
      ij++;      x[j]=1;
    }      lubksb(a,npar,indx,x);
  }      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
     cptcoveff=ij-1;        printf("%.3e ",y[i][j]);
 }        fprintf(ficlog,"%.3e ",y[i][j]);
       }
 /*********** Health Expectancies ****************/      printf("\n");
       fprintf(ficlog,"\n");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    }
     */
 {  
   /* Health expectancies */    free_matrix(a,1,npar,1,npar);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    free_matrix(y,1,npar,1,npar);
   double age, agelim, hf;    free_vector(x,1,npar);
   double ***p3mat,***varhe;    free_ivector(indx,1,npar);
   double **dnewm,**doldm;    free_matrix(hess,1,npar,1,npar);
   double *xp;  
   double **gp, **gm;  
   double ***gradg, ***trgradg;  }
   int theta;  
   /*************** hessian matrix ****************/
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  double hessii( double x[], double delta, int theta, double delti[])
   xp=vector(1,npar);  {
   dnewm=matrix(1,nlstate*2,1,npar);    int i;
   doldm=matrix(1,nlstate*2,1,nlstate*2);    int l=1, lmax=20;
      double k1,k2;
   fprintf(ficreseij,"# Health expectancies\n");    double p2[NPARMAX+1];
   fprintf(ficreseij,"# Age");    double res;
   for(i=1; i<=nlstate;i++)    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     for(j=1; j<=nlstate;j++)    double fx;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    int k=0,kmax=10;
   fprintf(ficreseij,"\n");    double l1;
   
   if(estepm < stepm){    fx=func(x);
     printf ("Problem %d lower than %d\n",estepm, stepm);    for (i=1;i<=npar;i++) p2[i]=x[i];
   }    for(l=0 ; l <=lmax; l++){
   else  hstepm=estepm;        l1=pow(10,l);
   /* We compute the life expectancy from trapezoids spaced every estepm months      delts=delt;
    * This is mainly to measure the difference between two models: for example      for(k=1 ; k <kmax; k=k+1){
    * if stepm=24 months pijx are given only every 2 years and by summing them        delt = delta*(l1*k);
    * we are calculating an estimate of the Life Expectancy assuming a linear        p2[theta]=x[theta] +delt;
    * progression inbetween and thus overestimating or underestimating according        k1=func(p2)-fx;
    * to the curvature of the survival function. If, for the same date, we        p2[theta]=x[theta]-delt;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        k2=func(p2)-fx;
    * to compare the new estimate of Life expectancy with the same linear        /*res= (k1-2.0*fx+k2)/delt/delt; */
    * hypothesis. A more precise result, taking into account a more precise        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
    * curvature will be obtained if estepm is as small as stepm. */        
   #ifdef DEBUG
   /* For example we decided to compute the life expectancy with the smallest unit */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      nhstepm is the number of hstepm from age to agelim  #endif
      nstepm is the number of stepm from age to agelin.        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
      Look at hpijx to understand the reason of that which relies in memory size        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
      and note for a fixed period like estepm months */          k=kmax;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        }
      survival function given by stepm (the optimization length). Unfortunately it        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
      means that if the survival funtion is printed only each two years of age and if          k=kmax; l=lmax*10.;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        }
      results. So we changed our mind and took the option of the best precision.        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   */          delts=delt;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        }
       }
   agelim=AGESUP;    }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    delti[theta]=delts;
     /* nhstepm age range expressed in number of stepm */    return res; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  }
     /* if (stepm >= YEARM) hstepm=1;*/  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  double hessij( double x[], double delti[], int thetai,int thetaj)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    int i;
     gp=matrix(0,nhstepm,1,nlstate*2);    int l=1, l1, lmax=20;
     gm=matrix(0,nhstepm,1,nlstate*2);    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    int k;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      fx=func(x);
      for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     /* Computing Variances of health expectancies */      k1=func(p2)-fx;
     
      for(theta=1; theta <=npar; theta++){      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(i=1; i<=npar; i++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      k2=func(p2)-fx;
       }    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        p2[thetai]=x[thetai]-delti[thetai]/k;
        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       cptj=0;      k3=func(p2)-fx;
       for(j=1; j<= nlstate; j++){    
         for(i=1; i<=nlstate; i++){      p2[thetai]=x[thetai]-delti[thetai]/k;
           cptj=cptj+1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      k4=func(p2)-fx;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           }  #ifdef DEBUG
         }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        #endif
          }
       for(i=1; i<=npar; i++)    return res;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
        /************** Inverse of matrix **************/
       cptj=0;  void ludcmp(double **a, int n, int *indx, double *d) 
       for(j=1; j<= nlstate; j++){  { 
         for(i=1;i<=nlstate;i++){    int i,imax,j,k; 
           cptj=cptj+1;    double big,dum,sum,temp; 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    double *vv; 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;   
           }    vv=vector(1,n); 
         }    *d=1.0; 
       }    for (i=1;i<=n;i++) { 
            big=0.0; 
          for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
       for(j=1; j<= nlstate*2; j++)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         for(h=0; h<=nhstepm-1; h++){      vv[i]=1.0/big; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    } 
         }    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
      }        sum=a[i][j]; 
            for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 /* End theta */        a[i][j]=sum; 
       } 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      big=0.0; 
       for (i=j;i<=n;i++) { 
      for(h=0; h<=nhstepm-1; h++)        sum=a[i][j]; 
       for(j=1; j<=nlstate*2;j++)        for (k=1;k<j;k++) 
         for(theta=1; theta <=npar; theta++)          sum -= a[i][k]*a[k][j]; 
         trgradg[h][j][theta]=gradg[h][theta][j];        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
      for(i=1;i<=nlstate*2;i++)          imax=i; 
       for(j=1;j<=nlstate*2;j++)        } 
         varhe[i][j][(int)age] =0.;      } 
       if (j != imax) { 
      printf("%d||",(int)age);fflush(stdout);        for (k=1;k<=n;k++) { 
     for(h=0;h<=nhstepm-1;h++){          dum=a[imax][k]; 
       for(k=0;k<=nhstepm-1;k++){          a[imax][k]=a[j][k]; 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          a[j][k]=dum; 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        } 
         for(i=1;i<=nlstate*2;i++)        *d = -(*d); 
           for(j=1;j<=nlstate*2;j++)        vv[imax]=vv[j]; 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      } 
       }      indx[j]=imax; 
     }      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
              dum=1.0/(a[j][j]); 
     /* Computing expectancies */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for(i=1; i<=nlstate;i++)      } 
       for(j=1; j<=nlstate;j++)    } 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    free_vector(vv,1,n);  /* Doesn't work */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  ;
            } 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
   void lubksb(double **a, int n, int *indx, double b[]) 
         }  { 
     int i,ii=0,ip,j; 
     fprintf(ficreseij,"%3.0f",age );    double sum; 
     cptj=0;   
     for(i=1; i<=nlstate;i++)    for (i=1;i<=n;i++) { 
       for(j=1; j<=nlstate;j++){      ip=indx[i]; 
         cptj++;      sum=b[ip]; 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      b[ip]=b[i]; 
       }      if (ii) 
     fprintf(ficreseij,"\n");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
          else if (sum) ii=i; 
     free_matrix(gm,0,nhstepm,1,nlstate*2);      b[i]=sum; 
     free_matrix(gp,0,nhstepm,1,nlstate*2);    } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    for (i=n;i>=1;i--) { 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      sum=b[i]; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
   free_vector(xp,1,npar);    } 
   free_matrix(dnewm,1,nlstate*2,1,npar);  } 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  /************ Frequencies ********************/
 }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   {  /* Some frequencies */
 /************ Variance ******************/    
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 {    int first;
   /* Variance of health expectancies */    double ***freq; /* Frequencies */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double *pp, **prop;
   double **newm;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double **dnewm,**doldm;    FILE *ficresp;
   int i, j, nhstepm, hstepm, h, nstepm ;    char fileresp[FILENAMELENGTH];
   int k, cptcode;    
   double *xp;    pp=vector(1,nlstate);
   double **gp, **gm;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   double ***gradg, ***trgradg;    strcpy(fileresp,"p");
   double ***p3mat;    strcat(fileresp,fileres);
   double age,agelim, hf;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   int theta;      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
    fprintf(ficresvij,"# Covariances of life expectancies\n");      exit(0);
   fprintf(ficresvij,"# Age");    }
   for(i=1; i<=nlstate;i++)    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     for(j=1; j<=nlstate;j++)    j1=0;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    
   fprintf(ficresvij,"\n");    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    first=1;
   doldm=matrix(1,nlstate,1,nlstate);  
      for(k1=1; k1<=j;k1++){
   if(estepm < stepm){      for(i1=1; i1<=ncodemax[k1];i1++){
     printf ("Problem %d lower than %d\n",estepm, stepm);        j1++;
   }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   else  hstepm=estepm;            scanf("%d", i);*/
   /* For example we decided to compute the life expectancy with the smallest unit */        for (i=-1; i<=nlstate+ndeath; i++)  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          for (jk=-1; jk<=nlstate+ndeath; jk++)  
      nhstepm is the number of hstepm from age to agelim            for(m=iagemin; m <= iagemax+3; m++)
      nstepm is the number of stepm from age to agelin.              freq[i][jk][m]=0;
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */      for (i=1; i<=nlstate; i++)  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for(m=iagemin; m <= iagemax+3; m++)
      survival function given by stepm (the optimization length). Unfortunately it          prop[i][m]=0;
      means that if the survival funtion is printed only each two years of age and if        
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        dateintsum=0;
      results. So we changed our mind and took the option of the best precision.        k2cpt=0;
   */        for (i=1; i<=imx; i++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          bool=1;
   agelim = AGESUP;          if  (cptcovn>0) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (z1=1; z1<=cptcoveff; z1++) 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                bool=0;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          if (bool==1){
     gp=matrix(0,nhstepm,1,nlstate);            for(m=firstpass; m<=lastpass; m++){
     gm=matrix(0,nhstepm,1,nlstate);              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     for(theta=1; theta <=npar; theta++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(i=1; i<=npar; i++){ /* Computes gradient */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }                if (m<lastpass) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
       if (popbased==1) {                
         for(i=1; i<=nlstate;i++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           prlim[i][i]=probs[(int)age][i][ij];                  dateintsum=dateintsum+k2;
       }                  k2cpt++;
                  }
       for(j=1; j<= nlstate; j++){                /*}*/
         for(h=0; h<=nhstepm; h++){            }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        }
         }         
       }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       for(i=1; i<=npar; i++) /* Computes gradient */        if  (cptcovn>0) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          fprintf(ficresp, "\n#********** Variable "); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficresp, "**********\n#");
          }
       if (popbased==1) {        for(i=1; i<=nlstate;i++) 
         for(i=1; i<=nlstate;i++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficresp, "\n");
       }        
         for(i=iagemin; i <= iagemax+3; i++){
       for(j=1; j<= nlstate; j++){          if(i==iagemax+3){
         for(h=0; h<=nhstepm; h++){            fprintf(ficlog,"Total");
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          }else{
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            if(first==1){
         }              first=0;
       }              printf("See log file for details...\n");
             }
       for(j=1; j<= nlstate; j++)            fprintf(ficlog,"Age %d", i);
         for(h=0; h<=nhstepm; h++){          }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     } /* End theta */              pp[jk] += freq[jk][m][i]; 
           }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
     for(h=0; h<=nhstepm; h++)              pos += freq[jk][m][i];
       for(j=1; j<=nlstate;j++)            if(pp[jk]>=1.e-10){
         for(theta=1; theta <=npar; theta++)              if(first==1){
           trgradg[h][j][theta]=gradg[h][theta][j];              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for(i=1;i<=nlstate;i++)            }else{
       for(j=1;j<=nlstate;j++)              if(first==1)
         vareij[i][j][(int)age] =0.;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for(h=0;h<=nhstepm;h++){            }
       for(k=0;k<=nhstepm;k++){          }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          for(jk=1; jk <=nlstate ; jk++){
         for(i=1;i<=nlstate;i++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           for(j=1;j<=nlstate;j++)              pp[jk] += freq[jk][m][i];
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          }       
       }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     }            pos += pp[jk];
             posprop += prop[jk][i];
     fprintf(ficresvij,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
       for(j=1; j<=nlstate;j++){            if(pos>=1.e-5){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     fprintf(ficresvij,"\n");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_matrix(gp,0,nhstepm,1,nlstate);            }else{
     free_matrix(gm,0,nhstepm,1,nlstate);              if(first==1)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   } /* End age */            if( i <= iagemax){
                if(pos>=1.e-5){
   free_vector(xp,1,npar);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   free_matrix(doldm,1,nlstate,1,npar);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   free_matrix(dnewm,1,nlstate,1,nlstate);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
 }              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 /************ Variance of prevlim ******************/            }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          }
 {          
   /* Variance of prevalence limit */          for(jk=-1; jk <=nlstate+ndeath; jk++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            for(m=-1; m <=nlstate+ndeath; m++)
   double **newm;              if(freq[jk][m][i] !=0 ) {
   double **dnewm,**doldm;              if(first==1)
   int i, j, nhstepm, hstepm;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   int k, cptcode;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   double *xp;              }
   double *gp, *gm;          if(i <= iagemax)
   double **gradg, **trgradg;            fprintf(ficresp,"\n");
   double age,agelim;          if(first==1)
   int theta;            printf("Others in log...\n");
              fprintf(ficlog,"\n");
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        }
   fprintf(ficresvpl,"# Age");      }
   for(i=1; i<=nlstate;i++)    }
       fprintf(ficresvpl," %1d-%1d",i,i);    dateintmean=dateintsum/k2cpt; 
   fprintf(ficresvpl,"\n");   
     fclose(ficresp);
   xp=vector(1,npar);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   dnewm=matrix(1,nlstate,1,npar);    free_vector(pp,1,nlstate);
   doldm=matrix(1,nlstate,1,nlstate);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      /* End of Freq */
   hstepm=1*YEARM; /* Every year of age */  }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  /************ Prevalence ********************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  {  
     if (stepm >= YEARM) hstepm=1;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       in each health status at the date of interview (if between dateprev1 and dateprev2).
     gradg=matrix(1,npar,1,nlstate);       We still use firstpass and lastpass as another selection.
     gp=vector(1,nlstate);    */
     gm=vector(1,nlstate);   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     for(theta=1; theta <=npar; theta++){    double ***freq; /* Frequencies */
       for(i=1; i<=npar; i++){ /* Computes gradient */    double *pp, **prop;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double pos,posprop; 
       }    double  y2; /* in fractional years */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int iagemin, iagemax;
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];    iagemin= (int) agemin;
        iagemax= (int) agemax;
       for(i=1; i<=npar; i++) /* Computes gradient */    /*pp=vector(1,nlstate);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       for(i=1;i<=nlstate;i++)    j1=0;
         gm[i] = prlim[i][i];    
     j=cptcoveff;
       for(i=1;i<=nlstate;i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    
     } /* End theta */    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
     trgradg =matrix(1,nlstate,1,npar);        j1++;
         
     for(j=1; j<=nlstate;j++)        for (i=1; i<=nlstate; i++)  
       for(theta=1; theta <=npar; theta++)          for(m=iagemin; m <= iagemax+3; m++)
         trgradg[j][theta]=gradg[theta][j];            prop[i][m]=0.0;
        
     for(i=1;i<=nlstate;i++)        for (i=1; i<=imx; i++) { /* Each individual */
       varpl[i][(int)age] =0.;          bool=1;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          if  (cptcovn>0) {
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            for (z1=1; z1<=cptcoveff; z1++) 
     for(i=1;i<=nlstate;i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */                bool=0;
           } 
     fprintf(ficresvpl,"%.0f ",age );          if (bool==1) { 
     for(i=1; i<=nlstate;i++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     fprintf(ficresvpl,"\n");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     free_vector(gp,1,nlstate);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     free_vector(gm,1,nlstate);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     free_matrix(gradg,1,npar,1,nlstate);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     free_matrix(trgradg,1,nlstate,1,npar);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   } /* End age */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
   free_vector(xp,1,npar);                  prop[s[m][i]][iagemax+3] += weight[i]; 
   free_matrix(doldm,1,nlstate,1,npar);                } 
   free_matrix(dnewm,1,nlstate,1,nlstate);              }
             } /* end selection of waves */
 }          }
         }
 /************ Variance of one-step probabilities  ******************/        for(i=iagemin; i <= iagemax+3; i++){  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          
 {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   int i, j, i1, k1, j1, z1;            posprop += prop[jk][i]; 
   int k=0, cptcode;          } 
   double **dnewm,**doldm;  
   double *xp;          for(jk=1; jk <=nlstate ; jk++){     
   double *gp, *gm;            if( i <=  iagemax){ 
   double **gradg, **trgradg;              if(posprop>=1.e-5){ 
   double age,agelim, cov[NCOVMAX];                probs[i][jk][j1]= prop[jk][i]/posprop;
   int theta;              } 
   char fileresprob[FILENAMELENGTH];            } 
           }/* end jk */ 
   strcpy(fileresprob,"prob");        }/* end i */ 
   strcat(fileresprob,fileres);      } /* end i1 */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    } /* end k1 */
     printf("Problem with resultfile: %s\n", fileresprob);    
   }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /*free_vector(pp,1,nlstate);*/
      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");  }  /* End of prevalence */
   fprintf(ficresprob,"# Age");  
   for(i=1; i<=nlstate;i++)  /************* Waves Concatenation ***************/
     for(j=1; j<=(nlstate+ndeath);j++)  
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   fprintf(ficresprob,"\n");       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   xp=vector(1,npar);       and mw[mi+1][i]. dh depends on stepm.
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
      int i, mi, m;
   cov[1]=1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   j=cptcoveff;       double sum=0., jmean=0.;*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    int first;
   j1=0;    int j, k=0,jk, ju, jl;
   for(k1=1; k1<=1;k1++){    double sum=0.;
     for(i1=1; i1<=ncodemax[k1];i1++){    first=0;
     j1++;    jmin=1e+5;
     jmax=-1;
     if  (cptcovn>0) {    jmean=0.;
       fprintf(ficresprob, "\n#********** Variable ");    for(i=1; i<=imx; i++){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      mi=0;
       fprintf(ficresprob, "**********\n#");      m=firstpass;
     }      while(s[m][i] <= nlstate){
            if(s[m][i]>=1)
       for (age=bage; age<=fage; age ++){          mw[++mi][i]=m;
         cov[2]=age;        if(m >=lastpass)
         for (k=1; k<=cptcovn;k++) {          break;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        else
                    m++;
         }      }/* end while */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if (s[m][i] > nlstate){
         for (k=1; k<=cptcovprod;k++)        mi++;     /* Death is another wave */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        /* if(mi==0)  never been interviewed correctly before death */
                   /* Only death is a correct wave */
         gradg=matrix(1,npar,1,9);        mw[mi][i]=m;
         trgradg=matrix(1,9,1,npar);      }
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      wav[i]=mi;
          if(mi==0){
         for(theta=1; theta <=npar; theta++){        if(first==0){
           for(i=1; i<=npar; i++)          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          first=1;
                  }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        if(first==1){
                    fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
           k=0;        }
           for(i=1; i<= (nlstate+ndeath); i++){      } /* end mi==0 */
             for(j=1; j<=(nlstate+ndeath);j++){    } /* End individuals */
               k=k+1;  
               gp[k]=pmmij[i][j];    for(i=1; i<=imx; i++){
             }      for(mi=1; mi<wav[i];mi++){
           }        if (stepm <=0)
                    dh[mi][i]=1;
           for(i=1; i<=npar; i++)        else{
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                if (agedc[i] < 2*AGESUP) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           k=0;              if(j==0) j=1;  /* Survives at least one month after exam */
           for(i=1; i<=(nlstate+ndeath); i++){              else if(j<0){
             for(j=1; j<=(nlstate+ndeath);j++){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               k=k+1;                j=1; /* Careful Patch */
               gm[k]=pmmij[i][j];                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
             }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                    }
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              k=k+1;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                if (j >= jmax) jmax=j;
         }              if (j <= jmin) jmin=j;
               sum=sum+j;
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           for(theta=1; theta <=npar; theta++)              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             trgradg[j][theta]=gradg[theta][j];            }
                  }
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          else{
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                    /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         pmij(pmmij,cov,ncovmodel,x,nlstate);            k=k+1;
                    if (j >= jmax) jmax=j;
         k=0;            else if (j <= jmin)jmin=j;
         for(i=1; i<=(nlstate+ndeath); i++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           for(j=1; j<=(nlstate+ndeath);j++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             k=k+1;            if(j<0){
             gm[k]=pmmij[i][j];              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }            }
                  sum=sum+j;
      /*printf("\n%d ",(int)age);          }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          jk= j/stepm;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          jl= j -jk*stepm;
      }*/          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         fprintf(ficresprob,"\n%d ",(int)age);            if(jl==0){
               dh[mi][i]=jk;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)              bh[mi][i]=0;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));            }else{ /* We want a negative bias in order to only have interpolation ie
                      * at the price of an extra matrix product in likelihood */
       }              dh[mi][i]=jk+1;
     }              bh[mi][i]=ju;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          }else{
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            if(jl <= -ju){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              dh[mi][i]=jk;
   }              bh[mi][i]=jl;       /* bias is positive if real duration
   free_vector(xp,1,npar);                                   * is higher than the multiple of stepm and negative otherwise.
   fclose(ficresprob);                                   */
              }
 }            else{
               dh[mi][i]=jk+1;
 /******************* Printing html file ***********/              bh[mi][i]=ju;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \            }
  int lastpass, int stepm, int weightopt, char model[],\            if(dh[mi][i]==0){
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \              dh[mi][i]=1; /* At least one step */
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\              bh[mi][i]=ju; /* At least one step */
  char version[], int popforecast, int estepm ){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   int jj1, k1, i1, cpt;            }
   FILE *fichtm;          } /* end if mle */
   /*char optionfilehtm[FILENAMELENGTH];*/        }
       } /* end wave */
   strcpy(optionfilehtm,optionfile);    }
   strcat(optionfilehtm,".htm");    jmean=sum/k;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     printf("Problem with %s \n",optionfilehtm), exit(0);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   }   }
   
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  /*********** Tricode ****************************/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  void tricode(int *Tvar, int **nbcode, int imx)
 \n  {
 Total number of observations=%d <br>\n    
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    int Ndum[20],ij=1, k, j, i, maxncov=19;
 <hr  size=\"2\" color=\"#EC5E5E\">    int cptcode=0;
  <ul><li>Outputs files<br>\n    cptcoveff=0; 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n   
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    for (k=0; k<maxncov; k++) Ndum[k]=0;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    for (k=1; k<=7; k++) ncodemax[k]=0;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
  fprintf(fichtm,"\n        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n        Ndum[ij]++; /*store the modality */
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n                                         Tvar[j]. If V=sex and male is 0 and 
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                                         female is 1, then  cptcode=1.*/
       }
  if(popforecast==1) fprintf(fichtm,"\n  
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      for (i=0; i<=cptcode; i++) {
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
         <br>",fileres,fileres,fileres,fileres);      }
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      ij=1; 
 fprintf(fichtm," <li>Graphs</li><p>");      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
  m=cptcoveff;          if (Ndum[k] != 0) {
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
  jj1=0;            
  for(k1=1; k1<=m;k1++){            ij++;
    for(i1=1; i1<=ncodemax[k1];i1++){          }
        jj1++;          if (ij > ncodemax[j]) break; 
        if (cptcovn > 0) {        }  
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      } 
          for (cpt=1; cpt<=cptcoveff;cpt++)    }  
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");   for (k=0; k< maxncov; k++) Ndum[k]=0;
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.png<br>   for (i=1; i<=ncovmodel-2; i++) { 
 <img src=\"pe%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);         /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
        for(cpt=1; cpt<nlstate;cpt++){     ij=Tvar[i];
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.png<br>     Ndum[ij]++;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);   }
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {   ij=1;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident   for (i=1; i<= maxncov; i++) {
 interval) in state (%d): v%s%d%d.png <br>     if((Ndum[i]!=0) && (i<=ncovcol)){
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);         Tvaraff[ij]=i; /*For printing */
      }       ij++;
      for(cpt=1; cpt<=nlstate;cpt++) {     }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>   }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);   
      }   cptcoveff=ij-1; /*Number of simple covariates*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  }
 health expectancies in states (1) and (2): e%s%d.png<br>  
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  /*********** Health Expectancies ****************/
 fprintf(fichtm,"\n</body>");  
    }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
    }  
 fclose(fichtm);  {
 }    /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 /******************* Gnuplot file **************/    double age, agelim, hf;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double ***p3mat,***varhe;
     double **dnewm,**doldm;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    double *xp;
     double **gp, **gm;
   strcpy(optionfilegnuplot,optionfilefiname);    double ***gradg, ***trgradg;
   strcat(optionfilegnuplot,".gp.txt");    int theta;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
 #ifdef windows    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fprintf(ficgp,"cd \"%s\" \n",pathc);    
 #endif    fprintf(ficreseij,"# Health expectancies\n");
 m=pow(2,cptcoveff);    fprintf(ficreseij,"# Age");
      for(i=1; i<=nlstate;i++)
  /* 1eme*/      for(j=1; j<=nlstate;j++)
   for (cpt=1; cpt<= nlstate ; cpt ++) {        fprintf(ficreseij," %1d-%1d (SE)",i,j);
    for (k1=1; k1<= m ; k1 ++) {    fprintf(ficreseij,"\n");
   
 #ifdef windows    if(estepm < stepm){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);      printf ("Problem %d lower than %d\n",estepm, stepm);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    }
 #endif    else  hstepm=estepm;   
 #ifdef unix    /* We compute the life expectancy from trapezoids spaced every estepm months
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);     * This is mainly to measure the difference between two models: for example
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);     * if stepm=24 months pijx are given only every 2 years and by summing them
 #endif     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
 for (i=1; i<= nlstate ; i ++) {     * to the curvature of the survival function. If, for the same date, we 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   else fprintf(ficgp," \%%*lf (\%%*lf)");     * to compare the new estimate of Life expectancy with the same linear 
 }     * hypothesis. A more precise result, taking into account a more precise
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);     * curvature will be obtained if estepm is as small as stepm. */
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* For example we decided to compute the life expectancy with the smallest unit */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 }       nhstepm is the number of hstepm from age to agelim 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       nstepm is the number of stepm from age to agelin. 
      for (i=1; i<= nlstate ; i ++) {       Look at hpijx to understand the reason of that which relies in memory size
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       and note for a fixed period like estepm months */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 }         survival function given by stepm (the optimization length). Unfortunately it
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));       means that if the survival funtion is printed only each two years of age and if
 #ifdef unix       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");       results. So we changed our mind and took the option of the best precision.
 #endif    */
    }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
   /*2 eme*/    agelim=AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   for (k1=1; k1<= m ; k1 ++) {      /* nhstepm age range expressed in number of stepm */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n\n",strtok(optionfile, "."),k1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          /* if (stepm >= YEARM) hstepm=1;*/
     for (i=1; i<= nlstate+1 ; i ++) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       k=2*i;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       for (j=1; j<= nlstate+1 ; j ++) {      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        /* Computed by stepm unit matrices, product of hstepm matrices, stored
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);   
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        /* Computing Variances of health expectancies */
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);       for(theta=1; theta <=npar; theta++){
       for (j=1; j<= nlstate+1 ; j ++) {        for(i=1; i<=npar; i++){ 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    
       else fprintf(ficgp,"\" t\"\" w l 0,");        cptj=0;
     }        for(j=1; j<= nlstate; j++){
   }          for(i=1; i<=nlstate; i++){
              cptj=cptj+1;
   /*3eme*/            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   for (k1=1; k1<= m ; k1 ++) {            }
     for (cpt=1; cpt<= nlstate ; cpt ++) {          }
       k=2+nlstate*(2*cpt-2);        }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);       
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);       
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for(i=1; i<=npar; i++) 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        cptj=0;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for(j=1; j<= nlstate; j++){
           for(i=1;i<=nlstate;i++){
 */            cptj=cptj+1;
       for (i=1; i< nlstate ; i ++) {            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       }            }
     }          }
   }        }
          for(j=1; j<= nlstate*nlstate; j++)
   /* CV preval stat */          for(h=0; h<=nhstepm-1; h++){
     for (k1=1; k1<= m ; k1 ++) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     for (cpt=1; cpt<nlstate ; cpt ++) {          }
       k=3;       } 
       fprintf(ficgp,"set out \"p%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);     
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  /* End theta */
   
       for (i=1; i< nlstate ; i ++)       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       for(h=0; h<=nhstepm-1; h++)
              for(j=1; j<=nlstate*nlstate;j++)
       l=3+(nlstate+ndeath)*cpt;          for(theta=1; theta <=npar; theta++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            trgradg[h][j][theta]=gradg[h][theta][j];
       for (i=1; i< nlstate ; i ++) {       
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);       for(i=1;i<=nlstate*nlstate;i++)
       }        for(j=1;j<=nlstate*nlstate;j++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            varhe[i][j][(int)age] =0.;
     }  
   }         printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /* proba elementaires */       for(h=0;h<=nhstepm-1;h++){
    for(i=1,jk=1; i <=nlstate; i++){        for(k=0;k<=nhstepm-1;k++){
     for(k=1; k <=(nlstate+ndeath); k++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       if (k != i) {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         for(j=1; j <=ncovmodel; j++){          for(i=1;i<=nlstate*nlstate;i++)
                    for(j=1;j<=nlstate*nlstate;j++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
           jk++;        }
           fprintf(ficgp,"\n");      }
         }      /* Computing expectancies */
       }      for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++)
    }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
    for(jk=1; jk <=m; jk++) {            
      fprintf(ficgp,"\nset out \"pe%s%d.png\" \n\n",strtok(optionfile, "."),jk);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
      i=1;          }
      for(k2=1; k2<=nlstate; k2++) {  
        k3=i;      fprintf(ficreseij,"%3.0f",age );
        for(k=1; k<=(nlstate+ndeath); k++) {      cptj=0;
          if (k != k2){      for(i=1; i<=nlstate;i++)
            fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for(j=1; j<=nlstate;j++){
            ij=1;          cptj++;
            for(j=3; j <=ncovmodel; j++) {          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
              if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        }
                fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      fprintf(ficreseij,"\n");
                ij++;     
              }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
              else      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
            }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
            fprintf(ficgp,")/(1");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                }
            for(k1=1; k1 <=nlstate; k1++){      printf("\n");
              fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    fprintf(ficlog,"\n");
              ij=1;  
              for(j=3; j <=ncovmodel; j++){    free_vector(xp,1,npar);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                  fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                  ij++;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                }  }
                else  
                  fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  /************ Variance ******************/
              }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
              fprintf(ficgp,")");  {
            }    /* Variance of health expectancies */
            fprintf(ficgp,") t \"p%d%d\" ", k2,k);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
            if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    /* double **newm;*/
            i=i+ncovmodel;    double **dnewm,**doldm;
          }    double **dnewmp,**doldmp;
        }    int i, j, nhstepm, hstepm, h, nstepm ;
      }    int k, cptcode;
    }    double *xp;
        double **gp, **gm;  /* for var eij */
    fclose(ficgp);    double ***gradg, ***trgradg; /*for var eij */
 }  /* end gnuplot */    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 /*************** Moving average **************/    double ***p3mat;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    double age,agelim, hf;
     double ***mobaverage;
   int i, cpt, cptcod;    int theta;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    char digit[4];
       for (i=1; i<=nlstate;i++)    char digitp[25];
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;    char fileresprobmorprev[FILENAMELENGTH];
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    if(popbased==1){
       for (i=1; i<=nlstate;i++){      if(mobilav!=0)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        strcpy(digitp,"-populbased-mobilav-");
           for (cpt=0;cpt<=4;cpt++){      else strcpy(digitp,"-populbased-nomobil-");
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    }
           }    else 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      strcpy(digitp,"-stablbased-");
         }  
       }    if (mobilav!=0) {
     }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
          if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
 /************** Forecasting ******************/    }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  
      strcpy(fileresprobmorprev,"prmorprev"); 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    sprintf(digit,"%-d",ij);
   int *popage;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   double *popeffectif,*popcount;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   double ***p3mat;    strcat(fileresprobmorprev,fileres);
   char fileresf[FILENAMELENGTH];    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
  agelim=AGESUP;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   strcpy(fileresf,"f");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   strcat(fileresf,fileres);      fprintf(ficresprobmorprev," p.%-d SE",j);
   if((ficresf=fopen(fileresf,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with forecast resultfile: %s\n", fileresf);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   }    }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficresprobmorprev,"\n");
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   if (mobilav==1) {      exit(0);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
     movingaverage(agedeb, fage, ageminpar, mobaverage);    else{
   }      fprintf(ficgp,"\n# Routine varevsij");
     }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   if (stepm<=12) stepsize=1;  /*     printf("Problem with html file: %s\n", optionfilehtm); */
    /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */
   agelim=AGESUP;  /*     exit(0); */
    /*   } */
   hstepm=1;  /*   else{ */
   hstepm=hstepm/stepm;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   yp1=modf(dateintmean,&yp);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   anprojmean=yp;  /*   } */
   yp2=modf((yp1*12),&yp);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   jprojmean=yp;    fprintf(ficresvij,"# Age");
   if(jprojmean==0) jprojmean=1;    for(i=1; i<=nlstate;i++)
   if(mprojmean==0) jprojmean=1;      for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    fprintf(ficresvij,"\n");
    
   for(cptcov=1;cptcov<=i2;cptcov++){    xp=vector(1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    dnewm=matrix(1,nlstate,1,npar);
       k=k+1;    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficresf,"\n#******");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       for(j=1;j<=cptcoveff;j++) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       fprintf(ficresf,"******\n");    gpp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficresf,"# StartingAge FinalAge");    gmp=vector(nlstate+1,nlstate+ndeath);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
          
          if(estepm < stepm){
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficresf,"\n");    }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       nhstepm is the number of hstepm from age to agelim 
           nhstepm = nhstepm/hstepm;       nstepm is the number of stepm from age to agelin. 
                 Look at hpijx to understand the reason of that which relies in memory size
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and note for a fixed period like k years */
           oldm=oldms;savm=savms;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         survival function given by stepm (the optimization length). Unfortunately it
               means that if the survival funtion is printed every two years of age and if
           for (h=0; h<=nhstepm; h++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             if (h==(int) (calagedate+YEARM*cpt)) {       results. So we changed our mind and took the option of the best precision.
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    */
             }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             for(j=1; j<=nlstate+ndeath;j++) {    agelim = AGESUP;
               kk1=0.;kk2=0;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               for(i=1; i<=nlstate;i++) {                    nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                 if (mobilav==1)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 else {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      gp=matrix(0,nhstepm,1,nlstate);
                 }      gm=matrix(0,nhstepm,1,nlstate);
                  
               }  
               if (h==(int)(calagedate+12*cpt)){      for(theta=1; theta <=npar; theta++){
                 fprintf(ficresf," %.3f", kk1);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
               }        }
             }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }        if (popbased==1) {
       }          if(mobilav ==0){
     }            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
                  }else{ /* mobilav */ 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   fclose(ficresf);          }
 }        }
 /************** Forecasting ******************/    
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   int *popage;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          }
   double *popeffectif,*popcount;        }
   double ***p3mat,***tabpop,***tabpopprev;        /* This for computing probability of death (h=1 means
   char filerespop[FILENAMELENGTH];           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   agelim=AGESUP;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        /* end probability of death */
    
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   strcpy(filerespop,"pop");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   strcat(filerespop,fileres);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     printf("Problem with forecast resultfile: %s\n", filerespop);   
   }        if (popbased==1) {
   printf("Computing forecasting: result on file '%s' \n", filerespop);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
   if (mobilav==1) {            for(i=1; i<=nlstate;i++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              prlim[i][i]=mobaverage[(int)age][i][ij];
     movingaverage(agedeb, fage, ageminpar, mobaverage);          }
   }        }
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(j=1; j<= nlstate; j++){
   if (stepm<=12) stepsize=1;          for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   agelim=AGESUP;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   hstepm=1;        }
   hstepm=hstepm/stepm;        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   if (popforecast==1) {           as a weighted average of prlim.
     if((ficpop=fopen(popfile,"r"))==NULL) {        */
       printf("Problem with population file : %s\n",popfile);exit(0);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     popage=ivector(0,AGESUP);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     popeffectif=vector(0,AGESUP);        }    
     popcount=vector(0,AGESUP);        /* end probability of death */
      
     i=1;          for(j=1; j<= nlstate; j++) /* vareij */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          for(h=0; h<=nhstepm; h++){
                gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     imx=i;          }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   for(cptcov=1;cptcov<=i2;cptcov++){        }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;      } /* End theta */
       fprintf(ficrespop,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }      for(h=0; h<=nhstepm; h++) /* veij */
       fprintf(ficrespop,"******\n");        for(j=1; j<=nlstate;j++)
       fprintf(ficrespop,"# Age");          for(theta=1; theta <=npar; theta++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            trgradg[h][j][theta]=gradg[h][theta][j];
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
            for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       for (cpt=0; cpt<=0;cpt++) {        for(theta=1; theta <=npar; theta++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            trgradgp[j][theta]=gradgp[theta][j];
            
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           nhstepm = nhstepm/hstepm;      for(i=1;i<=nlstate;i++)
                  for(j=1;j<=nlstate;j++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          vareij[i][j][(int)age] =0.;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(h=0;h<=nhstepm;h++){
                for(k=0;k<=nhstepm;k++){
           for (h=0; h<=nhstepm; h++){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             if (h==(int) (calagedate+YEARM*cpt)) {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          for(i=1;i<=nlstate;i++)
             }            for(j=1;j<=nlstate;j++)
             for(j=1; j<=nlstate+ndeath;j++) {              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                    }
                 if (mobilav==1)    
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      /* pptj */
                 else {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                 }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
               }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
               if (h==(int)(calagedate+12*cpt)){          varppt[j][i]=doldmp[j][i];
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      /* end ppptj */
                   /*fprintf(ficrespop," %.3f", kk1);      /*  x centered again */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
               }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
             }   
             for(i=1; i<=nlstate;i++){      if (popbased==1) {
               kk1=0.;        if(mobilav ==0){
                 for(j=1; j<=nlstate;j++){          for(i=1; i<=nlstate;i++)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            prlim[i][i]=probs[(int)age][i][ij];
                 }        }else{ /* mobilav */ 
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          for(i=1; i<=nlstate;i++)
             }            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);               
           }      /* This for computing probability of death (h=1 means
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         }         as a weighted average of prlim.
       }      */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /******/        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      }    
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        /* end probability of death */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           nhstepm = nhstepm/hstepm;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                  fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=nlstate;i++){
           oldm=oldms;savm=savms;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
           for (h=0; h<=nhstepm; h++){      } 
             if (h==(int) (calagedate+YEARM*cpt)) {      fprintf(ficresprobmorprev,"\n");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }      fprintf(ficresvij,"%.0f ",age );
             for(j=1; j<=nlstate+ndeath;j++) {      for(i=1; i<=nlstate;i++)
               kk1=0.;kk2=0;        for(j=1; j<=nlstate;j++){
               for(i=1; i<=nlstate;i++) {                        fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            }
               }      fprintf(ficresvij,"\n");
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      free_matrix(gp,0,nhstepm,1,nlstate);
             }      free_matrix(gm,0,nhstepm,1,nlstate);
           }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    } /* End age */
    }    free_vector(gpp,nlstate+1,nlstate+ndeath);
   }    free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   if (popforecast==1) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     free_ivector(popage,0,AGESUP);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     free_vector(popeffectif,0,AGESUP);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     free_vector(popcount,0,AGESUP);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
   fclose(ficrespop);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
 }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
 /***********************************************/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 /**************** Main Program *****************/  */
 /***********************************************/    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
   
 int main(int argc, char *argv[])    free_vector(xp,1,npar);
 {    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double agedeb, agefin,hf;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double fret;    fclose(ficresprobmorprev);
   double **xi,tmp,delta;    fclose(ficgp);
   /*   fclose(fichtm); */
   double dum; /* Dummy variable */  }  /* end varevsij */
   double ***p3mat;  
   int *indx;  /************ Variance of prevlim ******************/
   char line[MAXLINE], linepar[MAXLINE];  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   char title[MAXLINE];  {
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    /* Variance of prevalence limit */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
      double **newm;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
   char filerest[FILENAMELENGTH];    int k, cptcode;
   char fileregp[FILENAMELENGTH];    double *xp;
   char popfile[FILENAMELENGTH];    double *gp, *gm;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double **gradg, **trgradg;
   int firstobs=1, lastobs=10;    double age,agelim;
   int sdeb, sfin; /* Status at beginning and end */    int theta;
   int c,  h , cpt,l;     
   int ju,jl, mi;    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fprintf(ficresvpl,"# Age");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    for(i=1; i<=nlstate;i++)
   int mobilav=0,popforecast=0;        fprintf(ficresvpl," %1d-%1d",i,i);
   int hstepm, nhstepm;    fprintf(ficresvpl,"\n");
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
     xp=vector(1,npar);
   double bage, fage, age, agelim, agebase;    dnewm=matrix(1,nlstate,1,npar);
   double ftolpl=FTOL;    doldm=matrix(1,nlstate,1,nlstate);
   double **prlim;    
   double *severity;    hstepm=1*YEARM; /* Every year of age */
   double ***param; /* Matrix of parameters */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   double  *p;    agelim = AGESUP;
   double **matcov; /* Matrix of covariance */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double ***delti3; /* Scale */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   double *delti; /* Scale */      if (stepm >= YEARM) hstepm=1;
   double ***eij, ***vareij;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   double **varpl; /* Variances of prevalence limits by age */      gradg=matrix(1,npar,1,nlstate);
   double *epj, vepp;      gp=vector(1,nlstate);
   double kk1, kk2;      gm=vector(1,nlstate);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
        for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
   char version[80]="Imach version 0.8d, May 2002, INED-EUROREVES ";          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   char z[1]="c", occ;          gp[i] = prlim[i][i];
 #include <sys/time.h>      
 #include <time.h>        for(i=1; i<=npar; i++) /* Computes gradient */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* long total_usecs;        for(i=1;i<=nlstate;i++)
   struct timeval start_time, end_time;          gm[i] = prlim[i][i];
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        for(i=1;i<=nlstate;i++)
   getcwd(pathcd, size);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   printf("\n%s",version);  
   if(argc <=1){      trgradg =matrix(1,nlstate,1,npar);
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);      for(j=1; j<=nlstate;j++)
   }        for(theta=1; theta <=npar; theta++)
   else{          trgradg[j][theta]=gradg[theta][j];
     strcpy(pathtot,argv[1]);  
   }      for(i=1;i<=nlstate;i++)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        varpl[i][(int)age] =0.;
   /*cygwin_split_path(pathtot,path,optionfile);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   /* cutv(path,optionfile,pathtot,'\\');*/      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      fprintf(ficresvpl,"%.0f ",age );
   chdir(path);      for(i=1; i<=nlstate;i++)
   replace(pathc,path);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
 /*-------- arguments in the command line --------*/      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
   strcpy(fileres,"r");      free_matrix(gradg,1,npar,1,nlstate);
   strcat(fileres, optionfilefiname);      free_matrix(trgradg,1,nlstate,1,npar);
   strcat(fileres,".txt");    /* Other files have txt extension */    } /* End age */
   
   /*---------arguments file --------*/    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    free_matrix(dnewm,1,nlstate,1,nlstate);
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;  }
   }  
   /************ Variance of one-step probabilities  ******************/
   strcpy(filereso,"o");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   strcat(filereso,fileres);  {
   if((ficparo=fopen(filereso,"w"))==NULL) {    int i, j=0,  i1, k1, l1, t, tj;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    int k2, l2, j1,  z1;
   }    int k=0,l, cptcode;
     int first=1, first1;
   /* Reads comments: lines beginning with '#' */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewm,**doldm;
     ungetc(c,ficpar);    double *xp;
     fgets(line, MAXLINE, ficpar);    double *gp, *gm;
     puts(line);    double **gradg, **trgradg;
     fputs(line,ficparo);    double **mu;
   }    double age,agelim, cov[NCOVMAX];
   ungetc(c,ficpar);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    char fileresprob[FILENAMELENGTH];
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    char fileresprobcov[FILENAMELENGTH];
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    char fileresprobcor[FILENAMELENGTH];
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    double ***varpij;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    strcpy(fileresprob,"prob"); 
     fputs(line,ficparo);    strcat(fileresprob,fileres);
   }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprob);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
        }
   covar=matrix(0,NCOVMAX,1,n);    strcpy(fileresprobcov,"probcov"); 
   cptcovn=0;    strcat(fileresprobcov,fileres);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
   ncovmodel=2+cptcovn;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    }
      strcpy(fileresprobcor,"probcor"); 
   /* Read guess parameters */    strcat(fileresprobcor,fileres);
   /* Reads comments: lines beginning with '#' */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   while((c=getc(ficpar))=='#' && c!= EOF){      printf("Problem with resultfile: %s\n", fileresprobcor);
     ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fputs(line,ficparo);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   ungetc(c,ficpar);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     for(i=1; i <=nlstate; i++)    
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficresprob,"# Age");
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       printf("%1d%1d",i,j);    fprintf(ficresprobcov,"# Age");
       for(k=1; k<=ncovmodel;k++){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(ficresprobcov,"# Age");
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    for(i=1; i<=nlstate;i++)
       fscanf(ficpar,"\n");      for(j=1; j<=(nlstate+ndeath);j++){
       printf("\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       fprintf(ficparo,"\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
        }  
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
   p=param[1][1];    fprintf(ficresprobcor,"\n");
     */
   /* Reads comments: lines beginning with '#' */   xp=vector(1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     ungetc(c,ficpar);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     puts(line);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     fputs(line,ficparo);    first=1;
   }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   ungetc(c,ficpar);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      exit(0);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    }
   for(i=1; i <=nlstate; i++){    else{
     for(j=1; j <=nlstate+ndeath-1; j++){      fprintf(ficgp,"\n# Routine varprob");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       printf("%1d%1d",i,j);  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
       fprintf(ficparo,"%1d%1d",i1,j1);  /*     printf("Problem with html file: %s\n", optionfilehtm); */
       for(k=1; k<=ncovmodel;k++){  /*     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); */
         fscanf(ficpar,"%le",&delti3[i][j][k]);  /*     exit(0); */
         printf(" %le",delti3[i][j][k]);  /*   } */
         fprintf(ficparo," %le",delti3[i][j][k]);  /*   else{ */
       }      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fscanf(ficpar,"\n");      fprintf(fichtm,"\n");
       printf("\n");  
       fprintf(ficparo,"\n");      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
     }      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   }      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   delti=delti3[1][1];  
    /*   } */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    cov[1]=1;
     ungetc(c,ficpar);    tj=cptcoveff;
     fgets(line, MAXLINE, ficpar);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     puts(line);    j1=0;
     fputs(line,ficparo);    for(t=1; t<=tj;t++){
   }      for(i1=1; i1<=ncodemax[t];i1++){ 
   ungetc(c,ficpar);        j1++;
          if  (cptcovn>0) {
   matcov=matrix(1,npar,1,npar);          fprintf(ficresprob, "\n#********** Variable "); 
   for(i=1; i <=npar; i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fscanf(ficpar,"%s",&str);          fprintf(ficresprob, "**********\n#\n");
     printf("%s",str);          fprintf(ficresprobcov, "\n#********** Variable "); 
     fprintf(ficparo,"%s",str);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(j=1; j <=i; j++){          fprintf(ficresprobcov, "**********\n#\n");
       fscanf(ficpar," %le",&matcov[i][j]);          
       printf(" %.5le",matcov[i][j]);          fprintf(ficgp, "\n#********** Variable "); 
       fprintf(ficparo," %.5le",matcov[i][j]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficgp, "**********\n#\n");
     fscanf(ficpar,"\n");          
     printf("\n");          
     fprintf(ficparo,"\n");          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(i=1; i <=npar; i++)          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     for(j=i+1;j<=npar;j++)          
       matcov[i][j]=matcov[j][i];          fprintf(ficresprobcor, "\n#********** Variable ");    
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   printf("\n");          fprintf(ficresprobcor, "**********\n#");    
         }
         
     /*-------- Rewriting paramater file ----------*/        for (age=bage; age<=fage; age ++){ 
      strcpy(rfileres,"r");    /* "Rparameterfile */          cov[2]=age;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          for (k=1; k<=cptcovn;k++) {
      strcat(rfileres,".");    /* */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          }
     if((ficres =fopen(rfileres,"w"))==NULL) {          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          for (k=1; k<=cptcovprod;k++)
     }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     fprintf(ficres,"#%s\n",version);          
              gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     /*-------- data file ----------*/          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     if((fic=fopen(datafile,"r"))==NULL)    {          gp=vector(1,(nlstate)*(nlstate+ndeath));
       printf("Problem with datafile: %s\n", datafile);goto end;          gm=vector(1,(nlstate)*(nlstate+ndeath));
     }      
           for(theta=1; theta <=npar; theta++){
     n= lastobs;            for(i=1; i<=npar; i++)
     severity = vector(1,maxwav);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     outcome=imatrix(1,maxwav+1,1,n);            
     num=ivector(1,n);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     moisnais=vector(1,n);            
     annais=vector(1,n);            k=0;
     moisdc=vector(1,n);            for(i=1; i<= (nlstate); i++){
     andc=vector(1,n);              for(j=1; j<=(nlstate+ndeath);j++){
     agedc=vector(1,n);                k=k+1;
     cod=ivector(1,n);                gp[k]=pmmij[i][j];
     weight=vector(1,n);              }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            }
     mint=matrix(1,maxwav,1,n);            
     anint=matrix(1,maxwav,1,n);            for(i=1; i<=npar; i++)
     s=imatrix(1,maxwav+1,1,n);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     adl=imatrix(1,maxwav+1,1,n);          
     tab=ivector(1,NCOVMAX);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     ncodemax=ivector(1,8);            k=0;
             for(i=1; i<=(nlstate); i++){
     i=1;              for(j=1; j<=(nlstate+ndeath);j++){
     while (fgets(line, MAXLINE, fic) != NULL)    {                k=k+1;
       if ((i >= firstobs) && (i <=lastobs)) {                gm[k]=pmmij[i][j];
                      }
         for (j=maxwav;j>=1;j--){            }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);       
           strcpy(line,stra);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }  
                  for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(theta=1; theta <=npar; theta++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              trgradg[j][theta]=gradg[theta][j];
           
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         for (j=ncovcol;j>=1;j--){          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         }  
         num[i]=atol(stra);          pmij(pmmij,cov,ncovmodel,x,nlstate);
                  
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          k=0;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
         i=i+1;              k=k+1;
       }              mu[k][(int) age]=pmmij[i][j];
     }            }
     /* printf("ii=%d", ij);          }
        scanf("%d",i);*/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   imx=i-1; /* Number of individuals */            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          /*printf("\n%d ",(int)age);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
    /*  for (i=1; i<=imx; i++){            }*/
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          fprintf(ficresprob,"\n%d ",(int)age);
            fprintf(ficresprobcov,"\n%d ",(int)age);
            fprintf(ficresprobcor,"\n%d ",(int)age);
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   Tprod=ivector(1,15);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   Tvaraff=ivector(1,15);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   Tvard=imatrix(1,15,1,2);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   Tage=ivector(1,15);                  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
              }
   if (strlen(model) >1){          i=0;
     j=0, j1=0, k1=1, k2=1;          for (k=1; k<=(nlstate);k++){
     j=nbocc(model,'+');            for (l=1; l<=(nlstate+ndeath);l++){ 
     j1=nbocc(model,'*');              i=i++;
     cptcovn=j+1;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     cptcovprod=j1;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                  for (j=1; j<=i;j++){
     strcpy(modelsav,model);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       printf("Error. Non available option model=%s ",model);              }
       goto end;            }
     }          }/* end of loop for state */
            } /* end of loop for age */
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+');        /* Confidence intervalle of pij  */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        /*
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          fprintf(ficgp,"\nset noparametric;unset label");
       /*scanf("%d",i);*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       if (strchr(strb,'*')) {          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         cutv(strd,strc,strb,'*');          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         if (strcmp(strc,"age")==0) {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           cptcovprod--;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           cutv(strb,stre,strd,'V');          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           Tvar[i]=atoi(stre);        */
           cptcovage++;  
             Tage[cptcovage]=i;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
             /*printf("stre=%s ", stre);*/        first1=1;
         }        for (k2=1; k2<=(nlstate);k2++){
         else if (strcmp(strd,"age")==0) {          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           cptcovprod--;            if(l2==k2) continue;
           cutv(strb,stre,strc,'V');            j=(k2-1)*(nlstate+ndeath)+l2;
           Tvar[i]=atoi(stre);            for (k1=1; k1<=(nlstate);k1++){
           cptcovage++;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           Tage[cptcovage]=i;                if(l1==k1) continue;
         }                i=(k1-1)*(nlstate+ndeath)+l1;
         else {                if(i<=j) continue;
           cutv(strb,stre,strc,'V');                for (age=bage; age<=fage; age ++){ 
           Tvar[i]=ncovcol+k1;                  if ((int)age %5==0){
           cutv(strb,strc,strd,'V');                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           Tprod[k1]=i;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           Tvard[k1][1]=atoi(strc);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           Tvard[k1][2]=atoi(stre);                    mu1=mu[i][(int) age]/stepm*YEARM ;
           Tvar[cptcovn+k2]=Tvard[k1][1];                    mu2=mu[j][(int) age]/stepm*YEARM;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                    c12=cv12/sqrt(v1*v2);
           for (k=1; k<=lastobs;k++)                    /* Computing eigen value of matrix of covariance */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           k1++;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           k2=k2+2;                    /* Eigen vectors */
         }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       }                    /*v21=sqrt(1.-v11*v11); *//* error */
       else {                    v21=(lc1-v1)/cv12*v11;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                    v12=-v21;
        /*  scanf("%d",i);*/                    v22=v11;
       cutv(strd,strc,strb,'V');                    tnalp=v21/v11;
       Tvar[i]=atoi(strc);                    if(first1==1){
       }                      first1=0;
       strcpy(modelsav,stra);                        printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                    }
         scanf("%d",i);*/                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     }                    /*printf(fignu*/
 }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                      /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                    if(first==1){
   printf("cptcovprod=%d ", cptcovprod);                      first=0;
   scanf("%d ",i);*/                      fprintf(ficgp,"\nset parametric;unset label");
     fclose(fic);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     /*  if(mle==1){*/                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
     if (weightopt != 1) { /* Maximisation without weights*/                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
       for(i=1;i<=n;i++) weight[i]=1.0;                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     }                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
     /*-calculation of age at interview from date of interview and age at death -*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     agev=matrix(1,maxwav,1,imx);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     for (i=1; i<=imx; i++) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for(m=2; (m<= maxwav); m++) {                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                    }else{
          anint[m][i]=9999;                      first=0;
          s[m][i]=-1;                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
        }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     for (i=1; i<=imx; i++)  {                    }/* if first */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                  } /* age mod 5 */
       for(m=1; (m<= maxwav); m++){                } /* end loop age */
         if(s[m][i] >0){                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
           if (s[m][i] >= nlstate+1) {                first=1;
             if(agedc[i]>0)              } /*l12 */
               if(moisdc[i]!=99 && andc[i]!=9999)            } /* k12 */
                 agev[m][i]=agedc[i];          } /*l1 */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        }/* k1 */
            else {      } /* loop covariates */
               if (andc[i]!=9999){    }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
               agev[m][i]=-1;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
               }    free_vector(xp,1,npar);
             }    fclose(ficresprob);
           }    fclose(ficresprobcov);
           else if(s[m][i] !=9){ /* Should no more exist */    fclose(ficresprobcor);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fclose(ficgp);
             if(mint[m][i]==99 || anint[m][i]==9999)  }
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];  /******************* Printing html file ***********/
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
             }                    int lastpass, int stepm, int weightopt, char model[],\
             else if(agev[m][i] >agemax){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
               agemax=agev[m][i];                    int popforecast, int estepm ,\
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                    double jprev1, double mprev1,double anprev1, \
             }                    double jprev2, double mprev2,double anprev2){
             /*agev[m][i]=anint[m][i]-annais[i];*/    int jj1, k1, i1, cpt;
             /*   agev[m][i] = age[i]+2*m;*/    /*char optionfilehtm[FILENAMELENGTH];*/
           }  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
           else { /* =9 */  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
             agev[m][i]=1;  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
             s[m][i]=-1;  /*   } */
           }  
         }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
         else /*= 0 Unknown */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
           agev[m][i]=1;   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
       }   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
       - Life expectancies by age and initial health status (estepm=%2d months): \
     }     <a href=\"e%s\">e%s</a> <br>\n</li>", \
     for (i=1; i<=imx; i++)  {    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;   m=cptcoveff;
         }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       }  
     }   jj1=0;
    for(k1=1; k1<=m;k1++){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
     free_vector(severity,1,maxwav);       if (cptcovn > 0) {
     free_imatrix(outcome,1,maxwav+1,1,n);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     free_vector(moisnais,1,n);         for (cpt=1; cpt<=cptcoveff;cpt++) 
     free_vector(annais,1,n);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     /* free_matrix(mint,1,maxwav,1,n);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        free_matrix(anint,1,maxwav,1,n);*/       }
     free_vector(moisdc,1,n);       /* Pij */
     free_vector(andc,1,n);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
   <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
           /* Quasi-incidences */
     wav=ivector(1,imx);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
             /* Stable prevalence in each health state */
     /* Concatenates waves */         for(cpt=1; cpt<nlstate;cpt++){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
       Tcode=ivector(1,100);       for(cpt=1; cpt<=nlstate;cpt++) {
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
       ncodemax[1]=1;  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);       }
             fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    codtab=imatrix(1,100,1,10);  health expectancies in states (1) and (2): e%s%d.png<br>\
    h=0;  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
    m=pow(2,cptcoveff);     } /* end i1 */
     }/* End k1 */
    for(k=1;k<=cptcoveff; k++){   fprintf(fichtm,"</ul>");
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
            h++;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
          }   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
        }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
      }   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
    }   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */  /*  if(popforecast==1) fprintf(fichtm,"\n */
    /* for(i=1; i <=m ;i++){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       for(k=1; k <=cptcovn; k++){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  /*      <br>",fileres,fileres,fileres,fileres); */
       }  /*  else  */
       printf("\n");  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       }  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       scanf("%d",i);*/  
       m=cptcoveff;
    /* Calculates basic frequencies. Computes observed prevalence at single age   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
        and prints on file fileres'p'. */  
    jj1=0;
       for(k1=1; k1<=m;k1++){
         for(i1=1; i1<=ncodemax[k1];i1++){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       jj1++;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       if (cptcovn > 0) {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         for (cpt=1; cpt<=cptcoveff;cpt++) 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
               fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     /* For Powell, parameters are in a vector p[] starting at p[1]       }
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       for(cpt=1; cpt<=nlstate;cpt++) {
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): v%s%d%d.png <br>\
     if(mle==1){  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       }
     }     } /* end i1 */
       }/* End k1 */
     /*--------- results files --------------*/   fprintf(fichtm,"</ul>");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);   fflush(fichtm);
    }
   
    jk=1;  /******************* Gnuplot file **************/
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
      for(k=1; k <=(nlstate+ndeath); k++){    int ng;
        if (k != i)    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
          {      printf("Problem with file %s",optionfilegnuplot);
            printf("%d%d ",i,k);      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
            fprintf(ficres,"%1d%1d ",i,k);    }
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);    /*#ifdef windows */
              fprintf(ficres,"%f ",p[jk]);      fprintf(ficgp,"cd \"%s\" \n",pathc);
              jk++;      /*#endif */
            }  m=pow(2,cptcoveff);
            printf("\n");    
            fprintf(ficres,"\n");   /* 1eme*/
          }    for (cpt=1; cpt<= nlstate ; cpt ++) {
      }     for (k1=1; k1<= m ; k1 ++) {
    }       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
  if(mle==1){       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */       for (i=1; i<= nlstate ; i ++) {
     hesscov(matcov, p, npar, delti, ftolhess, func);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  }         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");       }
     printf("# Scales (for hessian or gradient estimation)\n");       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
      for(i=1,jk=1; i <=nlstate; i++){       for (i=1; i<= nlstate ; i ++) {
       for(j=1; j <=nlstate+ndeath; j++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         if (j!=i) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
           fprintf(ficres,"%1d%1d",i,j);       } 
           printf("%1d%1d",i,j);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
           for(k=1; k<=ncovmodel;k++){       for (i=1; i<= nlstate ; i ++) {
             printf(" %.5e",delti[jk]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             fprintf(ficres," %.5e",delti[jk]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
             jk++;       }  
           }       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
           printf("\n");     }
           fprintf(ficres,"\n");    }
         }    /*2 eme*/
       }    
      }    for (k1=1; k1<= m ; k1 ++) { 
          fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
     k=1;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      for (i=1; i<= nlstate+1 ; i ++) {
     for(i=1;i<=npar;i++){        k=2*i;
       /*  if (k>nlstate) k=1;        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
       i1=(i-1)/(ncovmodel*nlstate)+1;        for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       printf("%s%d%d",alph[k],i1,tab[i]);*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficres,"%3d",i);        }   
       printf("%3d",i);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       for(j=1; j<=i;j++){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficres," %.5e",matcov[i][j]);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         printf(" %.5e",matcov[i][j]);        for (j=1; j<= nlstate+1 ; j ++) {
       }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficres,"\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
       printf("\n");        }   
       k++;        fprintf(ficgp,"\" t\"\" w l 0,");
     }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
            for (j=1; j<= nlstate+1 ; j ++) {
     while((c=getc(ficpar))=='#' && c!= EOF){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       ungetc(c,ficpar);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fgets(line, MAXLINE, ficpar);        }   
       puts(line);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       fputs(line,ficparo);        else fprintf(ficgp,"\" t\"\" w l 0,");
     }      }
     ungetc(c,ficpar);    }
     estepm=0;    
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    /*3eme*/
     if (estepm==0 || estepm < stepm) estepm=stepm;    
     if (fage <= 2) {    for (k1=1; k1<= m ; k1 ++) { 
       bage = ageminpar;      for (cpt=1; cpt<= nlstate ; cpt ++) {
       fage = agemaxpar;        k=2+nlstate*(2*cpt-2);
     }        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
            fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
            fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     while((c=getc(ficpar))=='#' && c!= EOF){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     ungetc(c,ficpar);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     fgets(line, MAXLINE, ficpar);          
     puts(line);        */
     fputs(line,ficparo);        for (i=1; i< nlstate ; i ++) {
   }          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
   ungetc(c,ficpar);          
          } 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    
          /* CV preval stable (period) */
   while((c=getc(ficpar))=='#' && c!= EOF){    for (k1=1; k1<= m ; k1 ++) { 
     ungetc(c,ficpar);      for (cpt=1; cpt<=nlstate ; cpt ++) {
     fgets(line, MAXLINE, ficpar);        k=3;
     puts(line);        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     fputs(line,ficparo);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
   }        
   ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++)
            fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
   fscanf(ficpar,"pop_based=%d\n",&popbased);        for (i=1; i< nlstate ; i ++) {
   fprintf(ficparo,"pop_based=%d\n",popbased);            l=3+(nlstate+ndeath)*cpt;
   fprintf(ficres,"pop_based=%d\n",popbased);            fprintf(ficgp,"+$%d",l+i+1);
          }
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     ungetc(c,ficpar);      } 
     fgets(line, MAXLINE, ficpar);    }  
     puts(line);    
     fputs(line,ficparo);    /* proba elementaires */
   }    for(i=1,jk=1; i <=nlstate; i++){
   ungetc(c,ficpar);      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          for(j=1; j <=ncovmodel; j++){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            jk++; 
             fprintf(ficgp,"\n");
           }
 while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);     }
     puts(line);  
     fputs(line,ficparo);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   }       for(jk=1; jk <=m; jk++) {
   ungetc(c,ficpar);         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);         else
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);           fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         i=1;
          for(k2=1; k2<=nlstate; k2++) {
 /*------------ gnuplot -------------*/           k3=i;
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);           for(k=1; k<=(nlstate+ndeath); k++) {
               if (k != k2){
 /*------------ free_vector  -------------*/               if(ng==2)
  chdir(path);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else
  free_ivector(wav,1,imx);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);               ij=1;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                 for(j=3; j <=ncovmodel; j++) {
  free_ivector(num,1,n);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
  free_vector(agedc,1,n);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                   ij++;
  fclose(ficparo);                 }
  fclose(ficres);                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 /*--------- index.htm --------*/               }
                fprintf(ficgp,")/(1");
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);               
                for(k1=1; k1 <=nlstate; k1++){   
                   fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   /*--------------- Prevalence limit --------------*/                 ij=1;
                   for(j=3; j <=ncovmodel; j++){
   strcpy(filerespl,"pl");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   strcat(filerespl,fileres);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                     ij++;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                   }
   }                   else
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   fprintf(ficrespl,"#Prevalence limit\n");                 }
   fprintf(ficrespl,"#Age ");                 fprintf(ficgp,")");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);               }
   fprintf(ficrespl,"\n");               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                 if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   prlim=matrix(1,nlstate,1,nlstate);               i=i+ncovmodel;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */             }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           } /* end k */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         } /* end k2 */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       } /* end jk */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     } /* end ng */
   k=0;     fclose(ficgp); 
   agebase=ageminpar;  }  /* end gnuplot */
   agelim=agemaxpar;  
   ftolpl=1.e-10;  
   i1=cptcoveff;  /*************** Moving average **************/
   if (cptcovn < 1){i1=1;}  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
   for(cptcov=1;cptcov<=i1;cptcov++){    int i, cpt, cptcod;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int modcovmax =1;
         k=k+1;    int mobilavrange, mob;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    double age;
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                             a covariate has 2 modalities */
         fprintf(ficrespl,"******\n");    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
          
         for (age=agebase; age<=agelim; age++){    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      if(mobilav==1) mobilavrange=5; /* default */
           fprintf(ficrespl,"%.0f",age );      else mobilavrange=mobilav;
           for(i=1; i<=nlstate;i++)      for (age=bage; age<=fage; age++)
           fprintf(ficrespl," %.5f", prlim[i][i]);        for (i=1; i<=nlstate;i++)
           fprintf(ficrespl,"\n");          for (cptcod=1;cptcod<=modcovmax;cptcod++)
         }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       }      /* We keep the original values on the extreme ages bage, fage and for 
     }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   fclose(ficrespl);         we use a 5 terms etc. until the borders are no more concerned. 
       */ 
   /*------------- h Pij x at various ages ------------*/      for (mob=3;mob <=mobilavrange;mob=mob+2){
          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          for (i=1; i<=nlstate;i++){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   printf("Computing pij: result on file '%s' \n", filerespij);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                    mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   stepsize=(int) (stepm+YEARM-1)/YEARM;                }
   /*if (stepm<=24) stepsize=2;*/              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
   agelim=AGESUP;          }
   hstepm=stepsize*YEARM; /* Every year of age */        }/* end age */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      }/* end mob */
      }else return -1;
   k=0;    return 0;
   for(cptcov=1;cptcov<=i1;cptcov++){  }/* End movingaverage */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");  /************** Forecasting ******************/
         for(j=1;j<=cptcoveff;j++)  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* proj1, year, month, day of starting projection 
         fprintf(ficrespij,"******\n");       agemin, agemax range of age
               dateprev1 dateprev2 range of dates during which prevalence is computed
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */       anproj2 year of en of projection (same day and month as proj1).
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int *popage;
           oldm=oldms;savm=savms;    double agec; /* generic age */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
           fprintf(ficrespij,"# Age");    double *popeffectif,*popcount;
           for(i=1; i<=nlstate;i++)    double ***p3mat;
             for(j=1; j<=nlstate+ndeath;j++)    double ***mobaverage;
               fprintf(ficrespij," %1d-%1d",i,j);    char fileresf[FILENAMELENGTH];
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){    agelim=AGESUP;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
             for(i=1; i<=nlstate;i++)   
               for(j=1; j<=nlstate+ndeath;j++)    strcpy(fileresf,"f"); 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    strcat(fileresf,fileres);
             fprintf(ficrespij,"\n");    if((ficresf=fopen(fileresf,"w"))==NULL) {
              }      printf("Problem with forecast resultfile: %s\n", fileresf);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           fprintf(ficrespij,"\n");    }
         }    printf("Computing forecasting: result on file '%s' \n", fileresf);
     }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   }  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  
     if (mobilav!=0) {
   fclose(ficrespij);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   /*---------- Forecasting ------------------*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if((stepm == 1) && (strcmp(model,".")==0)){      }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }    stepsize=(int) (stepm+YEARM-1)/YEARM;
   else{    if (stepm<=12) stepsize=1;
     erreur=108;    if(estepm < stepm){
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
      else  hstepm=estepm;   
   
   /*---------- Health expectancies and variances ------------*/    hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   strcpy(filerest,"t");                                 fractional in yp1 */
   strcat(filerest,fileres);    anprojmean=yp;
   if((ficrest=fopen(filerest,"w"))==NULL) {    yp2=modf((yp1*12),&yp);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    mprojmean=yp;
   }    yp1=modf((yp2*30.5),&yp);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   strcpy(filerese,"e");  
   strcat(filerese,fileres);    i1=cptcoveff;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    if (cptcovn < 1){i1=1;}
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    
   }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    
     fprintf(ficresf,"#****** Routine prevforecast **\n");
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);  /*            if (h==(int)(YEARM*yearp)){ */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   }        k=k+1;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficresf,"\n#******");
   calagedate=-1;        for(j=1;j<=cptcoveff;j++) {
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
   k=0;        fprintf(ficresf,"******\n");
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1; j<=nlstate+ndeath;j++){ 
       k=k+1;          for(i=1; i<=nlstate;i++)              
       fprintf(ficrest,"\n#****** ");            fprintf(ficresf," p%d%d",i,j);
       for(j=1;j<=cptcoveff;j++)          fprintf(ficresf," p.%d",j);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       fprintf(ficrest,"******\n");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
       fprintf(ficreseij,"\n#****** ");          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
       fprintf(ficreseij,"******\n");            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
       fprintf(ficresvij,"\n#****** ");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1;j<=cptcoveff;j++)            oldm=oldms;savm=savms;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       fprintf(ficresvij,"******\n");          
             for (h=0; h<=nhstepm; h++){
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              if (h*hstepm/YEARM*stepm ==yearp) {
       oldm=oldms;savm=savms;                fprintf(ficresf,"\n");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                  for(j=1;j<=cptcoveff;j++) 
                    fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       oldm=oldms;savm=savms;              } 
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);              for(j=1; j<=nlstate+ndeath;j++) {
                    ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                    if (mobilav==1) 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                  else {
       fprintf(ficrest,"\n");                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
       epj=vector(1,nlstate+1);                  if (h*hstepm/YEARM*stepm== yearp) {
       for(age=bage; age <=fage ;age++){                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                  }
         if (popbased==1) {                } /* end i */
           for(i=1; i<=nlstate;i++)                if (h*hstepm/YEARM*stepm==yearp) {
             prlim[i][i]=probs[(int)age][i][k];                  fprintf(ficresf," %.3f", ppij);
         }                }
                      }/* end j */
         fprintf(ficrest," %4.0f",age);            } /* end h */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          } /* end agec */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        } /* end yearp */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      } /* end cptcod */
           }    } /* end  cptcov */
           epj[nlstate+1] +=epj[j];         
         }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
         for(i=1, vepp=0.;i <=nlstate;i++)    fclose(ficresf);
           for(j=1;j <=nlstate;j++)  }
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  /************** Forecasting *****not tested NB*************/
         for(j=1;j <=nlstate;j++){  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    
         }    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
         fprintf(ficrest,"\n");    int *popage;
       }    double calagedatem, agelim, kk1, kk2;
     }    double *popeffectif,*popcount;
   }    double ***p3mat,***tabpop,***tabpopprev;
 free_matrix(mint,1,maxwav,1,n);    double ***mobaverage;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    char filerespop[FILENAMELENGTH];
     free_vector(weight,1,n);  
   fclose(ficreseij);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficresvij);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficrest);    agelim=AGESUP;
   fclose(ficpar);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   free_vector(epj,1,nlstate+1);    
      prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   /*------- Variance limit prevalence------*/      
     
   strcpy(fileresvpl,"vpl");    strcpy(filerespop,"pop"); 
   strcat(fileresvpl,fileres);    strcat(filerespop,fileres);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    if((ficrespop=fopen(filerespop,"w"))==NULL) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      printf("Problem with forecast resultfile: %s\n", filerespop);
     exit(0);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   }    }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    if (mobilav!=0) {
       fprintf(ficresvpl,"\n#****** ");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(j=1;j<=cptcoveff;j++)      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficresvpl,"******\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
            }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     }    if (stepm<=12) stepsize=1;
  }    
     agelim=AGESUP;
   fclose(ficresvpl);    
     hstepm=1;
   /*---------- End : free ----------------*/    hstepm=hstepm/stepm; 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    
      if (popforecast==1) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      if((ficpop=fopen(popfile,"r"))==NULL) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        printf("Problem with population file : %s\n",popfile);exit(0);
          fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
        } 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      popage=ivector(0,AGESUP);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      popeffectif=vector(0,AGESUP);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      popcount=vector(0,AGESUP);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      
        i=1;   
   free_matrix(matcov,1,npar,1,npar);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   free_vector(delti,1,npar);     
   free_matrix(agev,1,maxwav,1,imx);      imx=i;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   else   printf("End of Imach\n");     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        k=k+1;
          fprintf(ficrespop,"\n#******");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        for(j=1;j<=cptcoveff;j++) {
   /*printf("Total time was %d uSec.\n", total_usecs);*/          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /*------ End -----------*/        }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
  end:        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 #ifdef windows        if (popforecast==1)  fprintf(ficrespop," [Population]");
   /* chdir(pathcd);*/        
 #endif        for (cpt=0; cpt<=0;cpt++) { 
  /*system("wgnuplot graph.plt");*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
  /*system("../gp37mgw/wgnuplot graph.plt");*/          
  /*system("cd ../gp37mgw");*/          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
  strcpy(plotcmd,GNUPLOTPROGRAM);            nhstepm = nhstepm/hstepm; 
  strcat(plotcmd," ");            
  strcat(plotcmd,optionfilegnuplot);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  system(plotcmd);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 #ifdef windows          
   while (z[0] != 'q') {            for (h=0; h<=nhstepm; h++){
     /* chdir(path); */              if (h==(int) (calagedatem+YEARM*cpt)) {
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     scanf("%s",z);              } 
     if (z[0] == 'c') system("./imach");              for(j=1; j<=nlstate+ndeath;j++) {
     else if (z[0] == 'e') system(optionfilehtm);                kk1=0.;kk2=0;
     else if (z[0] == 'g') system(plotcmd);                for(i=1; i<=nlstate;i++) {              
     else if (z[0] == 'q') exit(0);                  if (mobilav==1) 
   }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 #endif                  else {
 }                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char *strt, *strtend;
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   
   /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strt);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strt=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start)=%s",strt);
     fprintf(ficlog,"Localtime (at start)=%s",strt);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL) { */
   /*     printf("Problem with file: %s\n", optionfilehtm); */
   /*     fprintf(ficlog,"Problem with file: %s\n", optionfilehtm); */
   /*   } */
   
   
   /*   if(fileappend(fichtm, optionfilehtm)){ */
       fprintf(fichtm,"\n");
       fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);
   /*     fclose(fichtm); */
   /*   } */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);
     fclose(fichtm);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.42  
changed lines
  Added in v.1.87


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>