Diff for /imach/src/imach.c between versions 1.42 and 1.89

version 1.42, 2002/05/21 18:44:41 version 1.89, 2003/06/24 12:30:52
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.89  2003/06/24 12:30:52  brouard
      (Module): Some bugs corrected for windows. Also, when
   This program computes Healthy Life Expectancies from    mle=-1 a template is output in file "or"mypar.txt with the design
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    of the covariance matrix to be input.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.88  2003/06/23 17:54:56  brouard
   case of a health survey which is our main interest) -2- at least a    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.87  2003/06/18 12:26:01  brouard
   computed from the time spent in each health state according to a    Version 0.96
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.86  2003/06/17 20:04:08  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Change position of html and gnuplot routines and added
   probability to be observed in state j at the second wave    routine fileappend.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.85  2003/06/17 13:12:43  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    * imach.c (Repository): Check when date of death was earlier that
   complex model than "constant and age", you should modify the program    current date of interview. It may happen when the death was just
   where the markup *Covariates have to be included here again* invites    prior to the death. In this case, dh was negative and likelihood
   you to do it.  More covariates you add, slower the    was wrong (infinity). We still send an "Error" but patch by
   convergence.    assuming that the date of death was just one stepm after the
     interview.
   The advantage of this computer programme, compared to a simple    (Repository): Because some people have very long ID (first column)
   multinomial logistic model, is clear when the delay between waves is not    we changed int to long in num[] and we added a new lvector for
   identical for each individual. Also, if a individual missed an    memory allocation. But we also truncated to 8 characters (left
   intermediate interview, the information is lost, but taken into    truncation)
   account using an interpolation or extrapolation.      (Repository): No more line truncation errors.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.84  2003/06/13 21:44:43  brouard
   conditional to the observed state i at age x. The delay 'h' can be    * imach.c (Repository): Replace "freqsummary" at a correct
   split into an exact number (nh*stepm) of unobserved intermediate    place. It differs from routine "prevalence" which may be called
   states. This elementary transition (by month or quarter trimester,    many times. Probs is memory consuming and must be used with
   semester or year) is model as a multinomial logistic.  The hPx    parcimony.
   matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.  */
   This software have been partly granted by Euro-REVES, a concerted action  /*
   from the European Union.     Interpolated Markov Chain
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Short summary of the programme:
   can be accessed at http://euroreves.ined.fr/imach .    
   **********************************************************************/    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #include <math.h>    first survey ("cross") where individuals from different ages are
 #include <stdio.h>    interviewed on their health status or degree of disability (in the
 #include <stdlib.h>    case of a health survey which is our main interest) -2- at least a
 #include <unistd.h>    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define MAXLINE 256    computed from the time spent in each health state according to a
 #define GNUPLOTPROGRAM "gnuplot"    model. More health states you consider, more time is necessary to reach the
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Maximum Likelihood of the parameters involved in the model.  The
 #define FILENAMELENGTH 80    simplest model is the multinomial logistic model where pij is the
 /*#define DEBUG*/    probability to be observed in state j at the second wave
 #define windows    conditional to be observed in state i at the first wave. Therefore
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    where the markup *Covariates have to be included here again* invites
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    you to do it.  More covariates you add, slower the
     convergence.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    The advantage of this computer programme, compared to a simple
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    multinomial logistic model, is clear when the delay between waves is not
 #define NCOVMAX 8 /* Maximum number of covariates */    identical for each individual. Also, if a individual missed an
 #define MAXN 20000    intermediate interview, the information is lost, but taken into
 #define YEARM 12. /* Number of months per year */    account using an interpolation or extrapolation.  
 #define AGESUP 130  
 #define AGEBASE 40    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 int erreur; /* Error number */    states. This elementary transition (by month, quarter,
 int nvar;    semester or year) is modelled as a multinomial logistic.  The hPx
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    matrix is simply the matrix product of nh*stepm elementary matrices
 int npar=NPARMAX;    and the contribution of each individual to the likelihood is simply
 int nlstate=2; /* Number of live states */    hPijx.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Also this programme outputs the covariance matrix of the parameters but also
 int popbased=0;    of the life expectancies. It also computes the stable prevalence. 
     
 int *wav; /* Number of waves for this individuual 0 is possible */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int maxwav; /* Maxim number of waves */             Institut national d'études démographiques, Paris.
 int jmin, jmax; /* min, max spacing between 2 waves */    This software have been partly granted by Euro-REVES, a concerted action
 int mle, weightopt;    from the European Union.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    It is copyrighted identically to a GNU software product, ie programme and
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    software can be distributed freely for non commercial use. Latest version
 double jmean; /* Mean space between 2 waves */    can be accessed at http://euroreves.ined.fr/imach .
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 FILE *ficgp,*ficresprob,*ficpop;    
 FILE *ficreseij;    **********************************************************************/
   char filerese[FILENAMELENGTH];  /*
  FILE  *ficresvij;    main
   char fileresv[FILENAMELENGTH];    read parameterfile
  FILE  *ficresvpl;    read datafile
   char fileresvpl[FILENAMELENGTH];    concatwav
     freqsummary
 #define NR_END 1    if (mle >= 1)
 #define FREE_ARG char*      mlikeli
 #define FTOL 1.0e-10    print results files
     if mle==1 
 #define NRANSI       computes hessian
 #define ITMAX 200    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 #define TOL 2.0e-4    open gnuplot file
     open html file
 #define CGOLD 0.3819660    stable prevalence
 #define ZEPS 1.0e-10     for age prevalim()
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    h Pij x
     variance of p varprob
 #define GOLD 1.618034    forecasting if prevfcast==1 prevforecast call prevalence()
 #define GLIMIT 100.0    health expectancies
 #define TINY 1.0e-20    Variance-covariance of DFLE
     prevalence()
 static double maxarg1,maxarg2;     movingaverage()
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    varevsij() 
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    if popbased==1 varevsij(,popbased)
      total life expectancies
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Variance of stable prevalence
 #define rint(a) floor(a+0.5)   end
   */
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
    
 int imx;  #include <math.h>
 int stepm;  #include <stdio.h>
 /* Stepm, step in month: minimum step interpolation*/  #include <stdlib.h>
   #include <unistd.h>
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #include <sys/time.h>
   #include <time.h>
 int m,nb;  #include "timeval.h"
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define MAXLINE 256
 double **pmmij, ***probs, ***mobaverage;  #define GNUPLOTPROGRAM "gnuplot"
 double dateintmean=0;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 double *weight;  /*#define DEBUG*/
 int **s; /* Status */  /*#define windows*/
 double *agedc, **covar, idx;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 double ftolhess; /* Tolerance for computing hessian */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 /**************** split *************************/  #define NINTERVMAX 8
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    char *s;                             /* pointer */  #define NCOVMAX 8 /* Maximum number of covariates */
    int  l1, l2;                         /* length counters */  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
    l1 = strlen( path );                 /* length of path */  #define AGESUP 130
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define AGEBASE 40
 #ifdef windows  #ifdef unix
    s = strrchr( path, '\\' );           /* find last / */  #define DIRSEPARATOR '/'
 #else  #define ODIRSEPARATOR '\\'
    s = strrchr( path, '/' );            /* find last / */  #else
 #endif  #define DIRSEPARATOR '\\'
    if ( s == NULL ) {                   /* no directory, so use current */  #define ODIRSEPARATOR '/'
 #if     defined(__bsd__)                /* get current working directory */  #endif
       extern char       *getwd( );  
   /* $Id$ */
       if ( getwd( dirc ) == NULL ) {  /* $State$ */
 #else  
       extern char       *getcwd( );  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int erreur; /* Error number */
 #endif  int nvar;
          return( GLOCK_ERROR_GETCWD );  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       }  int npar=NPARMAX;
       strcpy( name, path );             /* we've got it */  int nlstate=2; /* Number of live states */
    } else {                             /* strip direcotry from path */  int ndeath=1; /* Number of dead states */
       s++;                              /* after this, the filename */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       l2 = strlen( s );                 /* length of filename */  int popbased=0;
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  int *wav; /* Number of waves for this individuual 0 is possible */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int maxwav; /* Maxim number of waves */
       dirc[l1-l2] = 0;                  /* add zero */  int jmin, jmax; /* min, max spacing between 2 waves */
    }  int gipmx, gsw; /* Global variables on the number of contributions 
    l1 = strlen( dirc );                 /* length of directory */                     to the likelihood and the sum of weights (done by funcone)*/
 #ifdef windows  int mle, weightopt;
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #else  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #endif             * wave mi and wave mi+1 is not an exact multiple of stepm. */
    s = strrchr( name, '.' );            /* find last / */  double jmean; /* Mean space between 2 waves */
    s++;  double **oldm, **newm, **savm; /* Working pointers to matrices */
    strcpy(ext,s);                       /* save extension */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    l1= strlen( name);  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    l2= strlen( s)+1;  FILE *ficlog, *ficrespow;
    strncpy( finame, name, l1-l2);  int globpr; /* Global variable for printing or not */
    finame[l1-l2]= 0;  double fretone; /* Only one call to likelihood */
    return( 0 );                         /* we're done */  long ipmx; /* Number of contributions */
 }  double sw; /* Sum of weights */
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /******************************************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 void replace(char *s, char*t)  FILE *fichtm; /* Html File */
 {  FILE *ficreseij;
   int i;  char filerese[FILENAMELENGTH];
   int lg=20;  FILE  *ficresvij;
   i=0;  char fileresv[FILENAMELENGTH];
   lg=strlen(t);  FILE  *ficresvpl;
   for(i=0; i<= lg; i++) {  char fileresvpl[FILENAMELENGTH];
     (s[i] = t[i]);  char title[MAXLINE];
     if (t[i]== '\\') s[i]='/';  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 int nbocc(char *s, char occ)  int  outcmd=0;
 {  
   int i,j=0;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int lg=20;  char lfileres[FILENAMELENGTH];
   i=0;  char filelog[FILENAMELENGTH]; /* Log file */
   lg=strlen(s);  char filerest[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char fileregp[FILENAMELENGTH];
   if  (s[i] == occ ) j++;  char popfile[FILENAMELENGTH];
   }  
   return j;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 }  
   #define NR_END 1
 void cutv(char *u,char *v, char*t, char occ)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   int i,lg,j,p=0;  
   i=0;  #define NRANSI 
   for(j=0; j<=strlen(t)-1; j++) {  #define ITMAX 200 
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  #define TOL 2.0e-4 
   
   lg=strlen(t);  #define CGOLD 0.3819660 
   for(j=0; j<p; j++) {  #define ZEPS 1.0e-10 
     (u[j] = t[j]);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   }  
      u[p]='\0';  #define GOLD 1.618034 
   #define GLIMIT 100.0 
    for(j=0; j<= lg; j++) {  #define TINY 1.0e-20 
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /********************** nrerror ********************/    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void nrerror(char error_text[])  #define rint(a) floor(a+0.5)
 {  
   fprintf(stderr,"ERREUR ...\n");  static double sqrarg;
   fprintf(stderr,"%s\n",error_text);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   exit(1);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 }  
 /*********************** vector *******************/  int imx; 
 double *vector(int nl, int nh)  int stepm;
 {  /* Stepm, step in month: minimum step interpolation*/
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int estepm;
   if (!v) nrerror("allocation failure in vector");  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   return v-nl+NR_END;  
 }  int m,nb;
   long *num;
 /************************ free vector ******************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 void free_vector(double*v, int nl, int nh)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   free((FREE_ARG)(v+nl-NR_END));  double dateintmean=0;
 }  
   double *weight;
 /************************ivector *******************************/  int **s; /* Status */
 int *ivector(long nl,long nh)  double *agedc, **covar, idx;
 {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   if (!v) nrerror("allocation failure in ivector");  double ftolhess; /* Tolerance for computing hessian */
   return v-nl+NR_END;  
 }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /******************free ivector **************************/  {
 void free_ivector(int *v, long nl, long nh)    char  *ss;                            /* pointer */
 {    int   l1, l2;                         /* length counters */
   free((FREE_ARG)(v+nl-NR_END));  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /******************* imatrix *******************************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 int **imatrix(long nrl, long nrh, long ncl, long nch)    if ( ss == NULL ) {                   /* no directory, so use current */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;      /* get current working directory */
   int **m;      /*    extern  char* getcwd ( char *buf , int len);*/
        if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   /* allocate pointers to rows */        return( GLOCK_ERROR_GETCWD );
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      }
   if (!m) nrerror("allocation failure 1 in matrix()");      strcpy( name, path );               /* we've got it */
   m += NR_END;    } else {                              /* strip direcotry from path */
   m -= nrl;      ss++;                               /* after this, the filename */
        l2 = strlen( ss );                  /* length of filename */
        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   /* allocate rows and set pointers to them */      strcpy( name, ss );         /* save file name */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      dirc[l1-l2] = 0;                    /* add zero */
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;    l1 = strlen( dirc );                  /* length of directory */
      /*#ifdef windows
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
    #else
   /* return pointer to array of pointers to rows */    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   return m;  #endif
 }    */
     ss = strrchr( name, '.' );            /* find last / */
 /****************** free_imatrix *************************/    ss++;
 void free_imatrix(m,nrl,nrh,ncl,nch)    strcpy(ext,ss);                       /* save extension */
       int **m;    l1= strlen( name);
       long nch,ncl,nrh,nrl;    l2= strlen(ss)+1;
      /* free an int matrix allocated by imatrix() */    strncpy( finame, name, l1-l2);
 {    finame[l1-l2]= 0;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    return( 0 );                          /* we're done */
   free((FREE_ARG) (m+nrl-NR_END));  }
 }  
   
 /******************* matrix *******************************/  /******************************************/
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  void replace_back_to_slash(char *s, char*t)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  {
   double **m;    int i;
     int lg=0;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    i=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    lg=strlen(t);
   m += NR_END;    for(i=0; i<= lg; i++) {
   m -= nrl;      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int nbocc(char *s, char occ)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    int i,j=0;
   return m;    int lg=20;
 }    i=0;
     lg=strlen(s);
 /*************************free matrix ************************/    for(i=0; i<= lg; i++) {
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    if  (s[i] == occ ) j++;
 {    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    return j;
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   void cutv(char *u,char *v, char*t, char occ)
 /******************* ma3x *******************************/  {
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    /* cuts string t into u and v where u is ended by char occ excluding it
 {       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;       gives u="abcedf" and v="ghi2j" */
   double ***m;    int i,lg,j,p=0;
     i=0;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    for(j=0; j<=strlen(t)-1; j++) {
   if (!m) nrerror("allocation failure 1 in matrix()");      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m += NR_END;    }
   m -= nrl;  
     lg=strlen(t);
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    for(j=0; j<p; j++) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      (u[j] = t[j]);
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;       u[p]='\0';
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  }
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  /********************** nrerror ********************/
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  void nrerror(char error_text[])
    {
   for (i=nrl+1; i<=nrh; i++) {    fprintf(stderr,"ERREUR ...\n");
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    fprintf(stderr,"%s\n",error_text);
     for (j=ncl+1; j<=nch; j++)    exit(EXIT_FAILURE);
       m[i][j]=m[i][j-1]+nlay;  }
   }  /*********************** vector *******************/
   return m;  double *vector(int nl, int nh)
 }  {
     double *v;
 /*************************free ma3x ************************/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    if (!v) nrerror("allocation failure in vector");
 {    return v-nl+NR_END;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /************************ free vector ******************/
 }  void free_vector(double*v, int nl, int nh)
   {
 /***************** f1dim *************************/    free((FREE_ARG)(v+nl-NR_END));
 extern int ncom;  }
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  /************************ivector *******************************/
    int *ivector(long nl,long nh)
 double f1dim(double x)  {
 {    int *v;
   int j;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double f;    if (!v) nrerror("allocation failure in ivector");
   double *xt;    return v-nl+NR_END;
    }
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  /******************free ivector **************************/
   f=(*nrfunc)(xt);  void free_ivector(int *v, long nl, long nh)
   free_vector(xt,1,ncom);  {
   return f;    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /*****************brent *************************/  /************************lvector *******************************/
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  long *lvector(long nl,long nh)
 {  {
   int iter;    long *v;
   double a,b,d,etemp;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double fu,fv,fw,fx;    if (!v) nrerror("allocation failure in ivector");
   double ftemp;    return v-nl+NR_END;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  }
   double e=0.0;  
    /******************free lvector **************************/
   a=(ax < cx ? ax : cx);  void free_lvector(long *v, long nl, long nh)
   b=(ax > cx ? ax : cx);  {
   x=w=v=bx;    free((FREE_ARG)(v+nl-NR_END));
   fw=fv=fx=(*f)(x);  }
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  /******************* imatrix *******************************/
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     printf(".");fflush(stdout);  { 
 #ifdef DEBUG    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    int **m; 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    
 #endif    /* allocate pointers to rows */ 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       *xmin=x;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       return fx;    m += NR_END; 
     }    m -= nrl; 
     ftemp=fu;    
     if (fabs(e) > tol1) {    
       r=(x-w)*(fx-fv);    /* allocate rows and set pointers to them */ 
       q=(x-v)*(fx-fw);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       p=(x-v)*q-(x-w)*r;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       q=2.0*(q-r);    m[nrl] += NR_END; 
       if (q > 0.0) p = -p;    m[nrl] -= ncl; 
       q=fabs(q);    
       etemp=e;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       e=d;    
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    /* return pointer to array of pointers to rows */ 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    return m; 
       else {  } 
         d=p/q;  
         u=x+d;  /****************** free_imatrix *************************/
         if (u-a < tol2 || b-u < tol2)  void free_imatrix(m,nrl,nrh,ncl,nch)
           d=SIGN(tol1,xm-x);        int **m;
       }        long nch,ncl,nrh,nrl; 
     } else {       /* free an int matrix allocated by imatrix() */ 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    free((FREE_ARG) (m+nrl-NR_END)); 
     fu=(*f)(u);  } 
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  /******************* matrix *******************************/
       SHFT(v,w,x,u)  double **matrix(long nrl, long nrh, long ncl, long nch)
         SHFT(fv,fw,fx,fu)  {
         } else {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
           if (u < x) a=u; else b=u;    double **m;
           if (fu <= fw || w == x) {  
             v=w;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             w=u;    if (!m) nrerror("allocation failure 1 in matrix()");
             fv=fw;    m += NR_END;
             fw=fu;    m -= nrl;
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             fv=fu;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           }    m[nrl] += NR_END;
         }    m[nrl] -= ncl;
   }  
   nrerror("Too many iterations in brent");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   *xmin=x;    return m;
   return fx;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 }     */
   }
 /****************** mnbrak ***********************/  
   /*************************free matrix ************************/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
             double (*func)(double))  {
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double ulim,u,r,q, dum;    free((FREE_ARG)(m+nrl-NR_END));
   double fu;  }
    
   *fa=(*func)(*ax);  /******************* ma3x *******************************/
   *fb=(*func)(*bx);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       SHFT(dum,*fb,*fa,dum)    double ***m;
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *fc=(*func)(*cx);    if (!m) nrerror("allocation failure 1 in matrix()");
   while (*fb > *fc) {    m += NR_END;
     r=(*bx-*ax)*(*fb-*fc);    m -= nrl;
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m[nrl] += NR_END;
     if ((*bx-u)*(u-*cx) > 0.0) {    m[nrl] -= ncl;
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fu=(*func)(u);  
       if (fu < *fc) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           SHFT(*fb,*fc,fu,(*func)(u))    m[nrl][ncl] += NR_END;
           }    m[nrl][ncl] -= nll;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    for (j=ncl+1; j<=nch; j++) 
       u=ulim;      m[nrl][j]=m[nrl][j-1]+nlay;
       fu=(*func)(u);    
     } else {    for (i=nrl+1; i<=nrh; i++) {
       u=(*cx)+GOLD*(*cx-*bx);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       fu=(*func)(u);      for (j=ncl+1; j<=nch; j++) 
     }        m[i][j]=m[i][j-1]+nlay;
     SHFT(*ax,*bx,*cx,u)    }
       SHFT(*fa,*fb,*fc,fu)    return m; 
       }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
 /*************** linmin ************************/  }
   
 int ncom;  /*************************free ma3x ************************/
 double *pcom,*xicom;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 double (*nrfunc)(double []);  {
      free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   double brent(double ax, double bx, double cx,  }
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  /***************** f1dim *************************/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  extern int ncom; 
               double *fc, double (*func)(double));  extern double *pcom,*xicom;
   int j;  extern double (*nrfunc)(double []); 
   double xx,xmin,bx,ax;   
   double fx,fb,fa;  double f1dim(double x) 
    { 
   ncom=n;    int j; 
   pcom=vector(1,n);    double f;
   xicom=vector(1,n);    double *xt; 
   nrfunc=func;   
   for (j=1;j<=n;j++) {    xt=vector(1,ncom); 
     pcom[j]=p[j];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     xicom[j]=xi[j];    f=(*nrfunc)(xt); 
   }    free_vector(xt,1,ncom); 
   ax=0.0;    return f; 
   xx=1.0;  } 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /*****************brent *************************/
 #ifdef DEBUG  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  { 
 #endif    int iter; 
   for (j=1;j<=n;j++) {    double a,b,d,etemp;
     xi[j] *= xmin;    double fu,fv,fw,fx;
     p[j] += xi[j];    double ftemp;
   }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   free_vector(xicom,1,n);    double e=0.0; 
   free_vector(pcom,1,n);   
 }    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
 /*************** powell ************************/    x=w=v=bx; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    fw=fv=fx=(*f)(x); 
             double (*func)(double []))    for (iter=1;iter<=ITMAX;iter++) { 
 {      xm=0.5*(a+b); 
   void linmin(double p[], double xi[], int n, double *fret,      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
               double (*func)(double []));      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   int i,ibig,j;      printf(".");fflush(stdout);
   double del,t,*pt,*ptt,*xit;      fprintf(ficlog,".");fflush(ficlog);
   double fp,fptt;  #ifdef DEBUG
   double *xits;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   pt=vector(1,n);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   ptt=vector(1,n);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   xit=vector(1,n);  #endif
   xits=vector(1,n);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   *fret=(*func)(p);        *xmin=x; 
   for (j=1;j<=n;j++) pt[j]=p[j];        return fx; 
   for (*iter=1;;++(*iter)) {      } 
     fp=(*fret);      ftemp=fu;
     ibig=0;      if (fabs(e) > tol1) { 
     del=0.0;        r=(x-w)*(fx-fv); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        q=(x-v)*(fx-fw); 
     for (i=1;i<=n;i++)        p=(x-v)*q-(x-w)*r; 
       printf(" %d %.12f",i, p[i]);        q=2.0*(q-r); 
     printf("\n");        if (q > 0.0) p = -p; 
     for (i=1;i<=n;i++) {        q=fabs(q); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        etemp=e; 
       fptt=(*fret);        e=d; 
 #ifdef DEBUG        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       printf("fret=%lf \n",*fret);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #endif        else { 
       printf("%d",i);fflush(stdout);          d=p/q; 
       linmin(p,xit,n,fret,func);          u=x+d; 
       if (fabs(fptt-(*fret)) > del) {          if (u-a < tol2 || b-u < tol2) 
         del=fabs(fptt-(*fret));            d=SIGN(tol1,xm-x); 
         ibig=i;        } 
       }      } else { 
 #ifdef DEBUG        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       printf("%d %.12e",i,(*fret));      } 
       for (j=1;j<=n;j++) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      fu=(*f)(u); 
         printf(" x(%d)=%.12e",j,xit[j]);      if (fu <= fx) { 
       }        if (u >= x) a=x; else b=x; 
       for(j=1;j<=n;j++)        SHFT(v,w,x,u) 
         printf(" p=%.12e",p[j]);          SHFT(fv,fw,fx,fu) 
       printf("\n");          } else { 
 #endif            if (u < x) a=u; else b=u; 
     }            if (fu <= fw || w == x) { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {              v=w; 
 #ifdef DEBUG              w=u; 
       int k[2],l;              fv=fw; 
       k[0]=1;              fw=fu; 
       k[1]=-1;            } else if (fu <= fv || v == x || v == w) { 
       printf("Max: %.12e",(*func)(p));              v=u; 
       for (j=1;j<=n;j++)              fv=fu; 
         printf(" %.12e",p[j]);            } 
       printf("\n");          } 
       for(l=0;l<=1;l++) {    } 
         for (j=1;j<=n;j++) {    nrerror("Too many iterations in brent"); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    *xmin=x; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    return fx; 
         }  } 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  /****************** mnbrak ***********************/
 #endif  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
       free_vector(xit,1,n);  { 
       free_vector(xits,1,n);    double ulim,u,r,q, dum;
       free_vector(ptt,1,n);    double fu; 
       free_vector(pt,1,n);   
       return;    *fa=(*func)(*ax); 
     }    *fb=(*func)(*bx); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    if (*fb > *fa) { 
     for (j=1;j<=n;j++) {      SHFT(dum,*ax,*bx,dum) 
       ptt[j]=2.0*p[j]-pt[j];        SHFT(dum,*fb,*fa,dum) 
       xit[j]=p[j]-pt[j];        } 
       pt[j]=p[j];    *cx=(*bx)+GOLD*(*bx-*ax); 
     }    *fc=(*func)(*cx); 
     fptt=(*func)(ptt);    while (*fb > *fc) { 
     if (fptt < fp) {      r=(*bx-*ax)*(*fb-*fc); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      q=(*bx-*cx)*(*fb-*fa); 
       if (t < 0.0) {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         linmin(p,xit,n,fret,func);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         for (j=1;j<=n;j++) {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
           xi[j][ibig]=xi[j][n];      if ((*bx-u)*(u-*cx) > 0.0) { 
           xi[j][n]=xit[j];        fu=(*func)(u); 
         }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 #ifdef DEBUG        fu=(*func)(u); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        if (fu < *fc) { 
         for(j=1;j<=n;j++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           printf(" %.12e",xit[j]);            SHFT(*fb,*fc,fu,(*func)(u)) 
         printf("\n");            } 
 #endif      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       }        u=ulim; 
     }        fu=(*func)(u); 
   }      } else { 
 }        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
 /**** Prevalence limit ****************/      } 
       SHFT(*ax,*bx,*cx,u) 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        SHFT(*fa,*fb,*fc,fu) 
 {        } 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  } 
      matrix by transitions matrix until convergence is reached */  
   /*************** linmin ************************/
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  int ncom; 
   double **matprod2();  double *pcom,*xicom;
   double **out, cov[NCOVMAX], **pmij();  double (*nrfunc)(double []); 
   double **newm;   
   double agefin, delaymax=50 ; /* Max number of years to converge */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   for (ii=1;ii<=nlstate+ndeath;ii++)    double brent(double ax, double bx, double cx, 
     for (j=1;j<=nlstate+ndeath;j++){                 double (*f)(double), double tol, double *xmin); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double f1dim(double x); 
     }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
    cov[1]=1.;    int j; 
      double xx,xmin,bx,ax; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double fx,fb,fa;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){   
     newm=savm;    ncom=n; 
     /* Covariates have to be included here again */    pcom=vector(1,n); 
      cov[2]=agefin;    xicom=vector(1,n); 
      nrfunc=func; 
       for (k=1; k<=cptcovn;k++) {    for (j=1;j<=n;j++) { 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      pcom[j]=p[j]; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      xicom[j]=xi[j]; 
       }    } 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    ax=0.0; 
       for (k=1; k<=cptcovprod;k++)    xx=1.0; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #ifdef DEBUG
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #endif
     for (j=1;j<=n;j++) { 
     savm=oldm;      xi[j] *= xmin; 
     oldm=newm;      p[j] += xi[j]; 
     maxmax=0.;    } 
     for(j=1;j<=nlstate;j++){    free_vector(xicom,1,n); 
       min=1.;    free_vector(pcom,1,n); 
       max=0.;  } 
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /*************** powell ************************/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         prlim[i][j]= newm[i][j]/(1-sumnew);              double (*func)(double [])) 
         max=FMAX(max,prlim[i][j]);  { 
         min=FMIN(min,prlim[i][j]);    void linmin(double p[], double xi[], int n, double *fret, 
       }                double (*func)(double [])); 
       maxmin=max-min;    int i,ibig,j; 
       maxmax=FMAX(maxmax,maxmin);    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
     if(maxmax < ftolpl){    double *xits;
       return prlim;    pt=vector(1,n); 
     }    ptt=vector(1,n); 
   }    xit=vector(1,n); 
 }    xits=vector(1,n); 
     *fret=(*func)(p); 
 /*************** transition probabilities ***************/    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      fp=(*fret); 
 {      ibig=0; 
   double s1, s2;      del=0.0; 
   /*double t34;*/      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   int i,j,j1, nc, ii, jj;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       fprintf(ficrespow,"%d %.12f",*iter,*fret);
     for(i=1; i<= nlstate; i++){      for (i=1;i<=n;i++) {
     for(j=1; j<i;j++){        printf(" %d %.12f",i, p[i]);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fprintf(ficlog," %d %.12lf",i, p[i]);
         /*s2 += param[i][j][nc]*cov[nc];*/        fprintf(ficrespow," %.12lf", p[i]);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      printf("\n");
       }      fprintf(ficlog,"\n");
       ps[i][j]=s2;      fprintf(ficrespow,"\n");
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      for (i=1;i<=n;i++) { 
     }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     for(j=i+1; j<=nlstate+ndeath;j++){        fptt=(*fret); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #ifdef DEBUG
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        printf("fret=%lf \n",*fret);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        fprintf(ficlog,"fret=%lf \n",*fret);
       }  #endif
       ps[i][j]=s2;        printf("%d",i);fflush(stdout);
     }        fprintf(ficlog,"%d",i);fflush(ficlog);
   }        linmin(p,xit,n,fret,func); 
     /*ps[3][2]=1;*/        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   for(i=1; i<= nlstate; i++){          ibig=i; 
      s1=0;        } 
     for(j=1; j<i; j++)  #ifdef DEBUG
       s1+=exp(ps[i][j]);        printf("%d %.12e",i,(*fret));
     for(j=i+1; j<=nlstate+ndeath; j++)        fprintf(ficlog,"%d %.12e",i,(*fret));
       s1+=exp(ps[i][j]);        for (j=1;j<=n;j++) {
     ps[i][i]=1./(s1+1.);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for(j=1; j<i; j++)          printf(" x(%d)=%.12e",j,xit[j]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for(j=i+1; j<=nlstate+ndeath; j++)        }
       ps[i][j]= exp(ps[i][j])*ps[i][i];        for(j=1;j<=n;j++) {
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          printf(" p=%.12e",p[j]);
   } /* end i */          fprintf(ficlog," p=%.12e",p[j]);
         }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        printf("\n");
     for(jj=1; jj<= nlstate+ndeath; jj++){        fprintf(ficlog,"\n");
       ps[ii][jj]=0;  #endif
       ps[ii][ii]=1;      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   }  #ifdef DEBUG
         int k[2],l;
         k[0]=1;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        k[1]=-1;
     for(jj=1; jj<= nlstate+ndeath; jj++){        printf("Max: %.12e",(*func)(p));
      printf("%lf ",ps[ii][jj]);        fprintf(ficlog,"Max: %.12e",(*func)(p));
    }        for (j=1;j<=n;j++) {
     printf("\n ");          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
     printf("\n ");printf("%lf ",cov[2]);*/        }
 /*        printf("\n");
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        fprintf(ficlog,"\n");
   goto end;*/        for(l=0;l<=1;l++) {
     return ps;          for (j=1;j<=n;j++) {
 }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 /**************** Product of 2 matrices ******************/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  #endif
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */        free_vector(xit,1,n); 
   long i, j, k;        free_vector(xits,1,n); 
   for(i=nrl; i<= nrh; i++)        free_vector(ptt,1,n); 
     for(k=ncolol; k<=ncoloh; k++)        free_vector(pt,1,n); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        return; 
         out[i][k] +=in[i][j]*b[j][k];      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   return out;      for (j=1;j<=n;j++) { 
 }        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
 /************* Higher Matrix Product ***************/      } 
       fptt=(*func)(ptt); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      if (fptt < fp) { 
 {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        if (t < 0.0) { 
      duration (i.e. until          linmin(p,xit,n,fret,func); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          for (j=1;j<=n;j++) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step            xi[j][ibig]=xi[j][n]; 
      (typically every 2 years instead of every month which is too big).            xi[j][n]=xit[j]; 
      Model is determined by parameters x and covariates have to be          }
      included manually here.  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   int i, j, d, h, k;            printf(" %.12e",xit[j]);
   double **out, cov[NCOVMAX];            fprintf(ficlog," %.12e",xit[j]);
   double **newm;          }
           printf("\n");
   /* Hstepm could be zero and should return the unit matrix */          fprintf(ficlog,"\n");
   for (i=1;i<=nlstate+ndeath;i++)  #endif
     for (j=1;j<=nlstate+ndeath;j++){        }
       oldm[i][j]=(i==j ? 1.0 : 0.0);      } 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    } 
     }  } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /**** Prevalence limit (stable prevalence)  ****************/
     for(d=1; d <=hstepm; d++){  
       newm=savm;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       /* Covariates have to be included here again */  {
       cov[1]=1.;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;       matrix by transitions matrix until convergence is reached */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)    int i, ii,j,k;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double min, max, maxmin, maxmax,sumnew=0.;
       for (k=1; k<=cptcovprod;k++)    double **matprod2();
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double **out, cov[NCOVMAX], **pmij();
     double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    for (ii=1;ii<=nlstate+ndeath;ii++)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      for (j=1;j<=nlstate+ndeath;j++){
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       savm=oldm;      }
       oldm=newm;  
     }     cov[1]=1.;
     for(i=1; i<=nlstate+ndeath; i++)   
       for(j=1;j<=nlstate+ndeath;j++) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         po[i][j][h]=newm[i][j];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      newm=savm;
          */      /* Covariates have to be included here again */
       }       cov[2]=agefin;
   } /* end h */    
   return po;        for (k=1; k<=cptcovn;k++) {
 }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
 /*************** log-likelihood *************/        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 double func( double *x)        for (k=1; k<=cptcovprod;k++)
 {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double **out;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double sw; /* Sum of weights */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double lli; /* Individual log likelihood */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   long ipmx;  
   /*extern weight */      savm=oldm;
   /* We are differentiating ll according to initial status */      oldm=newm;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      maxmax=0.;
   /*for(i=1;i<imx;i++)      for(j=1;j<=nlstate;j++){
     printf(" %d\n",s[4][i]);        min=1.;
   */        max=0.;
   cov[1]=1.;        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   for(k=1; k<=nlstate; k++) ll[k]=0.;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          prlim[i][j]= newm[i][j]/(1-sumnew);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          max=FMAX(max,prlim[i][j]);
     for(mi=1; mi<= wav[i]-1; mi++){          min=FMIN(min,prlim[i][j]);
       for (ii=1;ii<=nlstate+ndeath;ii++)        }
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        maxmin=max-min;
       for(d=0; d<dh[mi][i]; d++){        maxmax=FMAX(maxmax,maxmin);
         newm=savm;      }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      if(maxmax < ftolpl){
         for (kk=1; kk<=cptcovage;kk++) {        return prlim;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
         }    }
          }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************** transition probabilities ***************/ 
         savm=oldm;  
         oldm=newm;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
          {
            double s1, s2;
       } /* end mult */    /*double t34;*/
          int i,j,j1, nc, ii, jj;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      for(i=1; i<= nlstate; i++){
       ipmx +=1;      for(j=1; j<i;j++){
       sw += weight[i];        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          /*s2 += param[i][j][nc]*cov[nc];*/
     } /* end of wave */          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   } /* end of individual */          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        ps[i][j]=s2;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      }
   return -l;      for(j=i+1; j<=nlstate+ndeath;j++){
 }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
 /*********** Maximum Likelihood Estimation ***************/        }
         ps[i][j]=s2;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      }
 {    }
   int i,j, iter;      /*ps[3][2]=1;*/
   double **xi,*delti;  
   double fret;    for(i=1; i<= nlstate; i++){
   xi=matrix(1,npar,1,npar);       s1=0;
   for (i=1;i<=npar;i++)      for(j=1; j<i; j++)
     for (j=1;j<=npar;j++)        s1+=exp(ps[i][j]);
       xi[i][j]=(i==j ? 1.0 : 0.0);      for(j=i+1; j<=nlstate+ndeath; j++)
   printf("Powell\n");        s1+=exp(ps[i][j]);
   powell(p,xi,npar,ftol,&iter,&fret,func);      ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        ps[i][j]= exp(ps[i][j])*ps[i][i];
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
 }      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 {      for(jj=1; jj<= nlstate+ndeath; jj++){
   double  **a,**y,*x,pd;        ps[ii][jj]=0;
   double **hess;        ps[ii][ii]=1;
   int i, j,jk;      }
   int *indx;    }
   
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   void lubksb(double **a, int npar, int *indx, double b[]) ;      for(jj=1; jj<= nlstate+ndeath; jj++){
   void ludcmp(double **a, int npar, int *indx, double *d) ;       printf("%lf ",ps[ii][jj]);
      }
   hess=matrix(1,npar,1,npar);      printf("\n ");
       }
   printf("\nCalculation of the hessian matrix. Wait...\n");      printf("\n ");printf("%lf ",cov[2]);*/
   for (i=1;i<=npar;i++){  /*
     printf("%d",i);fflush(stdout);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     hess[i][i]=hessii(p,ftolhess,i,delti);    goto end;*/
     /*printf(" %f ",p[i]);*/      return ps;
     /*printf(" %lf ",hess[i][i]);*/  }
   }  
    /**************** Product of 2 matrices ******************/
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       if (j>i) {  {
         printf(".%d%d",i,j);fflush(stdout);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         hess[i][j]=hessij(p,delti,i,j);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         hess[j][i]=hess[i][j];        /* in, b, out are matrice of pointers which should have been initialized 
         /*printf(" %lf ",hess[i][j]);*/       before: only the contents of out is modified. The function returns
       }       a pointer to pointers identical to out */
     }    long i, j, k;
   }    for(i=nrl; i<= nrh; i++)
   printf("\n");      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          out[i][k] +=in[i][j]*b[j][k];
    
   a=matrix(1,npar,1,npar);    return out;
   y=matrix(1,npar,1,npar);  }
   x=vector(1,npar);  
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  /************* Higher Matrix Product ***************/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
   for (j=1;j<=npar;j++) {    /* Computes the transition matrix starting at age 'age' over 
     for (i=1;i<=npar;i++) x[i]=0;       'nhstepm*hstepm*stepm' months (i.e. until
     x[j]=1;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     lubksb(a,npar,indx,x);       nhstepm*hstepm matrices. 
     for (i=1;i<=npar;i++){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       matcov[i][j]=x[i];       (typically every 2 years instead of every month which is too big 
     }       for the memory).
   }       Model is determined by parameters x and covariates have to be 
        included manually here. 
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {       */
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);    int i, j, d, h, k;
     }    double **out, cov[NCOVMAX];
     printf("\n");    double **newm;
   }  
     /* Hstepm could be zero and should return the unit matrix */
   /* Recompute Inverse */    for (i=1;i<=nlstate+ndeath;i++)
   for (i=1;i<=npar;i++)      for (j=1;j<=nlstate+ndeath;j++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        oldm[i][j]=(i==j ? 1.0 : 0.0);
   ludcmp(a,npar,indx,&pd);        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   /*  printf("\n#Hessian matrix recomputed#\n");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
   for (j=1;j<=npar;j++) {      for(d=1; d <=hstepm; d++){
     for (i=1;i<=npar;i++) x[i]=0;        newm=savm;
     x[j]=1;        /* Covariates have to be included here again */
     lubksb(a,npar,indx,x);        cov[1]=1.;
     for (i=1;i<=npar;i++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       y[i][j]=x[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       printf("%.3e ",y[i][j]);        for (k=1; k<=cptcovage;k++)
     }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     printf("\n");        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   */  
   
   free_matrix(a,1,npar,1,npar);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   free_matrix(y,1,npar,1,npar);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   free_vector(x,1,npar);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   free_ivector(indx,1,npar);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_matrix(hess,1,npar,1,npar);        savm=oldm;
         oldm=newm;
       }
 }      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
 /*************** hessian matrix ****************/          po[i][j][h]=newm[i][j];
 double hessii( double x[], double delta, int theta, double delti[])          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 {           */
   int i;        }
   int l=1, lmax=20;    } /* end h */
   double k1,k2;    return po;
   double p2[NPARMAX+1];  }
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;  /*************** log-likelihood *************/
   int k=0,kmax=10;  double func( double *x)
   double l1;  {
     int i, ii, j, k, mi, d, kk;
   fx=func(x);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (i=1;i<=npar;i++) p2[i]=x[i];    double **out;
   for(l=0 ; l <=lmax; l++){    double sw; /* Sum of weights */
     l1=pow(10,l);    double lli; /* Individual log likelihood */
     delts=delt;    int s1, s2;
     for(k=1 ; k <kmax; k=k+1){    double bbh, survp;
       delt = delta*(l1*k);    long ipmx;
       p2[theta]=x[theta] +delt;    /*extern weight */
       k1=func(p2)-fx;    /* We are differentiating ll according to initial status */
       p2[theta]=x[theta]-delt;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       k2=func(p2)-fx;    /*for(i=1;i<imx;i++) 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      printf(" %d\n",s[4][i]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    */
          cov[1]=1.;
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for(k=1; k<=nlstate; k++) ll[k]=0.;
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    if(mle==1){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         k=kmax;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          for (ii=1;ii<=nlstate+ndeath;ii++)
         k=kmax; l=lmax*10.;            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         delts=delt;            }
       }          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   delti[theta]=delts;            for (kk=1; kk<=cptcovage;kk++) {
   return res;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 double hessij( double x[], double delti[], int thetai,int thetaj)            savm=oldm;
 {            oldm=newm;
   int i;          } /* end mult */
   int l=1, l1, lmax=20;        
   double k1,k2,k3,k4,res,fx;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double p2[NPARMAX+1];          /* But now since version 0.9 we anticipate for bias and large stepm.
   int k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
   fx=func(x);           * the nearest (and in case of equal distance, to the lowest) interval but now
   for (k=1; k<=2; k++) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for (i=1;i<=npar;i++) p2[i]=x[i];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     p2[thetai]=x[thetai]+delti[thetai]/k;           * probability in order to take into account the bias as a fraction of the way
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     k1=func(p2)-fx;           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
     p2[thetai]=x[thetai]+delti[thetai]/k;           * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           */
     k2=func(p2)-fx;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
     p2[thetai]=x[thetai]-delti[thetai]/k;          bbh=(double)bh[mi][i]/(double)stepm; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /* bias is positive if real duration
     k3=func(p2)-fx;           * is higher than the multiple of stepm and negative otherwise.
             */
     p2[thetai]=x[thetai]-delti[thetai]/k;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          if( s2 > nlstate){ 
     k4=func(p2)-fx;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */               to the likelihood is the probability to die between last step unit time and current 
 #ifdef DEBUG               step unit time, which is also the differences between probability to die before dh 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);               and probability to die before dh-stepm . 
 #endif               In version up to 0.92 likelihood was computed
   }          as if date of death was unknown. Death was treated as any other
   return res;          health state: the date of the interview describes the actual state
 }          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 /************** Inverse of matrix **************/          (healthy, disable or death) and IMaCh was corrected; but when we
 void ludcmp(double **a, int n, int *indx, double *d)          introduced the exact date of death then we should have modified
 {          the contribution of an exact death to the likelihood. This new
   int i,imax,j,k;          contribution is smaller and very dependent of the step unit
   double big,dum,sum,temp;          stepm. It is no more the probability to die between last interview
   double *vv;          and month of death but the probability to survive from last
            interview up to one month before death multiplied by the
   vv=vector(1,n);          probability to die within a month. Thanks to Chris
   *d=1.0;          Jackson for correcting this bug.  Former versions increased
   for (i=1;i<=n;i++) {          mortality artificially. The bad side is that we add another loop
     big=0.0;          which slows down the processing. The difference can be up to 10%
     for (j=1;j<=n;j++)          lower mortality.
       if ((temp=fabs(a[i][j])) > big) big=temp;            */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            lli=log(out[s1][s2] - savm[s1][s2]);
     vv[i]=1.0/big;          }else{
   }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for (j=1;j<=n;j++) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for (i=1;i<j;i++) {          } 
       sum=a[i][j];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          /*if(lli ==000.0)*/
       a[i][j]=sum;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     }          ipmx +=1;
     big=0.0;          sw += weight[i];
     for (i=j;i<=n;i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       sum=a[i][j];        } /* end of wave */
       for (k=1;k<j;k++)      } /* end of individual */
         sum -= a[i][k]*a[k][j];    }  else if(mle==2){
       a[i][j]=sum;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         big=dum;        for(mi=1; mi<= wav[i]-1; mi++){
         imax=i;          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (j != imax) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=1;k<=n;k++) {            }
         dum=a[imax][k];          for(d=0; d<=dh[mi][i]; d++){
         a[imax][k]=a[j][k];            newm=savm;
         a[j][k]=dum;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       *d = -(*d);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       vv[imax]=vv[j];            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     indx[j]=imax;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (a[j][j] == 0.0) a[j][j]=TINY;            savm=oldm;
     if (j != n) {            oldm=newm;
       dum=1.0/(a[j][j]);          } /* end mult */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        
     }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   }          /* But now since version 0.9 we anticipate for bias and large stepm.
   free_vector(vv,1,n);  /* Doesn't work */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 ;           * (in months) between two waves is not a multiple of stepm, we rounded to 
 }           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
 void lubksb(double **a, int n, int *indx, double b[])           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 {           * probability in order to take into account the bias as a fraction of the way
   int i,ii=0,ip,j;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   double sum;           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
   for (i=1;i<=n;i++) {           * For stepm > 1 the results are less biased than in previous versions. 
     ip=indx[i];           */
     sum=b[ip];          s1=s[mw[mi][i]][i];
     b[ip]=b[i];          s2=s[mw[mi+1][i]][i];
     if (ii)          bbh=(double)bh[mi][i]/(double)stepm; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          /* bias is positive if real duration
     else if (sum) ii=i;           * is higher than the multiple of stepm and negative otherwise.
     b[i]=sum;           */
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for (i=n;i>=1;i--) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     sum=b[i];          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     b[i]=sum/a[i][i];          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 }          ipmx +=1;
           sw += weight[i];
 /************ Frequencies ********************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        } /* end of wave */
 {  /* Some frequencies */      } /* end of individual */
      }  else if(mle==3){  /* exponential inter-extrapolation */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double *pp;        for(mi=1; mi<= wav[i]-1; mi++){
   double pos, k2, dateintsum=0,k2cpt=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
   FILE *ficresp;            for (j=1;j<=nlstate+ndeath;j++){
   char fileresp[FILENAMELENGTH];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   pp=vector(1,nlstate);            }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(d=0; d<dh[mi][i]; d++){
   strcpy(fileresp,"p");            newm=savm;
   strcat(fileresp,fileres);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if((ficresp=fopen(fileresp,"w"))==NULL) {            for (kk=1; kk<=cptcovage;kk++) {
     printf("Problem with prevalence resultfile: %s\n", fileresp);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     exit(0);            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   j1=0;            savm=oldm;
              oldm=newm;
   j=cptcoveff;          } /* end mult */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   for(k1=1; k1<=j;k1++){          /* But now since version 0.9 we anticipate for bias and large stepm.
     for(i1=1; i1<=ncodemax[k1];i1++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       j1++;           * (in months) between two waves is not a multiple of stepm, we rounded to 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           * the nearest (and in case of equal distance, to the lowest) interval but now
         scanf("%d", i);*/           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for (i=-1; i<=nlstate+ndeath; i++)             * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * probability in order to take into account the bias as a fraction of the way
           for(m=agemin; m <= agemax+3; m++)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
             freq[i][jk][m]=0;           * -stepm/2 to stepm/2 .
                 * For stepm=1 the results are the same as for previous versions of Imach.
       dateintsum=0;           * For stepm > 1 the results are less biased than in previous versions. 
       k2cpt=0;           */
       for (i=1; i<=imx; i++) {          s1=s[mw[mi][i]][i];
         bool=1;          s2=s[mw[mi+1][i]][i];
         if  (cptcovn>0) {          bbh=(double)bh[mi][i]/(double)stepm; 
           for (z1=1; z1<=cptcoveff; z1++)          /* bias is positive if real duration
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           * is higher than the multiple of stepm and negative otherwise.
               bool=0;           */
         }          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         if (bool==1) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for(m=firstpass; m<=lastpass; m++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             k2=anint[m][i]+(mint[m][i]/12.);          /*if(lli ==000.0)*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          ipmx +=1;
               if(agev[m][i]==1) agev[m][i]=agemax+2;          sw += weight[i];
               if (m<lastpass) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        } /* end of wave */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      } /* end of individual */
               }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
                    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 dateintsum=dateintsum+k2;        for(mi=1; mi<= wav[i]-1; mi++){
                 k2cpt++;          for (ii=1;ii<=nlstate+ndeath;ii++)
               }            for (j=1;j<=nlstate+ndeath;j++){
             }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<dh[mi][i]; d++){
                    newm=savm;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
       if  (cptcovn>0) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficresp, "\n#********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          
         fprintf(ficresp, "**********\n#");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=nlstate;i++)            savm=oldm;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            oldm=newm;
       fprintf(ficresp, "\n");          } /* end mult */
              
       for(i=(int)agemin; i <= (int)agemax+3; i++){          s1=s[mw[mi][i]][i];
         if(i==(int)agemax+3)          s2=s[mw[mi+1][i]][i];
           printf("Total");          if( s2 > nlstate){ 
         else            lli=log(out[s1][s2] - savm[s1][s2]);
           printf("Age %d", i);          }else{
         for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          }
             pp[jk] += freq[jk][m][i];          ipmx +=1;
         }          sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=-1, pos=0; m <=0 ; m++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             pos += freq[jk][m][i];        } /* end of wave */
           if(pp[jk]>=1.e-10)      } /* end of individual */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
           for(d=0; d<dh[mi][i]; d++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)            newm=savm;
           pos += pp[jk];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
           if(pos>=1.e-5)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            }
           else          
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if( i <= (int) agemax){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if(pos>=1.e-5){            savm=oldm;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            oldm=newm;
               probs[i][jk][j1]= pp[jk]/pos;          } /* end mult */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        
             }          s1=s[mw[mi][i]][i];
             else          s2=s[mw[mi+1][i]][i];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }          ipmx +=1;
         }          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=-1; jk <=nlstate+ndeath; jk++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           for(m=-1; m <=nlstate+ndeath; m++)        } /* end of wave */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      } /* end of individual */
         if(i <= (int) agemax)    } /* End of if */
           fprintf(ficresp,"\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         printf("\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     }    return -l;
   }  }
   dateintmean=dateintsum/k2cpt;  
    /*************** log-likelihood *************/
   fclose(ficresp);  double funcone( double *x)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  {
   free_vector(pp,1,nlstate);    /* Same as likeli but slower because of a lot of printf and if */
      int i, ii, j, k, mi, d, kk;
   /* End of Freq */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 }    double **out;
     double lli; /* Individual log likelihood */
 /************ Prevalence ********************/    double llt;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    int s1, s2;
 {  /* Some frequencies */    double bbh, survp;
      /*extern weight */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    /* We are differentiating ll according to initial status */
   double ***freq; /* Frequencies */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double *pp;    /*for(i=1;i<imx;i++) 
   double pos, k2;      printf(" %d\n",s[4][i]);
     */
   pp=vector(1,nlstate);    cov[1]=1.;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   j=cptcoveff;      for(mi=1; mi<= wav[i]-1; mi++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (ii=1;ii<=nlstate+ndeath;ii++)
            for (j=1;j<=nlstate+ndeath;j++){
   for(k1=1; k1<=j;k1++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i1=1; i1<=ncodemax[k1];i1++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       j1++;          }
              for(d=0; d<dh[mi][i]; d++){
       for (i=-1; i<=nlstate+ndeath; i++)            newm=savm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(m=agemin; m <= agemax+3; m++)          for (kk=1; kk<=cptcovage;kk++) {
             freq[i][jk][m]=0;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                }
       for (i=1; i<=imx; i++) {          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         bool=1;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if  (cptcovn>0) {          savm=oldm;
           for (z1=1; z1<=cptcoveff; z1++)          oldm=newm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        } /* end mult */
               bool=0;        
         }        s1=s[mw[mi][i]][i];
         if (bool==1) {        s2=s[mw[mi+1][i]][i];
           for(m=firstpass; m<=lastpass; m++){        bbh=(double)bh[mi][i]/(double)stepm; 
             k2=anint[m][i]+(mint[m][i]/12.);        /* bias is positive if real duration
             if ((k2>=dateprev1) && (k2<=dateprev2)) {         * is higher than the multiple of stepm and negative otherwise.
               if(agev[m][i]==0) agev[m][i]=agemax+1;         */
               if(agev[m][i]==1) agev[m][i]=agemax+2;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
               if (m<lastpass) {          lli=log(out[s1][s2] - savm[s1][s2]);
                 if (calagedate>0)        } else if (mle==1){
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                 else        } else if(mle==2){
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        } else if(mle==3){  /* exponential inter-extrapolation */
               }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           }          lli=log(out[s1][s2]); /* Original formula */
         }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       }          lli=log(out[s1][s2]); /* Original formula */
       for(i=(int)agemin; i <= (int)agemax+3; i++){        } /* End of if */
         for(jk=1; jk <=nlstate ; jk++){        ipmx +=1;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        sw += weight[i];
             pp[jk] += freq[jk][m][i];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for(jk=1; jk <=nlstate ; jk++){        if(globpr){
           for(m=-1, pos=0; m <=0 ; m++)          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
             pos += freq[jk][m][i];   %10.6f %10.6f %10.6f ", \
         }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                          2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         for(jk=1; jk <=nlstate ; jk++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            llt +=ll[k]*gipmx/gsw;
             pp[jk] += freq[jk][m][i];            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         }          }
                  fprintf(ficresilk," %10.6f\n", -llt);
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        }
              } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){        } /* end of individual */
           if( i <= (int) agemax){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             if(pos>=1.e-5){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               probs[i][jk][j1]= pp[jk]/pos;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             }    if(globpr==0){ /* First time we count the contributions and weights */
           }      gipmx=ipmx;
         }      gsw=sw;
            }
       }    return -l;
     }  }
   }  
   char *subdirf(char fileres[])
    {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    
   free_vector(pp,1,nlstate);    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/"); /* Add to the right */
 }  /* End of Freq */    strcat(tmpout,fileres);
     return tmpout;
 /************* Waves Concatenation ***************/  }
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  char *subdirf2(char fileres[], char *preop)
 {  {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    
      Death is a valid wave (if date is known).    strcpy(tmpout,optionfilefiname);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    strcat(tmpout,"/");
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    strcat(tmpout,preop);
      and mw[mi+1][i]. dh depends on stepm.    strcat(tmpout,fileres);
      */    return tmpout;
   }
   int i, mi, m;  char *subdirf3(char fileres[], char *preop, char *preop2)
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  {
      double sum=0., jmean=0.;*/    
     strcpy(tmpout,optionfilefiname);
   int j, k=0,jk, ju, jl;    strcat(tmpout,"/");
   double sum=0.;    strcat(tmpout,preop);
   jmin=1e+5;    strcat(tmpout,preop2);
   jmax=-1;    strcat(tmpout,fileres);
   jmean=0.;    return tmpout;
   for(i=1; i<=imx; i++){  }
     mi=0;  
     m=firstpass;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     while(s[m][i] <= nlstate){  {
       if(s[m][i]>=1)    /* This routine should help understanding what is done with 
         mw[++mi][i]=m;       the selection of individuals/waves and
       if(m >=lastpass)       to check the exact contribution to the likelihood.
         break;       Plotting could be done.
       else     */
         m++;    int k;
     }/* end while */  
     if (s[m][i] > nlstate){    if(*globpri !=0){ /* Just counts and sums, no printings */
       mi++;     /* Death is another wave */      strcpy(fileresilk,"ilk"); 
       /* if(mi==0)  never been interviewed correctly before death */      strcat(fileresilk,fileres);
          /* Only death is a correct wave */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       mw[mi][i]=m;        printf("Problem with resultfile: %s\n", fileresilk);
     }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
     wav[i]=mi;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     if(mi==0)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   }      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   for(i=1; i<=imx; i++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     for(mi=1; mi<wav[i];mi++){    }
       if (stepm <=0)  
         dh[mi][i]=1;    *fretone=(*funcone)(p);
       else{    if(*globpri !=0){
         if (s[mw[mi+1][i]][i] > nlstate) {      fclose(ficresilk);
           if (agedc[i] < 2*AGESUP) {      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      fflush(fichtm); 
           if(j==0) j=1;  /* Survives at least one month after exam */    } 
           k=k+1;    return;
           if (j >= jmax) jmax=j;  }
           if (j <= jmin) jmin=j;  
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  /*********** Maximum Likelihood Estimation ***************/
           }  
         }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         else{  {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    int i,j, iter;
           k=k+1;    double **xi;
           if (j >= jmax) jmax=j;    double fret;
           else if (j <= jmin)jmin=j;    double fretone; /* Only one call to likelihood */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    char filerespow[FILENAMELENGTH];
           sum=sum+j;    xi=matrix(1,npar,1,npar);
         }    for (i=1;i<=npar;i++)
         jk= j/stepm;      for (j=1;j<=npar;j++)
         jl= j -jk*stepm;        xi[i][j]=(i==j ? 1.0 : 0.0);
         ju= j -(jk+1)*stepm;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         if(jl <= -ju)    strcpy(filerespow,"pow"); 
           dh[mi][i]=jk;    strcat(filerespow,fileres);
         else    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           dh[mi][i]=jk+1;      printf("Problem with resultfile: %s\n", filerespow);
         if(dh[mi][i]==0)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           dh[mi][i]=1; /* At least one step */    }
       }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     }    for (i=1;i<=nlstate;i++)
   }      for(j=1;j<=nlstate+ndeath;j++)
   jmean=sum/k;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    fprintf(ficrespow,"\n");
  }  
 /*********** Tricode ****************************/    powell(p,xi,npar,ftol,&iter,&fret,func);
 void tricode(int *Tvar, int **nbcode, int imx)  
 {    fclose(ficrespow);
   int Ndum[20],ij=1, k, j, i;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   int cptcode=0;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   cptcoveff=0;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    
   for (k=0; k<19; k++) Ndum[k]=0;  }
   for (k=1; k<=7; k++) ncodemax[k]=0;  
   /**** Computes Hessian and covariance matrix ***/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for (i=1; i<=imx; i++) {  {
       ij=(int)(covar[Tvar[j]][i]);    double  **a,**y,*x,pd;
       Ndum[ij]++;    double **hess;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    int i, j,jk;
       if (ij > cptcode) cptcode=ij;    int *indx;
     }  
     double hessii(double p[], double delta, int theta, double delti[]);
     for (i=0; i<=cptcode; i++) {    double hessij(double p[], double delti[], int i, int j);
       if(Ndum[i]!=0) ncodemax[j]++;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     }    void ludcmp(double **a, int npar, int *indx, double *d) ;
     ij=1;  
     hess=matrix(1,npar,1,npar);
   
     for (i=1; i<=ncodemax[j]; i++) {    printf("\nCalculation of the hessian matrix. Wait...\n");
       for (k=0; k<=19; k++) {    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         if (Ndum[k] != 0) {    for (i=1;i<=npar;i++){
           nbcode[Tvar[j]][ij]=k;      printf("%d",i);fflush(stdout);
                fprintf(ficlog,"%d",i);fflush(ficlog);
           ij++;      hess[i][i]=hessii(p,ftolhess,i,delti);
         }      /*printf(" %f ",p[i]);*/
         if (ij > ncodemax[j]) break;      /*printf(" %lf ",hess[i][i]);*/
       }      }
     }    
   }      for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
  for (k=0; k<19; k++) Ndum[k]=0;        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
  for (i=1; i<=ncovmodel-2; i++) {          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       ij=Tvar[i];          hess[i][j]=hessij(p,delti,i,j);
       Ndum[ij]++;          hess[j][i]=hess[i][j];    
     }          /*printf(" %lf ",hess[i][j]);*/
         }
  ij=1;      }
  for (i=1; i<=10; i++) {    }
    if((Ndum[i]!=0) && (i<=ncovcol)){    printf("\n");
      Tvaraff[ij]=i;    fprintf(ficlog,"\n");
      ij++;  
    }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
  }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      
     cptcoveff=ij-1;    a=matrix(1,npar,1,npar);
 }    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
 /*********** Health Expectancies ****************/    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
 {  
   /* Health expectancies */    for (j=1;j<=npar;j++) {
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      for (i=1;i<=npar;i++) x[i]=0;
   double age, agelim, hf;      x[j]=1;
   double ***p3mat,***varhe;      lubksb(a,npar,indx,x);
   double **dnewm,**doldm;      for (i=1;i<=npar;i++){ 
   double *xp;        matcov[i][j]=x[i];
   double **gp, **gm;      }
   double ***gradg, ***trgradg;    }
   int theta;  
     printf("\n#Hessian matrix#\n");
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    fprintf(ficlog,"\n#Hessian matrix#\n");
   xp=vector(1,npar);    for (i=1;i<=npar;i++) { 
   dnewm=matrix(1,nlstate*2,1,npar);      for (j=1;j<=npar;j++) { 
   doldm=matrix(1,nlstate*2,1,nlstate*2);        printf("%.3e ",hess[i][j]);
          fprintf(ficlog,"%.3e ",hess[i][j]);
   fprintf(ficreseij,"# Health expectancies\n");      }
   fprintf(ficreseij,"# Age");      printf("\n");
   for(i=1; i<=nlstate;i++)      fprintf(ficlog,"\n");
     for(j=1; j<=nlstate;j++)    }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
   if(estepm < stepm){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     printf ("Problem %d lower than %d\n",estepm, stepm);    ludcmp(a,npar,indx,&pd);
   }  
   else  hstepm=estepm;      /*  printf("\n#Hessian matrix recomputed#\n");
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example    for (j=1;j<=npar;j++) {
    * if stepm=24 months pijx are given only every 2 years and by summing them      for (i=1;i<=npar;i++) x[i]=0;
    * we are calculating an estimate of the Life Expectancy assuming a linear      x[j]=1;
    * progression inbetween and thus overestimating or underestimating according      lubksb(a,npar,indx,x);
    * to the curvature of the survival function. If, for the same date, we      for (i=1;i<=npar;i++){ 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        y[i][j]=x[i];
    * to compare the new estimate of Life expectancy with the same linear        printf("%.3e ",y[i][j]);
    * hypothesis. A more precise result, taking into account a more precise        fprintf(ficlog,"%.3e ",y[i][j]);
    * curvature will be obtained if estepm is as small as stepm. */      }
       printf("\n");
   /* For example we decided to compute the life expectancy with the smallest unit */      fprintf(ficlog,"\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    }
      nhstepm is the number of hstepm from age to agelim    */
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    free_matrix(a,1,npar,1,npar);
      and note for a fixed period like estepm months */    free_matrix(y,1,npar,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    free_vector(x,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    free_ivector(indx,1,npar);
      means that if the survival funtion is printed only each two years of age and if    free_matrix(hess,1,npar,1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  
   */  }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
   /*************** hessian matrix ****************/
   agelim=AGESUP;  double hessii( double x[], double delta, int theta, double delti[])
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  {
     /* nhstepm age range expressed in number of stepm */    int i;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    int l=1, lmax=20;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double k1,k2;
     /* if (stepm >= YEARM) hstepm=1;*/    double p2[NPARMAX+1];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double res;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    double fx;
     gp=matrix(0,nhstepm,1,nlstate*2);    int k=0,kmax=10;
     gm=matrix(0,nhstepm,1,nlstate*2);    double l1;
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    fx=func(x);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for (i=1;i<=npar;i++) p2[i]=x[i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for(l=0 ; l <=lmax; l++){
        l1=pow(10,l);
       delts=delt;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
     /* Computing Variances of health expectancies */        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
      for(theta=1; theta <=npar; theta++){        p2[theta]=x[theta]-delt;
       for(i=1; i<=npar; i++){        k2=func(p2)-fx;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /*res= (k1-2.0*fx+k2)/delt/delt; */
       }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          
    #ifdef DEBUG
       cptj=0;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(j=1; j<= nlstate; j++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for(i=1; i<=nlstate; i++){  #endif
           cptj=cptj+1;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          k=kmax;
           }        }
         }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       }          k=kmax; l=lmax*10.;
              }
              else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(i=1; i<=npar; i++)          delts=delt;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
          }
       cptj=0;    delti[theta]=delts;
       for(j=1; j<= nlstate; j++){    return res; 
         for(i=1;i<=nlstate;i++){    
           cptj=cptj+1;  }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  double hessij( double x[], double delti[], int thetai,int thetaj)
           }  {
         }    int i;
       }    int l=1, l1, lmax=20;
          double k1,k2,k3,k4,res,fx;
        double p2[NPARMAX+1];
     int k;
       for(j=1; j<= nlstate*2; j++)  
         for(h=0; h<=nhstepm-1; h++){    fx=func(x);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for (k=1; k<=2; k++) {
         }      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
      }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k1=func(p2)-fx;
 /* End theta */    
       p2[thetai]=x[thetai]+delti[thetai]/k;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
      for(h=0; h<=nhstepm-1; h++)    
       for(j=1; j<=nlstate*2;j++)      p2[thetai]=x[thetai]-delti[thetai]/k;
         for(theta=1; theta <=npar; theta++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         trgradg[h][j][theta]=gradg[h][theta][j];      k3=func(p2)-fx;
     
       p2[thetai]=x[thetai]-delti[thetai]/k;
      for(i=1;i<=nlstate*2;i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(j=1;j<=nlstate*2;j++)      k4=func(p2)-fx;
         varhe[i][j][(int)age] =0.;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
      printf("%d||",(int)age);fflush(stdout);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(h=0;h<=nhstepm-1;h++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(k=0;k<=nhstepm-1;k++){  #endif
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    return res;
         for(i=1;i<=nlstate*2;i++)  }
           for(j=1;j<=nlstate*2;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  /************** Inverse of matrix **************/
       }  void ludcmp(double **a, int n, int *indx, double *d) 
     }  { 
     int i,imax,j,k; 
          double big,dum,sum,temp; 
     /* Computing expectancies */    double *vv; 
     for(i=1; i<=nlstate;i++)   
       for(j=1; j<=nlstate;j++)    vv=vector(1,n); 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    *d=1.0; 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    for (i=1;i<=n;i++) { 
                big=0.0; 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
         }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
     fprintf(ficreseij,"%3.0f",age );    } 
     cptj=0;    for (j=1;j<=n;j++) { 
     for(i=1; i<=nlstate;i++)      for (i=1;i<j;i++) { 
       for(j=1; j<=nlstate;j++){        sum=a[i][j]; 
         cptj++;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        a[i][j]=sum; 
       }      } 
     fprintf(ficreseij,"\n");      big=0.0; 
          for (i=j;i<=n;i++) { 
     free_matrix(gm,0,nhstepm,1,nlstate*2);        sum=a[i][j]; 
     free_matrix(gp,0,nhstepm,1,nlstate*2);        for (k=1;k<j;k++) 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          sum -= a[i][k]*a[k][j]; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        a[i][j]=sum; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   }          big=dum; 
   free_vector(xp,1,npar);          imax=i; 
   free_matrix(dnewm,1,nlstate*2,1,npar);        } 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      } 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      if (j != imax) { 
 }        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
 /************ Variance ******************/          a[imax][k]=a[j][k]; 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          a[j][k]=dum; 
 {        } 
   /* Variance of health expectancies */        *d = -(*d); 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        vv[imax]=vv[j]; 
   double **newm;      } 
   double **dnewm,**doldm;      indx[j]=imax; 
   int i, j, nhstepm, hstepm, h, nstepm ;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   int k, cptcode;      if (j != n) { 
   double *xp;        dum=1.0/(a[j][j]); 
   double **gp, **gm;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double ***gradg, ***trgradg;      } 
   double ***p3mat;    } 
   double age,agelim, hf;    free_vector(vv,1,n);  /* Doesn't work */
   int theta;  ;
   } 
    fprintf(ficresvij,"# Covariances of life expectancies\n");  
   fprintf(ficresvij,"# Age");  void lubksb(double **a, int n, int *indx, double b[]) 
   for(i=1; i<=nlstate;i++)  { 
     for(j=1; j<=nlstate;j++)    int i,ii=0,ip,j; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double sum; 
   fprintf(ficresvij,"\n");   
     for (i=1;i<=n;i++) { 
   xp=vector(1,npar);      ip=indx[i]; 
   dnewm=matrix(1,nlstate,1,npar);      sum=b[ip]; 
   doldm=matrix(1,nlstate,1,nlstate);      b[ip]=b[i]; 
        if (ii) 
   if(estepm < stepm){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     printf ("Problem %d lower than %d\n",estepm, stepm);      else if (sum) ii=i; 
   }      b[i]=sum; 
   else  hstepm=estepm;      } 
   /* For example we decided to compute the life expectancy with the smallest unit */    for (i=n;i>=1;i--) { 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      sum=b[i]; 
      nhstepm is the number of hstepm from age to agelim      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      nstepm is the number of stepm from age to agelin.      b[i]=sum/a[i][i]; 
      Look at hpijx to understand the reason of that which relies in memory size    } 
      and note for a fixed period like k years */  } 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it  /************ Frequencies ********************/
      means that if the survival funtion is printed only each two years of age and if  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  {  /* Some frequencies */
      results. So we changed our mind and took the option of the best precision.    
   */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int first;
   agelim = AGESUP;    double ***freq; /* Frequencies */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double *pp, **prop;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    FILE *ficresp;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    char fileresp[FILENAMELENGTH];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    
     gp=matrix(0,nhstepm,1,nlstate);    pp=vector(1,nlstate);
     gm=matrix(0,nhstepm,1,nlstate);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
     for(theta=1; theta <=npar; theta++){    strcat(fileresp,fileres);
       for(i=1; i<=npar; i++){ /* Computes gradient */    if((ficresp=fopen(fileresp,"w"))==NULL) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        exit(0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
     freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
       if (popbased==1) {    j1=0;
         for(i=1; i<=nlstate;i++)    
           prlim[i][i]=probs[(int)age][i][ij];    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    
       for(j=1; j<= nlstate; j++){    first=1;
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    for(k1=1; k1<=j;k1++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      for(i1=1; i1<=ncodemax[k1];i1++){
         }        j1++;
       }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
              scanf("%d", i);*/
       for(i=1; i<=npar; i++) /* Computes gradient */        for (i=-1; i<=nlstate+ndeath; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              for(m=iagemin; m <= iagemax+3; m++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              freq[i][jk][m]=0;
    
       if (popbased==1) {      for (i=1; i<=nlstate; i++)  
         for(i=1; i<=nlstate;i++)        for(m=iagemin; m <= iagemax+3; m++)
           prlim[i][i]=probs[(int)age][i][ij];          prop[i][m]=0;
       }        
         dateintsum=0;
       for(j=1; j<= nlstate; j++){        k2cpt=0;
         for(h=0; h<=nhstepm; h++){        for (i=1; i<=imx; i++) {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          bool=1;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          if  (cptcovn>0) {
         }            for (z1=1; z1<=cptcoveff; z1++) 
       }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
       for(j=1; j<= nlstate; j++)          }
         for(h=0; h<=nhstepm; h++){          if (bool==1){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            for(m=firstpass; m<=lastpass; m++){
         }              k2=anint[m][i]+(mint[m][i]/12.);
     } /* End theta */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(h=0; h<=nhstepm; h++)                if (m<lastpass) {
       for(j=1; j<=nlstate;j++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         for(theta=1; theta <=npar; theta++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           trgradg[h][j][theta]=gradg[h][theta][j];                }
                 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     for(i=1;i<=nlstate;i++)                  dateintsum=dateintsum+k2;
       for(j=1;j<=nlstate;j++)                  k2cpt++;
         vareij[i][j][(int)age] =0.;                }
                 /*}*/
     for(h=0;h<=nhstepm;h++){            }
       for(k=0;k<=nhstepm;k++){          }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);         
         for(i=1;i<=nlstate;i++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        if  (cptcovn>0) {
       }          fprintf(ficresp, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
     fprintf(ficresvij,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)        for(i=1; i<=nlstate;i++) 
       for(j=1; j<=nlstate;j++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        fprintf(ficresp, "\n");
       }        
     fprintf(ficresvij,"\n");        for(i=iagemin; i <= iagemax+3; i++){
     free_matrix(gp,0,nhstepm,1,nlstate);          if(i==iagemax+3){
     free_matrix(gm,0,nhstepm,1,nlstate);            fprintf(ficlog,"Total");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          }else{
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            if(first==1){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              first=0;
   } /* End age */              printf("See log file for details...\n");
              }
   free_vector(xp,1,npar);            fprintf(ficlog,"Age %d", i);
   free_matrix(doldm,1,nlstate,1,npar);          }
   free_matrix(dnewm,1,nlstate,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 }              pp[jk] += freq[jk][m][i]; 
           }
 /************ Variance of prevlim ******************/          for(jk=1; jk <=nlstate ; jk++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            for(m=-1, pos=0; m <=0 ; m++)
 {              pos += freq[jk][m][i];
   /* Variance of prevalence limit */            if(pp[jk]>=1.e-10){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              if(first==1){
   double **newm;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double **dnewm,**doldm;              }
   int i, j, nhstepm, hstepm;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int k, cptcode;            }else{
   double *xp;              if(first==1)
   double *gp, *gm;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double **gradg, **trgradg;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double age,agelim;            }
   int theta;          }
      
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresvpl,"# Age");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   for(i=1; i<=nlstate;i++)              pp[jk] += freq[jk][m][i];
       fprintf(ficresvpl," %1d-%1d",i,i);          }       
   fprintf(ficresvpl,"\n");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
   xp=vector(1,npar);            posprop += prop[jk][i];
   dnewm=matrix(1,nlstate,1,npar);          }
   doldm=matrix(1,nlstate,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
              if(pos>=1.e-5){
   hstepm=1*YEARM; /* Every year of age */              if(first==1)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   agelim = AGESUP;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }else{
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              if(first==1)
     if (stepm >= YEARM) hstepm=1;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     gradg=matrix(1,npar,1,nlstate);            }
     gp=vector(1,nlstate);            if( i <= iagemax){
     gm=vector(1,nlstate);              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for(theta=1; theta <=npar; theta++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
       for(i=1; i<=npar; i++){ /* Computes gradient */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              }
       }              else
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       for(i=1;i<=nlstate;i++)            }
         gp[i] = prlim[i][i];          }
              
       for(i=1; i<=npar; i++) /* Computes gradient */          for(jk=-1; jk <=nlstate+ndeath; jk++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for(m=-1; m <=nlstate+ndeath; m++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              if(freq[jk][m][i] !=0 ) {
       for(i=1;i<=nlstate;i++)              if(first==1)
         gm[i] = prlim[i][i];                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(i=1;i<=nlstate;i++)              }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          if(i <= iagemax)
     } /* End theta */            fprintf(ficresp,"\n");
           if(first==1)
     trgradg =matrix(1,nlstate,1,npar);            printf("Others in log...\n");
           fprintf(ficlog,"\n");
     for(j=1; j<=nlstate;j++)        }
       for(theta=1; theta <=npar; theta++)      }
         trgradg[j][theta]=gradg[theta][j];    }
     dateintmean=dateintsum/k2cpt; 
     for(i=1;i<=nlstate;i++)   
       varpl[i][(int)age] =0.;    fclose(ficresp);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    free_vector(pp,1,nlstate);
     for(i=1;i<=nlstate;i++)    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /* End of Freq */
   }
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  /************ Prevalence ********************/
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     fprintf(ficresvpl,"\n");  {  
     free_vector(gp,1,nlstate);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     free_vector(gm,1,nlstate);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     free_matrix(gradg,1,npar,1,nlstate);       We still use firstpass and lastpass as another selection.
     free_matrix(trgradg,1,nlstate,1,npar);    */
   } /* End age */   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   free_vector(xp,1,npar);    double ***freq; /* Frequencies */
   free_matrix(doldm,1,nlstate,1,npar);    double *pp, **prop;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double pos,posprop; 
     double  y2; /* in fractional years */
 }    int iagemin, iagemax;
   
 /************ Variance of one-step probabilities  ******************/    iagemin= (int) agemin;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    iagemax= (int) agemax;
 {    /*pp=vector(1,nlstate);*/
   int i, j, i1, k1, j1, z1;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   int k=0, cptcode;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   double **dnewm,**doldm;    j1=0;
   double *xp;    
   double *gp, *gm;    j=cptcoveff;
   double **gradg, **trgradg;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double age,agelim, cov[NCOVMAX];    
   int theta;    for(k1=1; k1<=j;k1++){
   char fileresprob[FILENAMELENGTH];      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   strcpy(fileresprob,"prob");        
   strcat(fileresprob,fileres);        for (i=1; i<=nlstate; i++)  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          for(m=iagemin; m <= iagemax+3; m++)
     printf("Problem with resultfile: %s\n", fileresprob);            prop[i][m]=0.0;
   }       
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        for (i=1; i<=imx; i++) { /* Each individual */
            bool=1;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");          if  (cptcovn>0) {
   fprintf(ficresprob,"# Age");            for (z1=1; z1<=cptcoveff; z1++) 
   for(i=1; i<=nlstate;i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     for(j=1; j<=(nlstate+ndeath);j++)                bool=0;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          } 
           if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   fprintf(ficresprob,"\n");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   xp=vector(1,npar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   cov[1]=1;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   j=cptcoveff;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                } 
   j1=0;              }
   for(k1=1; k1<=1;k1++){            } /* end selection of waves */
     for(i1=1; i1<=ncodemax[k1];i1++){          }
     j1++;        }
         for(i=iagemin; i <= iagemax+3; i++){  
     if  (cptcovn>0) {          
       fprintf(ficresprob, "\n#********** Variable ");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            posprop += prop[jk][i]; 
       fprintf(ficresprob, "**********\n#");          } 
     }  
              for(jk=1; jk <=nlstate ; jk++){     
       for (age=bage; age<=fage; age ++){            if( i <=  iagemax){ 
         cov[2]=age;              if(posprop>=1.e-5){ 
         for (k=1; k<=cptcovn;k++) {                probs[i][jk][j1]= prop[jk][i]/posprop;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              } 
                      } 
         }          }/* end jk */ 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        }/* end i */ 
         for (k=1; k<=cptcovprod;k++)      } /* end i1 */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    } /* end k1 */
            
         gradg=matrix(1,npar,1,9);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         trgradg=matrix(1,9,1,npar);    /*free_vector(pp,1,nlstate);*/
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  }  /* End of prevalence */
      
         for(theta=1; theta <=npar; theta++){  /************* Waves Concatenation ***************/
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
            {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                 Death is a valid wave (if date is known).
           k=0;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           for(i=1; i<= (nlstate+ndeath); i++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             for(j=1; j<=(nlstate+ndeath);j++){       and mw[mi+1][i]. dh depends on stepm.
               k=k+1;       */
               gp[k]=pmmij[i][j];  
             }    int i, mi, m;
           }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                 double sum=0., jmean=0.;*/
           for(i=1; i<=npar; i++)    int first;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    int j, k=0,jk, ju, jl;
        double sum=0.;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    first=0;
           k=0;    jmin=1e+5;
           for(i=1; i<=(nlstate+ndeath); i++){    jmax=-1;
             for(j=1; j<=(nlstate+ndeath);j++){    jmean=0.;
               k=k+1;    for(i=1; i<=imx; i++){
               gm[k]=pmmij[i][j];      mi=0;
             }      m=firstpass;
           }      while(s[m][i] <= nlstate){
              if(s[m][i]>=1)
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          mw[++mi][i]=m;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          if(m >=lastpass)
         }          break;
         else
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          m++;
           for(theta=1; theta <=npar; theta++)      }/* end while */
             trgradg[j][theta]=gradg[theta][j];      if (s[m][i] > nlstate){
                mi++;     /* Death is another wave */
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        /* if(mi==0)  never been interviewed correctly before death */
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);           /* Only death is a correct wave */
                mw[mi][i]=m;
         pmij(pmmij,cov,ncovmodel,x,nlstate);      }
          
         k=0;      wav[i]=mi;
         for(i=1; i<=(nlstate+ndeath); i++){      if(mi==0){
           for(j=1; j<=(nlstate+ndeath);j++){        if(first==0){
             k=k+1;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             gm[k]=pmmij[i][j];          first=1;
           }        }
         }        if(first==1){
                fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
      /*printf("\n%d ",(int)age);        }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      } /* end mi==0 */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    } /* End individuals */
      }*/  
     for(i=1; i<=imx; i++){
         fprintf(ficresprob,"\n%d ",(int)age);      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)          dh[mi][i]=1;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));        else{
            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       }            if (agedc[i] < 2*AGESUP) {
     }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              if(j==0) j=1;  /* Survives at least one month after exam */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              else if(j<0){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                j=1; /* Careful Patch */
   }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   free_vector(xp,1,npar);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fclose(ficresprob);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                }
 }              k=k+1;
               if (j >= jmax) jmax=j;
 /******************* Printing html file ***********/              if (j <= jmin) jmin=j;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              sum=sum+j;
  int lastpass, int stepm, int weightopt, char model[],\              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\            }
  char version[], int popforecast, int estepm ){          }
   int jj1, k1, i1, cpt;          else{
   FILE *fichtm;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*char optionfilehtm[FILENAMELENGTH];*/            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             k=k+1;
   strcpy(optionfilehtm,optionfile);            if (j >= jmax) jmax=j;
   strcat(optionfilehtm,".htm");            else if (j <= jmin)jmin=j;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     printf("Problem with %s \n",optionfilehtm), exit(0);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   }            if(j<0){
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            }
 \n            sum=sum+j;
 Total number of observations=%d <br>\n          }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          jk= j/stepm;
 <hr  size=\"2\" color=\"#EC5E5E\">          jl= j -jk*stepm;
  <ul><li>Outputs files<br>\n          ju= j -(jk+1)*stepm;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n            if(jl==0){
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              dh[mi][i]=jk;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n              bh[mi][i]=0;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n            }else{ /* We want a negative bias in order to only have interpolation ie
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
  fprintf(fichtm,"\n              bh[mi][i]=ju;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n            }
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          }else{
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            if(jl <= -ju){
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n              dh[mi][i]=jk;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
  if(popforecast==1) fprintf(fichtm,"\n                                   */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            else{
         <br>",fileres,fileres,fileres,fileres);              dh[mi][i]=jk+1;
  else              bh[mi][i]=ju;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            }
 fprintf(fichtm," <li>Graphs</li><p>");            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
  m=cptcoveff;              bh[mi][i]=ju; /* At least one step */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
  jj1=0;          } /* end if mle */
  for(k1=1; k1<=m;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){      } /* end wave */
        jj1++;    }
        if (cptcovn > 0) {    jmean=sum/k;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
          for (cpt=1; cpt<=cptcoveff;cpt++)    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);   }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
        }  /*********** Tricode ****************************/
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.png<br>  void tricode(int *Tvar, int **nbcode, int imx)
 <img src=\"pe%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      {
        for(cpt=1; cpt<nlstate;cpt++){    
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.png<br>    int Ndum[20],ij=1, k, j, i, maxncov=19;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    int cptcode=0;
        }    cptcoveff=0; 
     for(cpt=1; cpt<=nlstate;cpt++) {   
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    for (k=0; k<maxncov; k++) Ndum[k]=0;
 interval) in state (%d): v%s%d%d.png <br>    for (k=1; k<=7; k++) ncodemax[k]=0;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
      }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
      for(cpt=1; cpt<=nlstate;cpt++) {      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>                                 modality*/ 
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
      }        Ndum[ij]++; /*store the modality */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 health expectancies in states (1) and (2): e%s%d.png<br>        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                                         Tvar[j]. If V=sex and male is 0 and 
 fprintf(fichtm,"\n</body>");                                         female is 1, then  cptcode=1.*/
    }      }
    }  
 fclose(fichtm);      for (i=0; i<=cptcode; i++) {
 }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
   strcpy(optionfilegnuplot,optionfilefiname);            nbcode[Tvar[j]][ij]=k; 
   strcat(optionfilegnuplot,".gp.txt");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            
     printf("Problem with file %s",optionfilegnuplot);            ij++;
   }          }
           if (ij > ncodemax[j]) break; 
 #ifdef windows        }  
     fprintf(ficgp,"cd \"%s\" \n",pathc);      } 
 #endif    }  
 m=pow(2,cptcoveff);  
     for (k=0; k< maxncov; k++) Ndum[k]=0;
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {   for (i=1; i<=ncovmodel-2; i++) { 
    for (k1=1; k1<= m ; k1 ++) {     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
 #ifdef windows     Ndum[ij]++;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);   }
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif   ij=1;
 #ifdef unix   for (i=1; i<= maxncov; i++) {
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);     if((Ndum[i]!=0) && (i<=ncovcol)){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);       Tvaraff[ij]=i; /*For printing */
 #endif       ij++;
      }
 for (i=1; i<= nlstate ; i ++) {   }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");   cptcoveff=ij-1; /*Number of simple covariates*/
 }  }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {  /*********** Health Expectancies ****************/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  {
      for (i=1; i<= nlstate ; i ++) {    /* Health expectancies */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double age, agelim, hf;
 }      double ***p3mat,***varhe;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    double **dnewm,**doldm;
 #ifdef unix    double *xp;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    double **gp, **gm;
 #endif    double ***gradg, ***trgradg;
    }    int theta;
   }  
   /*2 eme*/    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
   for (k1=1; k1<= m ; k1 ++) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n\n",strtok(optionfile, "."),k1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    
        fprintf(ficreseij,"# Health expectancies\n");
     for (i=1; i<= nlstate+1 ; i ++) {    fprintf(ficreseij,"# Age");
       k=2*i;    for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      for(j=1; j<=nlstate;j++)
       for (j=1; j<= nlstate+1 ; j ++) {        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficreseij,"\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      if(estepm < stepm){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      printf ("Problem %d lower than %d\n",estepm, stepm);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    else  hstepm=estepm;   
       for (j=1; j<= nlstate+1 ; j ++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");     * This is mainly to measure the difference between two models: for example
         else fprintf(ficgp," \%%*lf (\%%*lf)");     * if stepm=24 months pijx are given only every 2 years and by summing them
 }       * we are calculating an estimate of the Life Expectancy assuming a linear 
       fprintf(ficgp,"\" t\"\" w l 0,");     * progression in between and thus overestimating or underestimating according
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);     * to the curvature of the survival function. If, for the same date, we 
       for (j=1; j<= nlstate+1 ; j ++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");     * to compare the new estimate of Life expectancy with the same linear 
   else fprintf(ficgp," \%%*lf (\%%*lf)");     * hypothesis. A more precise result, taking into account a more precise
 }       * curvature will be obtained if estepm is as small as stepm. */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");    /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   /*3eme*/       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   for (k1=1; k1<= m ; k1 ++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for (cpt=1; cpt<= nlstate ; cpt ++) {       survival function given by stepm (the optimization length). Unfortunately it
       k=2+nlstate*(2*cpt-2);       means that if the survival funtion is printed only each two years of age and if
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);       results. So we changed our mind and took the option of the best precision.
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    agelim=AGESUP;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for (i=1; i< nlstate ; i ++) {      /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
    
   /* CV preval stat */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     for (k1=1; k1<= m ; k1 ++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     for (cpt=1; cpt<nlstate ; cpt ++) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       k=3;   
       fprintf(ficgp,"set out \"p%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       for (i=1; i< nlstate ; i ++)      /* Computing Variances of health expectancies */
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       for(theta=1; theta <=npar; theta++){
              for(i=1; i<=npar; i++){ 
       l=3+(nlstate+ndeath)*cpt;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        }
       for (i=1; i< nlstate ; i ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         l=3+(nlstate+ndeath)*cpt;    
         fprintf(ficgp,"+$%d",l+i+1);        cptj=0;
       }        for(j=1; j<= nlstate; j++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            for(i=1; i<=nlstate; i++){
     }            cptj=cptj+1;
   }              for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   /* proba elementaires */            }
    for(i=1,jk=1; i <=nlstate; i++){          }
     for(k=1; k <=(nlstate+ndeath); k++){        }
       if (k != i) {       
         for(j=1; j <=ncovmodel; j++){       
                for(i=1; i<=npar; i++) 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           jk++;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           fprintf(ficgp,"\n");        
         }        cptj=0;
       }        for(j=1; j<= nlstate; j++){
     }          for(i=1;i<=nlstate;i++){
    }            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
    for(jk=1; jk <=m; jk++) {  
      fprintf(ficgp,"\nset out \"pe%s%d.png\" \n\n",strtok(optionfile, "."),jk);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            }
      i=1;          }
      for(k2=1; k2<=nlstate; k2++) {        }
        k3=i;        for(j=1; j<= nlstate*nlstate; j++)
        for(k=1; k<=(nlstate+ndeath); k++) {          for(h=0; h<=nhstepm-1; h++){
          if (k != k2){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          }
            ij=1;       } 
            for(j=3; j <=ncovmodel; j++) {     
              if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /* End theta */
                fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                ij++;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
              }  
              else       for(h=0; h<=nhstepm-1; h++)
                fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(j=1; j<=nlstate*nlstate;j++)
            }          for(theta=1; theta <=npar; theta++)
            fprintf(ficgp,")/(1");            trgradg[h][j][theta]=gradg[h][theta][j];
                   
            for(k1=1; k1 <=nlstate; k1++){    
              fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       for(i=1;i<=nlstate*nlstate;i++)
              ij=1;        for(j=1;j<=nlstate*nlstate;j++)
              for(j=3; j <=ncovmodel; j++){          varhe[i][j][(int)age] =0.;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       printf("%d|",(int)age);fflush(stdout);
                  ij++;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                }       for(h=0;h<=nhstepm-1;h++){
                else        for(k=0;k<=nhstepm-1;k++){
                  fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
              }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
              fprintf(ficgp,")");          for(i=1;i<=nlstate*nlstate;i++)
            }            for(j=1;j<=nlstate*nlstate;j++)
            fprintf(ficgp,") t \"p%d%d\" ", k2,k);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
            if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        }
            i=i+ncovmodel;      }
          }      /* Computing expectancies */
        }      for(i=1; i<=nlstate;i++)
      }        for(j=1; j<=nlstate;j++)
    }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
    fclose(ficgp);            
 }  /* end gnuplot */  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
   int i, cpt, cptcod;      for(i=1; i<=nlstate;i++)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        for(j=1; j<=nlstate;j++){
       for (i=1; i<=nlstate;i++)          cptj++;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
           mobaverage[(int)agedeb][i][cptcod]=0.;        }
          fprintf(ficreseij,"\n");
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){     
       for (i=1; i<=nlstate;i++){      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           for (cpt=0;cpt<=4;cpt++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    }
         }    printf("\n");
       }    fprintf(ficlog,"\n");
     }  
        free_vector(xp,1,npar);
 }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 /************** Forecasting ******************/  }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  
    /************ Variance ******************/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   int *popage;  {
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /* Variance of health expectancies */
   double *popeffectif,*popcount;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   double ***p3mat;    /* double **newm;*/
   char fileresf[FILENAMELENGTH];    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
  agelim=AGESUP;    int i, j, nhstepm, hstepm, h, nstepm ;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    int k, cptcode;
     double *xp;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
   strcpy(fileresf,"f");    double *gpp, *gmp; /* for var p point j */
   strcat(fileresf,fileres);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   if((ficresf=fopen(fileresf,"w"))==NULL) {    double ***p3mat;
     printf("Problem with forecast resultfile: %s\n", fileresf);    double age,agelim, hf;
   }    double ***mobaverage;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    int theta;
     char digit[4];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    char digitp[25];
   
   if (mobilav==1) {    char fileresprobmorprev[FILENAMELENGTH];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    if(popbased==1){
   }      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   stepsize=(int) (stepm+YEARM-1)/YEARM;      else strcpy(digitp,"-populbased-nomobil-");
   if (stepm<=12) stepsize=1;    }
      else 
   agelim=AGESUP;      strcpy(digitp,"-stablbased-");
    
   hstepm=1;    if (mobilav!=0) {
   hstepm=hstepm/stepm;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   yp1=modf(dateintmean,&yp);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   anprojmean=yp;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   yp2=modf((yp1*12),&yp);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   mprojmean=yp;      }
   yp1=modf((yp2*30.5),&yp);    }
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;    strcpy(fileresprobmorprev,"prmorprev"); 
   if(mprojmean==0) jprojmean=1;    sprintf(digit,"%-d",ij);
      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   for(cptcov=1;cptcov<=i2;cptcov++){    strcat(fileresprobmorprev,fileres);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       k=k+1;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficresf,"\n#******");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       for(j=1;j<=cptcoveff;j++) {    }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficresf,"******\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fprintf(ficresf,"# StartingAge FinalAge");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
            fprintf(ficresprobmorprev," p.%-d SE",j);
            for(i=1; i<=nlstate;i++)
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         fprintf(ficresf,"\n");    }  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           nhstepm = nhstepm/hstepm;  /*   } */
              varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresvij,"# Age");
            for(i=1; i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){      for(j=1; j<=nlstate;j++)
             if (h==(int) (calagedate+YEARM*cpt)) {        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresvij,"\n");
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    xp=vector(1,npar);
               kk1=0.;kk2=0;    dnewm=matrix(1,nlstate,1,npar);
               for(i=1; i<=nlstate;i++) {                  doldm=matrix(1,nlstate,1,nlstate);
                 if (mobilav==1)    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                 }    gpp=vector(nlstate+1,nlstate+ndeath);
                    gmp=vector(nlstate+1,nlstate+ndeath);
               }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
               if (h==(int)(calagedate+12*cpt)){    
                 fprintf(ficresf," %.3f", kk1);    if(estepm < stepm){
                              printf ("Problem %d lower than %d\n",estepm, stepm);
               }    }
             }    else  hstepm=estepm;   
           }    /* For example we decided to compute the life expectancy with the smallest unit */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         }       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like k years */
            /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
   fclose(ficresf);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 }       results. So we changed our mind and took the option of the best precision.
 /************** Forecasting ******************/    */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   int *popage;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double *popeffectif,*popcount;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***p3mat,***tabpop,***tabpopprev;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   char filerespop[FILENAMELENGTH];      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;      for(theta=1; theta <=npar; theta++){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);        if (popbased==1) {
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          if(mobilav ==0){
     printf("Problem with forecast resultfile: %s\n", filerespop);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
   printf("Computing forecasting: result on file '%s' \n", filerespop);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   if (mobilav==1) {        }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
     movingaverage(agedeb, fage, ageminpar, mobaverage);        for(j=1; j<= nlstate; j++){
   }          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   if (stepm<=12) stepsize=1;          }
          }
   agelim=AGESUP;        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   hstepm=1;           as a weighted average of prlim.
   hstepm=hstepm/stepm;        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if (popforecast==1) {          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     if((ficpop=fopen(popfile,"r"))==NULL) {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       printf("Problem with population file : %s\n",popfile);exit(0);        }    
     }        /* end probability of death */
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     popcount=vector(0,AGESUP);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     i=1;          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;   
            if (popbased==1) {
     imx=i;          if(mobilav ==0){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
   for(cptcov=1;cptcov<=i2;cptcov++){            for(i=1; i<=nlstate;i++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              prlim[i][i]=mobaverage[(int)age][i][ij];
       k=k+1;          }
       fprintf(ficrespop,"\n#******");        }
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j<= nlstate; j++){
       }          for(h=0; h<=nhstepm; h++){
       fprintf(ficrespop,"******\n");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       fprintf(ficrespop,"# Age");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          }
       if (popforecast==1)  fprintf(ficrespop," [Population]");        }
              /* This for computing probability of death (h=1 means
       for (cpt=0; cpt<=0;cpt++) {           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             as a weighted average of prlim.
                */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           nhstepm = nhstepm/hstepm;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                  }    
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* end probability of death */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=1; j<= nlstate; j++) /* vareij */
                  for(h=0; h<=nhstepm; h++){
           for (h=0; h<=nhstepm; h++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             for(j=1; j<=nlstate+ndeath;j++) {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)      } /* End theta */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }      for(h=0; h<=nhstepm; h++) /* veij */
               }        for(j=1; j<=nlstate;j++)
               if (h==(int)(calagedate+12*cpt)){          for(theta=1; theta <=npar; theta++)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            trgradg[h][j][theta]=gradg[h][theta][j];
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
               }        for(theta=1; theta <=npar; theta++)
             }          trgradgp[j][theta]=gradgp[theta][j];
             for(i=1; i<=nlstate;i++){    
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      for(i=1;i<=nlstate;i++)
                 }        for(j=1;j<=nlstate;j++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          vareij[i][j][(int)age] =0.;
             }  
       for(h=0;h<=nhstepm;h++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        for(k=0;k<=nhstepm;k++){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1;i<=nlstate;i++)
         }            for(j=1;j<=nlstate;j++)
       }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
   /******/      }
     
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      /* pptj */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           nhstepm = nhstepm/hstepm;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                    varppt[j][i]=doldmp[j][i];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* end ppptj */
           oldm=oldms;savm=savms;      /*  x centered again */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           for (h=0; h<=nhstepm; h++){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
             if (h==(int) (calagedate+YEARM*cpt)) {   
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      if (popbased==1) {
             }        if(mobilav ==0){
             for(j=1; j<=nlstate+ndeath;j++) {          for(i=1; i<=nlstate;i++)
               kk1=0.;kk2=0;            prlim[i][i]=probs[(int)age][i][ij];
               for(i=1; i<=nlstate;i++) {                      }else{ /* mobilav */ 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              for(i=1; i<=nlstate;i++)
               }            prlim[i][i]=mobaverage[(int)age][i][ij];
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        }
             }      }
           }               
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* This for computing probability of death (h=1 means
         }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       }         as a weighted average of prlim.
    }      */
   }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
   if (popforecast==1) {      /* end probability of death */
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     free_vector(popcount,0,AGESUP);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1; i<=nlstate;i++){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   fclose(ficrespop);        }
 }      } 
       fprintf(ficresprobmorprev,"\n");
 /***********************************************/  
 /**************** Main Program *****************/      fprintf(ficresvij,"%.0f ",age );
 /***********************************************/      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
 int main(int argc, char *argv[])          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 {        }
       fprintf(ficresvij,"\n");
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      free_matrix(gp,0,nhstepm,1,nlstate);
   double agedeb, agefin,hf;      free_matrix(gm,0,nhstepm,1,nlstate);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   double fret;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **xi,tmp,delta;    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
   double dum; /* Dummy variable */    free_vector(gmp,nlstate+1,nlstate+ndeath);
   double ***p3mat;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   int *indx;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   char title[MAXLINE];    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   char filerest[FILENAMELENGTH];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   char fileregp[FILENAMELENGTH];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   char popfile[FILENAMELENGTH];    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   int firstobs=1, lastobs=10;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   int sdeb, sfin; /* Status at beginning and end */  */
   int c,  h , cpt,l;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   int ju,jl, mi;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    free_vector(xp,1,npar);
   int mobilav=0,popforecast=0;    free_matrix(doldm,1,nlstate,1,nlstate);
   int hstepm, nhstepm;    free_matrix(dnewm,1,nlstate,1,npar);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   double bage, fage, age, agelim, agebase;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double ftolpl=FTOL;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double **prlim;    fclose(ficresprobmorprev);
   double *severity;    fflush(ficgp);
   double ***param; /* Matrix of parameters */    fflush(fichtm); 
   double  *p;  }  /* end varevsij */
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */  /************ Variance of prevlim ******************/
   double *delti; /* Scale */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   double ***eij, ***vareij;  {
   double **varpl; /* Variances of prevalence limits by age */    /* Variance of prevalence limit */
   double *epj, vepp;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   double kk1, kk2;    double **newm;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
     int k, cptcode;
   char version[80]="Imach version 0.8d, May 2002, INED-EUROREVES ";    double *xp;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
   char z[1]="c", occ;    int theta;
 #include <sys/time.h>     
 #include <time.h>    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fprintf(ficresvpl,"# Age");
      for(i=1; i<=nlstate;i++)
   /* long total_usecs;        fprintf(ficresvpl," %1d-%1d",i,i);
   struct timeval start_time, end_time;    fprintf(ficresvpl,"\n");
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    xp=vector(1,npar);
   getcwd(pathcd, size);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   printf("\n%s",version);    
   if(argc <=1){    hstepm=1*YEARM; /* Every year of age */
     printf("\nEnter the parameter file name: ");    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     scanf("%s",pathtot);    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   else{      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     strcpy(pathtot,argv[1]);      if (stepm >= YEARM) hstepm=1;
   }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      gradg=matrix(1,npar,1,nlstate);
   /*cygwin_split_path(pathtot,path,optionfile);      gp=vector(1,nlstate);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      gm=vector(1,nlstate);
   /* cutv(path,optionfile,pathtot,'\\');*/  
       for(theta=1; theta <=npar; theta++){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        for(i=1; i<=npar; i++){ /* Computes gradient */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   chdir(path);        }
   replace(pathc,path);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
 /*-------- arguments in the command line --------*/          gp[i] = prlim[i][i];
       
   strcpy(fileres,"r");        for(i=1; i<=npar; i++) /* Computes gradient */
   strcat(fileres, optionfilefiname);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   strcat(fileres,".txt");    /* Other files have txt extension */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   /*---------arguments file --------*/          gm[i] = prlim[i][i];
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for(i=1;i<=nlstate;i++)
     printf("Problem with optionfile %s\n",optionfile);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     goto end;      } /* End theta */
   }  
       trgradg =matrix(1,nlstate,1,npar);
   strcpy(filereso,"o");  
   strcat(filereso,fileres);      for(j=1; j<=nlstate;j++)
   if((ficparo=fopen(filereso,"w"))==NULL) {        for(theta=1; theta <=npar; theta++)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          trgradg[j][theta]=gradg[theta][j];
   }  
       for(i=1;i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */        varpl[i][(int)age] =0.;
   while((c=getc(ficpar))=='#' && c!= EOF){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     ungetc(c,ficpar);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     fgets(line, MAXLINE, ficpar);      for(i=1;i<=nlstate;i++)
     puts(line);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     fputs(line,ficparo);  
   }      fprintf(ficresvpl,"%.0f ",age );
   ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      fprintf(ficresvpl,"\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      free_vector(gp,1,nlstate);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      free_vector(gm,1,nlstate);
 while((c=getc(ficpar))=='#' && c!= EOF){      free_matrix(gradg,1,npar,1,nlstate);
     ungetc(c,ficpar);      free_matrix(trgradg,1,nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);    } /* End age */
     puts(line);  
     fputs(line,ficparo);    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,npar);
   ungetc(c,ficpar);    free_matrix(dnewm,1,nlstate,1,nlstate);
    
      }
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;  /************ Variance of one-step probabilities  ******************/
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
   ncovmodel=2+cptcovn;    int i, j=0,  i1, k1, l1, t, tj;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    int k2, l2, j1,  z1;
      int k=0,l, cptcode;
   /* Read guess parameters */    int first=1, first1;
   /* Reads comments: lines beginning with '#' */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewm,**doldm;
     ungetc(c,ficpar);    double *xp;
     fgets(line, MAXLINE, ficpar);    double *gp, *gm;
     puts(line);    double **gradg, **trgradg;
     fputs(line,ficparo);    double **mu;
   }    double age,agelim, cov[NCOVMAX];
   ungetc(c,ficpar);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      int theta;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    char fileresprob[FILENAMELENGTH];
     for(i=1; i <=nlstate; i++)    char fileresprobcov[FILENAMELENGTH];
     for(j=1; j <=nlstate+ndeath-1; j++){    char fileresprobcor[FILENAMELENGTH];
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);    double ***varpij;
       printf("%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){    strcpy(fileresprob,"prob"); 
         fscanf(ficpar," %lf",&param[i][j][k]);    strcat(fileresprob,fileres);
         printf(" %lf",param[i][j][k]);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         fprintf(ficparo," %lf",param[i][j][k]);      printf("Problem with resultfile: %s\n", fileresprob);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       fscanf(ficpar,"\n");    }
       printf("\n");    strcpy(fileresprobcov,"probcov"); 
       fprintf(ficparo,"\n");    strcat(fileresprobcov,fileres);
     }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcov);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
   p=param[1][1];    strcpy(fileresprobcor,"probcor"); 
      strcat(fileresprobcor,fileres);
   /* Reads comments: lines beginning with '#' */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   while((c=getc(ficpar))=='#' && c!= EOF){      printf("Problem with resultfile: %s\n", fileresprobcor);
     ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fputs(line,ficparo);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   ungetc(c,ficpar);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    
   for(i=1; i <=nlstate; i++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficresprob,"# Age");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       printf("%1d%1d",i,j);    fprintf(ficresprobcov,"# Age");
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       for(k=1; k<=ncovmodel;k++){    fprintf(ficresprobcov,"# Age");
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=(nlstate+ndeath);j++){
       fscanf(ficpar,"\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       printf("\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fprintf(ficparo,"\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     }      }  
   }   /* fprintf(ficresprob,"\n");
   delti=delti3[1][1];    fprintf(ficresprobcov,"\n");
      fprintf(ficresprobcor,"\n");
   /* Reads comments: lines beginning with '#' */   */
   while((c=getc(ficpar))=='#' && c!= EOF){   xp=vector(1,npar);
     ungetc(c,ficpar);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     fgets(line, MAXLINE, ficpar);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     puts(line);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     fputs(line,ficparo);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   }    first=1;
   ungetc(c,ficpar);    fprintf(ficgp,"\n# Routine varprob");
      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   matcov=matrix(1,npar,1,npar);    fprintf(fichtm,"\n");
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);    fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
     printf("%s",str);    fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(ficparo,"%s",str);    fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);    cov[1]=1;
       printf(" %.5le",matcov[i][j]);    tj=cptcoveff;
       fprintf(ficparo," %.5le",matcov[i][j]);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     }    j1=0;
     fscanf(ficpar,"\n");    for(t=1; t<=tj;t++){
     printf("\n");      for(i1=1; i1<=ncodemax[t];i1++){ 
     fprintf(ficparo,"\n");        j1++;
   }        if  (cptcovn>0) {
   for(i=1; i <=npar; i++)          fprintf(ficresprob, "\n#********** Variable "); 
     for(j=i+1;j<=npar;j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       matcov[i][j]=matcov[j][i];          fprintf(ficresprob, "**********\n#\n");
              fprintf(ficresprobcov, "\n#********** Variable "); 
   printf("\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
     /*-------- Rewriting paramater file ----------*/          fprintf(ficgp, "\n#********** Variable "); 
      strcpy(rfileres,"r");    /* "Rparameterfile */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          fprintf(ficgp, "**********\n#\n");
      strcat(rfileres,".");    /* */          
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          
     if((ficres =fopen(rfileres,"w"))==NULL) {          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     fprintf(ficres,"#%s\n",version);          
              fprintf(ficresprobcor, "\n#********** Variable ");    
     /*-------- data file ----------*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if((fic=fopen(datafile,"r"))==NULL)    {          fprintf(ficresprobcor, "**********\n#");    
       printf("Problem with datafile: %s\n", datafile);goto end;        }
     }        
         for (age=bage; age<=fage; age ++){ 
     n= lastobs;          cov[2]=age;
     severity = vector(1,maxwav);          for (k=1; k<=cptcovn;k++) {
     outcome=imatrix(1,maxwav+1,1,n);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     num=ivector(1,n);          }
     moisnais=vector(1,n);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     annais=vector(1,n);          for (k=1; k<=cptcovprod;k++)
     moisdc=vector(1,n);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     andc=vector(1,n);          
     agedc=vector(1,n);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     cod=ivector(1,n);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     weight=vector(1,n);          gp=vector(1,(nlstate)*(nlstate+ndeath));
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          gm=vector(1,(nlstate)*(nlstate+ndeath));
     mint=matrix(1,maxwav,1,n);      
     anint=matrix(1,maxwav,1,n);          for(theta=1; theta <=npar; theta++){
     s=imatrix(1,maxwav+1,1,n);            for(i=1; i<=npar; i++)
     adl=imatrix(1,maxwav+1,1,n);                  xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     tab=ivector(1,NCOVMAX);            
     ncodemax=ivector(1,8);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
     i=1;            k=0;
     while (fgets(line, MAXLINE, fic) != NULL)    {            for(i=1; i<= (nlstate); i++){
       if ((i >= firstobs) && (i <=lastobs)) {              for(j=1; j<=(nlstate+ndeath);j++){
                        k=k+1;
         for (j=maxwav;j>=1;j--){                gp[k]=pmmij[i][j];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              }
           strcpy(line,stra);            }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for(i=1; i<=npar; i++)
         }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
              
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            k=0;
             for(i=1; i<=(nlstate); i++){
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              for(j=1; j<=(nlstate+ndeath);j++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                k=k+1;
                 gm[k]=pmmij[i][j];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              }
         for (j=ncovcol;j>=1;j--){            }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);       
         }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
         num[i]=atol(stra);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                  }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
         i=i+1;              trgradg[j][theta]=gradg[theta][j];
       }          
     }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     /* printf("ii=%d", ij);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
        scanf("%d",i);*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   imx=i-1; /* Number of individuals */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /* for (i=1; i<=imx; i++){          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          pmij(pmmij,cov,ncovmodel,x,nlstate);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          
     }*/          k=0;
    /*  for (i=1; i<=imx; i++){          for(i=1; i<=(nlstate); i++){
      if (s[4][i]==9)  s[4][i]=-1;            for(j=1; j<=(nlstate+ndeath);j++){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/              k=k+1;
                mu[k][(int) age]=pmmij[i][j];
              }
   /* Calculation of the number of parameter from char model*/          }
   Tvar=ivector(1,15);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   Tprod=ivector(1,15);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   Tvaraff=ivector(1,15);              varpij[i][j][(int)age] = doldm[i][j];
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);                /*printf("\n%d ",(int)age);
                for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   if (strlen(model) >1){            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     j=0, j1=0, k1=1, k2=1;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     j=nbocc(model,'+');            }*/
     j1=nbocc(model,'*');  
     cptcovn=j+1;          fprintf(ficresprob,"\n%d ",(int)age);
     cptcovprod=j1;          fprintf(ficresprobcov,"\n%d ",(int)age);
              fprintf(ficresprobcor,"\n%d ",(int)age);
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       printf("Error. Non available option model=%s ",model);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       goto end;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     for(i=(j+1); i>=1;i--){          }
       cutv(stra,strb,modelsav,'+');          i=0;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          for (k=1; k<=(nlstate);k++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            for (l=1; l<=(nlstate+ndeath);l++){ 
       /*scanf("%d",i);*/              i=i++;
       if (strchr(strb,'*')) {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         cutv(strd,strc,strb,'*');              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
         if (strcmp(strc,"age")==0) {              for (j=1; j<=i;j++){
           cptcovprod--;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           cutv(strb,stre,strd,'V');                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           Tvar[i]=atoi(stre);              }
           cptcovage++;            }
             Tage[cptcovage]=i;          }/* end of loop for state */
             /*printf("stre=%s ", stre);*/        } /* end of loop for age */
         }  
         else if (strcmp(strd,"age")==0) {        /* Confidence intervalle of pij  */
           cptcovprod--;        /*
           cutv(strb,stre,strc,'V');          fprintf(ficgp,"\nset noparametric;unset label");
           Tvar[i]=atoi(stre);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           cptcovage++;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           Tage[cptcovage]=i;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         else {          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           cutv(strb,stre,strc,'V');          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           Tvar[i]=ncovcol+k1;        */
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           Tvard[k1][1]=atoi(strc);        first1=1;
           Tvard[k1][2]=atoi(stre);        for (k2=1; k2<=(nlstate);k2++){
           Tvar[cptcovn+k2]=Tvard[k1][1];          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            if(l2==k2) continue;
           for (k=1; k<=lastobs;k++)            j=(k2-1)*(nlstate+ndeath)+l2;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            for (k1=1; k1<=(nlstate);k1++){
           k1++;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           k2=k2+2;                if(l1==k1) continue;
         }                i=(k1-1)*(nlstate+ndeath)+l1;
       }                if(i<=j) continue;
       else {                for (age=bage; age<=fage; age ++){ 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                  if ((int)age %5==0){
        /*  scanf("%d",i);*/                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       cutv(strd,strc,strb,'V');                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       Tvar[i]=atoi(strc);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       }                    mu1=mu[i][(int) age]/stepm*YEARM ;
       strcpy(modelsav,stra);                      mu2=mu[j][(int) age]/stepm*YEARM;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                    c12=cv12/sqrt(v1*v2);
         scanf("%d",i);*/                    /* Computing eigen value of matrix of covariance */
     }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      /* Eigen vectors */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   printf("cptcovprod=%d ", cptcovprod);                    /*v21=sqrt(1.-v11*v11); *//* error */
   scanf("%d ",i);*/                    v21=(lc1-v1)/cv12*v11;
     fclose(fic);                    v12=-v21;
                     v22=v11;
     /*  if(mle==1){*/                    tnalp=v21/v11;
     if (weightopt != 1) { /* Maximisation without weights*/                    if(first1==1){
       for(i=1;i<=n;i++) weight[i]=1.0;                      first1=0;
     }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     /*-calculation of age at interview from date of interview and age at death -*/                    }
     agev=matrix(1,maxwav,1,imx);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
     for (i=1; i<=imx; i++) {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       for(m=2; (m<= maxwav); m++) {                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                    if(first==1){
          anint[m][i]=9999;                      first=0;
          s[m][i]=-1;                      fprintf(ficgp,"\nset parametric;unset label");
        }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       }                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     for (i=1; i<=imx; i++)  {                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for(m=1; (m<= maxwav); m++){                      fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         if(s[m][i] >0){                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
           if (s[m][i] >= nlstate+1) {                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             if(agedc[i]>0)                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               if(moisdc[i]!=99 && andc[i]!=9999)                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                 agev[m][i]=agedc[i];                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
            else {                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
               if (andc[i]!=9999){                    }else{
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                      first=0;
               agev[m][i]=-1;                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
               }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           else if(s[m][i] !=9){ /* Should no more exist */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             if(mint[m][i]==99 || anint[m][i]==9999)                    }/* if first */
               agev[m][i]=1;                  } /* age mod 5 */
             else if(agev[m][i] <agemin){                } /* end loop age */
               agemin=agev[m][i];                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                first=1;
             }              } /*l12 */
             else if(agev[m][i] >agemax){            } /* k12 */
               agemax=agev[m][i];          } /*l1 */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        }/* k1 */
             }      } /* loop covariates */
             /*agev[m][i]=anint[m][i]-annais[i];*/    }
             /*   agev[m][i] = age[i]+2*m;*/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           else { /* =9 */    free_vector(xp,1,npar);
             agev[m][i]=1;    fclose(ficresprob);
             s[m][i]=-1;    fclose(ficresprobcov);
           }    fclose(ficresprobcor);
         }    /*  fclose(ficgp);*/
         else /*= 0 Unknown */  }
           agev[m][i]=1;  
       }  
      /******************* Printing html file ***********/
     }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     for (i=1; i<=imx; i++)  {                    int lastpass, int stepm, int weightopt, char model[],\
       for(m=1; (m<= maxwav); m++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         if (s[m][i] > (nlstate+ndeath)) {                    int popforecast, int estepm ,\
           printf("Error: Wrong value in nlstate or ndeath\n");                      double jprev1, double mprev1,double anprev1, \
           goto end;                    double jprev2, double mprev2,double anprev2){
         }    int jj1, k1, i1, cpt;
       }    /*char optionfilehtm[FILENAMELENGTH];*/
     }  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     free_vector(moisnais,1,n);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
     free_vector(annais,1,n);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
     /* free_matrix(mint,1,maxwav,1,n);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
        free_matrix(anint,1,maxwav,1,n);*/   - Life expectancies by age and initial health status (estepm=%2d months): \
     free_vector(moisdc,1,n);     <a href=\"%s\">%s</a> <br>\n</li>", \
     free_vector(andc,1,n);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
                 subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
     wav=ivector(1,imx);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      
     /* Concatenates waves */   m=cptcoveff;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
       Tcode=ivector(1,100);   for(k1=1; k1<=m;k1++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     for(i1=1; i1<=ncodemax[k1];i1++){
       ncodemax[1]=1;       jj1++;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);       if (cptcovn > 0) {
               fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
    codtab=imatrix(1,100,1,10);         for (cpt=1; cpt<=cptcoveff;cpt++) 
    h=0;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    m=pow(2,cptcoveff);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }
    for(k=1;k<=cptcoveff; k++){       /* Pij */
      for(i=1; i <=(m/pow(2,k));i++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
        for(j=1; j <= ncodemax[k]; j++){  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){       /* Quasi-incidences */
            h++;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          }         /* Stable prevalence in each health state */
        }         for(cpt=1; cpt<nlstate;cpt++){
      }           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
    }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);         }
       codtab[1][2]=1;codtab[2][2]=2; */       for(cpt=1; cpt<=nlstate;cpt++) {
    /* for(i=1; i <=m ;i++){          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
       for(k=1; k <=cptcovn; k++){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);       }
       }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       printf("\n");  health expectancies in states (1) and (2): %s%d.png<br>\
       }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       scanf("%d",i);*/     } /* end i1 */
       }/* End k1 */
    /* Calculates basic frequencies. Computes observed prevalence at single age   fprintf(fichtm,"</ul>");
        and prints on file fileres'p'. */  
   
       fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
       - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
         - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     /* For Powell, parameters are in a vector p[] starting at p[1]           rfileres,rfileres,\
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
     if(mle==1){           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
     }           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
      
     /*--------- results files --------------*/  /*  if(popforecast==1) fprintf(fichtm,"\n */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
    /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
    jk=1;  /*  else  */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){   m=cptcoveff;
        if (k != i)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
          {  
            printf("%d%d ",i,k);   jj1=0;
            fprintf(ficres,"%1d%1d ",i,k);   for(k1=1; k1<=m;k1++){
            for(j=1; j <=ncovmodel; j++){     for(i1=1; i1<=ncodemax[k1];i1++){
              printf("%f ",p[jk]);       jj1++;
              fprintf(ficres,"%f ",p[jk]);       if (cptcovn > 0) {
              jk++;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
            }         for (cpt=1; cpt<=cptcoveff;cpt++) 
            printf("\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
            fprintf(ficres,"\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
          }       }
      }       for(cpt=1; cpt<=nlstate;cpt++) {
    }         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
  if(mle==1){  interval) in state (%d): %s%d%d.png <br>\
     /* Computing hessian and covariance matrix */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"vr"),cpt,jj1,subdirf2(optionfilefiname,"vr"),cpt,jj1);  
     ftolhess=ftol; /* Usually correct */       }
     hesscov(matcov, p, npar, delti, ftolhess, func);     } /* end i1 */
  }   }/* End k1 */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");   fprintf(fichtm,"</ul>");
     printf("# Scales (for hessian or gradient estimation)\n");   fflush(fichtm);
      for(i=1,jk=1; i <=nlstate; i++){  }
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {  /******************* Gnuplot file **************/
           fprintf(ficres,"%1d%1d",i,j);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){    char dirfileres[132],optfileres[132];
             printf(" %.5e",delti[jk]);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
             fprintf(ficres," %.5e",delti[jk]);    int ng;
             jk++;  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
           }  /*     printf("Problem with file %s",optionfilegnuplot); */
           printf("\n");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
           fprintf(ficres,"\n");  /*   } */
         }  
       }    /*#ifdef windows */
      }    fprintf(ficgp,"cd \"%s\" \n",pathc);
          /*#endif */
     k=1;    m=pow(2,cptcoveff);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    strcpy(dirfileres,optionfilefiname);
     for(i=1;i<=npar;i++){    strcpy(optfileres,"vpl");
       /*  if (k>nlstate) k=1;   /* 1eme*/
       i1=(i-1)/(ncovmodel*nlstate)+1;    for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);     for (k1=1; k1<= m ; k1 ++) {
       printf("%s%d%d",alph[k],i1,tab[i]);*/       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       fprintf(ficres,"%3d",i);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       printf("%3d",i);       fprintf(ficgp,"set xlabel \"Age\" \n\
       for(j=1; j<=i;j++){  set ylabel \"Probability\" \n\
         fprintf(ficres," %.5e",matcov[i][j]);  set ter png small\n\
         printf(" %.5e",matcov[i][j]);  set size 0.65,0.65\n\
       }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       fprintf(ficres,"\n");  
       printf("\n");       for (i=1; i<= nlstate ; i ++) {
       k++;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     }         else fprintf(ficgp," \%%*lf (\%%*lf)");
           }
     while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       ungetc(c,ficpar);       for (i=1; i<= nlstate ; i ++) {
       fgets(line, MAXLINE, ficpar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       puts(line);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fputs(line,ficparo);       } 
     }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     ungetc(c,ficpar);       for (i=1; i<= nlstate ; i ++) {
     estepm=0;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     if (estepm==0 || estepm < stepm) estepm=stepm;       }  
     if (fage <= 2) {       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       bage = ageminpar;     }
       fage = agemaxpar;    }
     }    /*2 eme*/
        
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    for (k1=1; k1<= m ; k1 ++) { 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
        
     while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1; i<= nlstate+1 ; i ++) {
     ungetc(c,ficpar);        k=2*i;
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     puts(line);        for (j=1; j<= nlstate+1 ; j ++) {
     fputs(line,ficparo);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   ungetc(c,ficpar);        }   
          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for (j=1; j<= nlstate+1 ; j ++) {
                if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){          else fprintf(ficgp," \%%*lf (\%%*lf)");
     ungetc(c,ficpar);        }   
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"\" t\"\" w l 0,");
     puts(line);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     fputs(line,ficparo);        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   ungetc(c,ficpar);          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        else fprintf(ficgp,"\" t\"\" w l 0,");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      }
     }
   fscanf(ficpar,"pop_based=%d\n",&popbased);    
   fprintf(ficparo,"pop_based=%d\n",popbased);      /*3eme*/
   fprintf(ficres,"pop_based=%d\n",popbased);      
      for (k1=1; k1<= m ; k1 ++) { 
   while((c=getc(ficpar))=='#' && c!= EOF){      for (cpt=1; cpt<= nlstate ; cpt ++) {
     ungetc(c,ficpar);        k=2+nlstate*(2*cpt-2);
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     puts(line);        fprintf(ficgp,"set ter png small\n\
     fputs(line,ficparo);  set size 0.65,0.65\n\
   }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   ungetc(c,ficpar);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
 while((c=getc(ficpar))=='#' && c!= EOF){        */
     ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++) {
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
     puts(line);          
     fputs(line,ficparo);        } 
   }      }
   ungetc(c,ficpar);    }
     
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    /* CV preval stable (period) */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    for (k1=1; k1<= m ; k1 ++) { 
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 /*------------ gnuplot -------------*/  set ter png small\nset size 0.65,0.65\n\
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);  unset log y\n\
    plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 /*------------ free_vector  -------------*/        
  chdir(path);        for (i=1; i< nlstate ; i ++)
            fprintf(ficgp,"+$%d",k+i+1);
  free_ivector(wav,1,imx);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          l=3+(nlstate+ndeath)*cpt;
  free_ivector(num,1,n);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
  free_vector(agedc,1,n);        for (i=1; i< nlstate ; i ++) {
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          l=3+(nlstate+ndeath)*cpt;
  fclose(ficparo);          fprintf(ficgp,"+$%d",l+i+1);
  fclose(ficres);        }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 /*--------- index.htm --------*/      } 
     }  
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    
     /* proba elementaires */
      for(i=1,jk=1; i <=nlstate; i++){
   /*--------------- Prevalence limit --------------*/      for(k=1; k <=(nlstate+ndeath); k++){
          if (k != i) {
   strcpy(filerespl,"pl");          for(j=1; j <=ncovmodel; j++){
   strcat(filerespl,fileres);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            jk++; 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            fprintf(ficgp,"\n");
   }          }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        }
   fprintf(ficrespl,"#Prevalence limit\n");      }
   fprintf(ficrespl,"#Age ");     }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         for(jk=1; jk <=m; jk++) {
   prlim=matrix(1,nlstate,1,nlstate);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         if (ng==2)
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         else
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           fprintf(ficgp,"\nset title \"Probability\"\n");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   k=0;         i=1;
   agebase=ageminpar;         for(k2=1; k2<=nlstate; k2++) {
   agelim=agemaxpar;           k3=i;
   ftolpl=1.e-10;           for(k=1; k<=(nlstate+ndeath); k++) {
   i1=cptcoveff;             if (k != k2){
   if (cptcovn < 1){i1=1;}               if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   for(cptcov=1;cptcov<=i1;cptcov++){               else
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
         k=k+1;               ij=1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/               for(j=3; j <=ncovmodel; j++) {
         fprintf(ficrespl,"\n#******");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         for(j=1;j<=cptcoveff;j++)                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   ij++;
         fprintf(ficrespl,"******\n");                 }
                         else
         for (age=agebase; age<=agelim; age++){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);               }
           fprintf(ficrespl,"%.0f",age );               fprintf(ficgp,")/(1");
           for(i=1; i<=nlstate;i++)               
           fprintf(ficrespl," %.5f", prlim[i][i]);               for(k1=1; k1 <=nlstate; k1++){   
           fprintf(ficrespl,"\n");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
         }                 ij=1;
       }                 for(j=3; j <=ncovmodel; j++){
     }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   fclose(ficrespl);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
   /*------------- h Pij x at various ages ------------*/                   }
                     else
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                 }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                 fprintf(ficgp,")");
   }               }
   printf("Computing pij: result on file '%s' \n", filerespij);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                 if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   stepsize=(int) (stepm+YEARM-1)/YEARM;               i=i+ncovmodel;
   /*if (stepm<=24) stepsize=2;*/             }
            } /* end k */
   agelim=AGESUP;         } /* end k2 */
   hstepm=stepsize*YEARM; /* Every year of age */       } /* end jk */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     } /* end ng */
       fflush(ficgp); 
   k=0;  }  /* end gnuplot */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  /*************** Moving average **************/
         fprintf(ficrespij,"\n#****** ");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int i, cpt, cptcod;
         fprintf(ficrespij,"******\n");    int modcovmax =1;
            int mobilavrange, mob;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    double age;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                             a covariate has 2 modalities */
           oldm=oldms;savm=savms;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
           for(i=1; i<=nlstate;i++)      if(mobilav==1) mobilavrange=5; /* default */
             for(j=1; j<=nlstate+ndeath;j++)      else mobilavrange=mobilav;
               fprintf(ficrespij," %1d-%1d",i,j);      for (age=bage; age<=fage; age++)
           fprintf(ficrespij,"\n");        for (i=1; i<=nlstate;i++)
            for (h=0; h<=nhstepm; h++){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
             for(i=1; i<=nlstate;i++)      /* We keep the original values on the extreme ages bage, fage and for 
               for(j=1; j<=nlstate+ndeath;j++)         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);         we use a 5 terms etc. until the borders are no more concerned. 
             fprintf(ficrespij,"\n");      */ 
              }      for (mob=3;mob <=mobilavrange;mob=mob+2){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           fprintf(ficrespij,"\n");          for (i=1; i<=nlstate;i++){
         }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
   fclose(ficrespij);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
   /*---------- Forecasting ------------------*/        }/* end age */
   if((stepm == 1) && (strcmp(model,".")==0)){      }/* end mob */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    }else return -1;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    return 0;
   }  }/* End movingaverage */
   else{  
     erreur=108;  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  /************** Forecasting ******************/
   }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
      /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
   /*---------- Health expectancies and variances ------------*/       dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
   strcpy(filerest,"t");    */
   strcat(filerest,fileres);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   if((ficrest=fopen(filerest,"w"))==NULL) {    int *popage;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    double agec; /* generic age */
   }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
   strcpy(filerese,"e");    char fileresf[FILENAMELENGTH];
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {    agelim=AGESUP;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   }   
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
  strcpy(fileresv,"v");    if((ficresf=fopen(fileresf,"w"))==NULL) {
   strcat(fileresv,fileres);      printf("Problem with forecast resultfile: %s\n", fileresf);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    }
   }    printf("Computing forecasting: result on file '%s' \n", fileresf);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   k=0;    if (mobilav!=0) {
   for(cptcov=1;cptcov<=i1;cptcov++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       k=k+1;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficrest,"\n#****** ");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       for(j=1;j<=cptcoveff;j++)      }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficrest,"******\n");  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
       fprintf(ficreseij,"\n#****** ");    if (stepm<=12) stepsize=1;
       for(j=1;j<=cptcoveff;j++)    if(estepm < stepm){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficreseij,"******\n");    }
     else  hstepm=estepm;   
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    hstepm=hstepm/stepm; 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       fprintf(ficresvij,"******\n");                                 fractional in yp1 */
     anprojmean=yp;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    yp2=modf((yp1*12),&yp);
       oldm=oldms;savm=savms;    mprojmean=yp;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      yp1=modf((yp2*30.5),&yp);
      jprojmean=yp;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if(jprojmean==0) jprojmean=1;
       oldm=oldms;savm=savms;    if(mprojmean==0) jprojmean=1;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  
        i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
      
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    
       fprintf(ficrest,"\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
   
       epj=vector(1,nlstate+1);  /*            if (h==(int)(YEARM*yearp)){ */
       for(age=bage; age <=fage ;age++){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         if (popbased==1) {        k=k+1;
           for(i=1; i<=nlstate;i++)        fprintf(ficresf,"\n#******");
             prlim[i][i]=probs[(int)age][i][k];        for(j=1;j<=cptcoveff;j++) {
         }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                }
         fprintf(ficrest," %4.0f",age);        fprintf(ficresf,"******\n");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        for(j=1; j<=nlstate+ndeath;j++){ 
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          for(i=1; i<=nlstate;i++)              
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            fprintf(ficresf," p%d%d",i,j);
           }          fprintf(ficresf," p.%d",j);
           epj[nlstate+1] +=epj[j];        }
         }        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
         for(i=1, vepp=0.;i <=nlstate;i++)          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];          for (agec=fage; agec>=(ageminpar-1); agec--){ 
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
         for(j=1;j <=nlstate;j++){            nhstepm = nhstepm/hstepm; 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }            oldm=oldms;savm=savms;
         fprintf(ficrest,"\n");            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       }          
     }            for (h=0; h<=nhstepm; h++){
   }              if (h*hstepm/YEARM*stepm ==yearp) {
 free_matrix(mint,1,maxwav,1,n);                fprintf(ficresf,"\n");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                for(j=1;j<=cptcoveff;j++) 
     free_vector(weight,1,n);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fclose(ficreseij);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   fclose(ficresvij);              } 
   fclose(ficrest);              for(j=1; j<=nlstate+ndeath;j++) {
   fclose(ficpar);                ppij=0.;
   free_vector(epj,1,nlstate+1);                for(i=1; i<=nlstate;i++) {
                    if (mobilav==1) 
   /*------- Variance limit prevalence------*/                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
   strcpy(fileresvpl,"vpl");                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   strcat(fileresvpl,fileres);                  }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                  if (h*hstepm/YEARM*stepm== yearp) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     exit(0);                  }
   }                } /* end i */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
   k=0;                }
   for(cptcov=1;cptcov<=i1;cptcov++){              }/* end j */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            } /* end h */
       k=k+1;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresvpl,"\n#****** ");          } /* end agec */
       for(j=1;j<=cptcoveff;j++)        } /* end yearp */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      } /* end cptcod */
       fprintf(ficresvpl,"******\n");    } /* end  cptcov */
               
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fclose(ficresf);
     }  }
  }  
   /************** Forecasting *****not tested NB*************/
   fclose(ficresvpl);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
   /*---------- End : free ----------------*/    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    int *popage;
      double calagedatem, agelim, kk1, kk2;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double *popeffectif,*popcount;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double ***p3mat,***tabpop,***tabpopprev;
      double ***mobaverage;
      char filerespop[FILENAMELENGTH];
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    agelim=AGESUP;
      calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   free_matrix(matcov,1,npar,1,npar);    
   free_vector(delti,1,npar);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   free_matrix(agev,1,maxwav,1,imx);    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    
     strcpy(filerespop,"pop"); 
   if(erreur >0)    strcat(filerespop,fileres);
     printf("End of Imach with error or warning %d\n",erreur);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   else   printf("End of Imach\n");      printf("Problem with forecast resultfile: %s\n", filerespop);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
      }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    printf("Computing forecasting: result on file '%s' \n", filerespop);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   /*------ End -----------*/  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
  end:    if (mobilav!=0) {
 #ifdef windows      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* chdir(pathcd);*/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 #endif        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  /*system("wgnuplot graph.plt");*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  /*system("../gp37mgw/wgnuplot graph.plt");*/      }
  /*system("cd ../gp37mgw");*/    }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);    stepsize=(int) (stepm+YEARM-1)/YEARM;
  strcat(plotcmd," ");    if (stepm<=12) stepsize=1;
  strcat(plotcmd,optionfilegnuplot);    
  system(plotcmd);    agelim=AGESUP;
     
 #ifdef windows    hstepm=1;
   while (z[0] != 'q') {    hstepm=hstepm/stepm; 
     /* chdir(path); */    
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    if (popforecast==1) {
     scanf("%s",z);      if((ficpop=fopen(popfile,"r"))==NULL) {
     if (z[0] == 'c') system("./imach");        printf("Problem with population file : %s\n",popfile);exit(0);
     else if (z[0] == 'e') system(optionfilehtm);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     else if (z[0] == 'g') system(plotcmd);      } 
     else if (z[0] == 'q') exit(0);      popage=ivector(0,AGESUP);
   }      popeffectif=vector(0,AGESUP);
 #endif      popcount=vector(0,AGESUP);
 }      
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.42  
changed lines
  Added in v.1.89


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>