Diff for /imach/src/imach.c between versions 1.42 and 1.95

version 1.42, 2002/05/21 18:44:41 version 1.95, 2003/07/08 07:54:34
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.95  2003/07/08 07:54:34  brouard
      * imach.c (Repository):
   This program computes Healthy Life Expectancies from    (Repository): Using imachwizard code to output a more meaningful covariance
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    matrix (cov(a12,c31) instead of numbers.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.94  2003/06/27 13:00:02  brouard
   case of a health survey which is our main interest) -2- at least a    Just cleaning
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.93  2003/06/25 16:33:55  brouard
   computed from the time spent in each health state according to a    (Module): On windows (cygwin) function asctime_r doesn't
   model. More health states you consider, more time is necessary to reach the    exist so I changed back to asctime which exists.
   Maximum Likelihood of the parameters involved in the model.  The    (Module): Version 0.96b
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.92  2003/06/25 16:30:45  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): On windows (cygwin) function asctime_r doesn't
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    exist so I changed back to asctime which exists.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.91  2003/06/25 15:30:29  brouard
   where the markup *Covariates have to be included here again* invites    * imach.c (Repository): Duplicated warning errors corrected.
   you to do it.  More covariates you add, slower the    (Repository): Elapsed time after each iteration is now output. It
   convergence.    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
   The advantage of this computer programme, compared to a simple    concerning matrix of covariance. It has extension -cov.htm.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.90  2003/06/24 12:34:15  brouard
   intermediate interview, the information is lost, but taken into    (Module): Some bugs corrected for windows. Also, when
   account using an interpolation or extrapolation.      mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.89  2003/06/24 12:30:52  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): Some bugs corrected for windows. Also, when
   states. This elementary transition (by month or quarter trimester,    mle=-1 a template is output in file "or"mypar.txt with the design
   semester or year) is model as a multinomial logistic.  The hPx    of the covariance matrix to be input.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.88  2003/06/23 17:54:56  brouard
   hPijx.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.87  2003/06/18 12:26:01  brouard
   of the life expectancies. It also computes the prevalence limits.    Version 0.96
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.86  2003/06/17 20:04:08  brouard
            Institut national d'études démographiques, Paris.    (Module): Change position of html and gnuplot routines and added
   This software have been partly granted by Euro-REVES, a concerted action    routine fileappend.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.85  2003/06/17 13:12:43  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository): Check when date of death was earlier that
   can be accessed at http://euroreves.ined.fr/imach .    current date of interview. It may happen when the death was just
   **********************************************************************/    prior to the death. In this case, dh was negative and likelihood
      was wrong (infinity). We still send an "Error" but patch by
 #include <math.h>    assuming that the date of death was just one stepm after the
 #include <stdio.h>    interview.
 #include <stdlib.h>    (Repository): Because some people have very long ID (first column)
 #include <unistd.h>    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 #define MAXLINE 256    truncation)
 #define GNUPLOTPROGRAM "gnuplot"    (Repository): No more line truncation errors.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.84  2003/06/13 21:44:43  brouard
 /*#define DEBUG*/    * imach.c (Repository): Replace "freqsummary" at a correct
 #define windows    place. It differs from routine "prevalence" which may be called
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    many times. Probs is memory consuming and must be used with
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.82  2003/06/05 15:57:20  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Add log in  imach.c and  fullversion number is now printed.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000  */
 #define YEARM 12. /* Number of months per year */  /*
 #define AGESUP 130     Interpolated Markov Chain
 #define AGEBASE 40  
     Short summary of the programme:
     
 int erreur; /* Error number */    This program computes Healthy Life Expectancies from
 int nvar;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    first survey ("cross") where individuals from different ages are
 int npar=NPARMAX;    interviewed on their health status or degree of disability (in the
 int nlstate=2; /* Number of live states */    case of a health survey which is our main interest) -2- at least a
 int ndeath=1; /* Number of dead states */    second wave of interviews ("longitudinal") which measure each change
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (if any) in individual health status.  Health expectancies are
 int popbased=0;    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 int *wav; /* Number of waves for this individuual 0 is possible */    Maximum Likelihood of the parameters involved in the model.  The
 int maxwav; /* Maxim number of waves */    simplest model is the multinomial logistic model where pij is the
 int jmin, jmax; /* min, max spacing between 2 waves */    probability to be observed in state j at the second wave
 int mle, weightopt;    conditional to be observed in state i at the first wave. Therefore
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    'age' is age and 'sex' is a covariate. If you want to have a more
 double jmean; /* Mean space between 2 waves */    complex model than "constant and age", you should modify the program
 double **oldm, **newm, **savm; /* Working pointers to matrices */    where the markup *Covariates have to be included here again* invites
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    you to do it.  More covariates you add, slower the
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    convergence.
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    The advantage of this computer programme, compared to a simple
   char filerese[FILENAMELENGTH];    multinomial logistic model, is clear when the delay between waves is not
  FILE  *ficresvij;    identical for each individual. Also, if a individual missed an
   char fileresv[FILENAMELENGTH];    intermediate interview, the information is lost, but taken into
  FILE  *ficresvpl;    account using an interpolation or extrapolation.  
   char fileresvpl[FILENAMELENGTH];  
     hPijx is the probability to be observed in state i at age x+h
 #define NR_END 1    conditional to the observed state i at age x. The delay 'h' can be
 #define FREE_ARG char*    split into an exact number (nh*stepm) of unobserved intermediate
 #define FTOL 1.0e-10    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 #define NRANSI    matrix is simply the matrix product of nh*stepm elementary matrices
 #define ITMAX 200    and the contribution of each individual to the likelihood is simply
     hPijx.
 #define TOL 2.0e-4  
     Also this programme outputs the covariance matrix of the parameters but also
 #define CGOLD 0.3819660    of the life expectancies. It also computes the stable prevalence. 
 #define ZEPS 1.0e-10    
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 #define GOLD 1.618034    This software have been partly granted by Euro-REVES, a concerted action
 #define GLIMIT 100.0    from the European Union.
 #define TINY 1.0e-20    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 static double maxarg1,maxarg2;    can be accessed at http://euroreves.ined.fr/imach .
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
      or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    
 #define rint(a) floor(a+0.5)    **********************************************************************/
   /*
 static double sqrarg;    main
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    read parameterfile
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    read datafile
     concatwav
 int imx;    freqsummary
 int stepm;    if (mle >= 1)
 /* Stepm, step in month: minimum step interpolation*/      mlikeli
     print results files
 int estepm;    if mle==1 
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 int m,nb;        begin-prev-date,...
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    open gnuplot file
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    open html file
 double **pmmij, ***probs, ***mobaverage;    stable prevalence
 double dateintmean=0;     for age prevalim()
     h Pij x
 double *weight;    variance of p varprob
 int **s; /* Status */    forecasting if prevfcast==1 prevforecast call prevalence()
 double *agedc, **covar, idx;    health expectancies
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Variance-covariance of DFLE
     prevalence()
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */     movingaverage()
 double ftolhess; /* Tolerance for computing hessian */    varevsij() 
     if popbased==1 varevsij(,popbased)
 /**************** split *************************/    total life expectancies
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Variance of stable prevalence
 {   end
    char *s;                             /* pointer */  */
    int  l1, l2;                         /* length counters */  
   
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );   
 #ifdef windows  #include <math.h>
    s = strrchr( path, '\\' );           /* find last / */  #include <stdio.h>
 #else  #include <stdlib.h>
    s = strrchr( path, '/' );            /* find last / */  #include <unistd.h>
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */  #include <sys/time.h>
 #if     defined(__bsd__)                /* get current working directory */  #include <time.h>
       extern char       *getwd( );  #include "timeval.h"
   
       if ( getwd( dirc ) == NULL ) {  /* #include <libintl.h> */
 #else  /* #define _(String) gettext (String) */
       extern char       *getcwd( );  
   #define MAXLINE 256
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define GNUPLOTPROGRAM "gnuplot"
 #endif  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
          return( GLOCK_ERROR_GETCWD );  #define FILENAMELENGTH 132
       }  /*#define DEBUG*/
       strcpy( name, path );             /* we've got it */  /*#define windows*/
    } else {                             /* strip direcotry from path */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       s++;                              /* after this, the filename */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
       strcpy( name, s );                /* save file name */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  #define NINTERVMAX 8
    }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    l1 = strlen( dirc );                 /* length of directory */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #ifdef windows  #define NCOVMAX 8 /* Maximum number of covariates */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define MAXN 20000
 #else  #define YEARM 12. /* Number of months per year */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define AGESUP 130
 #endif  #define AGEBASE 40
    s = strrchr( name, '.' );            /* find last / */  #ifdef unix
    s++;  #define DIRSEPARATOR '/'
    strcpy(ext,s);                       /* save extension */  #define ODIRSEPARATOR '\\'
    l1= strlen( name);  #else
    l2= strlen( s)+1;  #define DIRSEPARATOR '\\'
    strncpy( finame, name, l1-l2);  #define ODIRSEPARATOR '/'
    finame[l1-l2]= 0;  #endif
    return( 0 );                         /* we're done */  
 }  /* $Id$ */
   /* $State$ */
   
 /******************************************/  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 void replace(char *s, char*t)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nvar;
   int i;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int lg=20;  int npar=NPARMAX;
   i=0;  int nlstate=2; /* Number of live states */
   lg=strlen(t);  int ndeath=1; /* Number of dead states */
   for(i=0; i<= lg; i++) {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     (s[i] = t[i]);  int popbased=0;
     if (t[i]== '\\') s[i]='/';  
   }  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 int nbocc(char *s, char occ)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   int i,j=0;  int mle, weightopt;
   int lg=20;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   i=0;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   lg=strlen(s);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   for(i=0; i<= lg; i++) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   if  (s[i] == occ ) j++;  double jmean; /* Mean space between 2 waves */
   }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   return j;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 void cutv(char *u,char *v, char*t, char occ)  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   int i,lg,j,p=0;  long ipmx; /* Number of contributions */
   i=0;  double sw; /* Sum of weights */
   for(j=0; j<=strlen(t)-1; j++) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  FILE *ficresilk;
   }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
   lg=strlen(t);  FILE *fichtm, *fichtmcov; /* Html File */
   for(j=0; j<p; j++) {  FILE *ficreseij;
     (u[j] = t[j]);  char filerese[FILENAMELENGTH];
   }  FILE  *ficresvij;
      u[p]='\0';  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
    for(j=0; j<= lg; j++) {  char fileresvpl[FILENAMELENGTH];
     if (j>=(p+1))(v[j-p-1] = t[j]);  char title[MAXLINE];
   }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH]; 
 /********************** nrerror ********************/  char command[FILENAMELENGTH];
   int  outcmd=0;
 void nrerror(char error_text[])  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  char filelog[FILENAMELENGTH]; /* Log file */
   exit(1);  char filerest[FILENAMELENGTH];
 }  char fileregp[FILENAMELENGTH];
 /*********************** vector *******************/  char popfile[FILENAMELENGTH];
 double *vector(int nl, int nh)  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (!v) nrerror("allocation failure in vector");  struct timezone tzp;
   return v-nl+NR_END;  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /************************ free vector ******************/  extern long time();
 void free_vector(double*v, int nl, int nh)  char strcurr[80], strfor[80];
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  #define NRANSI 
 {  #define ITMAX 200 
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define TOL 2.0e-4 
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   free((FREE_ARG)(v+nl-NR_END));  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
 /******************* imatrix *******************************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define rint(a) floor(a+0.5)
   int **m;  
    static double sqrarg;
   /* allocate pointers to rows */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  int imx; 
   m -= nrl;  int stepm;
    /* Stepm, step in month: minimum step interpolation*/
    
   /* allocate rows and set pointers to them */  int estepm;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  int m,nb;
   m[nrl] -= ncl;  long *num;
    int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    double **pmmij, ***probs;
   /* return pointer to array of pointers to rows */  double dateintmean=0;
   return m;  
 }  double *weight;
   int **s; /* Status */
 /****************** free_imatrix *************************/  double *agedc, **covar, idx;
 void free_imatrix(m,nrl,nrh,ncl,nch)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       int **m;  
       long nch,ncl,nrh,nrl;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
      /* free an int matrix allocated by imatrix() */  double ftolhess; /* Tolerance for computing hessian */
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  /**************** split *************************/
   free((FREE_ARG) (m+nrl-NR_END));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     char  *ss;                            /* pointer */
 /******************* matrix *******************************/    int   l1, l2;                         /* length counters */
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    l1 = strlen(path );                   /* length of path */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double **m;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   if (!m) nrerror("allocation failure 1 in matrix()");        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m += NR_END;      /* get current working directory */
   m -= nrl;      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));        return( GLOCK_ERROR_GETCWD );
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      }
   m[nrl] += NR_END;      strcpy( name, path );               /* we've got it */
   m[nrl] -= ncl;    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      l2 = strlen( ss );                  /* length of filename */
   return m;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /*************************free matrix ************************/      dirc[l1-l2] = 0;                    /* add zero */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    }
 {    l1 = strlen( dirc );                  /* length of directory */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    /*#ifdef windows
   free((FREE_ARG)(m+nrl-NR_END));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 }  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 /******************* ma3x *******************************/  #endif
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    */
 {    ss = strrchr( name, '.' );            /* find last / */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    ss++;
   double ***m;    strcpy(ext,ss);                       /* save extension */
     l1= strlen( name);
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    l2= strlen(ss)+1;
   if (!m) nrerror("allocation failure 1 in matrix()");    strncpy( finame, name, l1-l2);
   m += NR_END;    finame[l1-l2]= 0;
   m -= nrl;    return( 0 );                          /* we're done */
   }
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /******************************************/
   m[nrl] -= ncl;  
   void replace_back_to_slash(char *s, char*t)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
     int i;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    int lg=0;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    i=0;
   m[nrl][ncl] += NR_END;    lg=strlen(t);
   m[nrl][ncl] -= nll;    for(i=0; i<= lg; i++) {
   for (j=ncl+1; j<=nch; j++)      (s[i] = t[i]);
     m[nrl][j]=m[nrl][j-1]+nlay;      if (t[i]== '\\') s[i]='/';
      }
   for (i=nrl+1; i<=nrh; i++) {  }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  int nbocc(char *s, char occ)
       m[i][j]=m[i][j-1]+nlay;  {
   }    int i,j=0;
   return m;    int lg=20;
 }    i=0;
     lg=strlen(s);
 /*************************free ma3x ************************/    for(i=0; i<= lg; i++) {
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    if  (s[i] == occ ) j++;
 {    }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    return j;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  void cutv(char *u,char *v, char*t, char occ)
   {
 /***************** f1dim *************************/    /* cuts string t into u and v where u is ended by char occ excluding it
 extern int ncom;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 extern double *pcom,*xicom;       gives u="abcedf" and v="ghi2j" */
 extern double (*nrfunc)(double []);    int i,lg,j,p=0;
      i=0;
 double f1dim(double x)    for(j=0; j<=strlen(t)-1; j++) {
 {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   int j;    }
   double f;  
   double *xt;    lg=strlen(t);
      for(j=0; j<p; j++) {
   xt=vector(1,ncom);      (u[j] = t[j]);
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    }
   f=(*nrfunc)(xt);       u[p]='\0';
   free_vector(xt,1,ncom);  
   return f;     for(j=0; j<= lg; j++) {
 }      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
 /*****************brent *************************/  }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  /********************** nrerror ********************/
   int iter;  
   double a,b,d,etemp;  void nrerror(char error_text[])
   double fu,fv,fw,fx;  {
   double ftemp;    fprintf(stderr,"ERREUR ...\n");
   double p,q,r,tol1,tol2,u,v,w,x,xm;    fprintf(stderr,"%s\n",error_text);
   double e=0.0;    exit(EXIT_FAILURE);
    }
   a=(ax < cx ? ax : cx);  /*********************** vector *******************/
   b=(ax > cx ? ax : cx);  double *vector(int nl, int nh)
   x=w=v=bx;  {
   fw=fv=fx=(*f)(x);    double *v;
   for (iter=1;iter<=ITMAX;iter++) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     xm=0.5*(a+b);    if (!v) nrerror("allocation failure in vector");
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    return v-nl+NR_END;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
 #ifdef DEBUG  /************************ free vector ******************/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  void free_vector(double*v, int nl, int nh)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
     ftemp=fu;  {
     if (fabs(e) > tol1) {    int *v;
       r=(x-w)*(fx-fv);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       q=(x-v)*(fx-fw);    if (!v) nrerror("allocation failure in ivector");
       p=(x-v)*q-(x-w)*r;    return v-nl+NR_END;
       q=2.0*(q-r);  }
       if (q > 0.0) p = -p;  
       q=fabs(q);  /******************free ivector **************************/
       etemp=e;  void free_ivector(int *v, long nl, long nh)
       e=d;  {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    free((FREE_ARG)(v+nl-NR_END));
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  
         d=p/q;  /************************lvector *******************************/
         u=x+d;  long *lvector(long nl,long nh)
         if (u-a < tol2 || b-u < tol2)  {
           d=SIGN(tol1,xm-x);    long *v;
       }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     } else {    if (!v) nrerror("allocation failure in ivector");
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    return v-nl+NR_END;
     }  }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  /******************free lvector **************************/
     if (fu <= fx) {  void free_lvector(long *v, long nl, long nh)
       if (u >= x) a=x; else b=x;  {
       SHFT(v,w,x,u)    free((FREE_ARG)(v+nl-NR_END));
         SHFT(fv,fw,fx,fu)  }
         } else {  
           if (u < x) a=u; else b=u;  /******************* imatrix *******************************/
           if (fu <= fw || w == x) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
             v=w;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
             w=u;  { 
             fv=fw;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
             fw=fu;    int **m; 
           } else if (fu <= fv || v == x || v == w) {    
             v=u;    /* allocate pointers to rows */ 
             fv=fu;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
           }    if (!m) nrerror("allocation failure 1 in matrix()"); 
         }    m += NR_END; 
   }    m -= nrl; 
   nrerror("Too many iterations in brent");    
   *xmin=x;    
   return fx;    /* allocate rows and set pointers to them */ 
 }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 /****************** mnbrak ***********************/    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    
             double (*func)(double))    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 {    
   double ulim,u,r,q, dum;    /* return pointer to array of pointers to rows */ 
   double fu;    return m; 
    } 
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  /****************** free_imatrix *************************/
   if (*fb > *fa) {  void free_imatrix(m,nrl,nrh,ncl,nch)
     SHFT(dum,*ax,*bx,dum)        int **m;
       SHFT(dum,*fb,*fa,dum)        long nch,ncl,nrh,nrl; 
       }       /* free an int matrix allocated by imatrix() */ 
   *cx=(*bx)+GOLD*(*bx-*ax);  { 
   *fc=(*func)(*cx);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   while (*fb > *fc) {    free((FREE_ARG) (m+nrl-NR_END)); 
     r=(*bx-*ax)*(*fb-*fc);  } 
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /******************* matrix *******************************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  double **matrix(long nrl, long nrh, long ncl, long nch)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       fu=(*func)(u);    double **m;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (fu < *fc) {    if (!m) nrerror("allocation failure 1 in matrix()");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m += NR_END;
           SHFT(*fb,*fc,fu,(*func)(u))    m -= nrl;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       u=ulim;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       fu=(*func)(u);    m[nrl] += NR_END;
     } else {    m[nrl] -= ncl;
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }    return m;
     SHFT(*ax,*bx,*cx,u)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       SHFT(*fa,*fb,*fc,fu)     */
       }  }
 }  
   /*************************free matrix ************************/
 /*************** linmin ************************/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 int ncom;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 double *pcom,*xicom;    free((FREE_ARG)(m+nrl-NR_END));
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /******************* ma3x *******************************/
 {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double f1dim(double x);    double ***m;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int j;    if (!m) nrerror("allocation failure 1 in matrix()");
   double xx,xmin,bx,ax;    m += NR_END;
   double fx,fb,fa;    m -= nrl;
    
   ncom=n;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   pcom=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   xicom=vector(1,n);    m[nrl] += NR_END;
   nrfunc=func;    m[nrl] -= ncl;
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     xicom[j]=xi[j];  
   }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   ax=0.0;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   xx=1.0;    m[nrl][ncl] += NR_END;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m[nrl][ncl] -= nll;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    for (j=ncl+1; j<=nch; j++) 
 #ifdef DEBUG      m[nrl][j]=m[nrl][j-1]+nlay;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    
 #endif    for (i=nrl+1; i<=nrh; i++) {
   for (j=1;j<=n;j++) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     xi[j] *= xmin;      for (j=ncl+1; j<=nch; j++) 
     p[j] += xi[j];        m[i][j]=m[i][j-1]+nlay;
   }    }
   free_vector(xicom,1,n);    return m; 
   free_vector(pcom,1,n);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
 /*************** powell ************************/  }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  /*************************free ma3x ************************/
 {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   void linmin(double p[], double xi[], int n, double *fret,  {
               double (*func)(double []));    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   int i,ibig,j;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double del,t,*pt,*ptt,*xit;    free((FREE_ARG)(m+nrl-NR_END));
   double fp,fptt;  }
   double *xits;  
   pt=vector(1,n);  /*************** function subdirf ***********/
   ptt=vector(1,n);  char *subdirf(char fileres[])
   xit=vector(1,n);  {
   xits=vector(1,n);    /* Caution optionfilefiname is hidden */
   *fret=(*func)(p);    strcpy(tmpout,optionfilefiname);
   for (j=1;j<=n;j++) pt[j]=p[j];    strcat(tmpout,"/"); /* Add to the right */
   for (*iter=1;;++(*iter)) {    strcat(tmpout,fileres);
     fp=(*fret);    return tmpout;
     ibig=0;  }
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /*************** function subdirf2 ***********/
     for (i=1;i<=n;i++)  char *subdirf2(char fileres[], char *preop)
       printf(" %d %.12f",i, p[i]);  {
     printf("\n");    
     for (i=1;i<=n;i++) {    /* Caution optionfilefiname is hidden */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    strcpy(tmpout,optionfilefiname);
       fptt=(*fret);    strcat(tmpout,"/");
 #ifdef DEBUG    strcat(tmpout,preop);
       printf("fret=%lf \n",*fret);    strcat(tmpout,fileres);
 #endif    return tmpout;
       printf("%d",i);fflush(stdout);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /*************** function subdirf3 ***********/
         del=fabs(fptt-(*fret));  char *subdirf3(char fileres[], char *preop, char *preop2)
         ibig=i;  {
       }    
 #ifdef DEBUG    /* Caution optionfilefiname is hidden */
       printf("%d %.12e",i,(*fret));    strcpy(tmpout,optionfilefiname);
       for (j=1;j<=n;j++) {    strcat(tmpout,"/");
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    strcat(tmpout,preop);
         printf(" x(%d)=%.12e",j,xit[j]);    strcat(tmpout,preop2);
       }    strcat(tmpout,fileres);
       for(j=1;j<=n;j++)    return tmpout;
         printf(" p=%.12e",p[j]);  }
       printf("\n");  
 #endif  /***************** f1dim *************************/
     }  extern int ncom; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  extern double *pcom,*xicom;
 #ifdef DEBUG  extern double (*nrfunc)(double []); 
       int k[2],l;   
       k[0]=1;  double f1dim(double x) 
       k[1]=-1;  { 
       printf("Max: %.12e",(*func)(p));    int j; 
       for (j=1;j<=n;j++)    double f;
         printf(" %.12e",p[j]);    double *xt; 
       printf("\n");   
       for(l=0;l<=1;l++) {    xt=vector(1,ncom); 
         for (j=1;j<=n;j++) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    f=(*nrfunc)(xt); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    free_vector(xt,1,ncom); 
         }    return f; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  } 
       }  
 #endif  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
       free_vector(xit,1,n);    int iter; 
       free_vector(xits,1,n);    double a,b,d,etemp;
       free_vector(ptt,1,n);    double fu,fv,fw,fx;
       free_vector(pt,1,n);    double ftemp;
       return;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     }    double e=0.0; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");   
     for (j=1;j<=n;j++) {    a=(ax < cx ? ax : cx); 
       ptt[j]=2.0*p[j]-pt[j];    b=(ax > cx ? ax : cx); 
       xit[j]=p[j]-pt[j];    x=w=v=bx; 
       pt[j]=p[j];    fw=fv=fx=(*f)(x); 
     }    for (iter=1;iter<=ITMAX;iter++) { 
     fptt=(*func)(ptt);      xm=0.5*(a+b); 
     if (fptt < fp) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       if (t < 0.0) {      printf(".");fflush(stdout);
         linmin(p,xit,n,fret,func);      fprintf(ficlog,".");fflush(ficlog);
         for (j=1;j<=n;j++) {  #ifdef DEBUG
           xi[j][ibig]=xi[j][n];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           xi[j][n]=xit[j];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 #ifdef DEBUG  #endif
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         for(j=1;j<=n;j++)        *xmin=x; 
           printf(" %.12e",xit[j]);        return fx; 
         printf("\n");      } 
 #endif      ftemp=fu;
       }      if (fabs(e) > tol1) { 
     }        r=(x-w)*(fx-fv); 
   }        q=(x-v)*(fx-fw); 
 }        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
 /**** Prevalence limit ****************/        if (q > 0.0) p = -p; 
         q=fabs(q); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        etemp=e; 
 {        e=d; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
      matrix by transitions matrix until convergence is reached */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
   int i, ii,j,k;          d=p/q; 
   double min, max, maxmin, maxmax,sumnew=0.;          u=x+d; 
   double **matprod2();          if (u-a < tol2 || b-u < tol2) 
   double **out, cov[NCOVMAX], **pmij();            d=SIGN(tol1,xm-x); 
   double **newm;        } 
   double agefin, delaymax=50 ; /* Max number of years to converge */      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (ii=1;ii<=nlstate+ndeath;ii++)      } 
     for (j=1;j<=nlstate+ndeath;j++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      fu=(*f)(u); 
     }      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
    cov[1]=1.;        SHFT(v,w,x,u) 
            SHFT(fv,fw,fx,fu) 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */          } else { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){            if (u < x) a=u; else b=u; 
     newm=savm;            if (fu <= fw || w == x) { 
     /* Covariates have to be included here again */              v=w; 
      cov[2]=agefin;              w=u; 
                fv=fw; 
       for (k=1; k<=cptcovn;k++) {              fw=fu; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];            } else if (fu <= fv || v == x || v == w) { 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/              v=u; 
       }              fv=fu; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            } 
       for (k=1; k<=cptcovprod;k++)          } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    } 
     nrerror("Too many iterations in brent"); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    *xmin=x; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    return fx; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  } 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /****************** mnbrak ***********************/
     savm=oldm;  
     oldm=newm;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     maxmax=0.;              double (*func)(double)) 
     for(j=1;j<=nlstate;j++){  { 
       min=1.;    double ulim,u,r,q, dum;
       max=0.;    double fu; 
       for(i=1; i<=nlstate; i++) {   
         sumnew=0;    *fa=(*func)(*ax); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    *fb=(*func)(*bx); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    if (*fb > *fa) { 
         max=FMAX(max,prlim[i][j]);      SHFT(dum,*ax,*bx,dum) 
         min=FMIN(min,prlim[i][j]);        SHFT(dum,*fb,*fa,dum) 
       }        } 
       maxmin=max-min;    *cx=(*bx)+GOLD*(*bx-*ax); 
       maxmax=FMAX(maxmax,maxmin);    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
     if(maxmax < ftolpl){      r=(*bx-*ax)*(*fb-*fc); 
       return prlim;      q=(*bx-*cx)*(*fb-*fa); 
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
 /*************** transition probabilities ***************/        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        fu=(*func)(u); 
 {        if (fu < *fc) { 
   double s1, s2;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   /*double t34;*/            SHFT(*fb,*fc,fu,(*func)(u)) 
   int i,j,j1, nc, ii, jj;            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for(i=1; i<= nlstate; i++){        u=ulim; 
     for(j=1; j<i;j++){        fu=(*func)(u); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      } else { 
         /*s2 += param[i][j][nc]*cov[nc];*/        u=(*cx)+GOLD*(*cx-*bx); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fu=(*func)(u); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      } 
       }      SHFT(*ax,*bx,*cx,u) 
       ps[i][j]=s2;        SHFT(*fa,*fb,*fc,fu) 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        } 
     }  } 
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*************** linmin ************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  int ncom; 
       }  double *pcom,*xicom;
       ps[i][j]=s2;  double (*nrfunc)(double []); 
     }   
   }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     /*ps[3][2]=1;*/  { 
     double brent(double ax, double bx, double cx, 
   for(i=1; i<= nlstate; i++){                 double (*f)(double), double tol, double *xmin); 
      s1=0;    double f1dim(double x); 
     for(j=1; j<i; j++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       s1+=exp(ps[i][j]);                double *fc, double (*func)(double)); 
     for(j=i+1; j<=nlstate+ndeath; j++)    int j; 
       s1+=exp(ps[i][j]);    double xx,xmin,bx,ax; 
     ps[i][i]=1./(s1+1.);    double fx,fb,fa;
     for(j=1; j<i; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];    ncom=n; 
     for(j=i+1; j<=nlstate+ndeath; j++)    pcom=vector(1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    xicom=vector(1,n); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    nrfunc=func; 
   } /* end i */    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      xicom[j]=xi[j]; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    } 
       ps[ii][jj]=0;    ax=0.0; 
       ps[ii][ii]=1;    xx=1.0; 
     }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(jj=1; jj<= nlstate+ndeath; jj++){  #endif
      printf("%lf ",ps[ii][jj]);    for (j=1;j<=n;j++) { 
    }      xi[j] *= xmin; 
     printf("\n ");      p[j] += xi[j]; 
     }    } 
     printf("\n ");printf("%lf ",cov[2]);*/    free_vector(xicom,1,n); 
 /*    free_vector(pcom,1,n); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  } 
   goto end;*/  
     return ps;  char *asc_diff_time(long time_sec, char ascdiff[])
 }  {
     long sec_left, days, hours, minutes;
 /**************** Product of 2 matrices ******************/    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    hours = (sec_left) / (60*60) ;
 {    sec_left = (sec_left) %(60*60);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    minutes = (sec_left) /60;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    sec_left = (sec_left) % (60);
   /* in, b, out are matrice of pointers which should have been initialized    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
      before: only the contents of out is modified. The function returns    return ascdiff;
      a pointer to pointers identical to out */  }
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  /*************** powell ************************/
     for(k=ncolol; k<=ncoloh; k++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)              double (*func)(double [])) 
         out[i][k] +=in[i][j]*b[j][k];  { 
     void linmin(double p[], double xi[], int n, double *fret, 
   return out;                double (*func)(double [])); 
 }    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
     double fp,fptt;
 /************* Higher Matrix Product ***************/    double *xits;
     int niterf, itmp;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {    pt=vector(1,n); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    ptt=vector(1,n); 
      duration (i.e. until    xit=vector(1,n); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    xits=vector(1,n); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    *fret=(*func)(p); 
      (typically every 2 years instead of every month which is too big).    for (j=1;j<=n;j++) pt[j]=p[j]; 
      Model is determined by parameters x and covariates have to be    for (*iter=1;;++(*iter)) { 
      included manually here.      fp=(*fret); 
       ibig=0; 
      */      del=0.0; 
       last_time=curr_time;
   int i, j, d, h, k;      (void) gettimeofday(&curr_time,&tzp);
   double **out, cov[NCOVMAX];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double **newm;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   /* Hstepm could be zero and should return the unit matrix */      for (i=1;i<=n;i++) {
   for (i=1;i<=nlstate+ndeath;i++)        printf(" %d %.12f",i, p[i]);
     for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficlog," %d %.12lf",i, p[i]);
       oldm[i][j]=(i==j ? 1.0 : 0.0);        fprintf(ficrespow," %.12lf", p[i]);
       po[i][j][0]=(i==j ? 1.0 : 0.0);      }
     }      printf("\n");
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fprintf(ficlog,"\n");
   for(h=1; h <=nhstepm; h++){      fprintf(ficrespow,"\n");fflush(ficrespow);
     for(d=1; d <=hstepm; d++){      if(*iter <=3){
       newm=savm;        tm = *localtime(&curr_time.tv_sec);
       /* Covariates have to be included here again */        strcpy(strcurr,asctime(&tmf));
       cov[1]=1.;  /*       asctime_r(&tm,strcurr); */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        forecast_time=curr_time;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        itmp = strlen(strcurr);
       for (k=1; k<=cptcovage;k++)        if(strcurr[itmp-1]=='\n')
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          strcurr[itmp-1]='\0';
       for (k=1; k<=cptcovprod;k++)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          tmf = *localtime(&forecast_time.tv_sec);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  /*      asctime_r(&tmf,strfor); */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          strcpy(strfor,asctime(&tmf));
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          itmp = strlen(strfor);
       savm=oldm;          if(strfor[itmp-1]=='\n')
       oldm=newm;          strfor[itmp-1]='\0';
     }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for(i=1; i<=nlstate+ndeath; i++)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for(j=1;j<=nlstate+ndeath;j++) {        }
         po[i][j][h]=newm[i][j];      }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      for (i=1;i<=n;i++) { 
          */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       }        fptt=(*fret); 
   } /* end h */  #ifdef DEBUG
   return po;        printf("fret=%lf \n",*fret);
 }        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
         printf("%d",i);fflush(stdout);
 /*************** log-likelihood *************/        fprintf(ficlog,"%d",i);fflush(ficlog);
 double func( double *x)        linmin(p,xit,n,fret,func); 
 {        if (fabs(fptt-(*fret)) > del) { 
   int i, ii, j, k, mi, d, kk;          del=fabs(fptt-(*fret)); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          ibig=i; 
   double **out;        } 
   double sw; /* Sum of weights */  #ifdef DEBUG
   double lli; /* Individual log likelihood */        printf("%d %.12e",i,(*fret));
   long ipmx;        fprintf(ficlog,"%d %.12e",i,(*fret));
   /*extern weight */        for (j=1;j<=n;j++) {
   /* We are differentiating ll according to initial status */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          printf(" x(%d)=%.12e",j,xit[j]);
   /*for(i=1;i<imx;i++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     printf(" %d\n",s[4][i]);        }
   */        for(j=1;j<=n;j++) {
   cov[1]=1.;          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        printf("\n");
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        fprintf(ficlog,"\n");
     for(mi=1; mi<= wav[i]-1; mi++){  #endif
       for (ii=1;ii<=nlstate+ndeath;ii++)      } 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       for(d=0; d<dh[mi][i]; d++){  #ifdef DEBUG
         newm=savm;        int k[2],l;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        k[0]=1;
         for (kk=1; kk<=cptcovage;kk++) {        k[1]=-1;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        printf("Max: %.12e",(*func)(p));
         }        fprintf(ficlog,"Max: %.12e",(*func)(p));
                for (j=1;j<=n;j++) {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          printf(" %.12e",p[j]);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          fprintf(ficlog," %.12e",p[j]);
         savm=oldm;        }
         oldm=newm;        printf("\n");
                fprintf(ficlog,"\n");
                for(l=0;l<=1;l++) {
       } /* end mult */          for (j=1;j<=n;j++) {
                  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       ipmx +=1;          }
       sw += weight[i];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     } /* end of wave */        }
   } /* end of individual */  #endif
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        free_vector(xit,1,n); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        free_vector(xits,1,n); 
   return -l;        free_vector(ptt,1,n); 
 }        free_vector(pt,1,n); 
         return; 
       } 
 /*********** Maximum Likelihood Estimation ***************/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        ptt[j]=2.0*p[j]-pt[j]; 
 {        xit[j]=p[j]-pt[j]; 
   int i,j, iter;        pt[j]=p[j]; 
   double **xi,*delti;      } 
   double fret;      fptt=(*func)(ptt); 
   xi=matrix(1,npar,1,npar);      if (fptt < fp) { 
   for (i=1;i<=npar;i++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for (j=1;j<=npar;j++)        if (t < 0.0) { 
       xi[i][j]=(i==j ? 1.0 : 0.0);          linmin(p,xit,n,fret,func); 
   printf("Powell\n");          for (j=1;j<=n;j++) { 
   powell(p,xi,npar,ftol,&iter,&fret,func);            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
 /**** Computes Hessian and covariance matrix ***/            printf(" %.12e",xit[j]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            fprintf(ficlog," %.12e",xit[j]);
 {          }
   double  **a,**y,*x,pd;          printf("\n");
   double **hess;          fprintf(ficlog,"\n");
   int i, j,jk;  #endif
   int *indx;        }
       } 
   double hessii(double p[], double delta, int theta, double delti[]);    } 
   double hessij(double p[], double delti[], int i, int j);  } 
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /**** Prevalence limit (stable prevalence)  ****************/
   
   hess=matrix(1,npar,1,npar);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for (i=1;i<=npar;i++){       matrix by transitions matrix until convergence is reached */
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);    int i, ii,j,k;
     /*printf(" %f ",p[i]);*/    double min, max, maxmin, maxmax,sumnew=0.;
     /*printf(" %lf ",hess[i][i]);*/    double **matprod2();
   }    double **out, cov[NCOVMAX], **pmij();
      double **newm;
   for (i=1;i<=npar;i++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
     for (j=1;j<=npar;j++)  {  
       if (j>i) {    for (ii=1;ii<=nlstate+ndeath;ii++)
         printf(".%d%d",i,j);fflush(stdout);      for (j=1;j<=nlstate+ndeath;j++){
         hess[i][j]=hessij(p,delti,i,j);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         hess[j][i]=hess[i][j];          }
         /*printf(" %lf ",hess[i][j]);*/  
       }     cov[1]=1.;
     }   
   }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   printf("\n");    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      /* Covariates have to be included here again */
         cov[2]=agefin;
   a=matrix(1,npar,1,npar);    
   y=matrix(1,npar,1,npar);        for (k=1; k<=cptcovn;k++) {
   x=vector(1,npar);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   indx=ivector(1,npar);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   ludcmp(a,npar,indx,&pd);        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     x[j]=1;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     lubksb(a,npar,indx,x);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     for (i=1;i<=npar;i++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       matcov[i][j]=x[i];  
     }      savm=oldm;
   }      oldm=newm;
       maxmax=0.;
   printf("\n#Hessian matrix#\n");      for(j=1;j<=nlstate;j++){
   for (i=1;i<=npar;i++) {        min=1.;
     for (j=1;j<=npar;j++) {        max=0.;
       printf("%.3e ",hess[i][j]);        for(i=1; i<=nlstate; i++) {
     }          sumnew=0;
     printf("\n");          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   /* Recompute Inverse */          min=FMIN(min,prlim[i][j]);
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        maxmin=max-min;
   ludcmp(a,npar,indx,&pd);        maxmax=FMAX(maxmax,maxmin);
       }
   /*  printf("\n#Hessian matrix recomputed#\n");      if(maxmax < ftolpl){
         return prlim;
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;    }
     x[j]=1;  }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /*************** transition probabilities ***************/ 
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     }  {
     printf("\n");    double s1, s2;
   }    /*double t34;*/
   */    int i,j,j1, nc, ii, jj;
   
   free_matrix(a,1,npar,1,npar);      for(i=1; i<= nlstate; i++){
   free_matrix(y,1,npar,1,npar);      for(j=1; j<i;j++){
   free_vector(x,1,npar);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   free_ivector(indx,1,npar);          /*s2 += param[i][j][nc]*cov[nc];*/
   free_matrix(hess,1,npar,1,npar);          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
 }        ps[i][j]=s2;
         /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
 /*************** hessian matrix ****************/      }
 double hessii( double x[], double delta, int theta, double delti[])      for(j=i+1; j<=nlstate+ndeath;j++){
 {        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   int i;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int l=1, lmax=20;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   double k1,k2;        }
   double p2[NPARMAX+1];        ps[i][j]=s2;
   double res;      }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    }
   double fx;      /*ps[3][2]=1;*/
   int k=0,kmax=10;  
   double l1;    for(i=1; i<= nlstate; i++){
        s1=0;
   fx=func(x);      for(j=1; j<i; j++)
   for (i=1;i<=npar;i++) p2[i]=x[i];        s1+=exp(ps[i][j]);
   for(l=0 ; l <=lmax; l++){      for(j=i+1; j<=nlstate+ndeath; j++)
     l1=pow(10,l);        s1+=exp(ps[i][j]);
     delts=delt;      ps[i][i]=1./(s1+1.);
     for(k=1 ; k <kmax; k=k+1){      for(j=1; j<i; j++)
       delt = delta*(l1*k);        ps[i][j]= exp(ps[i][j])*ps[i][i];
       p2[theta]=x[theta] +delt;      for(j=i+1; j<=nlstate+ndeath; j++)
       k1=func(p2)-fx;        ps[i][j]= exp(ps[i][j])*ps[i][i];
       p2[theta]=x[theta]-delt;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       k2=func(p2)-fx;    } /* end i */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
            for(jj=1; jj<= nlstate+ndeath; jj++){
 #ifdef DEBUG        ps[ii][jj]=0;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        ps[ii][ii]=1;
 #endif      }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  
       }    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for(jj=1; jj<= nlstate+ndeath; jj++){
         k=kmax; l=lmax*10.;       printf("%lf ",ps[ii][jj]);
       }     }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      printf("\n ");
         delts=delt;      }
       }      printf("\n ");printf("%lf ",cov[2]);*/
     }  /*
   }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   delti[theta]=delts;    goto end;*/
   return res;      return ps;
    }
 }  
   /**************** Product of 2 matrices ******************/
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   int i;  {
   int l=1, l1, lmax=20;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double k1,k2,k3,k4,res,fx;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double p2[NPARMAX+1];    /* in, b, out are matrice of pointers which should have been initialized 
   int k;       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   fx=func(x);    long i, j, k;
   for (k=1; k<=2; k++) {    for(i=nrl; i<= nrh; i++)
     for (i=1;i<=npar;i++) p2[i]=x[i];      for(k=ncolol; k<=ncoloh; k++)
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          out[i][k] +=in[i][j]*b[j][k];
     k1=func(p2)-fx;  
      return out;
     p2[thetai]=x[thetai]+delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  
    /************* Higher Matrix Product ***************/
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     k3=func(p2)-fx;  {
      /* Computes the transition matrix starting at age 'age' over 
     p2[thetai]=x[thetai]-delti[thetai]/k;       'nhstepm*hstepm*stepm' months (i.e. until
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     k4=func(p2)-fx;       nhstepm*hstepm matrices. 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 #ifdef DEBUG       (typically every 2 years instead of every month which is too big 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);       for the memory).
 #endif       Model is determined by parameters x and covariates have to be 
   }       included manually here. 
   return res;  
 }       */
   
 /************** Inverse of matrix **************/    int i, j, d, h, k;
 void ludcmp(double **a, int n, int *indx, double *d)    double **out, cov[NCOVMAX];
 {    double **newm;
   int i,imax,j,k;  
   double big,dum,sum,temp;    /* Hstepm could be zero and should return the unit matrix */
   double *vv;    for (i=1;i<=nlstate+ndeath;i++)
        for (j=1;j<=nlstate+ndeath;j++){
   vv=vector(1,n);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   *d=1.0;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   for (i=1;i<=n;i++) {      }
     big=0.0;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for (j=1;j<=n;j++)    for(h=1; h <=nhstepm; h++){
       if ((temp=fabs(a[i][j])) > big) big=temp;      for(d=1; d <=hstepm; d++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        newm=savm;
     vv[i]=1.0/big;        /* Covariates have to be included here again */
   }        cov[1]=1.;
   for (j=1;j<=n;j++) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for (i=1;i<j;i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       sum=a[i][j];        for (k=1; k<=cptcovage;k++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       a[i][j]=sum;        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     big=0.0;  
     for (i=j;i<=n;i++) {  
       sum=a[i][j];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for (k=1;k<j;k++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         sum -= a[i][k]*a[k][j];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       a[i][j]=sum;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       if ( (dum=vv[i]*fabs(sum)) >= big) {        savm=oldm;
         big=dum;        oldm=newm;
         imax=i;      }
       }      for(i=1; i<=nlstate+ndeath; i++)
     }        for(j=1;j<=nlstate+ndeath;j++) {
     if (j != imax) {          po[i][j][h]=newm[i][j];
       for (k=1;k<=n;k++) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         dum=a[imax][k];           */
         a[imax][k]=a[j][k];        }
         a[j][k]=dum;    } /* end h */
       }    return po;
       *d = -(*d);  }
       vv[imax]=vv[j];  
     }  
     indx[j]=imax;  /*************** log-likelihood *************/
     if (a[j][j] == 0.0) a[j][j]=TINY;  double func( double *x)
     if (j != n) {  {
       dum=1.0/(a[j][j]);    int i, ii, j, k, mi, d, kk;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
   }    double sw; /* Sum of weights */
   free_vector(vv,1,n);  /* Doesn't work */    double lli; /* Individual log likelihood */
 ;    int s1, s2;
 }    double bbh, survp;
     long ipmx;
 void lubksb(double **a, int n, int *indx, double b[])    /*extern weight */
 {    /* We are differentiating ll according to initial status */
   int i,ii=0,ip,j;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double sum;    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   for (i=1;i<=n;i++) {    */
     ip=indx[i];    cov[1]=1.;
     sum=b[ip];  
     b[ip]=b[i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    if(mle==1){
     else if (sum) ii=i;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     b[i]=sum;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   for (i=n;i>=1;i--) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     sum=b[i];            for (j=1;j<=nlstate+ndeath;j++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[i]=sum/a[i][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /************ Frequencies ********************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            for (kk=1; kk<=cptcovage;kk++) {
 {  /* Some frequencies */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***freq; /* Frequencies */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *pp;            savm=oldm;
   double pos, k2, dateintsum=0,k2cpt=0;            oldm=newm;
   FILE *ficresp;          } /* end mult */
   char fileresp[FILENAMELENGTH];        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   pp=vector(1,nlstate);          /* But now since version 0.9 we anticipate for bias and large stepm.
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   strcpy(fileresp,"p");           * (in months) between two waves is not a multiple of stepm, we rounded to 
   strcat(fileresp,fileres);           * the nearest (and in case of equal distance, to the lowest) interval but now
   if((ficresp=fopen(fileresp,"w"))==NULL) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     printf("Problem with prevalence resultfile: %s\n", fileresp);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     exit(0);           * probability in order to take into account the bias as a fraction of the way
   }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * -stepm/2 to stepm/2 .
   j1=0;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   j=cptcoveff;           */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   for(k1=1; k1<=j;k1++){          bbh=(double)bh[mi][i]/(double)stepm; 
     for(i1=1; i1<=ncodemax[k1];i1++){          /* bias is positive if real duration
       j1++;           * is higher than the multiple of stepm and negative otherwise.
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           */
         scanf("%d", i);*/          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for (i=-1; i<=nlstate+ndeath; i++)            if( s2 > nlstate){ 
         for (jk=-1; jk<=nlstate+ndeath; jk++)              /* i.e. if s2 is a death state and if the date of death is known then the contribution
           for(m=agemin; m <= agemax+3; m++)               to the likelihood is the probability to die between last step unit time and current 
             freq[i][jk][m]=0;               step unit time, which is also the differences between probability to die before dh 
                     and probability to die before dh-stepm . 
       dateintsum=0;               In version up to 0.92 likelihood was computed
       k2cpt=0;          as if date of death was unknown. Death was treated as any other
       for (i=1; i<=imx; i++) {          health state: the date of the interview describes the actual state
         bool=1;          and not the date of a change in health state. The former idea was
         if  (cptcovn>0) {          to consider that at each interview the state was recorded
           for (z1=1; z1<=cptcoveff; z1++)          (healthy, disable or death) and IMaCh was corrected; but when we
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          introduced the exact date of death then we should have modified
               bool=0;          the contribution of an exact death to the likelihood. This new
         }          contribution is smaller and very dependent of the step unit
         if (bool==1) {          stepm. It is no more the probability to die between last interview
           for(m=firstpass; m<=lastpass; m++){          and month of death but the probability to survive from last
             k2=anint[m][i]+(mint[m][i]/12.);          interview up to one month before death multiplied by the
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          probability to die within a month. Thanks to Chris
               if(agev[m][i]==0) agev[m][i]=agemax+1;          Jackson for correcting this bug.  Former versions increased
               if(agev[m][i]==1) agev[m][i]=agemax+2;          mortality artificially. The bad side is that we add another loop
               if (m<lastpass) {          which slows down the processing. The difference can be up to 10%
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          lower mortality.
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            */
               }            lli=log(out[s1][s2] - savm[s1][s2]);
                        }else{
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                 dateintsum=dateintsum+k2;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                 k2cpt++;          } 
               }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             }          /*if(lli ==000.0)*/
           }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         }          ipmx +=1;
       }          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        } /* end of wave */
       } /* end of individual */
       if  (cptcovn>0) {    }  else if(mle==2){
         fprintf(ficresp, "\n#********** Variable ");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficresp, "**********\n#");        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresp, "\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
       for(i=(int)agemin; i <= (int)agemax+3; i++){          for(d=0; d<=dh[mi][i]; d++){
         if(i==(int)agemax+3)            newm=savm;
           printf("Total");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else            for (kk=1; kk<=cptcovage;kk++) {
           printf("Age %d", i);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pp[jk] += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           for(m=-1, pos=0; m <=0 ; m++)          } /* end mult */
             pos += freq[jk][m][i];        
           if(pp[jk]>=1.e-10)          s1=s[mw[mi][i]][i];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          s2=s[mw[mi+1][i]][i];
           else          bbh=(double)bh[mi][i]/(double)stepm; 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         }          ipmx +=1;
           sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        } /* end of wave */
             pp[jk] += freq[jk][m][i];      } /* end of individual */
         }    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           pos += pp[jk];        for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           if(pos>=1.e-5)            for (j=1;j<=nlstate+ndeath;j++){
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            }
           if( i <= (int) agemax){          for(d=0; d<dh[mi][i]; d++){
             if(pos>=1.e-5){            newm=savm;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               probs[i][jk][j1]= pp[jk]/pos;            for (kk=1; kk<=cptcovage;kk++) {
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }            }
             else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
                  } /* end mult */
         for(jk=-1; jk <=nlstate+ndeath; jk++)        
           for(m=-1; m <=nlstate+ndeath; m++)          s1=s[mw[mi][i]][i];
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          s2=s[mw[mi+1][i]][i];
         if(i <= (int) agemax)          bbh=(double)bh[mi][i]/(double)stepm; 
           fprintf(ficresp,"\n");          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         printf("\n");          ipmx +=1;
       }          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   dateintmean=dateintsum/k2cpt;      } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
   fclose(ficresp);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_vector(pp,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   /* End of Freq */            for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Prevalence ********************/            }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          for(d=0; d<dh[mi][i]; d++){
 {  /* Some frequencies */            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            for (kk=1; kk<=cptcovage;kk++) {
   double ***freq; /* Frequencies */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double *pp;            }
   double pos, k2;          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   pp=vector(1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            savm=oldm;
              oldm=newm;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          } /* end mult */
   j1=0;        
            s1=s[mw[mi][i]][i];
   j=cptcoveff;          s2=s[mw[mi+1][i]][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          if( s2 > nlstate){ 
              lli=log(out[s1][s2] - savm[s1][s2]);
   for(k1=1; k1<=j;k1++){          }else{
     for(i1=1; i1<=ncodemax[k1];i1++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       j1++;          }
                ipmx +=1;
       for (i=-1; i<=nlstate+ndeath; i++)            sw += weight[i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=agemin; m <= agemax+3; m++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             freq[i][jk][m]=0;        } /* end of wave */
            } /* end of individual */
       for (i=1; i<=imx; i++) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         bool=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if  (cptcovn>0) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for (z1=1; z1<=cptcoveff; z1++)        for(mi=1; mi<= wav[i]-1; mi++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for (ii=1;ii<=nlstate+ndeath;ii++)
               bool=0;            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (bool==1) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=firstpass; m<=lastpass; m++){            }
             k2=anint[m][i]+(mint[m][i]/12.);          for(d=0; d<dh[mi][i]; d++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            newm=savm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if(agev[m][i]==1) agev[m][i]=agemax+2;            for (kk=1; kk<=cptcovage;kk++) {
               if (m<lastpass) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 if (calagedate>0)            }
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          
                 else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            savm=oldm;
               }            oldm=newm;
             }          } /* end mult */
           }        
         }          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          sw += weight[i];
             pp[jk] += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         for(jk=1; jk <=nlstate ; jk++){        } /* end of wave */
           for(m=-1, pos=0; m <=0 ; m++)      } /* end of individual */
             pos += freq[jk][m][i];    } /* End of if */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
            /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(jk=1; jk <=nlstate ; jk++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    return -l;
             pp[jk] += freq[jk][m][i];  }
         }  
          /*************** log-likelihood *************/
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  double funcone( double *x)
          {
         for(jk=1; jk <=nlstate ; jk++){        /* Same as likeli but slower because of a lot of printf and if */
           if( i <= (int) agemax){    int i, ii, j, k, mi, d, kk;
             if(pos>=1.e-5){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
               probs[i][jk][j1]= pp[jk]/pos;    double **out;
             }    double lli; /* Individual log likelihood */
           }    double llt;
         }    int s1, s2;
            double bbh, survp;
       }    /*extern weight */
     }    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    */
   free_vector(pp,1,nlstate);    cov[1]=1.;
    
 }  /* End of Freq */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 /************* Waves Concatenation ***************/    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      for(mi=1; mi<= wav[i]-1; mi++){
 {        for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          for (j=1;j<=nlstate+ndeath;j++){
      Death is a valid wave (if date is known).            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            savm[ii][j]=(ii==j ? 1.0 : 0.0);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          }
      and mw[mi+1][i]. dh depends on stepm.        for(d=0; d<dh[mi][i]; d++){
      */          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i, mi, m;          for (kk=1; kk<=cptcovage;kk++) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      double sum=0., jmean=0.;*/          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int j, k=0,jk, ju, jl;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double sum=0.;          savm=oldm;
   jmin=1e+5;          oldm=newm;
   jmax=-1;        } /* end mult */
   jmean=0.;        
   for(i=1; i<=imx; i++){        s1=s[mw[mi][i]][i];
     mi=0;        s2=s[mw[mi+1][i]][i];
     m=firstpass;        bbh=(double)bh[mi][i]/(double)stepm; 
     while(s[m][i] <= nlstate){        /* bias is positive if real duration
       if(s[m][i]>=1)         * is higher than the multiple of stepm and negative otherwise.
         mw[++mi][i]=m;         */
       if(m >=lastpass)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         break;          lli=log(out[s1][s2] - savm[s1][s2]);
       else        } else if (mle==1){
         m++;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }/* end while */        } else if(mle==2){
     if (s[m][i] > nlstate){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       mi++;     /* Death is another wave */        } else if(mle==3){  /* exponential inter-extrapolation */
       /* if(mi==0)  never been interviewed correctly before death */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
          /* Only death is a correct wave */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       mw[mi][i]=m;          lli=log(out[s1][s2]); /* Original formula */
     }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
     wav[i]=mi;        } /* End of if */
     if(mi==0)        ipmx +=1;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        sw += weight[i];
   }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for(i=1; i<=imx; i++){        if(globpr){
     for(mi=1; mi<wav[i];mi++){          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       if (stepm <=0)   %10.6f %10.6f %10.6f ", \
         dh[mi][i]=1;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       else{                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         if (s[mw[mi+1][i]][i] > nlstate) {          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           if (agedc[i] < 2*AGESUP) {            llt +=ll[k]*gipmx/gsw;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           if(j==0) j=1;  /* Survives at least one month after exam */          }
           k=k+1;          fprintf(ficresilk," %10.6f\n", -llt);
           if (j >= jmax) jmax=j;        }
           if (j <= jmin) jmin=j;      } /* end of wave */
           sum=sum+j;    } /* end of individual */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         else{    if(globpr==0){ /* First time we count the contributions and weights */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      gipmx=ipmx;
           k=k+1;      gsw=sw;
           if (j >= jmax) jmax=j;    }
           else if (j <= jmin)jmin=j;    return -l;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  }
           sum=sum+j;  
         }  
         jk= j/stepm;  /*************** function likelione ***********/
         jl= j -jk*stepm;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         ju= j -(jk+1)*stepm;  {
         if(jl <= -ju)    /* This routine should help understanding what is done with 
           dh[mi][i]=jk;       the selection of individuals/waves and
         else       to check the exact contribution to the likelihood.
           dh[mi][i]=jk+1;       Plotting could be done.
         if(dh[mi][i]==0)     */
           dh[mi][i]=1; /* At least one step */    int k;
       }  
     }    if(*globpri !=0){ /* Just counts and sums, no printings */
   }      strcpy(fileresilk,"ilk"); 
   jmean=sum/k;      strcat(fileresilk,fileres);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
  }        printf("Problem with resultfile: %s\n", fileresilk);
 /*********** Tricode ****************************/        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 void tricode(int *Tvar, int **nbcode, int imx)      }
 {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int Ndum[20],ij=1, k, j, i;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int cptcode=0;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   cptcoveff=0;      for(k=1; k<=nlstate; k++) 
          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   for (k=0; k<19; k++) Ndum[k]=0;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   for (k=1; k<=7; k++) ncodemax[k]=0;    }
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    *fretone=(*funcone)(p);
     for (i=1; i<=imx; i++) {    if(*globpri !=0){
       ij=(int)(covar[Tvar[j]][i]);      fclose(ficresilk);
       Ndum[ij]++;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      fflush(fichtm); 
       if (ij > cptcode) cptcode=ij;    } 
     }    return;
   }
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  /*********** Maximum Likelihood Estimation ***************/
     ij=1;  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
     for (i=1; i<=ncodemax[j]; i++) {    int i,j, iter;
       for (k=0; k<=19; k++) {    double **xi;
         if (Ndum[k] != 0) {    double fret;
           nbcode[Tvar[j]][ij]=k;    double fretone; /* Only one call to likelihood */
              char filerespow[FILENAMELENGTH];
           ij++;    xi=matrix(1,npar,1,npar);
         }    for (i=1;i<=npar;i++)
         if (ij > ncodemax[j]) break;      for (j=1;j<=npar;j++)
       }          xi[i][j]=(i==j ? 1.0 : 0.0);
     }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   }      strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
  for (k=0; k<19; k++) Ndum[k]=0;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
  for (i=1; i<=ncovmodel-2; i++) {      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       ij=Tvar[i];    }
       Ndum[ij]++;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     }    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
  ij=1;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
  for (i=1; i<=10; i++) {    fprintf(ficrespow,"\n");
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i;    powell(p,xi,npar,ftol,&iter,&fret,func);
      ij++;  
    }    fclose(ficrespow);
  }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     cptcoveff=ij-1;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 }  
   }
 /*********** Health Expectancies ****************/  
   /**** Computes Hessian and covariance matrix ***/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
 {    double  **a,**y,*x,pd;
   /* Health expectancies */    double **hess;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    int i, j,jk;
   double age, agelim, hf;    int *indx;
   double ***p3mat,***varhe;  
   double **dnewm,**doldm;    double hessii(double p[], double delta, int theta, double delti[]);
   double *xp;    double hessij(double p[], double delti[], int i, int j);
   double **gp, **gm;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   double ***gradg, ***trgradg;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   int theta;  
     hess=matrix(1,npar,1,npar);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);    printf("\nCalculation of the hessian matrix. Wait...\n");
   dnewm=matrix(1,nlstate*2,1,npar);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   doldm=matrix(1,nlstate*2,1,nlstate*2);    for (i=1;i<=npar;i++){
        printf("%d",i);fflush(stdout);
   fprintf(ficreseij,"# Health expectancies\n");      fprintf(ficlog,"%d",i);fflush(ficlog);
   fprintf(ficreseij,"# Age");      hess[i][i]=hessii(p,ftolhess,i,delti);
   for(i=1; i<=nlstate;i++)      /*printf(" %f ",p[i]);*/
     for(j=1; j<=nlstate;j++)      /*printf(" %lf ",hess[i][i]);*/
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    }
   fprintf(ficreseij,"\n");    
     for (i=1;i<=npar;i++) {
   if(estepm < stepm){      for (j=1;j<=npar;j++)  {
     printf ("Problem %d lower than %d\n",estepm, stepm);        if (j>i) { 
   }          printf(".%d%d",i,j);fflush(stdout);
   else  hstepm=estepm;            fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   /* We compute the life expectancy from trapezoids spaced every estepm months          hess[i][j]=hessij(p,delti,i,j);
    * This is mainly to measure the difference between two models: for example          hess[j][i]=hess[i][j];    
    * if stepm=24 months pijx are given only every 2 years and by summing them          /*printf(" %lf ",hess[i][j]);*/
    * we are calculating an estimate of the Life Expectancy assuming a linear        }
    * progression inbetween and thus overestimating or underestimating according      }
    * to the curvature of the survival function. If, for the same date, we    }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    printf("\n");
    * to compare the new estimate of Life expectancy with the same linear    fprintf(ficlog,"\n");
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   /* For example we decided to compute the life expectancy with the smallest unit */    
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    a=matrix(1,npar,1,npar);
      nhstepm is the number of hstepm from age to agelim    y=matrix(1,npar,1,npar);
      nstepm is the number of stepm from age to agelin.    x=vector(1,npar);
      Look at hpijx to understand the reason of that which relies in memory size    indx=ivector(1,npar);
      and note for a fixed period like estepm months */    for (i=1;i<=npar;i++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      survival function given by stepm (the optimization length). Unfortunately it    ludcmp(a,npar,indx,&pd);
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (j=1;j<=npar;j++) {
      results. So we changed our mind and took the option of the best precision.      for (i=1;i<=npar;i++) x[i]=0;
   */      x[j]=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   agelim=AGESUP;        matcov[i][j]=x[i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      }
     /* nhstepm age range expressed in number of stepm */    }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    printf("\n#Hessian matrix#\n");
     /* if (stepm >= YEARM) hstepm=1;*/    fprintf(ficlog,"\n#Hessian matrix#\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for (i=1;i<=npar;i++) { 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=npar;j++) { 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        printf("%.3e ",hess[i][j]);
     gp=matrix(0,nhstepm,1,nlstate*2);        fprintf(ficlog,"%.3e ",hess[i][j]);
     gm=matrix(0,nhstepm,1,nlstate*2);      }
       printf("\n");
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      fprintf(ficlog,"\n");
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
      /* Recompute Inverse */
     for (i=1;i<=npar;i++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
     /* Computing Variances of health expectancies */  
     /*  printf("\n#Hessian matrix recomputed#\n");
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){    for (j=1;j<=npar;j++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
       cptj=0;        y[i][j]=x[i];
       for(j=1; j<= nlstate; j++){        printf("%.3e ",y[i][j]);
         for(i=1; i<=nlstate; i++){        fprintf(ficlog,"%.3e ",y[i][j]);
           cptj=cptj+1;      }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      printf("\n");
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      fprintf(ficlog,"\n");
           }    }
         }    */
       }  
          free_matrix(a,1,npar,1,npar);
          free_matrix(y,1,npar,1,npar);
       for(i=1; i<=npar; i++)    free_vector(x,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_ivector(indx,1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_matrix(hess,1,npar,1,npar);
        
       cptj=0;  
       for(j=1; j<= nlstate; j++){  }
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;  /*************** hessian matrix ****************/
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  double hessii( double x[], double delta, int theta, double delti[])
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  {
           }    int i;
         }    int l=1, lmax=20;
       }    double k1,k2;
          double p2[NPARMAX+1];
        double res;
     double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(j=1; j<= nlstate*2; j++)    double fx;
         for(h=0; h<=nhstepm-1; h++){    int k=0,kmax=10;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double l1;
         }  
     fx=func(x);
      }    for (i=1;i<=npar;i++) p2[i]=x[i];
        for(l=0 ; l <=lmax; l++){
 /* End theta */      l1=pow(10,l);
       delts=delt;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
      for(h=0; h<=nhstepm-1; h++)        p2[theta]=x[theta] +delt;
       for(j=1; j<=nlstate*2;j++)        k1=func(p2)-fx;
         for(theta=1; theta <=npar; theta++)        p2[theta]=x[theta]-delt;
         trgradg[h][j][theta]=gradg[h][theta][j];        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
      for(i=1;i<=nlstate*2;i++)        
       for(j=1;j<=nlstate*2;j++)  #ifdef DEBUG
         varhe[i][j][(int)age] =0.;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      printf("%d||",(int)age);fflush(stdout);  #endif
     for(h=0;h<=nhstepm-1;h++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(k=0;k<=nhstepm-1;k++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          k=kmax;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        }
         for(i=1;i<=nlstate*2;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           for(j=1;j<=nlstate*2;j++)          k=kmax; l=lmax*10.;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        }
       }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     }          delts=delt;
         }
            }
     /* Computing expectancies */    }
     for(i=1; i<=nlstate;i++)    delti[theta]=delts;
       for(j=1; j<=nlstate;j++)    return res; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  }
            
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  double hessij( double x[], double delti[], int thetai,int thetaj)
   {
         }    int i;
     int l=1, l1, lmax=20;
     fprintf(ficreseij,"%3.0f",age );    double k1,k2,k3,k4,res,fx;
     cptj=0;    double p2[NPARMAX+1];
     for(i=1; i<=nlstate;i++)    int k;
       for(j=1; j<=nlstate;j++){  
         cptj++;    fx=func(x);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for (k=1; k<=2; k++) {
       }      for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficreseij,"\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
          p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_matrix(gm,0,nhstepm,1,nlstate*2);      k1=func(p2)-fx;
     free_matrix(gp,0,nhstepm,1,nlstate*2);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      k2=func(p2)-fx;
   }    
   free_vector(xp,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
   free_matrix(dnewm,1,nlstate*2,1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      k3=func(p2)-fx;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    
 }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 /************ Variance ******************/      k4=func(p2)-fx;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 {  #ifdef DEBUG
   /* Variance of health expectancies */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double **newm;  #endif
   double **dnewm,**doldm;    }
   int i, j, nhstepm, hstepm, h, nstepm ;    return res;
   int k, cptcode;  }
   double *xp;  
   double **gp, **gm;  /************** Inverse of matrix **************/
   double ***gradg, ***trgradg;  void ludcmp(double **a, int n, int *indx, double *d) 
   double ***p3mat;  { 
   double age,agelim, hf;    int i,imax,j,k; 
   int theta;    double big,dum,sum,temp; 
     double *vv; 
    fprintf(ficresvij,"# Covariances of life expectancies\n");   
   fprintf(ficresvij,"# Age");    vv=vector(1,n); 
   for(i=1; i<=nlstate;i++)    *d=1.0; 
     for(j=1; j<=nlstate;j++)    for (i=1;i<=n;i++) { 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      big=0.0; 
   fprintf(ficresvij,"\n");      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
   xp=vector(1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   dnewm=matrix(1,nlstate,1,npar);      vv[i]=1.0/big; 
   doldm=matrix(1,nlstate,1,nlstate);    } 
      for (j=1;j<=n;j++) { 
   if(estepm < stepm){      for (i=1;i<j;i++) { 
     printf ("Problem %d lower than %d\n",estepm, stepm);        sum=a[i][j]; 
   }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   else  hstepm=estepm;          a[i][j]=sum; 
   /* For example we decided to compute the life expectancy with the smallest unit */      } 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      big=0.0; 
      nhstepm is the number of hstepm from age to agelim      for (i=j;i<=n;i++) { 
      nstepm is the number of stepm from age to agelin.        sum=a[i][j]; 
      Look at hpijx to understand the reason of that which relies in memory size        for (k=1;k<j;k++) 
      and note for a fixed period like k years */          sum -= a[i][k]*a[k][j]; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        a[i][j]=sum; 
      survival function given by stepm (the optimization length). Unfortunately it        if ( (dum=vv[i]*fabs(sum)) >= big) { 
      means that if the survival funtion is printed only each two years of age and if          big=dum; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          imax=i; 
      results. So we changed our mind and took the option of the best precision.        } 
   */      } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      if (j != imax) { 
   agelim = AGESUP;        for (k=1;k<=n;k++) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          dum=a[imax][k]; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          a[imax][k]=a[j][k]; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          a[j][k]=dum; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        *d = -(*d); 
     gp=matrix(0,nhstepm,1,nlstate);        vv[imax]=vv[j]; 
     gm=matrix(0,nhstepm,1,nlstate);      } 
       indx[j]=imax; 
     for(theta=1; theta <=npar; theta++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      if (j != n) { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        dum=1.0/(a[j][j]); 
       }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    } 
     free_vector(vv,1,n);  /* Doesn't work */
       if (popbased==1) {  ;
         for(i=1; i<=nlstate;i++)  } 
           prlim[i][i]=probs[(int)age][i][ij];  
       }  void lubksb(double **a, int n, int *indx, double b[]) 
    { 
       for(j=1; j<= nlstate; j++){    int i,ii=0,ip,j; 
         for(h=0; h<=nhstepm; h++){    double sum; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)   
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (i=1;i<=n;i++) { 
         }      ip=indx[i]; 
       }      sum=b[ip]; 
          b[ip]=b[i]; 
       for(i=1; i<=npar; i++) /* Computes gradient */      if (ii) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        else if (sum) ii=i; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      b[i]=sum; 
      } 
       if (popbased==1) {    for (i=n;i>=1;i--) { 
         for(i=1; i<=nlstate;i++)      sum=b[i]; 
           prlim[i][i]=probs[(int)age][i][ij];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       }      b[i]=sum/a[i][i]; 
     } 
       for(j=1; j<= nlstate; j++){  } 
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  /************ Frequencies ********************/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
         }  {  /* Some frequencies */
       }    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       for(j=1; j<= nlstate; j++)    int first;
         for(h=0; h<=nhstepm; h++){    double ***freq; /* Frequencies */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double *pp, **prop;
         }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     } /* End theta */    FILE *ficresp;
     char fileresp[FILENAMELENGTH];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    
     pp=vector(1,nlstate);
     for(h=0; h<=nhstepm; h++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
       for(j=1; j<=nlstate;j++)    strcpy(fileresp,"p");
         for(theta=1; theta <=npar; theta++)    strcat(fileresp,fileres);
           trgradg[h][j][theta]=gradg[h][theta][j];    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     for(i=1;i<=nlstate;i++)      exit(0);
       for(j=1;j<=nlstate;j++)    }
         vareij[i][j][(int)age] =0.;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
     for(h=0;h<=nhstepm;h++){    
       for(k=0;k<=nhstepm;k++){    j=cptcoveff;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)    first=1;
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
     }        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     fprintf(ficresvij,"%.0f ",age );          scanf("%d", i);*/
     for(i=1; i<=nlstate;i++)        for (i=-1; i<=nlstate+ndeath; i++)  
       for(j=1; j<=nlstate;j++){          for (jk=-1; jk<=nlstate+ndeath; jk++)  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            for(m=iagemin; m <= iagemax+3; m++)
       }              freq[i][jk][m]=0;
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);      for (i=1; i<=nlstate; i++)  
     free_matrix(gm,0,nhstepm,1,nlstate);        for(m=iagemin; m <= iagemax+3; m++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          prop[i][m]=0;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        dateintsum=0;
   } /* End age */        k2cpt=0;
          for (i=1; i<=imx; i++) {
   free_vector(xp,1,npar);          bool=1;
   free_matrix(doldm,1,nlstate,1,npar);          if  (cptcovn>0) {
   free_matrix(dnewm,1,nlstate,1,nlstate);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 }                bool=0;
           }
 /************ Variance of prevlim ******************/          if (bool==1){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            for(m=firstpass; m<=lastpass; m++){
 {              k2=anint[m][i]+(mint[m][i]/12.);
   /* Variance of prevalence limit */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   double **newm;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double **dnewm,**doldm;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   int i, j, nhstepm, hstepm;                if (m<lastpass) {
   int k, cptcode;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   double *xp;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   double *gp, *gm;                }
   double **gradg, **trgradg;                
   double age,agelim;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   int theta;                  dateintsum=dateintsum+k2;
                      k2cpt++;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");                }
   fprintf(ficresvpl,"# Age");                /*}*/
   for(i=1; i<=nlstate;i++)            }
       fprintf(ficresvpl," %1d-%1d",i,i);          }
   fprintf(ficresvpl,"\n");        }
          
   xp=vector(1,npar);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);        if  (cptcovn>0) {
            fprintf(ficresp, "\n#********** Variable "); 
   hstepm=1*YEARM; /* Every year of age */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          fprintf(ficresp, "**********\n#");
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(i=1; i<=nlstate;i++) 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     if (stepm >= YEARM) hstepm=1;        fprintf(ficresp, "\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        
     gradg=matrix(1,npar,1,nlstate);        for(i=iagemin; i <= iagemax+3; i++){
     gp=vector(1,nlstate);          if(i==iagemax+3){
     gm=vector(1,nlstate);            fprintf(ficlog,"Total");
           }else{
     for(theta=1; theta <=npar; theta++){            if(first==1){
       for(i=1; i<=npar; i++){ /* Computes gradient */              first=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              printf("See log file for details...\n");
       }            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            fprintf(ficlog,"Age %d", i);
       for(i=1;i<=nlstate;i++)          }
         gp[i] = prlim[i][i];          for(jk=1; jk <=nlstate ; jk++){
                for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       for(i=1; i<=npar; i++) /* Computes gradient */              pp[jk] += freq[jk][m][i]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(jk=1; jk <=nlstate ; jk++){
       for(i=1;i<=nlstate;i++)            for(m=-1, pos=0; m <=0 ; m++)
         gm[i] = prlim[i][i];              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
       for(i=1;i<=nlstate;i++)              if(first==1){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     } /* End theta */              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     trgradg =matrix(1,nlstate,1,npar);            }else{
               if(first==1)
     for(j=1; j<=nlstate;j++)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(theta=1; theta <=npar; theta++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         trgradg[j][theta]=gradg[theta][j];            }
           }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;          for(jk=1; jk <=nlstate ; jk++){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);              pp[jk] += freq[jk][m][i];
     for(i=1;i<=nlstate;i++)          }       
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
     fprintf(ficresvpl,"%.0f ",age );            posprop += prop[jk][i];
     for(i=1; i<=nlstate;i++)          }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficresvpl,"\n");            if(pos>=1.e-5){
     free_vector(gp,1,nlstate);              if(first==1)
     free_vector(gm,1,nlstate);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_matrix(gradg,1,npar,1,nlstate);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_matrix(trgradg,1,nlstate,1,npar);            }else{
   } /* End age */              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   free_vector(xp,1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   free_matrix(doldm,1,nlstate,1,npar);            }
   free_matrix(dnewm,1,nlstate,1,nlstate);            if( i <= iagemax){
               if(pos>=1.e-5){
 }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
 /************ Variance of one-step probabilities  ******************/                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              }
 {              else
   int i, j, i1, k1, j1, z1;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   int k=0, cptcode;            }
   double **dnewm,**doldm;          }
   double *xp;          
   double *gp, *gm;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   double **gradg, **trgradg;            for(m=-1; m <=nlstate+ndeath; m++)
   double age,agelim, cov[NCOVMAX];              if(freq[jk][m][i] !=0 ) {
   int theta;              if(first==1)
   char fileresprob[FILENAMELENGTH];                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   strcpy(fileresprob,"prob");              }
   strcat(fileresprob,fileres);          if(i <= iagemax)
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            fprintf(ficresp,"\n");
     printf("Problem with resultfile: %s\n", fileresprob);          if(first==1)
   }            printf("Others in log...\n");
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          fprintf(ficlog,"\n");
          }
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");      }
   fprintf(ficresprob,"# Age");    }
   for(i=1; i<=nlstate;i++)    dateintmean=dateintsum/k2cpt; 
     for(j=1; j<=(nlstate+ndeath);j++)   
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    fclose(ficresp);
     free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
   fprintf(ficresprob,"\n");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
   }
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /************ Prevalence ********************/
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    {  
   cov[1]=1;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   j=cptcoveff;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       We still use firstpass and lastpass as another selection.
   j1=0;    */
   for(k1=1; k1<=1;k1++){   
     for(i1=1; i1<=ncodemax[k1];i1++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     j1++;    double ***freq; /* Frequencies */
     double *pp, **prop;
     if  (cptcovn>0) {    double pos,posprop; 
       fprintf(ficresprob, "\n#********** Variable ");    double  y2; /* in fractional years */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int iagemin, iagemax;
       fprintf(ficresprob, "**********\n#");  
     }    iagemin= (int) agemin;
        iagemax= (int) agemax;
       for (age=bage; age<=fage; age ++){    /*pp=vector(1,nlstate);*/
         cov[2]=age;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         for (k=1; k<=cptcovn;k++) {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    j1=0;
              
         }    j=cptcoveff;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for (k=1; k<=cptcovprod;k++)    
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for(k1=1; k1<=j;k1++){
              for(i1=1; i1<=ncodemax[k1];i1++){
         gradg=matrix(1,npar,1,9);        j1++;
         trgradg=matrix(1,9,1,npar);        
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        for (i=1; i<=nlstate; i++)  
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          for(m=iagemin; m <= iagemax+3; m++)
                prop[i][m]=0.0;
         for(theta=1; theta <=npar; theta++){       
           for(i=1; i<=npar; i++)        for (i=1; i<=imx; i++) { /* Each individual */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          bool=1;
                    if  (cptcovn>0) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            for (z1=1; z1<=cptcoveff; z1++) 
                        if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           k=0;                bool=0;
           for(i=1; i<= (nlstate+ndeath); i++){          } 
             for(j=1; j<=(nlstate+ndeath);j++){          if (bool==1) { 
               k=k+1;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               gp[k]=pmmij[i][j];              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                          if(agev[m][i]==1) agev[m][i]=iagemax+2;
           for(i=1; i<=npar; i++)                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                      /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           k=0;                  prop[s[m][i]][iagemax+3] += weight[i]; 
           for(i=1; i<=(nlstate+ndeath); i++){                } 
             for(j=1; j<=(nlstate+ndeath);j++){              }
               k=k+1;            } /* end selection of waves */
               gm[k]=pmmij[i][j];          }
             }        }
           }        for(i=iagemin; i <= iagemax+3; i++){  
                
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              posprop += prop[jk][i]; 
         }          } 
   
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          for(jk=1; jk <=nlstate ; jk++){     
           for(theta=1; theta <=npar; theta++)            if( i <=  iagemax){ 
             trgradg[j][theta]=gradg[theta][j];              if(posprop>=1.e-5){ 
                        probs[i][jk][j1]= prop[jk][i]/posprop;
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              } 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            } 
                  }/* end jk */ 
         pmij(pmmij,cov,ncovmodel,x,nlstate);        }/* end i */ 
              } /* end i1 */
         k=0;    } /* end k1 */
         for(i=1; i<=(nlstate+ndeath); i++){    
           for(j=1; j<=(nlstate+ndeath);j++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             k=k+1;    /*free_vector(pp,1,nlstate);*/
             gm[k]=pmmij[i][j];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           }  }  /* End of prevalence */
         }  
        /************* Waves Concatenation ***************/
      /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  {
      }*/    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
         fprintf(ficresprob,"\n%d ",(int)age);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)       and mw[mi+1][i]. dh depends on stepm.
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));       */
    
       }    int i, mi, m;
     }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));       double sum=0., jmean=0.;*/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    int first;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int j, k=0,jk, ju, jl;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double sum=0.;
   }    first=0;
   free_vector(xp,1,npar);    jmin=1e+5;
   fclose(ficresprob);    jmax=-1;
      jmean=0.;
 }    for(i=1; i<=imx; i++){
       mi=0;
 /******************* Printing html file ***********/      m=firstpass;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      while(s[m][i] <= nlstate){
  int lastpass, int stepm, int weightopt, char model[],\        if(s[m][i]>=1)
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          mw[++mi][i]=m;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        if(m >=lastpass)
  char version[], int popforecast, int estepm ){          break;
   int jj1, k1, i1, cpt;        else
   FILE *fichtm;          m++;
   /*char optionfilehtm[FILENAMELENGTH];*/      }/* end while */
       if (s[m][i] > nlstate){
   strcpy(optionfilehtm,optionfile);        mi++;     /* Death is another wave */
   strcat(optionfilehtm,".htm");        /* if(mi==0)  never been interviewed correctly before death */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {           /* Only death is a correct wave */
     printf("Problem with %s \n",optionfilehtm), exit(0);        mw[mi][i]=m;
   }      }
   
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      wav[i]=mi;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      if(mi==0){
 \n        nbwarn++;
 Total number of observations=%d <br>\n        if(first==0){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 <hr  size=\"2\" color=\"#EC5E5E\">          first=1;
  <ul><li>Outputs files<br>\n        }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        if(first==1){
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        }
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n      } /* end mi==0 */
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    } /* End individuals */
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
     for(i=1; i<=imx; i++){
  fprintf(fichtm,"\n      for(mi=1; mi<wav[i];mi++){
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n        if (stepm <=0)
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          dh[mi][i]=1;
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        else{
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
  if(popforecast==1) fprintf(fichtm,"\n              if(j==0) j=1;  /* Survives at least one month after exam */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              else if(j<0){
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                nberr++;
         <br>",fileres,fileres,fileres,fileres);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  else                j=1; /* Temporary Dangerous patch */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 fprintf(fichtm," <li>Graphs</li><p>");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
  m=cptcoveff;              }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              k=k+1;
               if (j >= jmax) jmax=j;
  jj1=0;              if (j <= jmin) jmin=j;
  for(k1=1; k1<=m;k1++){              sum=sum+j;
    for(i1=1; i1<=ncodemax[k1];i1++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
        jj1++;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        if (cptcovn > 0) {            }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          }
          for (cpt=1; cpt<=cptcoveff;cpt++)          else{
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        }            k=k+1;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.png<br>            if (j >= jmax) jmax=j;
 <img src=\"pe%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                else if (j <= jmin)jmin=j;
        for(cpt=1; cpt<nlstate;cpt++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.png<br>            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            if(j<0){
        }              nberr++;
     for(cpt=1; cpt<=nlstate;cpt++) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 interval) in state (%d): v%s%d%d.png <br>            }
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              sum=sum+j;
      }          }
      for(cpt=1; cpt<=nlstate;cpt++) {          jk= j/stepm;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          jl= j -jk*stepm;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          ju= j -(jk+1)*stepm;
      }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            if(jl==0){
 health expectancies in states (1) and (2): e%s%d.png<br>              dh[mi][i]=jk;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              bh[mi][i]=0;
 fprintf(fichtm,"\n</body>");            }else{ /* We want a negative bias in order to only have interpolation ie
    }                    * at the price of an extra matrix product in likelihood */
    }              dh[mi][i]=jk+1;
 fclose(fichtm);              bh[mi][i]=ju;
 }            }
           }else{
 /******************* Gnuplot file **************/            if(jl <= -ju){
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
   strcpy(optionfilegnuplot,optionfilefiname);            }
   strcat(optionfilegnuplot,".gp.txt");            else{
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              dh[mi][i]=jk+1;
     printf("Problem with file %s",optionfilegnuplot);              bh[mi][i]=ju;
   }            }
             if(dh[mi][i]==0){
 #ifdef windows              dh[mi][i]=1; /* At least one step */
     fprintf(ficgp,"cd \"%s\" \n",pathc);              bh[mi][i]=ju; /* At least one step */
 #endif              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 m=pow(2,cptcoveff);            }
            } /* end if mle */
  /* 1eme*/        }
   for (cpt=1; cpt<= nlstate ; cpt ++) {      } /* end wave */
    for (k1=1; k1<= m ; k1 ++) {    }
     jmean=sum/k;
 #ifdef windows    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);   }
 #endif  
 #ifdef unix  /*********** Tricode ****************************/
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);  void tricode(int *Tvar, int **nbcode, int imx)
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  {
 #endif    
     int Ndum[20],ij=1, k, j, i, maxncov=19;
 for (i=1; i<= nlstate ; i ++) {    int cptcode=0;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    cptcoveff=0; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");   
 }    for (k=0; k<maxncov; k++) Ndum[k]=0;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    for (k=1; k<=7; k++) ncodemax[k]=0;
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 }                                 modality*/ 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
      for (i=1; i<= nlstate ; i ++) {        Ndum[ij]++; /*store the modality */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 }                                           Tvar[j]. If V=sex and male is 0 and 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                                         female is 1, then  cptcode=1.*/
 #ifdef unix      }
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  
 #endif      for (i=0; i<=cptcode; i++) {
    }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   }      }
   /*2 eme*/  
       ij=1; 
   for (k1=1; k1<= m ; k1 ++) {      for (i=1; i<=ncodemax[j]; i++) {
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n\n",strtok(optionfile, "."),k1);        for (k=0; k<= maxncov; k++) {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          if (Ndum[k] != 0) {
                nbcode[Tvar[j]][ij]=k; 
     for (i=1; i<= nlstate+1 ; i ++) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       k=2*i;            
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            ij++;
       for (j=1; j<= nlstate+1 ; j ++) {          }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          if (ij > ncodemax[j]) break; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }  
 }        } 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    }  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   for (i=1; i<=ncovmodel-2; i++) { 
         else fprintf(ficgp," \%%*lf (\%%*lf)");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 }       ij=Tvar[i];
       fprintf(ficgp,"\" t\"\" w l 0,");     Ndum[ij]++;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);   }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   ij=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");   for (i=1; i<= maxncov; i++) {
 }       if((Ndum[i]!=0) && (i<=ncovcol)){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");       Tvaraff[ij]=i; /*For printing */
       else fprintf(ficgp,"\" t\"\" w l 0,");       ij++;
     }     }
   }   }
     
   /*3eme*/   cptcoveff=ij-1; /*Number of simple covariates*/
   }
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {  /*********** Health Expectancies ****************/
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  {
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    /* Health expectancies */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double age, agelim, hf;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double ***p3mat,***varhe;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double **dnewm,**doldm;
     double *xp;
 */    double **gp, **gm;
       for (i=1; i< nlstate ; i ++) {    double ***gradg, ***trgradg;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    int theta;
   
       }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     }    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate*nlstate,1,npar);
      doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   /* CV preval stat */    
     for (k1=1; k1<= m ; k1 ++) {    fprintf(ficreseij,"# Health expectancies\n");
     for (cpt=1; cpt<nlstate ; cpt ++) {    fprintf(ficreseij,"# Age");
       k=3;    for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"set out \"p%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);      for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     fprintf(ficreseij,"\n");
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);    if(estepm < stepm){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      printf ("Problem %d lower than %d\n",estepm, stepm);
          }
       l=3+(nlstate+ndeath)*cpt;    else  hstepm=estepm;   
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /* We compute the life expectancy from trapezoids spaced every estepm months
       for (i=1; i< nlstate ; i ++) {     * This is mainly to measure the difference between two models: for example
         l=3+(nlstate+ndeath)*cpt;     * if stepm=24 months pijx are given only every 2 years and by summing them
         fprintf(ficgp,"+$%d",l+i+1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       }     * progression in between and thus overestimating or underestimating according
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       * to the curvature of the survival function. If, for the same date, we 
     }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }       * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
   /* proba elementaires */     * curvature will be obtained if estepm is as small as stepm. */
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){    /* For example we decided to compute the life expectancy with the smallest unit */
       if (k != i) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         for(j=1; j <=ncovmodel; j++){       nhstepm is the number of hstepm from age to agelim 
               nstepm is the number of stepm from age to agelin. 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);       Look at hpijx to understand the reason of that which relies in memory size
           jk++;       and note for a fixed period like estepm months */
           fprintf(ficgp,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed only each two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    }       results. So we changed our mind and took the option of the best precision.
     */
    for(jk=1; jk <=m; jk++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      fprintf(ficgp,"\nset out \"pe%s%d.png\" \n\n",strtok(optionfile, "."),jk);  
      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    agelim=AGESUP;
      i=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      for(k2=1; k2<=nlstate; k2++) {      /* nhstepm age range expressed in number of stepm */
        k3=i;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
        for(k=1; k<=(nlstate+ndeath); k++) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          if (k != k2){      /* if (stepm >= YEARM) hstepm=1;*/
            fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
            ij=1;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            for(j=3; j <=ncovmodel; j++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
              if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      gp=matrix(0,nhstepm,1,nlstate*nlstate);
                fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
                ij++;  
              }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
              else         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
            }   
            fprintf(ficgp,")/(1");  
                  hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
            for(k1=1; k1 <=nlstate; k1++){    
              fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      /* Computing  Variances of health expectancies */
              ij=1;  
              for(j=3; j <=ncovmodel; j++){       for(theta=1; theta <=npar; theta++){
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(i=1; i<=npar; i++){ 
                  fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                  ij++;        }
                }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                else    
                  fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        cptj=0;
              }        for(j=1; j<= nlstate; j++){
              fprintf(ficgp,")");          for(i=1; i<=nlstate; i++){
            }            cptj=cptj+1;
            fprintf(ficgp,") t \"p%d%d\" ", k2,k);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
            if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
            i=i+ncovmodel;            }
          }          }
        }        }
      }       
    }       
            for(i=1; i<=npar; i++) 
    fclose(ficgp);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 }  /* end gnuplot */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         
         cptj=0;
 /*************** Moving average **************/        for(j=1; j<= nlstate; j++){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
   int i, cpt, cptcod;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            }
           mobaverage[(int)agedeb][i][cptcod]=0.;          }
            }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        for(j=1; j<= nlstate*nlstate; j++)
       for (i=1; i<=nlstate;i++){          for(h=0; h<=nhstepm-1; h++){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           for (cpt=0;cpt<=4;cpt++){          }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];       } 
           }     
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  /* End theta */
         }  
       }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     }  
           for(h=0; h<=nhstepm-1; h++)
 }        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
 /************** Forecasting ******************/       
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  
         for(i=1;i<=nlstate*nlstate;i++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for(j=1;j<=nlstate*nlstate;j++)
   int *popage;          varhe[i][j][(int)age] =0.;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;       printf("%d|",(int)age);fflush(stdout);
   double ***p3mat;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   char fileresf[FILENAMELENGTH];       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
  agelim=AGESUP;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            for(j=1;j<=nlstate*nlstate;j++)
                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
   strcpy(fileresf,"f");      }
   strcat(fileresf,fileres);      /* Computing expectancies */
   if((ficresf=fopen(fileresf,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with forecast resultfile: %s\n", fileresf);        for(j=1; j<=nlstate;j++)
   }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   printf("Computing forecasting: result on file '%s' \n", fileresf);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   if (mobilav==1) {          }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficreseij,"%3.0f",age );
   }      cptj=0;
       for(i=1; i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(j=1; j<=nlstate;j++){
   if (stepm<=12) stepsize=1;          cptj++;
            fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   agelim=AGESUP;        }
        fprintf(ficreseij,"\n");
   hstepm=1;     
   hstepm=hstepm/stepm;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   yp1=modf(dateintmean,&yp);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   anprojmean=yp;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   yp2=modf((yp1*12),&yp);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   mprojmean=yp;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   yp1=modf((yp2*30.5),&yp);    }
   jprojmean=yp;    printf("\n");
   if(jprojmean==0) jprojmean=1;    fprintf(ficlog,"\n");
   if(mprojmean==0) jprojmean=1;  
      free_vector(xp,1,npar);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   for(cptcov=1;cptcov<=i2;cptcov++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  }
       k=k+1;  
       fprintf(ficresf,"\n#******");  /************ Variance ******************/
       for(j=1;j<=cptcoveff;j++) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  {
       }    /* Variance of health expectancies */
       fprintf(ficresf,"******\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       fprintf(ficresf,"# StartingAge FinalAge");    /* double **newm;*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double **dnewm,**doldm;
          double **dnewmp,**doldmp;
          int i, j, nhstepm, hstepm, h, nstepm ;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    int k, cptcode;
         fprintf(ficresf,"\n");    double *xp;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double **gradgp, **trgradgp; /* for var p point j */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double *gpp, *gmp; /* for var p point j */
           nhstepm = nhstepm/hstepm;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
              double ***p3mat;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double age,agelim, hf;
           oldm=oldms;savm=savms;    double ***mobaverage;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int theta;
            char digit[4];
           for (h=0; h<=nhstepm; h++){    char digitp[25];
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    char fileresprobmorprev[FILENAMELENGTH];
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    if(popbased==1){
               kk1=0.;kk2=0;      if(mobilav!=0)
               for(i=1; i<=nlstate;i++) {                      strcpy(digitp,"-populbased-mobilav-");
                 if (mobilav==1)      else strcpy(digitp,"-populbased-nomobil-");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    }
                 else {    else 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      strcpy(digitp,"-stablbased-");
                 }  
                    if (mobilav!=0) {
               }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               if (h==(int)(calagedate+12*cpt)){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                 fprintf(ficresf," %.3f", kk1);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                                printf(" Error in movingaverage mobilav=%d\n",mobilav);
               }      }
             }    }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcpy(fileresprobmorprev,"prmorprev"); 
         }    sprintf(digit,"%-d",ij);
       }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
            strcat(fileresprobmorprev,fileres);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
   fclose(ficresf);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 }    }
 /************** Forecasting ******************/    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   int *popage;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      fprintf(ficresprobmorprev," p.%-d SE",j);
   double *popeffectif,*popcount;      for(i=1; i<=nlstate;i++)
   double ***p3mat,***tabpop,***tabpopprev;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   char filerespop[FILENAMELENGTH];    }  
     fprintf(ficresprobmorprev,"\n");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"\n# Routine varevsij");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   agelim=AGESUP;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  /*   } */
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
      fprintf(ficresvij,"# Age");
   strcpy(filerespop,"pop");    for(i=1; i<=nlstate;i++)
   strcat(filerespop,fileres);      for(j=1; j<=nlstate;j++)
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     printf("Problem with forecast resultfile: %s\n", filerespop);    fprintf(ficresvij,"\n");
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   if (mobilav==1) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   }    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   if (stepm<=12) stepsize=1;    
      if(estepm < stepm){
   agelim=AGESUP;      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   hstepm=1;    else  hstepm=estepm;   
   hstepm=hstepm/stepm;    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (popforecast==1) {       nhstepm is the number of hstepm from age to agelim 
     if((ficpop=fopen(popfile,"r"))==NULL) {       nstepm is the number of stepm from age to agelin. 
       printf("Problem with population file : %s\n",popfile);exit(0);       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like k years */
     popage=ivector(0,AGESUP);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     popeffectif=vector(0,AGESUP);       survival function given by stepm (the optimization length). Unfortunately it
     popcount=vector(0,AGESUP);       means that if the survival funtion is printed every two years of age and if
           you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     i=1;         results. So we changed our mind and took the option of the best precision.
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    */
        hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     imx=i;    agelim = AGESUP;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   for(cptcov=1;cptcov<=i2;cptcov++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       k=k+1;      gp=matrix(0,nhstepm,1,nlstate);
       fprintf(ficrespop,"\n#******");      gm=matrix(0,nhstepm,1,nlstate);
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }      for(theta=1; theta <=npar; theta++){
       fprintf(ficrespop,"******\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       fprintf(ficrespop,"# Age");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        }
       if (popforecast==1)  fprintf(ficrespop," [Population]");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
              prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          if (popbased==1) {
                  if(mobilav ==0){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            for(i=1; i<=nlstate;i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              prlim[i][i]=probs[(int)age][i][ij];
           nhstepm = nhstepm/hstepm;          }else{ /* mobilav */ 
                      for(i=1; i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              prlim[i][i]=mobaverage[(int)age][i][ij];
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
            
           for (h=0; h<=nhstepm; h++){        for(j=1; j<= nlstate; j++){
             if (h==(int) (calagedate+YEARM*cpt)) {          for(h=0; h<=nhstepm; h++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
             for(j=1; j<=nlstate+ndeath;j++) {          }
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                      /* This for computing probability of death (h=1 means
                 if (mobilav==1)           computed over hstepm matrices product = hstepm*stepm months) 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];           as a weighted average of prlim.
                 else {        */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                 }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
               }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
               if (h==(int)(calagedate+12*cpt)){        }    
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        /* end probability of death */
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
               }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             for(i=1; i<=nlstate;i++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               kk1=0.;   
                 for(j=1; j<=nlstate;j++){        if (popbased==1) {
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          if(mobilav ==0){
                 }            for(i=1; i<=nlstate;i++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];              prlim[i][i]=probs[(int)age][i][ij];
             }          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          }
           }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }        for(j=1; j<= nlstate; j++){
       }          for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   /******/              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          /* This for computing probability of death (h=1 means
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){           computed over hstepm matrices product = hstepm*stepm months) 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           as a weighted average of prlim.
           nhstepm = nhstepm/hstepm;        */
                  for(j=nlstate+1;j<=nlstate+ndeath;j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           oldm=oldms;savm=savms;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }    
           for (h=0; h<=nhstepm; h++){        /* end probability of death */
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(j=1; j<= nlstate; j++) /* vareij */
             }          for(h=0; h<=nhstepm; h++){
             for(j=1; j<=nlstate+ndeath;j++) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
               kk1=0.;kk2=0;          }
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
               }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        }
             }  
           }      } /* End theta */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       }  
    }      for(h=0; h<=nhstepm; h++) /* veij */
   }        for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            trgradg[h][j][theta]=gradg[h][theta][j];
   
   if (popforecast==1) {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     free_ivector(popage,0,AGESUP);        for(theta=1; theta <=npar; theta++)
     free_vector(popeffectif,0,AGESUP);          trgradgp[j][theta]=gradgp[theta][j];
     free_vector(popcount,0,AGESUP);    
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1;i<=nlstate;i++)
   fclose(ficrespop);        for(j=1;j<=nlstate;j++)
 }          vareij[i][j][(int)age] =0.;
   
 /***********************************************/      for(h=0;h<=nhstepm;h++){
 /**************** Main Program *****************/        for(k=0;k<=nhstepm;k++){
 /***********************************************/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 int main(int argc, char *argv[])          for(i=1;i<=nlstate;i++)
 {            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        }
   double agedeb, agefin,hf;      }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    
       /* pptj */
   double fret;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   double **xi,tmp,delta;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
   double dum; /* Dummy variable */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   double ***p3mat;          varppt[j][i]=doldmp[j][i];
   int *indx;      /* end ppptj */
   char line[MAXLINE], linepar[MAXLINE];      /*  x centered again */
   char title[MAXLINE];      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];   
        if (popbased==1) {
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
   char filerest[FILENAMELENGTH];            prlim[i][i]=probs[(int)age][i][ij];
   char fileregp[FILENAMELENGTH];        }else{ /* mobilav */ 
   char popfile[FILENAMELENGTH];          for(i=1; i<=nlstate;i++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            prlim[i][i]=mobaverage[(int)age][i][ij];
   int firstobs=1, lastobs=10;        }
   int sdeb, sfin; /* Status at beginning and end */      }
   int c,  h , cpt,l;               
   int ju,jl, mi;      /* This for computing probability of death (h=1 means
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;         as a weighted average of prlim.
   int mobilav=0,popforecast=0;      */
   int hstepm, nhstepm;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   double bage, fage, age, agelim, agebase;      }    
   double ftolpl=FTOL;      /* end probability of death */
   double **prlim;  
   double *severity;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   double ***param; /* Matrix of parameters */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double  *p;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   double **matcov; /* Matrix of covariance */        for(i=1; i<=nlstate;i++){
   double ***delti3; /* Scale */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   double *delti; /* Scale */        }
   double ***eij, ***vareij;      } 
   double **varpl; /* Variances of prevalence limits by age */      fprintf(ficresprobmorprev,"\n");
   double *epj, vepp;  
   double kk1, kk2;      fprintf(ficresvij,"%.0f ",age );
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   char version[80]="Imach version 0.8d, May 2002, INED-EUROREVES ";        }
   char *alph[]={"a","a","b","c","d","e"}, str[4];      fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
   char z[1]="c", occ;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 #include <sys/time.h>      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 #include <time.h>      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    } /* End age */
      free_vector(gpp,nlstate+1,nlstate+ndeath);
   /* long total_usecs;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   struct timeval start_time, end_time;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   getcwd(pathcd, size);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   printf("\n%s",version);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   if(argc <=1){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     printf("\nEnter the parameter file name: ");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     scanf("%s",pathtot);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   else{    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     strcpy(pathtot,argv[1]);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   /*cygwin_split_path(pathtot,path,optionfile);  */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   /* cutv(path,optionfile,pathtot,'\\');*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    free_vector(xp,1,npar);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    free_matrix(doldm,1,nlstate,1,nlstate);
   chdir(path);    free_matrix(dnewm,1,nlstate,1,npar);
   replace(pathc,path);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 /*-------- arguments in the command line --------*/    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(fileres,"r");    fclose(ficresprobmorprev);
   strcat(fileres, optionfilefiname);    fflush(ficgp);
   strcat(fileres,".txt");    /* Other files have txt extension */    fflush(fichtm); 
   }  /* end varevsij */
   /*---------arguments file --------*/  
   /************ Variance of prevlim ******************/
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
     printf("Problem with optionfile %s\n",optionfile);  {
     goto end;    /* Variance of prevalence limit */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
   strcpy(filereso,"o");    double **dnewm,**doldm;
   strcat(filereso,fileres);    int i, j, nhstepm, hstepm;
   if((ficparo=fopen(filereso,"w"))==NULL) {    int k, cptcode;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    double *xp;
   }    double *gp, *gm;
     double **gradg, **trgradg;
   /* Reads comments: lines beginning with '#' */    double age,agelim;
   while((c=getc(ficpar))=='#' && c!= EOF){    int theta;
     ungetc(c,ficpar);     
     fgets(line, MAXLINE, ficpar);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     puts(line);    fprintf(ficresvpl,"# Age");
     fputs(line,ficparo);    for(i=1; i<=nlstate;i++)
   }        fprintf(ficresvpl," %1d-%1d",i,i);
   ungetc(c,ficpar);    fprintf(ficresvpl,"\n");
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    xp=vector(1,npar);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    dnewm=matrix(1,nlstate,1,npar);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    doldm=matrix(1,nlstate,1,nlstate);
 while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    hstepm=1*YEARM; /* Every year of age */
     fgets(line, MAXLINE, ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     puts(line);    agelim = AGESUP;
     fputs(line,ficparo);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   ungetc(c,ficpar);      if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
          gradg=matrix(1,npar,1,nlstate);
   covar=matrix(0,NCOVMAX,1,n);      gp=vector(1,nlstate);
   cptcovn=0;      gm=vector(1,nlstate);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
       for(theta=1; theta <=npar; theta++){
   ncovmodel=2+cptcovn;        for(i=1; i<=npar; i++){ /* Computes gradient */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   /* Read guess parameters */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* Reads comments: lines beginning with '#' */        for(i=1;i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){          gp[i] = prlim[i][i];
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++) /* Computes gradient */
     puts(line);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fputs(line,ficparo);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }        for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);          gm[i] = prlim[i][i];
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for(i=1;i<=nlstate;i++)
     for(i=1; i <=nlstate; i++)          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     for(j=1; j <=nlstate+ndeath-1; j++){      } /* End theta */
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);      trgradg =matrix(1,nlstate,1,npar);
       printf("%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){      for(j=1; j<=nlstate;j++)
         fscanf(ficpar," %lf",&param[i][j][k]);        for(theta=1; theta <=npar; theta++)
         printf(" %lf",param[i][j][k]);          trgradg[j][theta]=gradg[theta][j];
         fprintf(ficparo," %lf",param[i][j][k]);  
       }      for(i=1;i<=nlstate;i++)
       fscanf(ficpar,"\n");        varpl[i][(int)age] =0.;
       printf("\n");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficparo,"\n");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     }      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
       fprintf(ficresvpl,"%.0f ",age );
   p=param[1][1];      for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   /* Reads comments: lines beginning with '#' */      fprintf(ficresvpl,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){      free_vector(gp,1,nlstate);
     ungetc(c,ficpar);      free_vector(gm,1,nlstate);
     fgets(line, MAXLINE, ficpar);      free_matrix(gradg,1,npar,1,nlstate);
     puts(line);      free_matrix(trgradg,1,nlstate,1,npar);
     fputs(line,ficparo);    } /* End age */
   }  
   ungetc(c,ficpar);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_matrix(dnewm,1,nlstate,1,nlstate);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){  }
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /************ Variance of one-step probabilities  ******************/
       printf("%1d%1d",i,j);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
       fprintf(ficparo,"%1d%1d",i1,j1);  {
       for(k=1; k<=ncovmodel;k++){    int i, j=0,  i1, k1, l1, t, tj;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    int k2, l2, j1,  z1;
         printf(" %le",delti3[i][j][k]);    int k=0,l, cptcode;
         fprintf(ficparo," %le",delti3[i][j][k]);    int first=1, first1;
       }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       fscanf(ficpar,"\n");    double **dnewm,**doldm;
       printf("\n");    double *xp;
       fprintf(ficparo,"\n");    double *gp, *gm;
     }    double **gradg, **trgradg;
   }    double **mu;
   delti=delti3[1][1];    double age,agelim, cov[NCOVMAX];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   /* Reads comments: lines beginning with '#' */    int theta;
   while((c=getc(ficpar))=='#' && c!= EOF){    char fileresprob[FILENAMELENGTH];
     ungetc(c,ficpar);    char fileresprobcov[FILENAMELENGTH];
     fgets(line, MAXLINE, ficpar);    char fileresprobcor[FILENAMELENGTH];
     puts(line);  
     fputs(line,ficparo);    double ***varpij;
   }  
   ungetc(c,ficpar);    strcpy(fileresprob,"prob"); 
      strcat(fileresprob,fileres);
   matcov=matrix(1,npar,1,npar);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   for(i=1; i <=npar; i++){      printf("Problem with resultfile: %s\n", fileresprob);
     fscanf(ficpar,"%s",&str);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     printf("%s",str);    }
     fprintf(ficparo,"%s",str);    strcpy(fileresprobcov,"probcov"); 
     for(j=1; j <=i; j++){    strcat(fileresprobcov,fileres);
       fscanf(ficpar," %le",&matcov[i][j]);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf(" %.5le",matcov[i][j]);      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficparo," %.5le",matcov[i][j]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }    }
     fscanf(ficpar,"\n");    strcpy(fileresprobcor,"probcor"); 
     printf("\n");    strcat(fileresprobcor,fileres);
     fprintf(ficparo,"\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcor);
   for(i=1; i <=npar; i++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     for(j=i+1;j<=npar;j++)    }
       matcov[i][j]=matcov[j][i];    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
        fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   printf("\n");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     /*-------- Rewriting paramater file ----------*/    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      strcpy(rfileres,"r");    /* "Rparameterfile */    
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      strcat(rfileres,".");    /* */    fprintf(ficresprob,"# Age");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(ficresprobcov,"# Age");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     }    fprintf(ficresprobcov,"# Age");
     fprintf(ficres,"#%s\n",version);  
      
     /*-------- data file ----------*/    for(i=1; i<=nlstate;i++)
     if((fic=fopen(datafile,"r"))==NULL)    {      for(j=1; j<=(nlstate+ndeath);j++){
       printf("Problem with datafile: %s\n", datafile);goto end;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
     n= lastobs;      }  
     severity = vector(1,maxwav);   /* fprintf(ficresprob,"\n");
     outcome=imatrix(1,maxwav+1,1,n);    fprintf(ficresprobcov,"\n");
     num=ivector(1,n);    fprintf(ficresprobcor,"\n");
     moisnais=vector(1,n);   */
     annais=vector(1,n);   xp=vector(1,npar);
     moisdc=vector(1,n);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     andc=vector(1,n);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     agedc=vector(1,n);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     cod=ivector(1,n);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     weight=vector(1,n);    first=1;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    fprintf(ficgp,"\n# Routine varprob");
     mint=matrix(1,maxwav,1,n);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     anint=matrix(1,maxwav,1,n);    fprintf(fichtm,"\n");
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);        fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     tab=ivector(1,NCOVMAX);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     ncodemax=ivector(1,8);    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     i=1;  and drawn. It helps understanding how is the covariance between two incidences.\
     while (fgets(line, MAXLINE, fic) != NULL)    {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       if ((i >= firstobs) && (i <=lastobs)) {    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
          It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         for (j=maxwav;j>=1;j--){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  standard deviations wide on each axis. <br>\
           strcpy(line,stra);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         }  
            cov[1]=1;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    tj=cptcoveff;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    for(t=1; t<=tj;t++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        if  (cptcovn>0) {
         for (j=ncovcol;j>=1;j--){          fprintf(ficresprob, "\n#********** Variable "); 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresprob, "**********\n#\n");
         num[i]=atol(stra);          fprintf(ficresprobcov, "\n#********** Variable "); 
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          fprintf(ficresprobcov, "**********\n#\n");
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          
           fprintf(ficgp, "\n#********** Variable "); 
         i=i+1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficgp, "**********\n#\n");
     }          
     /* printf("ii=%d", ij);          
        scanf("%d",i);*/          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   imx=i-1; /* Number of individuals */          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   /* for (i=1; i<=imx; i++){          
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          fprintf(ficresprobcor, "\n#********** Variable ");    
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          fprintf(ficresprobcor, "**********\n#");    
     }*/        }
    /*  for (i=1; i<=imx; i++){        
      if (s[4][i]==9)  s[4][i]=-1;        for (age=bage; age<=fage; age ++){ 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          cov[2]=age;
            for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   /* Calculation of the number of parameter from char model*/          }
   Tvar=ivector(1,15);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   Tprod=ivector(1,15);          for (k=1; k<=cptcovprod;k++)
   Tvaraff=ivector(1,15);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   Tvard=imatrix(1,15,1,2);          
   Tage=ivector(1,15);                gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
              trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   if (strlen(model) >1){          gp=vector(1,(nlstate)*(nlstate+ndeath));
     j=0, j1=0, k1=1, k2=1;          gm=vector(1,(nlstate)*(nlstate+ndeath));
     j=nbocc(model,'+');      
     j1=nbocc(model,'*');          for(theta=1; theta <=npar; theta++){
     cptcovn=j+1;            for(i=1; i<=npar; i++)
     cptcovprod=j1;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                
     strcpy(modelsav,model);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            
       printf("Error. Non available option model=%s ",model);            k=0;
       goto end;            for(i=1; i<= (nlstate); i++){
     }              for(j=1; j<=(nlstate+ndeath);j++){
                    k=k+1;
     for(i=(j+1); i>=1;i--){                gp[k]=pmmij[i][j];
       cutv(stra,strb,modelsav,'+');              }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            
       /*scanf("%d",i);*/            for(i=1; i<=npar; i++)
       if (strchr(strb,'*')) {              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         cutv(strd,strc,strb,'*');      
         if (strcmp(strc,"age")==0) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           cptcovprod--;            k=0;
           cutv(strb,stre,strd,'V');            for(i=1; i<=(nlstate); i++){
           Tvar[i]=atoi(stre);              for(j=1; j<=(nlstate+ndeath);j++){
           cptcovage++;                k=k+1;
             Tage[cptcovage]=i;                gm[k]=pmmij[i][j];
             /*printf("stre=%s ", stre);*/              }
         }            }
         else if (strcmp(strd,"age")==0) {       
           cptcovprod--;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           cutv(strb,stre,strc,'V');              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           Tvar[i]=atoi(stre);          }
           cptcovage++;  
           Tage[cptcovage]=i;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         }            for(theta=1; theta <=npar; theta++)
         else {              trgradg[j][theta]=gradg[theta][j];
           cutv(strb,stre,strc,'V');          
           Tvar[i]=ncovcol+k1;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           cutv(strb,strc,strd,'V');          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           Tprod[k1]=i;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           Tvard[k1][1]=atoi(strc);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           Tvard[k1][2]=atoi(stre);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           Tvar[cptcovn+k2]=Tvard[k1][1];          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)          pmij(pmmij,cov,ncovmodel,x,nlstate);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          
           k1++;          k=0;
           k2=k2+2;          for(i=1; i<=(nlstate); i++){
         }            for(j=1; j<=(nlstate+ndeath);j++){
       }              k=k+1;
       else {              mu[k][(int) age]=pmmij[i][j];
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            }
        /*  scanf("%d",i);*/          }
       cutv(strd,strc,strb,'V');          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       Tvar[i]=atoi(strc);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       }              varpij[i][j][(int)age] = doldm[i][j];
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          /*printf("\n%d ",(int)age);
         scanf("%d",i);*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              }*/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);          fprintf(ficresprob,"\n%d ",(int)age);
   scanf("%d ",i);*/          fprintf(ficresprobcov,"\n%d ",(int)age);
     fclose(fic);          fprintf(ficresprobcor,"\n%d ",(int)age);
   
     /*  if(mle==1){*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     if (weightopt != 1) { /* Maximisation without weights*/            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       for(i=1;i<=n;i++) weight[i]=1.0;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     /*-calculation of age at interview from date of interview and age at death -*/            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     agev=matrix(1,maxwav,1,imx);          }
           i=0;
     for (i=1; i<=imx; i++) {          for (k=1; k<=(nlstate);k++){
       for(m=2; (m<= maxwav); m++) {            for (l=1; l<=(nlstate+ndeath);l++){ 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){              i=i++;
          anint[m][i]=9999;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
          s[m][i]=-1;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
        }              for (j=1; j<=i;j++){
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     }              }
             }
     for (i=1; i<=imx; i++)  {          }/* end of loop for state */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        } /* end of loop for age */
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){        /* Confidence intervalle of pij  */
           if (s[m][i] >= nlstate+1) {        /*
             if(agedc[i]>0)          fprintf(ficgp,"\nset noparametric;unset label");
               if(moisdc[i]!=99 && andc[i]!=9999)          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                 agev[m][i]=agedc[i];          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
            else {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
               if (andc[i]!=9999){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
               agev[m][i]=-1;        */
               }  
             }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           }        first1=1;
           else if(s[m][i] !=9){ /* Should no more exist */        for (k2=1; k2<=(nlstate);k2++){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(mint[m][i]==99 || anint[m][i]==9999)            if(l2==k2) continue;
               agev[m][i]=1;            j=(k2-1)*(nlstate+ndeath)+l2;
             else if(agev[m][i] <agemin){            for (k1=1; k1<=(nlstate);k1++){
               agemin=agev[m][i];              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                if(l1==k1) continue;
             }                i=(k1-1)*(nlstate+ndeath)+l1;
             else if(agev[m][i] >agemax){                if(i<=j) continue;
               agemax=agev[m][i];                for (age=bage; age<=fage; age ++){ 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                  if ((int)age %5==0){
             }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
             /*agev[m][i]=anint[m][i]-annais[i];*/                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
             /*   agev[m][i] = age[i]+2*m;*/                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           }                    mu1=mu[i][(int) age]/stepm*YEARM ;
           else { /* =9 */                    mu2=mu[j][(int) age]/stepm*YEARM;
             agev[m][i]=1;                    c12=cv12/sqrt(v1*v2);
             s[m][i]=-1;                    /* Computing eigen value of matrix of covariance */
           }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         else /*= 0 Unknown */                    /* Eigen vectors */
           agev[m][i]=1;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       }                    /*v21=sqrt(1.-v11*v11); *//* error */
                        v21=(lc1-v1)/cv12*v11;
     }                    v12=-v21;
     for (i=1; i<=imx; i++)  {                    v22=v11;
       for(m=1; (m<= maxwav); m++){                    tnalp=v21/v11;
         if (s[m][i] > (nlstate+ndeath)) {                    if(first1==1){
           printf("Error: Wrong value in nlstate or ndeath\n");                        first1=0;
           goto end;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         }                    }
       }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     }                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
     free_vector(severity,1,maxwav);                      first=0;
     free_imatrix(outcome,1,maxwav+1,1,n);                      fprintf(ficgp,"\nset parametric;unset label");
     free_vector(moisnais,1,n);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     free_vector(annais,1,n);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     /* free_matrix(mint,1,maxwav,1,n);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
        free_matrix(anint,1,maxwav,1,n);*/   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     free_vector(moisdc,1,n);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     free_vector(andc,1,n);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                          fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     wav=ivector(1,imx);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                          fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     /* Concatenates waves */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
       Tcode=ivector(1,100);                      first=0;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       ncodemax[1]=1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                            fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    codtab=imatrix(1,100,1,10);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
    h=0;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    m=pow(2,cptcoveff);                    }/* if first */
                    } /* age mod 5 */
    for(k=1;k<=cptcoveff; k++){                } /* end loop age */
      for(i=1; i <=(m/pow(2,k));i++){                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        for(j=1; j <= ncodemax[k]; j++){                first=1;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              } /*l12 */
            h++;            } /* k12 */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          } /*l1 */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        }/* k1 */
          }      } /* loop covariates */
        }    }
      }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
    }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    free_vector(xp,1,npar);
       codtab[1][2]=1;codtab[2][2]=2; */    fclose(ficresprob);
    /* for(i=1; i <=m ;i++){    fclose(ficresprobcov);
       for(k=1; k <=cptcovn; k++){    fclose(ficresprobcor);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    fflush(ficgp);
       }    fflush(fichtmcov);
       printf("\n");  }
       }  
       scanf("%d",i);*/  
      /******************* Printing html file ***********/
    /* Calculates basic frequencies. Computes observed prevalence at single age  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
        and prints on file fileres'p'. */                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                        int popforecast, int estepm ,\
                        double jprev1, double mprev1,double anprev1, \
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    double jprev2, double mprev2,double anprev2){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int jj1, k1, i1, cpt;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*char optionfilehtm[FILENAMELENGTH];*/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
        /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
     /* For Powell, parameters are in a vector p[] starting at p[1]  /*   } */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
     if(mle==1){   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
     }   - Life expectancies by age and initial health status (estepm=%2d months): \
         <a href=\"%s\">%s</a> <br>\n</li>", \
     /*--------- results files --------------*/             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
               subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){   m=cptcoveff;
      for(k=1; k <=(nlstate+ndeath); k++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
        if (k != i)  
          {   jj1=0;
            printf("%d%d ",i,k);   for(k1=1; k1<=m;k1++){
            fprintf(ficres,"%1d%1d ",i,k);     for(i1=1; i1<=ncodemax[k1];i1++){
            for(j=1; j <=ncovmodel; j++){       jj1++;
              printf("%f ",p[jk]);       if (cptcovn > 0) {
              fprintf(ficres,"%f ",p[jk]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
              jk++;         for (cpt=1; cpt<=cptcoveff;cpt++) 
            }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
            printf("\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
            fprintf(ficres,"\n");       }
          }       /* Pij */
      }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
    }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
  if(mle==1){       /* Quasi-incidences */
     /* Computing hessian and covariance matrix */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     ftolhess=ftol; /* Usually correct */   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     hesscov(matcov, p, npar, delti, ftolhess, func);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
  }         /* Stable prevalence in each health state */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");         for(cpt=1; cpt<nlstate;cpt++){
     printf("# Scales (for hessian or gradient estimation)\n");           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
      for(i=1,jk=1; i <=nlstate; i++){  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       for(j=1; j <=nlstate+ndeath; j++){         }
         if (j!=i) {       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(ficres,"%1d%1d",i,j);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
           printf("%1d%1d",i,j);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
           for(k=1; k<=ncovmodel;k++){       }
             printf(" %.5e",delti[jk]);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
             fprintf(ficres," %.5e",delti[jk]);  health expectancies in states (1) and (2): %s%d.png<br>\
             jk++;  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
           }     } /* end i1 */
           printf("\n");   }/* End k1 */
           fprintf(ficres,"\n");   fprintf(fichtm,"</ul>");
         }  
       }  
      }   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
       - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
     k=1;   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     for(i=1;i<=npar;i++){   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
       /*  if (k>nlstate) k=1;   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
       i1=(i-1)/(ncovmodel*nlstate)+1;   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);           rfileres,rfileres,\
       printf("%s%d%d",alph[k],i1,tab[i]);*/           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
       fprintf(ficres,"%3d",i);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
       printf("%3d",i);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
       for(j=1; j<=i;j++){           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
         fprintf(ficres," %.5e",matcov[i][j]);           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
         printf(" %.5e",matcov[i][j]);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       }  
       fprintf(ficres,"\n");  /*  if(popforecast==1) fprintf(fichtm,"\n */
       printf("\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       k++;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     }  /*      <br>",fileres,fileres,fileres,fileres); */
      /*  else  */
     while((c=getc(ficpar))=='#' && c!= EOF){  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       ungetc(c,ficpar);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       fgets(line, MAXLINE, ficpar);  
       puts(line);   m=cptcoveff;
       fputs(line,ficparo);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     }  
     ungetc(c,ficpar);   jj1=0;
     estepm=0;   for(k1=1; k1<=m;k1++){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);     for(i1=1; i1<=ncodemax[k1];i1++){
     if (estepm==0 || estepm < stepm) estepm=stepm;       jj1++;
     if (fage <= 2) {       if (cptcovn > 0) {
       bage = ageminpar;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       fage = agemaxpar;         for (cpt=1; cpt<=cptcoveff;cpt++) 
     }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");       }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       for(cpt=1; cpt<=nlstate;cpt++) {
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
    prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     ungetc(c,ficpar);       }
     fgets(line, MAXLINE, ficpar);     } /* end i1 */
     puts(line);   }/* End k1 */
     fputs(line,ficparo);   fprintf(fichtm,"</ul>");
   }   fflush(fichtm);
   ungetc(c,ficpar);  }
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  /******************* Gnuplot file **************/
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
          char dirfileres[132],optfileres[132];
   while((c=getc(ficpar))=='#' && c!= EOF){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     ungetc(c,ficpar);    int ng;
     fgets(line, MAXLINE, ficpar);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     puts(line);  /*     printf("Problem with file %s",optionfilegnuplot); */
     fputs(line,ficparo);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   }  /*   } */
   ungetc(c,ficpar);  
      /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      /*#endif */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    m=pow(2,cptcoveff);
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);    strcpy(dirfileres,optionfilefiname);
   fprintf(ficparo,"pop_based=%d\n",popbased);      strcpy(optfileres,"vpl");
   fprintf(ficres,"pop_based=%d\n",popbased);     /* 1eme*/
      for (cpt=1; cpt<= nlstate ; cpt ++) {
   while((c=getc(ficpar))=='#' && c!= EOF){     for (k1=1; k1<= m ; k1 ++) {
     ungetc(c,ficpar);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     fgets(line, MAXLINE, ficpar);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     puts(line);       fprintf(ficgp,"set xlabel \"Age\" \n\
     fputs(line,ficparo);  set ylabel \"Probability\" \n\
   }  set ter png small\n\
   ungetc(c,ficpar);  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       for (i=1; i<= nlstate ; i ++) {
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
 while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     ungetc(c,ficpar);       for (i=1; i<= nlstate ; i ++) {
     fgets(line, MAXLINE, ficpar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     puts(line);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fputs(line,ficparo);       } 
   }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   ungetc(c,ficpar);       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       }  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }
     /*2 eme*/
 /*------------ gnuplot -------------*/    
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    for (k1=1; k1<= m ; k1 ++) { 
        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 /*------------ free_vector  -------------*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
  chdir(path);      
        for (i=1; i<= nlstate+1 ; i ++) {
  free_ivector(wav,1,imx);        k=2*i;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          for (j=1; j<= nlstate+1 ; j ++) {
  free_ivector(num,1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  free_vector(agedc,1,n);          else fprintf(ficgp," \%%*lf (\%%*lf)");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        }   
  fclose(ficparo);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
  fclose(ficres);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 /*--------- index.htm --------*/        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
          fprintf(ficgp,"\" t\"\" w l 0,");
   /*--------------- Prevalence limit --------------*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
   strcpy(filerespl,"pl");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   strcat(filerespl,fileres);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        }   
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   }        else fprintf(ficgp,"\" t\"\" w l 0,");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      }
   fprintf(ficrespl,"#Prevalence limit\n");    }
   fprintf(ficrespl,"#Age ");    
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    /*3eme*/
   fprintf(ficrespl,"\n");    
      for (k1=1; k1<= m ; k1 ++) { 
   prlim=matrix(1,nlstate,1,nlstate);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        k=2+nlstate*(2*cpt-2);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficgp,"set ter png small\n\
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  set size 0.65,0.65\n\
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   k=0;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   agebase=ageminpar;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   agelim=agemaxpar;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   ftolpl=1.e-10;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   i1=cptcoveff;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   if (cptcovn < 1){i1=1;}          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
   for(cptcov=1;cptcov<=i1;cptcov++){        */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for (i=1; i< nlstate ; i ++) {
         k=k+1;          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          
         fprintf(ficrespl,"\n#******");        } 
         for(j=1;j<=cptcoveff;j++)      }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
         fprintf(ficrespl,"******\n");    
            /* CV preval stable (period) */
         for (age=agebase; age<=agelim; age++){    for (k1=1; k1<= m ; k1 ++) { 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for (cpt=1; cpt<=nlstate ; cpt ++) {
           fprintf(ficrespl,"%.0f",age );        k=3;
           for(i=1; i<=nlstate;i++)        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
           fprintf(ficrespl," %.5f", prlim[i][i]);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
           fprintf(ficrespl,"\n");  set ter png small\nset size 0.65,0.65\n\
         }  unset log y\n\
       }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     }        
   fclose(ficrespl);        for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
   /*------------- h Pij x at various ages ------------*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
          
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        l=3+(nlstate+ndeath)*cpt;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        for (i=1; i< nlstate ; i ++) {
   }          l=3+(nlstate+ndeath)*cpt;
   printf("Computing pij: result on file '%s' \n", filerespij);          fprintf(ficgp,"+$%d",l+i+1);
          }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   /*if (stepm<=24) stepsize=2;*/      } 
     }  
   agelim=AGESUP;    
   hstepm=stepsize*YEARM; /* Every year of age */    /* proba elementaires */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    for(i=1,jk=1; i <=nlstate; i++){
        for(k=1; k <=(nlstate+ndeath); k++){
   k=0;        if (k != i) {
   for(cptcov=1;cptcov<=i1;cptcov++){          for(j=1; j <=ncovmodel; j++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       k=k+1;            jk++; 
         fprintf(ficrespij,"\n#****** ");            fprintf(ficgp,"\n");
         for(j=1;j<=cptcoveff;j++)          }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
         fprintf(ficrespij,"******\n");      }
             }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       for(jk=1; jk <=m; jk++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           oldm=oldms;savm=savms;         if (ng==2)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           fprintf(ficrespij,"# Age");         else
           for(i=1; i<=nlstate;i++)           fprintf(ficgp,"\nset title \"Probability\"\n");
             for(j=1; j<=nlstate+ndeath;j++)         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
               fprintf(ficrespij," %1d-%1d",i,j);         i=1;
           fprintf(ficrespij,"\n");         for(k2=1; k2<=nlstate; k2++) {
            for (h=0; h<=nhstepm; h++){           k3=i;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );           for(k=1; k<=(nlstate+ndeath); k++) {
             for(i=1; i<=nlstate;i++)             if (k != k2){
               for(j=1; j<=nlstate+ndeath;j++)               if(ng==2)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
             fprintf(ficrespij,"\n");               else
              }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               ij=1;
           fprintf(ficrespij,"\n");               for(j=3; j <=ncovmodel; j++) {
         }                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   }                   ij++;
                  }
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   fclose(ficrespij);               }
                fprintf(ficgp,")/(1");
                
   /*---------- Forecasting ------------------*/               for(k1=1; k1 <=nlstate; k1++){   
   if((stepm == 1) && (strcmp(model,".")==0)){                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                 ij=1;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                 for(j=3; j <=ncovmodel; j++){
   }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   else{                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     erreur=108;                     ij++;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                   }
   }                   else
                       fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
   /*---------- Health expectancies and variances ------------*/                 fprintf(ficgp,")");
                }
   strcpy(filerest,"t");               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   strcat(filerest,fileres);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   if((ficrest=fopen(filerest,"w"))==NULL) {               i=i+ncovmodel;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;             }
   }           } /* end k */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);         } /* end k2 */
        } /* end jk */
      } /* end ng */
   strcpy(filerese,"e");     fflush(ficgp); 
   strcat(filerese,fileres);  }  /* end gnuplot */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }  /*************** Moving average **************/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
  strcpy(fileresv,"v");    int i, cpt, cptcod;
   strcat(fileresv,fileres);    int modcovmax =1;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    int mobilavrange, mob;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double age;
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   calagedate=-1;                             a covariate has 2 modalities */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
   k=0;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   for(cptcov=1;cptcov<=i1;cptcov++){      if(mobilav==1) mobilavrange=5; /* default */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      else mobilavrange=mobilav;
       k=k+1;      for (age=bage; age<=fage; age++)
       fprintf(ficrest,"\n#****** ");        for (i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++)          for (cptcod=1;cptcod<=modcovmax;cptcod++)
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       fprintf(ficrest,"******\n");      /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       fprintf(ficreseij,"\n#****** ");         we use a 5 terms etc. until the borders are no more concerned. 
       for(j=1;j<=cptcoveff;j++)      */ 
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (mob=3;mob <=mobilavrange;mob=mob+2){
       fprintf(ficreseij,"******\n");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
       fprintf(ficresvij,"\n#****** ");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       for(j=1;j<=cptcoveff;j++)              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       fprintf(ficresvij,"******\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                }
       oldm=oldms;savm=savms;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);              }
            }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }/* end age */
       oldm=oldms;savm=savms;      }/* end mob */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    }else return -1;
        return 0;
   }/* End movingaverage */
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /************** Forecasting ******************/
       fprintf(ficrest,"\n");  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
       epj=vector(1,nlstate+1);       agemin, agemax range of age
       for(age=bage; age <=fage ;age++){       dateprev1 dateprev2 range of dates during which prevalence is computed
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       anproj2 year of en of projection (same day and month as proj1).
         if (popbased==1) {    */
           for(i=1; i<=nlstate;i++)    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
             prlim[i][i]=probs[(int)age][i][k];    int *popage;
         }    double agec; /* generic age */
            double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
         fprintf(ficrest," %4.0f",age);    double *popeffectif,*popcount;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    double ***p3mat;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    double ***mobaverage;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    char fileresf[FILENAMELENGTH];
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }    agelim=AGESUP;
           epj[nlstate+1] +=epj[j];    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         }   
     strcpy(fileresf,"f"); 
         for(i=1, vepp=0.;i <=nlstate;i++)    strcat(fileresf,fileres);
           for(j=1;j <=nlstate;j++)    if((ficresf=fopen(fileresf,"w"))==NULL) {
             vepp += vareij[i][j][(int)age];      printf("Problem with forecast resultfile: %s\n", fileresf);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         for(j=1;j <=nlstate;j++){    }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    printf("Computing forecasting: result on file '%s' \n", fileresf);
         }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         fprintf(ficrest,"\n");  
       }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     }  
   }    if (mobilav!=0) {
 free_matrix(mint,1,maxwav,1,n);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     free_vector(weight,1,n);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficreseij);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficresvij);      }
   fclose(ficrest);    }
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);    stepsize=(int) (stepm+YEARM-1)/YEARM;
      if (stepm<=12) stepsize=1;
   /*------- Variance limit prevalence------*/      if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   strcpy(fileresvpl,"vpl");    }
   strcat(fileresvpl,fileres);    else  hstepm=estepm;   
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    hstepm=hstepm/stepm; 
     exit(0);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   }                                 fractional in yp1 */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    anprojmean=yp;
     yp2=modf((yp1*12),&yp);
   k=0;    mprojmean=yp;
   for(cptcov=1;cptcov<=i1;cptcov++){    yp1=modf((yp2*30.5),&yp);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    jprojmean=yp;
       k=k+1;    if(jprojmean==0) jprojmean=1;
       fprintf(ficresvpl,"\n#****** ");    if(mprojmean==0) jprojmean=1;
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    i1=cptcoveff;
       fprintf(ficresvpl,"******\n");    if (cptcovn < 1){i1=1;}
          
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       oldm=oldms;savm=savms;    
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficresf,"#****** Routine prevforecast **\n");
     }  
  }  /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   fclose(ficresvpl);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   /*---------- End : free ----------------*/        fprintf(ficresf,"\n#******");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        for(j=1;j<=cptcoveff;j++) {
            fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficresf,"******\n");
          fprintf(ficresf,"# Covariate valuofcovar yearproj age");
          for(j=1; j<=nlstate+ndeath;j++){ 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          for(i=1; i<=nlstate;i++)              
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            fprintf(ficresf," p%d%d",i,j);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficresf," p.%d",j);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
          for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   free_matrix(matcov,1,npar,1,npar);          fprintf(ficresf,"\n");
   free_vector(delti,1,npar);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   if(erreur >0)            nhstepm = nhstepm/hstepm; 
     printf("End of Imach with error or warning %d\n",erreur);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   else   printf("End of Imach\n");            oldm=oldms;savm=savms;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
            
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            for (h=0; h<=nhstepm; h++){
   /*printf("Total time was %d uSec.\n", total_usecs);*/              if (h*hstepm/YEARM*stepm ==yearp) {
   /*------ End -----------*/                fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  end:                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 #ifdef windows              } 
   /* chdir(pathcd);*/              for(j=1; j<=nlstate+ndeath;j++) {
 #endif                ppij=0.;
  /*system("wgnuplot graph.plt");*/                for(i=1; i<=nlstate;i++) {
  /*system("../gp37mgw/wgnuplot graph.plt");*/                  if (mobilav==1) 
  /*system("cd ../gp37mgw");*/                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                  else {
  strcpy(plotcmd,GNUPLOTPROGRAM);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
  strcat(plotcmd," ");                  }
  strcat(plotcmd,optionfilegnuplot);                  if (h*hstepm/YEARM*stepm== yearp) {
  system(plotcmd);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
 #ifdef windows                } /* end i */
   while (z[0] != 'q') {                if (h*hstepm/YEARM*stepm==yearp) {
     /* chdir(path); */                  fprintf(ficresf," %.3f", ppij);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                }
     scanf("%s",z);              }/* end j */
     if (z[0] == 'c') system("./imach");            } /* end h */
     else if (z[0] == 'e') system(optionfilehtm);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     else if (z[0] == 'g') system(plotcmd);          } /* end agec */
     else if (z[0] == 'q') exit(0);        } /* end yearp */
   }      } /* end cptcod */
 #endif    } /* end  cptcov */
 }         
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           printf("%d%d ",i,k);
           fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d ",i,k);
           for(j=1; j <=ncovmodel; j++){
             printf("%f ",p[jk]);
             fprintf(ficlog,"%f ",p[jk]);
             fprintf(ficres,"%f ",p[jk]);
             jk++; 
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle>=1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   
   
   /* Just to have a covariance matrix which will be more understandable
      even is we still don't want to manage dictionary of variables
   */
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               if(mle>=1)
                 printf("#%1d%1d%d",i,j,k);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);
               fprintf(ficres,"#%1d%1d%d",i,j,k);
             }else{
               if(mle>=1)
                 printf("%1d%1d%d",i,j,k);
               fprintf(ficlog,"%1d%1d%d",i,j,k);
               fprintf(ficres,"%1d%1d%d",i,j,k);
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }else{
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             if(mle>=1)
               printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
     fflush(ficlog);
     fflush(ficres);
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.42  
changed lines
  Added in v.1.95


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>