Diff for /imach/src/imach.c between versions 1.44 and 1.166

version 1.44, 2002/05/24 13:01:48 version 1.166, 2014/12/22 11:40:47
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.166  2014/12/22 11:40:47  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.165  2014/12/16 11:20:36  brouard
   first survey ("cross") where individuals from different ages are    Summary: After compiling on Visual C
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    * imach.c (Module): Merging 1.61 to 1.162
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.164  2014/12/16 10:52:11  brouard
   computed from the time spent in each health state according to a    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    * imach.c (Module): Merging 1.61 to 1.162
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.163  2014/12/16 10:30:11  brouard
   conditional to be observed in state i at the first wave. Therefore    * imach.c (Module): Merging 1.61 to 1.162
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.162  2014/09/25 11:43:39  brouard
   complex model than "constant and age", you should modify the program    Summary: temporary backup 0.99!
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.1  2014/09/16 11:06:58  brouard
   convergence.    Summary: With some code (wrong) for nlopt
   
   The advantage of this computer programme, compared to a simple    Author:
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.161  2014/09/15 20:41:41  brouard
   intermediate interview, the information is lost, but taken into    Summary: Problem with macro SQR on Intel compiler
   account using an interpolation or extrapolation.    
     Revision 1.160  2014/09/02 09:24:05  brouard
   hPijx is the probability to be observed in state i at age x+h    *** empty log message ***
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.159  2014/09/01 10:34:10  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: WIN32
   semester or year) is model as a multinomial logistic.  The hPx    Author: Brouard
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.158  2014/08/27 17:11:51  brouard
   hPijx.    *** empty log message ***
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.157  2014/08/27 16:26:55  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: Preparing windows Visual studio version
      Author: Brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    In order to compile on Visual studio, time.h is now correct and time_t
   This software have been partly granted by Euro-REVES, a concerted action    and tm struct should be used. difftime should be used but sometimes I
   from the European Union.    just make the differences in raw time format (time(&now).
   It is copyrighted identically to a GNU software product, ie programme and    Trying to suppress #ifdef LINUX
   software can be distributed freely for non commercial use. Latest version    Add xdg-open for __linux in order to open default browser.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.156  2014/08/25 20:10:10  brouard
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.155  2014/08/25 18:32:34  brouard
 #include <stdlib.h>    Summary: New compile, minor changes
 #include <unistd.h>    Author: Brouard
   
 #define MAXLINE 256    Revision 1.154  2014/06/20 17:32:08  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Summary: Outputs now all graphs of convergence to period prevalence
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.153  2014/06/20 16:45:46  brouard
 /*#define DEBUG*/    Summary: If 3 live state, convergence to period prevalence on same graph
 #define windows    Author: Brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.150  2014/06/18 16:42:35  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 #define NCOVMAX 8 /* Maximum number of covariates */    Author: brouard
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.149  2014/06/18 15:51:14  brouard
 #define AGESUP 130    Summary: Some fixes in parameter files errors
 #define AGEBASE 40    Author: Nicolas Brouard
   
     Revision 1.148  2014/06/17 17:38:48  brouard
 int erreur; /* Error number */    Summary: Nothing new
 int nvar;    Author: Brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Just a new packaging for OS/X version 0.98nS
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.147  2014/06/16 10:33:11  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    *** empty log message ***
 int popbased=0;  
     Revision 1.146  2014/06/16 10:20:28  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Summary: Merge
 int maxwav; /* Maxim number of waves */    Author: Brouard
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Merge, before building revised version.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.145  2014/06/10 21:23:15  brouard
 double jmean; /* Mean space between 2 waves */    Summary: Debugging with valgrind
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Author: Nicolas Brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Lot of changes in order to output the results with some covariates
 FILE *ficgp,*ficresprob,*ficpop;    After the Edimburgh REVES conference 2014, it seems mandatory to
 FILE *ficreseij;    improve the code.
   char filerese[FILENAMELENGTH];    No more memory valgrind error but a lot has to be done in order to
  FILE  *ficresvij;    continue the work of splitting the code into subroutines.
   char fileresv[FILENAMELENGTH];    Also, decodemodel has been improved. Tricode is still not
  FILE  *ficresvpl;    optimal. nbcode should be improved. Documentation has been added in
   char fileresvpl[FILENAMELENGTH];    the source code.
   
 #define NR_END 1    Revision 1.143  2014/01/26 09:45:38  brouard
 #define FREE_ARG char*    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #define FTOL 1.0e-10  
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define NRANSI    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 #define ITMAX 200  
     Revision 1.142  2014/01/26 03:57:36  brouard
 #define TOL 2.0e-4    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
 #define CGOLD 0.3819660    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.140  2011/09/02 10:37:54  brouard
 #define TINY 1.0e-20    Summary: times.h is ok with mingw32 now.
   
 static double maxarg1,maxarg2;    Revision 1.139  2010/06/14 07:50:17  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.138  2010/04/30 18:19:40  brouard
 #define rint(a) floor(a+0.5)    *** empty log message ***
   
 static double sqrarg;    Revision 1.137  2010/04/29 18:11:38  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Checking covariates for more complex models
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    than V1+V2. A lot of change to be done. Unstable.
   
 int imx;    Revision 1.136  2010/04/26 20:30:53  brouard
 int stepm;    (Module): merging some libgsl code. Fixing computation
 /* Stepm, step in month: minimum step interpolation*/    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
 int estepm;    Some cleaning of code and comments added.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.135  2009/10/29 15:33:14  brouard
 int m,nb;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.134  2009/10/29 13:18:53  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 double dateintmean=0;  
     Revision 1.133  2009/07/06 10:21:25  brouard
 double *weight;    just nforces
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.132  2009/07/06 08:22:05  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Many tings
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.131  2009/06/20 16:22:47  brouard
 double ftolhess; /* Tolerance for computing hessian */    Some dimensions resccaled
   
 /**************** split *************************/    Revision 1.130  2009/05/26 06:44:34  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): Max Covariate is now set to 20 instead of 8. A
 {    lot of cleaning with variables initialized to 0. Trying to make
    char *s;                             /* pointer */    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
    int  l1, l2;                         /* length counters */  
     Revision 1.129  2007/08/31 13:49:27  lievre
    l1 = strlen( path );                 /* length of path */    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    Revision 1.128  2006/06/30 13:02:05  brouard
    s = strrchr( path, '\\' );           /* find last / */    (Module): Clarifications on computing e.j
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.127  2006/04/28 18:11:50  brouard
 #endif    (Module): Yes the sum of survivors was wrong since
    if ( s == NULL ) {                   /* no directory, so use current */    imach-114 because nhstepm was no more computed in the age
 #if     defined(__bsd__)                /* get current working directory */    loop. Now we define nhstepma in the age loop.
       extern char       *getwd( );    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
       if ( getwd( dirc ) == NULL ) {    and then all the health expectancies with variances or standard
 #else    deviation (needs data from the Hessian matrices) which slows the
       extern char       *getcwd( );    computation.
     In the future we should be able to stop the program is only health
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    expectancies and graph are needed without standard deviations.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.126  2006/04/28 17:23:28  brouard
       }    (Module): Yes the sum of survivors was wrong since
       strcpy( name, path );             /* we've got it */    imach-114 because nhstepm was no more computed in the age
    } else {                             /* strip direcotry from path */    loop. Now we define nhstepma in the age loop.
       s++;                              /* after this, the filename */    Version 0.98h
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.125  2006/04/04 15:20:31  lievre
       strcpy( name, s );                /* save file name */    Errors in calculation of health expectancies. Age was not initialized.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Forecasting file added.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.124  2006/03/22 17:13:53  lievre
    l1 = strlen( dirc );                 /* length of directory */    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #ifdef windows    The log-likelihood is printed in the log file
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.123  2006/03/20 10:52:43  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    * imach.c (Module): <title> changed, corresponds to .htm file
 #endif    name. <head> headers where missing.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    * imach.c (Module): Weights can have a decimal point as for
    strcpy(ext,s);                       /* save extension */    English (a comma might work with a correct LC_NUMERIC environment,
    l1= strlen( name);    otherwise the weight is truncated).
    l2= strlen( s)+1;    Modification of warning when the covariates values are not 0 or
    strncpy( finame, name, l1-l2);    1.
    finame[l1-l2]= 0;    Version 0.98g
    return( 0 );                         /* we're done */  
 }    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 /******************************************/    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 void replace(char *s, char*t)    1.
 {    Version 0.98g
   int i;  
   int lg=20;    Revision 1.121  2006/03/16 17:45:01  lievre
   i=0;    * imach.c (Module): Comments concerning covariates added
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    * imach.c (Module): refinements in the computation of lli if
     (s[i] = t[i]);    status=-2 in order to have more reliable computation if stepm is
     if (t[i]== '\\') s[i]='/';    not 1 month. Version 0.98f
   }  
 }    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 int nbocc(char *s, char occ)    status=-2 in order to have more reliable computation if stepm is
 {    not 1 month. Version 0.98f
   int i,j=0;  
   int lg=20;    Revision 1.119  2006/03/15 17:42:26  brouard
   i=0;    (Module): Bug if status = -2, the loglikelihood was
   lg=strlen(s);    computed as likelihood omitting the logarithm. Version O.98e
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.118  2006/03/14 18:20:07  brouard
   }    (Module): varevsij Comments added explaining the second
   return j;    table of variances if popbased=1 .
 }    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 void cutv(char *u,char *v, char*t, char occ)    (Module): Version 0.98d
 {  
   int i,lg,j,p=0;    Revision 1.117  2006/03/14 17:16:22  brouard
   i=0;    (Module): varevsij Comments added explaining the second
   for(j=0; j<=strlen(t)-1; j++) {    table of variances if popbased=1 .
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   }    (Module): Function pstamp added
     (Module): Version 0.98d
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.116  2006/03/06 10:29:27  brouard
     (u[j] = t[j]);    (Module): Variance-covariance wrong links and
   }    varian-covariance of ej. is needed (Saito).
      u[p]='\0';  
     Revision 1.115  2006/02/27 12:17:45  brouard
    for(j=0; j<= lg; j++) {    (Module): One freematrix added in mlikeli! 0.98c
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.114  2006/02/26 12:57:58  brouard
 }    (Module): Some improvements in processing parameter
     filename with strsep.
 /********************** nrerror ********************/  
     Revision 1.113  2006/02/24 14:20:24  brouard
 void nrerror(char error_text[])    (Module): Memory leaks checks with valgrind and:
 {    datafile was not closed, some imatrix were not freed and on matrix
   fprintf(stderr,"ERREUR ...\n");    allocation too.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.112  2006/01/30 09:55:26  brouard
 }    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.111  2006/01/25 20:38:18  brouard
 {    (Module): Lots of cleaning and bugs added (Gompertz)
   double *v;    (Module): Comments can be added in data file. Missing date values
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    can be a simple dot '.'.
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.110  2006/01/25 00:51:50  brouard
 }    (Module): Lots of cleaning and bugs added (Gompertz)
   
 /************************ free vector ******************/    Revision 1.109  2006/01/24 19:37:15  brouard
 void free_vector(double*v, int nl, int nh)    (Module): Comments (lines starting with a #) are allowed in data.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.108  2006/01/19 18:05:42  lievre
 }    Gnuplot problem appeared...
     To be fixed
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.107  2006/01/19 16:20:37  brouard
 {    Test existence of gnuplot in imach path
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.106  2006/01/19 13:24:36  brouard
   if (!v) nrerror("allocation failure in ivector");    Some cleaning and links added in html output
   return v-nl+NR_END;  
 }    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.104  2005/09/30 16:11:43  lievre
 {    (Module): sump fixed, loop imx fixed, and simplifications.
   free((FREE_ARG)(v+nl-NR_END));    (Module): If the status is missing at the last wave but we know
 }    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 /******************* imatrix *******************************/    contributions to the likelihood is 1 - Prob of dying from last
 int **imatrix(long nrl, long nrh, long ncl, long nch)    health status (= 1-p13= p11+p12 in the easiest case of somebody in
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    the healthy state at last known wave). Version is 0.98
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.103  2005/09/30 15:54:49  lievre
   int **m;    (Module): sump fixed, loop imx fixed, and simplifications.
    
   /* allocate pointers to rows */    Revision 1.102  2004/09/15 17:31:30  brouard
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Add the possibility to read data file including tab characters.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.101  2004/09/15 10:38:38  brouard
   m -= nrl;    Fix on curr_time
    
      Revision 1.100  2004/07/12 18:29:06  brouard
   /* allocate rows and set pointers to them */    Add version for Mac OS X. Just define UNIX in Makefile
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.99  2004/06/05 08:57:40  brouard
   m[nrl] += NR_END;    *** empty log message ***
   m[nrl] -= ncl;  
      Revision 1.98  2004/05/16 15:05:56  brouard
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    New version 0.97 . First attempt to estimate force of mortality
      directly from the data i.e. without the need of knowing the health
   /* return pointer to array of pointers to rows */    state at each age, but using a Gompertz model: log u =a + b*age .
   return m;    This is the basic analysis of mortality and should be done before any
 }    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 /****************** free_imatrix *************************/    from other sources like vital statistic data.
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;    The same imach parameter file can be used but the option for mle should be -3.
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Agnès, who wrote this part of the code, tried to keep most of the
 {    former routines in order to include the new code within the former code.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    The output is very simple: only an estimate of the intercept and of
 }    the slope with 95% confident intervals.
   
 /******************* matrix *******************************/    Current limitations:
 double **matrix(long nrl, long nrh, long ncl, long nch)    A) Even if you enter covariates, i.e. with the
 {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    B) There is no computation of Life Expectancy nor Life Table.
   double **m;  
     Revision 1.97  2004/02/20 13:25:42  lievre
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Version 0.96d. Population forecasting command line is (temporarily)
   if (!m) nrerror("allocation failure 1 in matrix()");    suppressed.
   m += NR_END;  
   m -= nrl;    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    rewritten within the same printf. Workaround: many printfs.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.95  2003/07/08 07:54:34  brouard
   m[nrl] -= ncl;    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    matrix (cov(a12,c31) instead of numbers.
   return m;  
 }    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Revision 1.93  2003/06/25 16:33:55  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    exist so I changed back to asctime which exists.
   free((FREE_ARG)(m+nrl-NR_END));    (Module): Version 0.96b
 }  
     Revision 1.92  2003/06/25 16:30:45  brouard
 /******************* ma3x *******************************/    (Module): On windows (cygwin) function asctime_r doesn't
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    exist so I changed back to asctime which exists.
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Revision 1.91  2003/06/25 15:30:29  brouard
   double ***m;    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    helps to forecast when convergence will be reached. Elapsed time
   if (!m) nrerror("allocation failure 1 in matrix()");    is stamped in powell.  We created a new html file for the graphs
   m += NR_END;    concerning matrix of covariance. It has extension -cov.htm.
   m -= nrl;  
     Revision 1.90  2003/06/24 12:34:15  brouard
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): Some bugs corrected for windows. Also, when
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    mle=-1 a template is output in file "or"mypar.txt with the design
   m[nrl] += NR_END;    of the covariance matrix to be input.
   m[nrl] -= ncl;  
     Revision 1.89  2003/06/24 12:30:52  brouard
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    of the covariance matrix to be input.
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    Revision 1.88  2003/06/23 17:54:56  brouard
   m[nrl][ncl] -= nll;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Revision 1.87  2003/06/18 12:26:01  brouard
      Version 0.96
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Revision 1.86  2003/06/17 20:04:08  brouard
     for (j=ncl+1; j<=nch; j++)    (Module): Change position of html and gnuplot routines and added
       m[i][j]=m[i][j-1]+nlay;    routine fileappend.
   }  
   return m;    Revision 1.85  2003/06/17 13:12:43  brouard
 }    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 /*************************free ma3x ************************/    prior to the death. In this case, dh was negative and likelihood
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    was wrong (infinity). We still send an "Error" but patch by
 {    assuming that the date of death was just one stepm after the
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    interview.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Repository): Because some people have very long ID (first column)
   free((FREE_ARG)(m+nrl-NR_END));    we changed int to long in num[] and we added a new lvector for
 }    memory allocation. But we also truncated to 8 characters (left
     truncation)
 /***************** f1dim *************************/    (Repository): No more line truncation errors.
 extern int ncom;  
 extern double *pcom,*xicom;    Revision 1.84  2003/06/13 21:44:43  brouard
 extern double (*nrfunc)(double []);    * imach.c (Repository): Replace "freqsummary" at a correct
      place. It differs from routine "prevalence" which may be called
 double f1dim(double x)    many times. Probs is memory consuming and must be used with
 {    parcimony.
   int j;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   double f;  
   double *xt;    Revision 1.83  2003/06/10 13:39:11  lievre
      *** empty log message ***
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Revision 1.82  2003/06/05 15:57:20  brouard
   f=(*nrfunc)(xt);    Add log in  imach.c and  fullversion number is now printed.
   free_vector(xt,1,ncom);  
   return f;  */
 }  /*
      Interpolated Markov Chain
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Short summary of the programme:
 {    
   int iter;    This program computes Healthy Life Expectancies from
   double a,b,d,etemp;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   double fu,fv,fw,fx;    first survey ("cross") where individuals from different ages are
   double ftemp;    interviewed on their health status or degree of disability (in the
   double p,q,r,tol1,tol2,u,v,w,x,xm;    case of a health survey which is our main interest) -2- at least a
   double e=0.0;    second wave of interviews ("longitudinal") which measure each change
      (if any) in individual health status.  Health expectancies are
   a=(ax < cx ? ax : cx);    computed from the time spent in each health state according to a
   b=(ax > cx ? ax : cx);    model. More health states you consider, more time is necessary to reach the
   x=w=v=bx;    Maximum Likelihood of the parameters involved in the model.  The
   fw=fv=fx=(*f)(x);    simplest model is the multinomial logistic model where pij is the
   for (iter=1;iter<=ITMAX;iter++) {    probability to be observed in state j at the second wave
     xm=0.5*(a+b);    conditional to be observed in state i at the first wave. Therefore
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    'age' is age and 'sex' is a covariate. If you want to have a more
     printf(".");fflush(stdout);    complex model than "constant and age", you should modify the program
 #ifdef DEBUG    where the markup *Covariates have to be included here again* invites
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    you to do it.  More covariates you add, slower the
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    convergence.
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    The advantage of this computer programme, compared to a simple
       *xmin=x;    multinomial logistic model, is clear when the delay between waves is not
       return fx;    identical for each individual. Also, if a individual missed an
     }    intermediate interview, the information is lost, but taken into
     ftemp=fu;    account using an interpolation or extrapolation.  
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);    hPijx is the probability to be observed in state i at age x+h
       q=(x-v)*(fx-fw);    conditional to the observed state i at age x. The delay 'h' can be
       p=(x-v)*q-(x-w)*r;    split into an exact number (nh*stepm) of unobserved intermediate
       q=2.0*(q-r);    states. This elementary transition (by month, quarter,
       if (q > 0.0) p = -p;    semester or year) is modelled as a multinomial logistic.  The hPx
       q=fabs(q);    matrix is simply the matrix product of nh*stepm elementary matrices
       etemp=e;    and the contribution of each individual to the likelihood is simply
       e=d;    hPijx.
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    Also this programme outputs the covariance matrix of the parameters but also
       else {    of the life expectancies. It also computes the period (stable) prevalence. 
         d=p/q;    
         u=x+d;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
         if (u-a < tol2 || b-u < tol2)             Institut national d'études démographiques, Paris.
           d=SIGN(tol1,xm-x);    This software have been partly granted by Euro-REVES, a concerted action
       }    from the European Union.
     } else {    It is copyrighted identically to a GNU software product, ie programme and
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    software can be distributed freely for non commercial use. Latest version
     }    can be accessed at http://euroreves.ined.fr/imach .
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     if (fu <= fx) {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       if (u >= x) a=x; else b=x;    
       SHFT(v,w,x,u)    **********************************************************************/
         SHFT(fv,fw,fx,fu)  /*
         } else {    main
           if (u < x) a=u; else b=u;    read parameterfile
           if (fu <= fw || w == x) {    read datafile
             v=w;    concatwav
             w=u;    freqsummary
             fv=fw;    if (mle >= 1)
             fw=fu;      mlikeli
           } else if (fu <= fv || v == x || v == w) {    print results files
             v=u;    if mle==1 
             fv=fu;       computes hessian
           }    read end of parameter file: agemin, agemax, bage, fage, estepm
         }        begin-prev-date,...
   }    open gnuplot file
   nrerror("Too many iterations in brent");    open html file
   *xmin=x;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   return fx;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
 }                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       freexexit2 possible for memory heap.
 /****************** mnbrak ***********************/  
     h Pij x                         | pij_nom  ficrestpij
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
             double (*func)(double))         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 {         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   double ulim,u,r,q, dum;  
   double fu;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
           1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   *fa=(*func)(*ax);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   *fb=(*func)(*bx);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   if (*fb > *fa) {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    forecasting if prevfcast==1 prevforecast call prevalence()
       }    health expectancies
   *cx=(*bx)+GOLD*(*bx-*ax);    Variance-covariance of DFLE
   *fc=(*func)(*cx);    prevalence()
   while (*fb > *fc) {     movingaverage()
     r=(*bx-*ax)*(*fb-*fc);    varevsij() 
     q=(*bx-*cx)*(*fb-*fa);    if popbased==1 varevsij(,popbased)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    total life expectancies
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    Variance of period (stable) prevalence
     ulim=(*bx)+GLIMIT*(*cx-*bx);   end
     if ((*bx-u)*(u-*cx) > 0.0) {  */
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define POWELL /* Instead of NLOPT */
       fu=(*func)(u);  
       if (fu < *fc) {  #include <math.h>
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #include <stdio.h>
           SHFT(*fb,*fc,fu,(*func)(u))  #include <stdlib.h>
           }  #include <string.h>
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  #ifdef _WIN32
       fu=(*func)(u);  #include <io.h>
     } else {  #else
       u=(*cx)+GOLD*(*cx-*bx);  #include <unistd.h>
       fu=(*func)(u);  #endif
     }  
     SHFT(*ax,*bx,*cx,u)  #include <limits.h>
       SHFT(*fa,*fb,*fc,fu)  #include <sys/types.h>
       }  #include <sys/stat.h>
 }  #include <errno.h>
   /* extern int errno; */
 /*************** linmin ************************/  
   /* #ifdef LINUX */
 int ncom;  /* #include <time.h> */
 double *pcom,*xicom;  /* #include "timeval.h" */
 double (*nrfunc)(double []);  /* #else */
    /* #include <sys/time.h> */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /* #endif */
 {  
   double brent(double ax, double bx, double cx,  #include <time.h>
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  #ifdef GSL
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #include <gsl/gsl_errno.h>
               double *fc, double (*func)(double));  #include <gsl/gsl_multimin.h>
   int j;  #endif
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  #ifdef NLOPT
    #include <nlopt.h>
   ncom=n;  typedef struct {
   pcom=vector(1,n);    double (* function)(double [] );
   xicom=vector(1,n);  } myfunc_data ;
   nrfunc=func;  #endif
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /* #include <libintl.h> */
     xicom[j]=xi[j];  /* #define _(String) gettext (String) */
   }  
   ax=0.0;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #define GNUPLOTPROGRAM "gnuplot"
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #ifdef DEBUG  #define FILENAMELENGTH 132
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   for (j=1;j<=n;j++) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     xi[j] *= xmin;  
     p[j] += xi[j];  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   }  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 /*************** powell ************************/  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
             double (*func)(double []))  #define MAXN 20000
 {  #define YEARM 12. /**< Number of months per year */
   void linmin(double p[], double xi[], int n, double *fret,  #define AGESUP 130
               double (*func)(double []));  #define AGEBASE 40
   int i,ibig,j;  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
   double del,t,*pt,*ptt,*xit;  #ifdef _WIN32
   double fp,fptt;  #define DIRSEPARATOR '\\'
   double *xits;  #define CHARSEPARATOR "\\"
   pt=vector(1,n);  #define ODIRSEPARATOR '/'
   ptt=vector(1,n);  #else
   xit=vector(1,n);  #define DIRSEPARATOR '/'
   xits=vector(1,n);  #define CHARSEPARATOR "/"
   *fret=(*func)(p);  #define ODIRSEPARATOR '\\'
   for (j=1;j<=n;j++) pt[j]=p[j];  #endif
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /* $Id$ */
     ibig=0;  /* $State$ */
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char version[]="Imach version 0.99, September 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
     for (i=1;i<=n;i++)  char fullversion[]="$Revision$ $Date$"; 
       printf(" %d %.12f",i, p[i]);  char strstart[80];
     printf("\n");  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     for (i=1;i<=n;i++) {  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  int nvar=0, nforce=0; /* Number of variables, number of forces */
       fptt=(*fret);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 #ifdef DEBUG  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       printf("fret=%lf \n",*fret);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 #endif  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
       printf("%d",i);fflush(stdout);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       linmin(p,xit,n,fret,func);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       if (fabs(fptt-(*fret)) > del) {  int cptcoveff=0; /* Total number of covariates to vary for printing results */
         del=fabs(fptt-(*fret));  int cptcov=0; /* Working variable */
         ibig=i;  int npar=NPARMAX;
       }  int nlstate=2; /* Number of live states */
 #ifdef DEBUG  int ndeath=1; /* Number of dead states */
       printf("%d %.12e",i,(*fret));  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       for (j=1;j<=n;j++) {  int popbased=0;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  int *wav; /* Number of waves for this individuual 0 is possible */
       }  int maxwav=0; /* Maxim number of waves */
       for(j=1;j<=n;j++)  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
         printf(" p=%.12e",p[j]);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       printf("\n");  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 #endif                     to the likelihood and the sum of weights (done by funcone)*/
     }  int mle=1, weightopt=0;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #ifdef DEBUG  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       int k[2],l;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       k[0]=1;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       k[1]=-1;  int countcallfunc=0;  /* Count the number of calls to func */
       printf("Max: %.12e",(*func)(p));  double jmean=1; /* Mean space between 2 waves */
       for (j=1;j<=n;j++)  double **matprod2(); /* test */
         printf(" %.12e",p[j]);  double **oldm, **newm, **savm; /* Working pointers to matrices */
       printf("\n");  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       for(l=0;l<=1;l++) {  /*FILE *fic ; */ /* Used in readdata only */
         for (j=1;j<=n;j++) {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  FILE *ficlog, *ficrespow;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int globpr=0; /* Global variable for printing or not */
         }  double fretone; /* Only one call to likelihood */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  long ipmx=0; /* Number of contributions */
       }  double sw; /* Sum of weights */
 #endif  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
       free_vector(xit,1,n);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       free_vector(xits,1,n);  FILE *ficresprobmorprev;
       free_vector(ptt,1,n);  FILE *fichtm, *fichtmcov; /* Html File */
       free_vector(pt,1,n);  FILE *ficreseij;
       return;  char filerese[FILENAMELENGTH];
     }  FILE *ficresstdeij;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  char fileresstde[FILENAMELENGTH];
     for (j=1;j<=n;j++) {  FILE *ficrescveij;
       ptt[j]=2.0*p[j]-pt[j];  char filerescve[FILENAMELENGTH];
       xit[j]=p[j]-pt[j];  FILE  *ficresvij;
       pt[j]=p[j];  char fileresv[FILENAMELENGTH];
     }  FILE  *ficresvpl;
     fptt=(*func)(ptt);  char fileresvpl[FILENAMELENGTH];
     if (fptt < fp) {  char title[MAXLINE];
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       if (t < 0.0) {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
         linmin(p,xit,n,fret,func);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         for (j=1;j<=n;j++) {  char command[FILENAMELENGTH];
           xi[j][ibig]=xi[j][n];  int  outcmd=0;
           xi[j][n]=xit[j];  
         }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  char filelog[FILENAMELENGTH]; /* Log file */
         for(j=1;j<=n;j++)  char filerest[FILENAMELENGTH];
           printf(" %.12e",xit[j]);  char fileregp[FILENAMELENGTH];
         printf("\n");  char popfile[FILENAMELENGTH];
 #endif  
       }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     }  
   }  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
 }  /* struct timezone tzp; */
   /* extern int gettimeofday(); */
 /**** Prevalence limit ****************/  struct tm tml, *gmtime(), *localtime();
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  extern time_t time();
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  struct tm start_time, end_time, curr_time, last_time, forecast_time;
      matrix by transitions matrix until convergence is reached */  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
   struct tm tm;
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  char strcurr[80], strfor[80];
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  char *endptr;
   double **newm;  long lval;
   double agefin, delaymax=50 ; /* Max number of years to converge */  double dval;
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  #define NR_END 1
     for (j=1;j<=nlstate+ndeath;j++){  #define FREE_ARG char*
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #define FTOL 1.0e-10
     }  
   #define NRANSI 
    cov[1]=1.;  #define ITMAX 200 
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #define TOL 2.0e-4 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  #define CGOLD 0.3819660 
     /* Covariates have to be included here again */  #define ZEPS 1.0e-10 
      cov[2]=agefin;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    
       for (k=1; k<=cptcovn;k++) {  #define GOLD 1.618034 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #define GLIMIT 100.0 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #define TINY 1.0e-20 
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  static double maxarg1,maxarg2;
       for (k=1; k<=cptcovprod;k++)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #define rint(a) floor(a+0.5)
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /* #define mytinydouble 1.0e-16 */
   /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
     savm=oldm;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     oldm=newm;  /* static double dsqrarg; */
     maxmax=0.;  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     for(j=1;j<=nlstate;j++){  static double sqrarg;
       min=1.;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       max=0.;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       for(i=1; i<=nlstate; i++) {  int agegomp= AGEGOMP;
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  int imx; 
         prlim[i][j]= newm[i][j]/(1-sumnew);  int stepm=1;
         max=FMAX(max,prlim[i][j]);  /* Stepm, step in month: minimum step interpolation*/
         min=FMIN(min,prlim[i][j]);  
       }  int estepm;
       maxmin=max-min;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       maxmax=FMAX(maxmax,maxmin);  
     }  int m,nb;
     if(maxmax < ftolpl){  long *num;
       return prlim;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   }  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /*************** transition probabilities ***************/  
   double *weight;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  int **s; /* Status */
 {  double *agedc;
   double s1, s2;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   /*double t34;*/                    * covar=matrix(0,NCOVMAX,1,n); 
   int i,j,j1, nc, ii, jj;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   double  idx; 
     for(i=1; i<= nlstate; i++){  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     for(j=1; j<i;j++){  int *Ndum; /** Freq of modality (tricode */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int **codtab; /**< codtab=imatrix(1,100,1,10); */
         /*s2 += param[i][j][nc]*cov[nc];*/  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double *lsurv, *lpop, *tpop;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       ps[i][j]=s2;  double ftolhess; /**< Tolerance for computing hessian */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  /**************** split *************************/
     for(j=i+1; j<=nlstate+ndeath;j++){  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       }    */ 
       ps[i][j]=s2;    char  *ss;                            /* pointer */
     }    int   l1, l2;                         /* length counters */
   }  
     /*ps[3][2]=1;*/    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for(i=1; i<= nlstate; i++){    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      s1=0;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     for(j=1; j<i; j++)      strcpy( name, path );               /* we got the fullname name because no directory */
       s1+=exp(ps[i][j]);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     for(j=i+1; j<=nlstate+ndeath; j++)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       s1+=exp(ps[i][j]);      /* get current working directory */
     ps[i][i]=1./(s1+1.);      /*    extern  char* getcwd ( char *buf , int len);*/
     for(j=1; j<i; j++)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];        return( GLOCK_ERROR_GETCWD );
     for(j=i+1; j<=nlstate+ndeath; j++)      }
       ps[i][j]= exp(ps[i][j])*ps[i][i];      /* got dirc from getcwd*/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      printf(" DIRC = %s \n",dirc);
   } /* end i */    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      l2 = strlen( ss );                  /* length of filename */
     for(jj=1; jj<= nlstate+ndeath; jj++){      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       ps[ii][jj]=0;      strcpy( name, ss );         /* save file name */
       ps[ii][ii]=1;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     }      dirc[l1-l2] = 0;                    /* add zero */
   }      printf(" DIRC2 = %s \n",dirc);
     }
     /* We add a separator at the end of dirc if not exists */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    l1 = strlen( dirc );                  /* length of directory */
     for(jj=1; jj<= nlstate+ndeath; jj++){    if( dirc[l1-1] != DIRSEPARATOR ){
      printf("%lf ",ps[ii][jj]);      dirc[l1] =  DIRSEPARATOR;
    }      dirc[l1+1] = 0; 
     printf("\n ");      printf(" DIRC3 = %s \n",dirc);
     }    }
     printf("\n ");printf("%lf ",cov[2]);*/    ss = strrchr( name, '.' );            /* find last / */
 /*    if (ss >0){
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      ss++;
   goto end;*/      strcpy(ext,ss);                     /* save extension */
     return ps;      l1= strlen( name);
 }      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
 /**************** Product of 2 matrices ******************/      finame[l1-l2]= 0;
     }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {    return( 0 );                          /* we're done */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /******************************************/
      a pointer to pointers identical to out */  
   long i, j, k;  void replace_back_to_slash(char *s, char*t)
   for(i=nrl; i<= nrh; i++)  {
     for(k=ncolol; k<=ncoloh; k++)    int i;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    int lg=0;
         out[i][k] +=in[i][j]*b[j][k];    i=0;
     lg=strlen(t);
   return out;    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
     }
 /************* Higher Matrix Product ***************/  }
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  char *trimbb(char *out, char *in)
 {  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    char *s;
      duration (i.e. until    s=out;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    while (*in != '\0'){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
      (typically every 2 years instead of every month which is too big).        in++;
      Model is determined by parameters x and covariates have to be      }
      included manually here.      *out++ = *in++;
     }
      */    *out='\0';
     return s;
   int i, j, d, h, k;  }
   double **out, cov[NCOVMAX];  
   double **newm;  char *cutl(char *blocc, char *alocc, char *in, char occ)
   {
   /* Hstepm could be zero and should return the unit matrix */    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   for (i=1;i<=nlstate+ndeath;i++)       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     for (j=1;j<=nlstate+ndeath;j++){       gives blocc="abcdef2ghi" and alocc="j".
       oldm[i][j]=(i==j ? 1.0 : 0.0);       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       po[i][j][0]=(i==j ? 1.0 : 0.0);    */
     }    char *s, *t;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    t=in;s=in;
   for(h=1; h <=nhstepm; h++){    while ((*in != occ) && (*in != '\0')){
     for(d=1; d <=hstepm; d++){      *alocc++ = *in++;
       newm=savm;    }
       /* Covariates have to be included here again */    if( *in == occ){
       cov[1]=1.;      *(alocc)='\0';
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      s=++in;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    }
       for (k=1; k<=cptcovage;k++)   
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if (s == t) {/* occ not found */
       for (k=1; k<=cptcovprod;k++)      *(alocc-(in-s))='\0';
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      in=s;
     }
     while ( *in != '\0'){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      *blocc++ = *in++;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    *blocc='\0';
       savm=oldm;    return t;
       oldm=newm;  }
     }  char *cutv(char *blocc, char *alocc, char *in, char occ)
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
         po[i][j][h]=newm[i][j];       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);       gives blocc="abcdef2ghi" and alocc="j".
          */       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       }    */
   } /* end h */    char *s, *t;
   return po;    t=in;s=in;
 }    while (*in != '\0'){
       while( *in == occ){
         *blocc++ = *in++;
 /*************** log-likelihood *************/        s=in;
 double func( double *x)      }
 {      *blocc++ = *in++;
   int i, ii, j, k, mi, d, kk;    }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    if (s == t) /* occ not found */
   double **out;      *(blocc-(in-s))='\0';
   double sw; /* Sum of weights */    else
   double lli; /* Individual log likelihood */      *(blocc-(in-s)-1)='\0';
   long ipmx;    in=s;
   /*extern weight */    while ( *in != '\0'){
   /* We are differentiating ll according to initial status */      *alocc++ = *in++;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    }
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);    *alocc='\0';
   */    return s;
   cov[1]=1.;  }
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;  int nbocc(char *s, char occ)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  {
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    int i,j=0;
     for(mi=1; mi<= wav[i]-1; mi++){    int lg=20;
       for (ii=1;ii<=nlstate+ndeath;ii++)    i=0;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    lg=strlen(s);
       for(d=0; d<dh[mi][i]; d++){    for(i=0; i<= lg; i++) {
         newm=savm;    if  (s[i] == occ ) j++;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    }
         for (kk=1; kk<=cptcovage;kk++) {    return j;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  }
         }  
          /* void cutv(char *u,char *v, char*t, char occ) */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /* { */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
         savm=oldm;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
         oldm=newm;  /*      gives u="abcdef2ghi" and v="j" *\/ */
          /*   int i,lg,j,p=0; */
          /*   i=0; */
       } /* end mult */  /*   lg=strlen(t); */
        /*   for(j=0; j<=lg-1; j++) { */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /*   } */
       ipmx +=1;  
       sw += weight[i];  /*   for(j=0; j<p; j++) { */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*     (u[j] = t[j]); */
     } /* end of wave */  /*   } */
   } /* end of individual */  /*      u[p]='\0'; */
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /*    for(j=0; j<= lg; j++) { */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*   } */
   return -l;  /* } */
 }  
   #ifdef _WIN32
   char * strsep(char **pp, const char *delim)
 /*********** Maximum Likelihood Estimation ***************/  {
     char *p, *q;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))           
 {    if ((p = *pp) == NULL)
   int i,j, iter;      return 0;
   double **xi,*delti;    if ((q = strpbrk (p, delim)) != NULL)
   double fret;    {
   xi=matrix(1,npar,1,npar);      *pp = q + 1;
   for (i=1;i<=npar;i++)      *q = '\0';
     for (j=1;j<=npar;j++)    }
       xi[i][j]=(i==j ? 1.0 : 0.0);    else
   printf("Powell\n");      *pp = 0;
   powell(p,xi,npar,ftol,&iter,&fret,func);    return p;
   }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  #endif
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   /********************** nrerror ********************/
 }  
   void nrerror(char error_text[])
 /**** Computes Hessian and covariance matrix ***/  {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    fprintf(stderr,"ERREUR ...\n");
 {    fprintf(stderr,"%s\n",error_text);
   double  **a,**y,*x,pd;    exit(EXIT_FAILURE);
   double **hess;  }
   int i, j,jk;  /*********************** vector *******************/
   int *indx;  double *vector(int nl, int nh)
   {
   double hessii(double p[], double delta, int theta, double delti[]);    double *v;
   double hessij(double p[], double delti[], int i, int j);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   void lubksb(double **a, int npar, int *indx, double b[]) ;    if (!v) nrerror("allocation failure in vector");
   void ludcmp(double **a, int npar, int *indx, double *d) ;    return v-nl+NR_END;
   }
   hess=matrix(1,npar,1,npar);  
   /************************ free vector ******************/
   printf("\nCalculation of the hessian matrix. Wait...\n");  void free_vector(double*v, int nl, int nh)
   for (i=1;i<=npar;i++){  {
     printf("%d",i);fflush(stdout);    free((FREE_ARG)(v+nl-NR_END));
     hess[i][i]=hessii(p,ftolhess,i,delti);  }
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  /************************ivector *******************************/
   }  int *ivector(long nl,long nh)
    {
   for (i=1;i<=npar;i++) {    int *v;
     for (j=1;j<=npar;j++)  {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       if (j>i) {    if (!v) nrerror("allocation failure in ivector");
         printf(".%d%d",i,j);fflush(stdout);    return v-nl+NR_END;
         hess[i][j]=hessij(p,delti,i,j);  }
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/  /******************free ivector **************************/
       }  void free_ivector(int *v, long nl, long nh)
     }  {
   }    free((FREE_ARG)(v+nl-NR_END));
   printf("\n");  }
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /************************lvector *******************************/
    long *lvector(long nl,long nh)
   a=matrix(1,npar,1,npar);  {
   y=matrix(1,npar,1,npar);    long *v;
   x=vector(1,npar);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   indx=ivector(1,npar);    if (!v) nrerror("allocation failure in ivector");
   for (i=1;i<=npar;i++)    return v-nl+NR_END;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  }
   ludcmp(a,npar,indx,&pd);  
   /******************free lvector **************************/
   for (j=1;j<=npar;j++) {  void free_lvector(long *v, long nl, long nh)
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    free((FREE_ARG)(v+nl-NR_END));
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /******************* imatrix *******************************/
     }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
   printf("\n#Hessian matrix#\n");    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   for (i=1;i<=npar;i++) {    int **m; 
     for (j=1;j<=npar;j++) {    
       printf("%.3e ",hess[i][j]);    /* allocate pointers to rows */ 
     }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()"); 
   }    m += NR_END; 
     m -= nrl; 
   /* Recompute Inverse */    
   for (i=1;i<=npar;i++)    
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /* allocate rows and set pointers to them */ 
   ludcmp(a,npar,indx,&pd);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   /*  printf("\n#Hessian matrix recomputed#\n");    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
   for (j=1;j<=npar;j++) {    
     for (i=1;i<=npar;i++) x[i]=0;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     x[j]=1;    
     lubksb(a,npar,indx,x);    /* return pointer to array of pointers to rows */ 
     for (i=1;i<=npar;i++){    return m; 
       y[i][j]=x[i];  } 
       printf("%.3e ",y[i][j]);  
     }  /****************** free_imatrix *************************/
     printf("\n");  void free_imatrix(m,nrl,nrh,ncl,nch)
   }        int **m;
   */        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
   free_matrix(a,1,npar,1,npar);  { 
   free_matrix(y,1,npar,1,npar);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   free_vector(x,1,npar);    free((FREE_ARG) (m+nrl-NR_END)); 
   free_ivector(indx,1,npar);  } 
   free_matrix(hess,1,npar,1,npar);  
   /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /*************** hessian matrix ****************/    double **m;
 double hessii( double x[], double delta, int theta, double delti[])  
 {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int i;    if (!m) nrerror("allocation failure 1 in matrix()");
   int l=1, lmax=20;    m += NR_END;
   double k1,k2;    m -= nrl;
   double p2[NPARMAX+1];  
   double res;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double fx;    m[nrl] += NR_END;
   int k=0,kmax=10;    m[nrl] -= ncl;
   double l1;  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   fx=func(x);    return m;
   for (i=1;i<=npar;i++) p2[i]=x[i];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   for(l=0 ; l <=lmax; l++){  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
     l1=pow(10,l);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     delts=delt;     */
     for(k=1 ; k <kmax; k=k+1){  }
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  /*************************free matrix ************************/
       k1=func(p2)-fx;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       p2[theta]=x[theta]-delt;  {
       k2=func(p2)-fx;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       /*res= (k1-2.0*fx+k2)/delt/delt; */    free((FREE_ARG)(m+nrl-NR_END));
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  }
        
 #ifdef DEBUG  /******************* ma3x *******************************/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 #endif  {
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    double ***m;
         k=kmax;  
       }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    if (!m) nrerror("allocation failure 1 in matrix()");
         k=kmax; l=lmax*10.;    m += NR_END;
       }    m -= nrl;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   delti[theta]=delts;  
   return res;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
    
 }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 double hessij( double x[], double delti[], int thetai,int thetaj)    m[nrl][ncl] += NR_END;
 {    m[nrl][ncl] -= nll;
   int i;    for (j=ncl+1; j<=nch; j++) 
   int l=1, l1, lmax=20;      m[nrl][j]=m[nrl][j-1]+nlay;
   double k1,k2,k3,k4,res,fx;    
   double p2[NPARMAX+1];    for (i=nrl+1; i<=nrh; i++) {
   int k;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
   fx=func(x);        m[i][j]=m[i][j-1]+nlay;
   for (k=1; k<=2; k++) {    }
     for (i=1;i<=npar;i++) p2[i]=x[i];    return m; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     k1=func(p2)-fx;    */
    }
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*************************free ma3x ************************/
     k2=func(p2)-fx;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     k3=func(p2)-fx;    free((FREE_ARG)(m+nrl-NR_END));
    }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*************** function subdirf ***********/
     k4=func(p2)-fx;  char *subdirf(char fileres[])
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  {
 #ifdef DEBUG    /* Caution optionfilefiname is hidden */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    strcpy(tmpout,optionfilefiname);
 #endif    strcat(tmpout,"/"); /* Add to the right */
   }    strcat(tmpout,fileres);
   return res;    return tmpout;
 }  }
   
 /************** Inverse of matrix **************/  /*************** function subdirf2 ***********/
 void ludcmp(double **a, int n, int *indx, double *d)  char *subdirf2(char fileres[], char *preop)
 {  {
   int i,imax,j,k;    
   double big,dum,sum,temp;    /* Caution optionfilefiname is hidden */
   double *vv;    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/");
   vv=vector(1,n);    strcat(tmpout,preop);
   *d=1.0;    strcat(tmpout,fileres);
   for (i=1;i<=n;i++) {    return tmpout;
     big=0.0;  }
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*************** function subdirf3 ***********/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  char *subdirf3(char fileres[], char *preop, char *preop2)
     vv[i]=1.0/big;  {
   }    
   for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
     for (i=1;i<j;i++) {    strcpy(tmpout,optionfilefiname);
       sum=a[i][j];    strcat(tmpout,"/");
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    strcat(tmpout,preop);
       a[i][j]=sum;    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
     big=0.0;    return tmpout;
     for (i=j;i<=n;i++) {  }
       sum=a[i][j];  
       for (k=1;k<j;k++)  char *asc_diff_time(long time_sec, char ascdiff[])
         sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    long sec_left, days, hours, minutes;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    days = (time_sec) / (60*60*24);
         big=dum;    sec_left = (time_sec) % (60*60*24);
         imax=i;    hours = (sec_left) / (60*60) ;
       }    sec_left = (sec_left) %(60*60);
     }    minutes = (sec_left) /60;
     if (j != imax) {    sec_left = (sec_left) % (60);
       for (k=1;k<=n;k++) {    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         dum=a[imax][k];    return ascdiff;
         a[imax][k]=a[j][k];  }
         a[j][k]=dum;  
       }  /***************** f1dim *************************/
       *d = -(*d);  extern int ncom; 
       vv[imax]=vv[j];  extern double *pcom,*xicom;
     }  extern double (*nrfunc)(double []); 
     indx[j]=imax;   
     if (a[j][j] == 0.0) a[j][j]=TINY;  double f1dim(double x) 
     if (j != n) {  { 
       dum=1.0/(a[j][j]);    int j; 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double f;
     }    double *xt; 
   }   
   free_vector(vv,1,n);  /* Doesn't work */    xt=vector(1,ncom); 
 ;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 void lubksb(double **a, int n, int *indx, double b[])    return f; 
 {  } 
   int i,ii=0,ip,j;  
   double sum;  /*****************brent *************************/
    double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   for (i=1;i<=n;i++) {  { 
     ip=indx[i];    int iter; 
     sum=b[ip];    double a,b,d,etemp;
     b[ip]=b[i];    double fu=0,fv,fw,fx;
     if (ii)    double ftemp=0.;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     else if (sum) ii=i;    double e=0.0; 
     b[i]=sum;   
   }    a=(ax < cx ? ax : cx); 
   for (i=n;i>=1;i--) {    b=(ax > cx ? ax : cx); 
     sum=b[i];    x=w=v=bx; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    fw=fv=fx=(*f)(x); 
     b[i]=sum/a[i][i];    for (iter=1;iter<=ITMAX;iter++) { 
   }      xm=0.5*(a+b); 
 }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 /************ Frequencies ********************/      printf(".");fflush(stdout);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      fprintf(ficlog,".");fflush(ficlog);
 {  /* Some frequencies */  #ifdef DEBUGBRENT
        printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double ***freq; /* Frequencies */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double *pp;  #endif
   double pos, k2, dateintsum=0,k2cpt=0;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   FILE *ficresp;        *xmin=x; 
   char fileresp[FILENAMELENGTH];        return fx; 
        } 
   pp=vector(1,nlstate);      ftemp=fu;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      if (fabs(e) > tol1) { 
   strcpy(fileresp,"p");        r=(x-w)*(fx-fv); 
   strcat(fileresp,fileres);        q=(x-v)*(fx-fw); 
   if((ficresp=fopen(fileresp,"w"))==NULL) {        p=(x-v)*q-(x-w)*r; 
     printf("Problem with prevalence resultfile: %s\n", fileresp);        q=2.0*(q-r); 
     exit(0);        if (q > 0.0) p = -p; 
   }        q=fabs(q); 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        etemp=e; 
   j1=0;        e=d; 
          if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   j=cptcoveff;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        else { 
            d=p/q; 
   for(k1=1; k1<=j;k1++){          u=x+d; 
     for(i1=1; i1<=ncodemax[k1];i1++){          if (u-a < tol2 || b-u < tol2) 
       j1++;            d=SIGN(tol1,xm-x); 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        } 
         scanf("%d", i);*/      } else { 
       for (i=-1; i<=nlstate+ndeath; i++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)        } 
           for(m=agemin; m <= agemax+3; m++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
             freq[i][jk][m]=0;      fu=(*f)(u); 
            if (fu <= fx) { 
       dateintsum=0;        if (u >= x) a=x; else b=x; 
       k2cpt=0;        SHFT(v,w,x,u) 
       for (i=1; i<=imx; i++) {          SHFT(fv,fw,fx,fu) 
         bool=1;          } else { 
         if  (cptcovn>0) {            if (u < x) a=u; else b=u; 
           for (z1=1; z1<=cptcoveff; z1++)            if (fu <= fw || w == x) { 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              v=w; 
               bool=0;              w=u; 
         }              fv=fw; 
         if (bool==1) {              fw=fu; 
           for(m=firstpass; m<=lastpass; m++){            } else if (fu <= fv || v == x || v == w) { 
             k2=anint[m][i]+(mint[m][i]/12.);              v=u; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              fv=fu; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;            } 
               if(agev[m][i]==1) agev[m][i]=agemax+2;          } 
               if (m<lastpass) {    } 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    nrerror("Too many iterations in brent"); 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    *xmin=x; 
               }    return fx; 
                } 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;  /****************** mnbrak ***********************/
                 k2cpt++;  
               }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
             }              double (*func)(double)) 
           }  { 
         }    double ulim,u,r,q, dum;
       }    double fu; 
           
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
       if  (cptcovn>0) {    if (*fb > *fa) { 
         fprintf(ficresp, "\n#********** Variable ");      SHFT(dum,*ax,*bx,dum) 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        SHFT(dum,*fb,*fa,dum) 
         fprintf(ficresp, "**********\n#");        } 
       }    *cx=(*bx)+GOLD*(*bx-*ax); 
       for(i=1; i<=nlstate;i++)    *fc=(*func)(*cx); 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    while (*fb > *fc) { /* Declining fa, fb, fc */
       fprintf(ficresp, "\n");      r=(*bx-*ax)*(*fb-*fc); 
            q=(*bx-*cx)*(*fb-*fa); 
       for(i=(int)agemin; i <= (int)agemax+3; i++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         if(i==(int)agemax+3)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
           printf("Total");      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
         else      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
           printf("Age %d", i);        fu=(*func)(u); 
         for(jk=1; jk <=nlstate ; jk++){  #ifdef DEBUG
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        /* f(x)=A(x-u)**2+f(u) */
             pp[jk] += freq[jk][m][i];        double A, fparabu; 
         }        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
         for(jk=1; jk <=nlstate ; jk++){        fparabu= *fa - A*(*ax-u)*(*ax-u);
           for(m=-1, pos=0; m <=0 ; m++)        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
             pos += freq[jk][m][i];        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           if(pp[jk]>=1.e-10)  #endif 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
           else        fu=(*func)(u); 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        if (fu < *fc) { 
         }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
         for(jk=1; jk <=nlstate ; jk++){            } 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
             pp[jk] += freq[jk][m][i];        u=ulim; 
         }        fu=(*func)(u); 
       } else { 
         for(jk=1,pos=0; jk <=nlstate ; jk++)        u=(*cx)+GOLD*(*cx-*bx); 
           pos += pp[jk];        fu=(*func)(u); 
         for(jk=1; jk <=nlstate ; jk++){      } 
           if(pos>=1.e-5)      SHFT(*ax,*bx,*cx,u) 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        SHFT(*fa,*fb,*fc,fu) 
           else        } 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  } 
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  /*************** linmin ************************/
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
               probs[i][jk][j1]= pp[jk]/pos;  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
             }  the value of func at the returned location p . This is actually all accomplished by calling the
             else  routines mnbrak and brent .*/
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  int ncom; 
           }  double *pcom,*xicom;
         }  double (*nrfunc)(double []); 
           
         for(jk=-1; jk <=nlstate+ndeath; jk++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
           for(m=-1; m <=nlstate+ndeath; m++)  { 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double brent(double ax, double bx, double cx, 
         if(i <= (int) agemax)                 double (*f)(double), double tol, double *xmin); 
           fprintf(ficresp,"\n");    double f1dim(double x); 
         printf("\n");    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       }                double *fc, double (*func)(double)); 
     }    int j; 
   }    double xx,xmin,bx,ax; 
   dateintmean=dateintsum/k2cpt;    double fx,fb,fa;
     
   fclose(ficresp);    ncom=n; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    pcom=vector(1,n); 
   free_vector(pp,1,nlstate);    xicom=vector(1,n); 
      nrfunc=func; 
   /* End of Freq */    for (j=1;j<=n;j++) { 
 }      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
 /************ Prevalence ********************/    } 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    ax=0.0; 
 {  /* Some frequencies */    xx=1.0; 
      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
   double ***freq; /* Frequencies */  #ifdef DEBUG
   double *pp;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double pos, k2;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   pp=vector(1,nlstate);    for (j=1;j<=n;j++) { 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      xi[j] *= xmin; 
        p[j] += xi[j]; 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    } 
   j1=0;    free_vector(xicom,1,n); 
      free_vector(pcom,1,n); 
   j=cptcoveff;  } 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    
   for(k1=1; k1<=j;k1++){  /*************** powell ************************/
     for(i1=1; i1<=ncodemax[k1];i1++){  /*
       j1++;  Minimization of a function func of n variables. Input consists of an initial starting point
        p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
       for (i=-1; i<=nlstate+ndeath; i++)    rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
         for (jk=-1; jk<=nlstate+ndeath; jk++)    such that failure to decrease by more than this amount on one iteration signals doneness. On
           for(m=agemin; m <= agemax+3; m++)  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
             freq[i][jk][m]=0;  function value at p , and iter is the number of iterations taken. The routine linmin is used.
         */
       for (i=1; i<=imx; i++) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         bool=1;              double (*func)(double [])) 
         if  (cptcovn>0) {  { 
           for (z1=1; z1<=cptcoveff; z1++)    void linmin(double p[], double xi[], int n, double *fret, 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])                double (*func)(double [])); 
               bool=0;    int i,ibig,j; 
         }    double del,t,*pt,*ptt,*xit;
         if (bool==1) {    double fp,fptt;
           for(m=firstpass; m<=lastpass; m++){    double *xits;
             k2=anint[m][i]+(mint[m][i]/12.);    int niterf, itmp;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;    pt=vector(1,n); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;    ptt=vector(1,n); 
               if (m<lastpass) {    xit=vector(1,n); 
                 if (calagedate>0)    xits=vector(1,n); 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    *fret=(*func)(p); 
                 else    for (j=1;j<=n;j++) pt[j]=p[j]; 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      rcurr_time = time(NULL);  
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    for (*iter=1;;++(*iter)) { 
               }      fp=(*fret); 
             }      ibig=0; 
           }      del=0.0; 
         }      rlast_time=rcurr_time;
       }      /* (void) gettimeofday(&curr_time,&tzp); */
       for(i=(int)agemin; i <= (int)agemax+3; i++){      rcurr_time = time(NULL);  
         for(jk=1; jk <=nlstate ; jk++){      curr_time = *localtime(&rcurr_time);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
             pp[jk] += freq[jk][m][i];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
         }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
         for(jk=1; jk <=nlstate ; jk++){     for (i=1;i<=n;i++) {
           for(m=-1, pos=0; m <=0 ; m++)        printf(" %d %.12f",i, p[i]);
             pos += freq[jk][m][i];        fprintf(ficlog," %d %.12lf",i, p[i]);
         }        fprintf(ficrespow," %.12lf", p[i]);
              }
         for(jk=1; jk <=nlstate ; jk++){      printf("\n");
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      fprintf(ficlog,"\n");
             pp[jk] += freq[jk][m][i];      fprintf(ficrespow,"\n");fflush(ficrespow);
         }      if(*iter <=3){
                tml = *localtime(&rcurr_time);
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        strcpy(strcurr,asctime(&tml));
                rforecast_time=rcurr_time; 
         for(jk=1; jk <=nlstate ; jk++){            itmp = strlen(strcurr);
           if( i <= (int) agemax){        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
             if(pos>=1.e-5){          strcurr[itmp-1]='\0';
               probs[i][jk][j1]= pp[jk]/pos;        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
             }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           }        for(niterf=10;niterf<=30;niterf+=10){
         }          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
                  forecast_time = *localtime(&rforecast_time);
       }          strcpy(strfor,asctime(&forecast_time));
     }          itmp = strlen(strfor);
   }          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
            printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   free_vector(pp,1,nlstate);        }
        }
 }  /* End of Freq */      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 /************* Waves Concatenation ***************/        fptt=(*fret); 
   #ifdef DEBUG
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 {            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  #endif
      Death is a valid wave (if date is known).        printf("%d",i);fflush(stdout);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        fprintf(ficlog,"%d",i);fflush(ficlog);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        linmin(p,xit,n,fret,func); 
      and mw[mi+1][i]. dh depends on stepm.        if (fabs(fptt-(*fret)) > del) { 
      */          del=fabs(fptt-(*fret)); 
           ibig=i; 
   int i, mi, m;        } 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  #ifdef DEBUG
      double sum=0., jmean=0.;*/        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   int j, k=0,jk, ju, jl;        for (j=1;j<=n;j++) {
   double sum=0.;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   jmin=1e+5;          printf(" x(%d)=%.12e",j,xit[j]);
   jmax=-1;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   jmean=0.;        }
   for(i=1; i<=imx; i++){        for(j=1;j<=n;j++) {
     mi=0;          printf(" p(%d)=%.12e",j,p[j]);
     m=firstpass;          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
     while(s[m][i] <= nlstate){        }
       if(s[m][i]>=1)        printf("\n");
         mw[++mi][i]=m;        fprintf(ficlog,"\n");
       if(m >=lastpass)  #endif
         break;      } /* end i */
       else      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         m++;  #ifdef DEBUG
     }/* end while */        int k[2],l;
     if (s[m][i] > nlstate){        k[0]=1;
       mi++;     /* Death is another wave */        k[1]=-1;
       /* if(mi==0)  never been interviewed correctly before death */        printf("Max: %.12e",(*func)(p));
          /* Only death is a correct wave */        fprintf(ficlog,"Max: %.12e",(*func)(p));
       mw[mi][i]=m;        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
     wav[i]=mi;        }
     if(mi==0)        printf("\n");
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        fprintf(ficlog,"\n");
   }        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
   for(i=1; i<=imx; i++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for(mi=1; mi<wav[i];mi++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       if (stepm <=0)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         dh[mi][i]=1;          }
       else{          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         if (s[mw[mi+1][i]][i] > nlstate) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           if (agedc[i] < 2*AGESUP) {        }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  #endif
           if(j==0) j=1;  /* Survives at least one month after exam */  
           k=k+1;  
           if (j >= jmax) jmax=j;        free_vector(xit,1,n); 
           if (j <= jmin) jmin=j;        free_vector(xits,1,n); 
           sum=sum+j;        free_vector(ptt,1,n); 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        free_vector(pt,1,n); 
           }        return; 
         }      } 
         else{      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
           k=k+1;        ptt[j]=2.0*p[j]-pt[j]; 
           if (j >= jmax) jmax=j;        xit[j]=p[j]-pt[j]; 
           else if (j <= jmin)jmin=j;        pt[j]=p[j]; 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      } 
           sum=sum+j;      fptt=(*func)(ptt); 
         }      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
         jk= j/stepm;        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
         jl= j -jk*stepm;        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         ju= j -(jk+1)*stepm;        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         if(jl <= -ju)        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
           dh[mi][i]=jk;        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         else        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
           dh[mi][i]=jk+1;        /* Thus we compare delta(2h) with observed f1-f3 */
         if(dh[mi][i]==0)        /* or best gain on one ancient line 'del' with total  */
           dh[mi][i]=1; /* At least one step */        /* gain f1-f2 = f1 - f2 - 'del' with del  */
       }        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
     }  
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
   jmean=sum/k;        t= t- del*SQR(fp-fptt);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
  }        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
 /*********** Tricode ****************************/  #ifdef DEBUG
 void tricode(int *Tvar, int **nbcode, int imx)        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 {               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   int Ndum[20],ij=1, k, j, i;        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   int cptcode=0;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   cptcoveff=0;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
          fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   for (k=0; k<19; k++) Ndum[k]=0;  #endif
   for (k=1; k<=7; k++) ncodemax[k]=0;        if (t < 0.0) { /* Then we use it for last direction */
           linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          for (j=1;j<=n;j++) { 
     for (i=1; i<=imx; i++) {            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
       ij=(int)(covar[Tvar[j]][i]);            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
       Ndum[ij]++;          }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       if (ij > cptcode) cptcode=ij;          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
     }  
   #ifdef DEBUG
     for (i=0; i<=cptcode; i++) {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       if(Ndum[i]!=0) ncodemax[j]++;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          for(j=1;j<=n;j++){
     ij=1;            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
           }
     for (i=1; i<=ncodemax[j]; i++) {          printf("\n");
       for (k=0; k<=19; k++) {          fprintf(ficlog,"\n");
         if (Ndum[k] != 0) {  #endif
           nbcode[Tvar[j]][ij]=k;        } /* end of t negative */
                } /* end if (fptt < fp)  */
           ij++;    } 
         }  } 
         if (ij > ncodemax[j]) break;  
       }    /**** Prevalence limit (stable or period prevalence)  ****************/
     }  
   }    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
  for (k=0; k<19; k++) Ndum[k]=0;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
  for (i=1; i<=ncovmodel-2; i++) {  
       ij=Tvar[i];    int i, ii,j,k;
       Ndum[ij]++;    double min, max, maxmin, maxmax,sumnew=0.;
     }    /* double **matprod2(); */ /* test */
     double **out, cov[NCOVMAX+1], **pmij();
  ij=1;    double **newm;
  for (i=1; i<=10; i++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i;    for (ii=1;ii<=nlstate+ndeath;ii++)
      ij++;      for (j=1;j<=nlstate+ndeath;j++){
    }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  }      }
    
     cptcoveff=ij-1;     cov[1]=1.;
 }   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 /*********** Health Expectancies ****************/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      /* Covariates have to be included here again */
       cov[2]=agefin;
 {      
   /* Health expectancies */      for (k=1; k<=cptcovn;k++) {
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double age, agelim, hf;        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
   double ***p3mat,***varhe;      }
   double **dnewm,**doldm;      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   double *xp;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
   double **gp, **gm;      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
   double ***gradg, ***trgradg;      
   int theta;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   xp=vector(1,npar);      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   dnewm=matrix(1,nlstate*2,1,npar);      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   doldm=matrix(1,nlstate*2,1,nlstate*2);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
        
   fprintf(ficreseij,"# Health expectancies\n");      savm=oldm;
   fprintf(ficreseij,"# Age");      oldm=newm;
   for(i=1; i<=nlstate;i++)      maxmax=0.;
     for(j=1; j<=nlstate;j++)      for(j=1;j<=nlstate;j++){
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        min=1.;
   fprintf(ficreseij,"\n");        max=0.;
         for(i=1; i<=nlstate; i++) {
   if(estepm < stepm){          sumnew=0;
     printf ("Problem %d lower than %d\n",estepm, stepm);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
   else  hstepm=estepm;            /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   /* We compute the life expectancy from trapezoids spaced every estepm months          max=FMAX(max,prlim[i][j]);
    * This is mainly to measure the difference between two models: for example          min=FMIN(min,prlim[i][j]);
    * if stepm=24 months pijx are given only every 2 years and by summing them        }
    * we are calculating an estimate of the Life Expectancy assuming a linear        maxmin=max-min;
    * progression inbetween and thus overestimating or underestimating according        maxmax=FMAX(maxmax,maxmin);
    * to the curvature of the survival function. If, for the same date, we      }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      if(maxmax < ftolpl){
    * to compare the new estimate of Life expectancy with the same linear        return prlim;
    * hypothesis. A more precise result, taking into account a more precise      }
    * curvature will be obtained if estepm is as small as stepm. */    }
   }
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  /*************** transition probabilities ***************/ 
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
      Look at hpijx to understand the reason of that which relies in memory size  {
      and note for a fixed period like estepm months */    /* According to parameters values stored in x and the covariate's values stored in cov,
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       computes the probability to be observed in state j being in state i by appying the
      survival function given by stepm (the optimization length). Unfortunately it       model to the ncovmodel covariates (including constant and age).
      means that if the survival funtion is printed only each two years of age and if       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
      results. So we changed our mind and took the option of the best precision.       ncth covariate in the global vector x is given by the formula:
   */       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   agelim=AGESUP;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       Outputs ps[i][j] the probability to be observed in j being in j according to
     /* nhstepm age range expressed in number of stepm */       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double s1, lnpijopii;
     /* if (stepm >= YEARM) hstepm=1;*/    /*double t34;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int i,j, nc, ii, jj;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      for(i=1; i<= nlstate; i++){
     gp=matrix(0,nhstepm,1,nlstate*2);        for(j=1; j<i;j++){
     gm=matrix(0,nhstepm,1,nlstate*2);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += param[i][j][nc]*cov[nc];*/
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            }
            ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        }
         for(j=i+1; j<=nlstate+ndeath;j++){
     /* Computing Variances of health expectancies */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
      for(theta=1; theta <=npar; theta++){            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
       for(i=1; i<=npar; i++){  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          }
       }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
        }
       cptj=0;      
       for(j=1; j<= nlstate; j++){      for(i=1; i<= nlstate; i++){
         for(i=1; i<=nlstate; i++){        s1=0;
           cptj=cptj+1;        for(j=1; j<i; j++){
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           }        }
         }        for(j=i+1; j<=nlstate+ndeath; j++){
       }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
              }
       for(i=1; i<=npar; i++)        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        ps[i][i]=1./(s1+1.);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /* Computing other pijs */
              for(j=1; j<i; j++)
       cptj=0;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=1; j<= nlstate; j++){        for(j=i+1; j<=nlstate+ndeath; j++)
         for(i=1;i<=nlstate;i++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
           cptj=cptj+1;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      } /* end i */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      
           }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         }        for(jj=1; jj<= nlstate+ndeath; jj++){
       }          ps[ii][jj]=0;
                ps[ii][ii]=1;
            }
       }
       for(j=1; j<= nlstate*2; j++)      
         for(h=0; h<=nhstepm-1; h++){      
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         }      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
      }      /*   } */
          /*   printf("\n "); */
 /* End theta */      /* } */
       /* printf("\n ");printf("%lf ",cov[2]);*/
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
      for(h=0; h<=nhstepm-1; h++)        goto end;*/
       for(j=1; j<=nlstate*2;j++)      return ps;
         for(theta=1; theta <=npar; theta++)  }
         trgradg[h][j][theta]=gradg[h][theta][j];  
   /**************** Product of 2 matrices ******************/
   
      for(i=1;i<=nlstate*2;i++)  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
       for(j=1;j<=nlstate*2;j++)  {
         varhe[i][j][(int)age] =0.;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
      printf("%d|",(int)age);fflush(stdout);    /* in, b, out are matrice of pointers which should have been initialized 
     for(h=0;h<=nhstepm-1;h++){       before: only the contents of out is modified. The function returns
       for(k=0;k<=nhstepm-1;k++){       a pointer to pointers identical to out */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    int i, j, k;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    for(i=nrl; i<= nrh; i++)
         for(i=1;i<=nlstate*2;i++)      for(k=ncolol; k<=ncoloh; k++){
           for(j=1;j<=nlstate*2;j++)        out[i][k]=0.;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        for(j=ncl; j<=nch; j++)
       }          out[i][k] +=in[i][j]*b[j][k];
     }      }
     return out;
        }
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)  /************* Higher Matrix Product ***************/
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
            {
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
         }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
     fprintf(ficreseij,"%3.0f",age );       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     cptj=0;       (typically every 2 years instead of every month which is too big 
     for(i=1; i<=nlstate;i++)       for the memory).
       for(j=1; j<=nlstate;j++){       Model is determined by parameters x and covariates have to be 
         cptj++;       included manually here. 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  
       }       */
     fprintf(ficreseij,"\n");  
        int i, j, d, h, k;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    double **out, cov[NCOVMAX+1];
     free_matrix(gp,0,nhstepm,1,nlstate*2);    double **newm;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    /* Hstepm could be zero and should return the unit matrix */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=nlstate+ndeath;i++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   free_vector(xp,1,npar);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   free_matrix(dnewm,1,nlstate*2,1,npar);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 }    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
 /************ Variance ******************/        newm=savm;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        /* Covariates have to be included here again */
 {        cov[1]=1.;
   /* Variance of health expectancies */        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        for (k=1; k<=cptcovn;k++) 
   double **newm;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double **dnewm,**doldm;        for (k=1; k<=cptcovage;k++)
   int i, j, nhstepm, hstepm, h, nstepm ;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int k, cptcode;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   double *xp;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double **gp, **gm;  
   double ***gradg, ***trgradg;  
   double ***p3mat;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   double age,agelim, hf;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   int theta;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        savm=oldm;
   fprintf(ficresvij,"# Age");        oldm=newm;
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=nlstate;j++)      for(i=1; i<=nlstate+ndeath; i++)
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        for(j=1;j<=nlstate+ndeath;j++) {
   fprintf(ficresvij,"\n");          po[i][j][h]=newm[i][j];
           /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   xp=vector(1,npar);        }
   dnewm=matrix(1,nlstate,1,npar);      /*printf("h=%d ",h);*/
   doldm=matrix(1,nlstate,1,nlstate);    } /* end h */
    /*     printf("\n H=%d \n",h); */
   if(estepm < stepm){    return po;
     printf ("Problem %d lower than %d\n",estepm, stepm);  }
   }  
   else  hstepm=estepm;    #ifdef NLOPT
   /* For example we decided to compute the life expectancy with the smallest unit */    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double fret;
      nhstepm is the number of hstepm from age to agelim    double *xt;
      nstepm is the number of stepm from age to agelin.    int j;
      Look at hpijx to understand the reason of that which relies in memory size    myfunc_data *d2 = (myfunc_data *) pd;
      and note for a fixed period like k years */  /* xt = (p1-1); */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    xt=vector(1,n); 
      survival function given by stepm (the optimization length). Unfortunately it    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
      results. So we changed our mind and took the option of the best precision.    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
   */    printf("Function = %.12lf ",fret);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
   agelim = AGESUP;    printf("\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */   free_vector(xt,1,n);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    return fret;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #endif
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);  /*************** log-likelihood *************/
     gm=matrix(0,nhstepm,1,nlstate);  double func( double *x)
   {
     for(theta=1; theta <=npar; theta++){    int i, ii, j, k, mi, d, kk;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double **out;
       }    double sw; /* Sum of weights */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double lli; /* Individual log likelihood */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int s1, s2;
     double bbh, survp;
       if (popbased==1) {    long ipmx;
         for(i=1; i<=nlstate;i++)    /*extern weight */
           prlim[i][i]=probs[(int)age][i][ij];    /* We are differentiating ll according to initial status */
       }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
       for(j=1; j<= nlstate; j++){      printf(" %d\n",s[4][i]);
         for(h=0; h<=nhstepm; h++){    */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    ++countcallfunc;
         }  
       }    cov[1]=1.;
      
       for(i=1; i<=npar; i++) /* Computes gradient */    for(k=1; k<=nlstate; k++) ll[k]=0.;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      if(mle==1){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          /* Computes the values of the ncovmodel covariates of the model
       if (popbased==1) {           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         for(i=1; i<=nlstate;i++)           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
           prlim[i][i]=probs[(int)age][i][ij];           to be observed in j being in i according to the model.
       }         */
         for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
       for(j=1; j<= nlstate; j++){          cov[2+k]=covar[Tvar[k]][i];
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
         }           has been calculated etc */
       }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<= nlstate; j++)            for (j=1;j<=nlstate+ndeath;j++){
         for(h=0; h<=nhstepm; h++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
     } /* End theta */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     for(h=0; h<=nhstepm; h++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
       for(j=1; j<=nlstate;j++)            }
         for(theta=1; theta <=npar; theta++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           trgradg[h][j][theta]=gradg[h][theta][j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            oldm=newm;
     for(i=1;i<=nlstate;i++)          } /* end mult */
       for(j=1;j<=nlstate;j++)        
         vareij[i][j][(int)age] =0.;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
     for(h=0;h<=nhstepm;h++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for(k=0;k<=nhstepm;k++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);           * the nearest (and in case of equal distance, to the lowest) interval but now
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for(i=1;i<=nlstate;i++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           for(j=1;j<=nlstate;j++)           * probability in order to take into account the bias as a fraction of the way
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       }           * -stepm/2 to stepm/2 .
     }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
     fprintf(ficresvij,"%.0f ",age );           */
     for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
       for(j=1; j<=nlstate;j++){          s2=s[mw[mi+1][i]][i];
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          bbh=(double)bh[mi][i]/(double)stepm; 
       }          /* bias bh is positive if real duration
     fprintf(ficresvij,"\n");           * is higher than the multiple of stepm and negative otherwise.
     free_matrix(gp,0,nhstepm,1,nlstate);           */
     free_matrix(gm,0,nhstepm,1,nlstate);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          if( s2 > nlstate){ 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            /* i.e. if s2 is a death state and if the date of death is known 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               then the contribution to the likelihood is the probability to 
   } /* End age */               die between last step unit time and current  step unit time, 
                 which is also equal to probability to die before dh 
   free_vector(xp,1,npar);               minus probability to die before dh-stepm . 
   free_matrix(doldm,1,nlstate,1,npar);               In version up to 0.92 likelihood was computed
   free_matrix(dnewm,1,nlstate,1,nlstate);          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
 }          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 /************ Variance of prevlim ******************/          (healthy, disable or death) and IMaCh was corrected; but when we
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          introduced the exact date of death then we should have modified
 {          the contribution of an exact death to the likelihood. This new
   /* Variance of prevalence limit */          contribution is smaller and very dependent of the step unit
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          stepm. It is no more the probability to die between last interview
   double **newm;          and month of death but the probability to survive from last
   double **dnewm,**doldm;          interview up to one month before death multiplied by the
   int i, j, nhstepm, hstepm;          probability to die within a month. Thanks to Chris
   int k, cptcode;          Jackson for correcting this bug.  Former versions increased
   double *xp;          mortality artificially. The bad side is that we add another loop
   double *gp, *gm;          which slows down the processing. The difference can be up to 10%
   double **gradg, **trgradg;          lower mortality.
   double age,agelim;            */
   int theta;            lli=log(out[s1][s2] - savm[s1][s2]);
      
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");  
   fprintf(ficresvpl,"# Age");          } else if  (s2==-2) {
   for(i=1; i<=nlstate;i++)            for (j=1,survp=0. ; j<=nlstate; j++) 
       fprintf(ficresvpl," %1d-%1d",i,i);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fprintf(ficresvpl,"\n");            /*survp += out[s1][j]; */
             lli= log(survp);
   xp=vector(1,npar);          }
   dnewm=matrix(1,nlstate,1,npar);          
   doldm=matrix(1,nlstate,1,nlstate);          else if  (s2==-4) { 
              for (j=3,survp=0. ; j<=nlstate; j++)  
   hstepm=1*YEARM; /* Every year of age */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            lli= log(survp); 
   agelim = AGESUP;          } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          else if  (s2==-5) { 
     if (stepm >= YEARM) hstepm=1;            for (j=1,survp=0. ; j<=2; j++)  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     gradg=matrix(1,npar,1,nlstate);            lli= log(survp); 
     gp=vector(1,nlstate);          } 
     gm=vector(1,nlstate);          
           else{
     for(theta=1; theta <=npar; theta++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(i=1; i<=npar; i++){ /* Computes gradient */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          } 
       }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          /*if(lli ==000.0)*/
       for(i=1;i<=nlstate;i++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         gp[i] = prlim[i][i];          ipmx +=1;
              sw += weight[i];
       for(i=1; i<=npar; i++) /* Computes gradient */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        } /* end of wave */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      } /* end of individual */
       for(i=1;i<=nlstate;i++)    }  else if(mle==2){
         gm[i] = prlim[i][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=1;i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for (ii=1;ii<=nlstate+ndeath;ii++)
     } /* End theta */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     trgradg =matrix(1,nlstate,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for(j=1; j<=nlstate;j++)          for(d=0; d<=dh[mi][i]; d++){
       for(theta=1; theta <=npar; theta++)            newm=savm;
         trgradg[j][theta]=gradg[theta][j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     for(i=1;i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       varpl[i][(int)age] =0.;            }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i=1;i<=nlstate;i++)            savm=oldm;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            oldm=newm;
           } /* end mult */
     fprintf(ficresvpl,"%.0f ",age );        
     for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          s2=s[mw[mi+1][i]][i];
     fprintf(ficresvpl,"\n");          bbh=(double)bh[mi][i]/(double)stepm; 
     free_vector(gp,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     free_vector(gm,1,nlstate);          ipmx +=1;
     free_matrix(gradg,1,npar,1,nlstate);          sw += weight[i];
     free_matrix(trgradg,1,nlstate,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   } /* End age */        } /* end of wave */
       } /* end of individual */
   free_vector(xp,1,npar);    }  else if(mle==3){  /* exponential inter-extrapolation */
   free_matrix(doldm,1,nlstate,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_matrix(dnewm,1,nlstate,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /************ Variance of one-step probabilities  ******************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   int i, j, i1, k1, j1, z1;          for(d=0; d<dh[mi][i]; d++){
   int k=0, cptcode;            newm=savm;
   double **dnewm,**doldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double *xp;            for (kk=1; kk<=cptcovage;kk++) {
   double *gp, *gm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **gradg, **trgradg;            }
   double age,agelim, cov[NCOVMAX];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int theta;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char fileresprob[FILENAMELENGTH];            savm=oldm;
             oldm=newm;
   strcpy(fileresprob,"prob");          } /* end mult */
   strcat(fileresprob,fileres);        
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with resultfile: %s\n", fileresprob);          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            ipmx +=1;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");          sw += weight[i];
   fprintf(ficresprob,"# Age");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(i=1; i<=nlstate;i++)        } /* end of wave */
     for(j=1; j<=(nlstate+ndeath);j++)      } /* end of individual */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficresprob,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   xp=vector(1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));            }
            for(d=0; d<dh[mi][i]; d++){
   cov[1]=1;            newm=savm;
   j=cptcoveff;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (kk=1; kk<=cptcovage;kk++) {
   j1=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(k1=1; k1<=1;k1++){            }
     for(i1=1; i1<=ncodemax[k1];i1++){          
     j1++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if  (cptcovn>0) {            savm=oldm;
       fprintf(ficresprob, "\n#********** Variable ");            oldm=newm;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          } /* end mult */
       fprintf(ficresprob, "**********\n#");        
     }          s1=s[mw[mi][i]][i];
              s2=s[mw[mi+1][i]][i];
       for (age=bage; age<=fage; age ++){          if( s2 > nlstate){ 
         cov[2]=age;            lli=log(out[s1][s2] - savm[s1][s2]);
         for (k=1; k<=cptcovn;k++) {          }else{
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                    }
         }          ipmx +=1;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          sw += weight[i];
         for (k=1; k<=cptcovprod;k++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                } /* end of wave */
         gradg=matrix(1,npar,1,9);      } /* end of individual */
         trgradg=matrix(1,9,1,npar);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(mi=1; mi<= wav[i]-1; mi++){
         for(theta=1; theta <=npar; theta++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(i=1; i<=npar; i++)            for (j=1;j<=nlstate+ndeath;j++){
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                        savm[ii][j]=(ii==j ? 1.0 : 0.0);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            }
                    for(d=0; d<dh[mi][i]; d++){
           k=0;            newm=savm;
           for(i=1; i<= (nlstate+ndeath); i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for(j=1; j<=(nlstate+ndeath);j++){            for (kk=1; kk<=cptcovage;kk++) {
               k=k+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               gp[k]=pmmij[i][j];            }
             }          
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(i=1; i<=npar; i++)            savm=oldm;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            oldm=newm;
              } /* end mult */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        
           k=0;          s1=s[mw[mi][i]][i];
           for(i=1; i<=(nlstate+ndeath); i++){          s2=s[mw[mi+1][i]][i];
             for(j=1; j<=(nlstate+ndeath);j++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               k=k+1;          ipmx +=1;
               gm[k]=pmmij[i][j];          sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
              } /* end of wave */
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      } /* end of individual */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      } /* End of if */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(theta=1; theta <=npar; theta++)    return -l;
             trgradg[j][theta]=gradg[theta][j];  }
          
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  /*************** log-likelihood *************/
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  double funcone( double *x)
          {
         pmij(pmmij,cov,ncovmodel,x,nlstate);    /* Same as likeli but slower because of a lot of printf and if */
            int i, ii, j, k, mi, d, kk;
         k=0;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         for(i=1; i<=(nlstate+ndeath); i++){    double **out;
           for(j=1; j<=(nlstate+ndeath);j++){    double lli; /* Individual log likelihood */
             k=k+1;    double llt;
             gm[k]=pmmij[i][j];    int s1, s2;
           }    double bbh, survp;
         }    /*extern weight */
          /* We are differentiating ll according to initial status */
      /*printf("\n%d ",(int)age);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    /*for(i=1;i<imx;i++) 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      printf(" %d\n",s[4][i]);
      }*/    */
     cov[1]=1.;
         fprintf(ficresprob,"\n%d ",(int)age);  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)  
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }      for(mi=1; mi<= wav[i]-1; mi++){
     }        for (ii=1;ii<=nlstate+ndeath;ii++)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          for (j=1;j<=nlstate+ndeath;j++){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
   }        for(d=0; d<dh[mi][i]; d++){
   free_vector(xp,1,npar);          newm=savm;
   fclose(ficresprob);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            for (kk=1; kk<=cptcovage;kk++) {
 }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
 /******************* Printing html file ***********/          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   int lastpass, int stepm, int weightopt, char model[],\                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
                   char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
                   char version[], int popforecast, int estepm ,/* \ */          savm=oldm;
                   double jprev1, double mprev1,double anprev1, \          oldm=newm;
                   double jprev2, double mprev2,double anprev2){        } /* end mult */
   int jj1, k1, i1, cpt;        
   FILE *fichtm;        s1=s[mw[mi][i]][i];
   /*char optionfilehtm[FILENAMELENGTH];*/        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   strcpy(optionfilehtm,optionfile);        /* bias is positive if real duration
   strcat(optionfilehtm,".htm");         * is higher than the multiple of stepm and negative otherwise.
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {         */
     printf("Problem with %s \n",optionfilehtm), exit(0);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   }          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          for (j=1,survp=0. ; j<=nlstate; j++) 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 \n          lli= log(survp);
 Total number of observations=%d <br>\n        }else if (mle==1){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 <hr  size=\"2\" color=\"#EC5E5E\">        } else if(mle==2){
  <ul><li>Parameter files<br>\n          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        } else if(mle==3){  /* exponential inter-extrapolation */
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n          lli=log(out[s1][s2]); /* Original formula */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n        } else{  /* mle=0 back to 1 */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          /*lli=log(out[s1][s2]); */ /* Original formula */
  - Life expectancies by age and initial health status (estepm=%2d months):        } /* End of if */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        ipmx +=1;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        if(globpr){
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n   %11.6f %11.6f %11.6f ", \
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
  if(popforecast==1) fprintf(fichtm,"\n            llt +=ll[k]*gipmx/gsw;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          }
         <br>",fileres,fileres,fileres,fileres);          fprintf(ficresilk," %10.6f\n", -llt);
  else        }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      } /* end of wave */
 fprintf(fichtm," <li>Graphs</li><p>");    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
  m=cptcoveff;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
  jj1=0;      gipmx=ipmx;
  for(k1=1; k1<=m;k1++){      gsw=sw;
    for(i1=1; i1<=ncodemax[k1];i1++){    }
        jj1++;    return -l;
        if (cptcovn > 0) {  }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  /*************** function likelione ***********/
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
        }  {
        /* Pij */    /* This routine should help understanding what is done with 
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>       the selection of individuals/waves and
 <img src=\"pe%s%d1.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);           to check the exact contribution to the likelihood.
        /* Quasi-incidences */       Plotting could be done.
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>     */
 <img src=\"pe%s%d2.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);        int k;
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){    if(*globpri !=0){ /* Just counts and sums, no printings */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      strcpy(fileresilk,"ilk"); 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      strcat(fileresilk,fileres);
        }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     for(cpt=1; cpt<=nlstate;cpt++) {        printf("Problem with resultfile: %s\n", fileresilk);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 interval) in state (%d): v%s%d%d.png <br>      }
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      for(cpt=1; cpt<=nlstate;cpt++) {      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      for(k=1; k<=nlstate; k++) 
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
      }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    }
 health expectancies in states (1) and (2): e%s%d.png<br>  
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    *fretone=(*funcone)(p);
 fprintf(fichtm,"\n</body>");    if(*globpri !=0){
    }      fclose(ficresilk);
    }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 fclose(fichtm);      fflush(fichtm); 
 }    } 
     return;
 /******************* Gnuplot file **************/  }
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  /*********** Maximum Likelihood Estimation ***************/
   int ng;  
   strcpy(optionfilegnuplot,optionfilefiname);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   strcat(optionfilegnuplot,".gp.txt");  {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    int i,j, iter=0;
     printf("Problem with file %s",optionfilegnuplot);    double **xi;
   }    double fret;
     double fretone; /* Only one call to likelihood */
 #ifdef windows    /*  char filerespow[FILENAMELENGTH];*/
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif  #ifdef NLOPT
 m=pow(2,cptcoveff);    int creturn;
      nlopt_opt opt;
  /* 1eme*/    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
   for (cpt=1; cpt<= nlstate ; cpt ++) {    double *lb;
    for (k1=1; k1<= m ; k1 ++) {    double minf; /* the minimum objective value, upon return */
     double * p1; /* Shifted parameters from 0 instead of 1 */
 #ifdef windows    myfunc_data dinst, *d = &dinst;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  #endif
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif  
 #ifdef unix    xi=matrix(1,npar,1,npar);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    for (i=1;i<=npar;i++)
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      for (j=1;j<=npar;j++)
 #endif        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 for (i=1; i<= nlstate ; i ++) {    strcpy(filerespow,"pow"); 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcat(filerespow,fileres);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
 }      printf("Problem with resultfile: %s\n", filerespow);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for (i=1; i<= nlstate ; i ++) {    }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (i=1;i<=nlstate;i++)
 }      for(j=1;j<=nlstate+ndeath;j++)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      for (i=1; i<= nlstate ; i ++) {    fprintf(ficrespow,"\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  #ifdef POWELL
   else fprintf(ficgp," \%%*lf (\%%*lf)");    powell(p,xi,npar,ftol,&iter,&fret,func);
 }    #endif
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix  #ifdef NLOPT
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  #ifdef NEWUOA
 #endif    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
    }  #else
   }    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   /*2 eme*/  #endif
     lb=vector(0,npar-1);
   for (k1=1; k1<= m ; k1 ++) {    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    nlopt_set_lower_bounds(opt, lb);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    nlopt_set_initial_step1(opt, 0.1);
        
     for (i=1; i<= nlstate+1 ; i ++) {    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
       k=2*i;    d->function = func;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
       for (j=1; j<= nlstate+1 ; j ++) {    nlopt_set_min_objective(opt, myfunc, d);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    nlopt_set_xtol_rel(opt, ftol);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
 }        printf("nlopt failed! %d\n",creturn); 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    else {
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       for (j=1; j<= nlstate+1 ; j ++) {      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      iter=1; /* not equal */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      nlopt_destroy(opt);
       fprintf(ficgp,"\" t\"\" w l 0,");  #endif
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    free_matrix(xi,1,npar,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    fclose(ficrespow);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 }      fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");  }
     }  
   }  /**** Computes Hessian and covariance matrix ***/
    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   /*3eme*/  {
     double  **a,**y,*x,pd;
   for (k1=1; k1<= m ; k1 ++) {    double **hess;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    int i, j;
       k=2+nlstate*(2*cpt-2);    int *indx;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    void lubksb(double **a, int npar, int *indx, double b[]) ;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    void ludcmp(double **a, int npar, int *indx, double *d) ;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double gompertz(double p[]);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    hess=matrix(1,npar,1,npar);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
     printf("\nCalculation of the hessian matrix. Wait...\n");
 */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for (i=1; i< nlstate ; i ++) {    for (i=1;i<=npar;i++){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
       }     
     }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   }      
        /*  printf(" %f ",p[i]);
   /* CV preval stat */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     for (k1=1; k1<= m ; k1 ++) {    }
     for (cpt=1; cpt<nlstate ; cpt ++) {    
       k=3;    for (i=1;i<=npar;i++) {
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      for (j=1;j<=npar;j++)  {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
       for (i=1; i< nlstate ; i ++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         fprintf(ficgp,"+$%d",k+i+1);          hess[i][j]=hessij(p,delti,i,j,func,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          
                hess[j][i]=hess[i][j];    
       l=3+(nlstate+ndeath)*cpt;          /*printf(" %lf ",hess[i][j]);*/
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        }
       for (i=1; i< nlstate ; i ++) {      }
         l=3+(nlstate+ndeath)*cpt;    }
         fprintf(ficgp,"+$%d",l+i+1);    printf("\n");
       }    fprintf(ficlog,"\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
     }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   }      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      
   /* proba elementaires */    a=matrix(1,npar,1,npar);
    for(i=1,jk=1; i <=nlstate; i++){    y=matrix(1,npar,1,npar);
     for(k=1; k <=(nlstate+ndeath); k++){    x=vector(1,npar);
       if (k != i) {    indx=ivector(1,npar);
         for(j=1; j <=ncovmodel; j++){    for (i=1;i<=npar;i++)
              for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    ludcmp(a,npar,indx,&pd);
           jk++;  
           fprintf(ficgp,"\n");    for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
     }      lubksb(a,npar,indx,x);
    }      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      }
      for(jk=1; jk <=m; jk++) {    }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  
        if (ng==2)    printf("\n#Hessian matrix#\n");
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
        else    for (i=1;i<=npar;i++) { 
          fprintf(ficgp,"\nset title \"Probability\"\n");      for (j=1;j<=npar;j++) { 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        printf("%.3e ",hess[i][j]);
        i=1;        fprintf(ficlog,"%.3e ",hess[i][j]);
        for(k2=1; k2<=nlstate; k2++) {      }
          k3=i;      printf("\n");
          for(k=1; k<=(nlstate+ndeath); k++) {      fprintf(ficlog,"\n");
            if (k != k2){    }
              if(ng==2)  
                fprintf(ficgp," %f*exp(p%d+p%d*x",stepm/YEARM,i,i+1);    /* Recompute Inverse */
              else    for (i=1;i<=npar;i++)
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
              ij=1;    ludcmp(a,npar,indx,&pd);
              for(j=3; j <=ncovmodel; j++) {  
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /*  printf("\n#Hessian matrix recomputed#\n");
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;    for (j=1;j<=npar;j++) {
                }      for (i=1;i<=npar;i++) x[i]=0;
                else      x[j]=1;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      lubksb(a,npar,indx,x);
              }      for (i=1;i<=npar;i++){ 
              fprintf(ficgp,")/(1");        y[i][j]=x[i];
                      printf("%.3e ",y[i][j]);
              for(k1=1; k1 <=nlstate; k1++){          fprintf(ficlog,"%.3e ",y[i][j]);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      }
                ij=1;      printf("\n");
                for(j=3; j <=ncovmodel; j++){      fprintf(ficlog,"\n");
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    */
                    ij++;  
                  }    free_matrix(a,1,npar,1,npar);
                  else    free_matrix(y,1,npar,1,npar);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_vector(x,1,npar);
                }    free_ivector(indx,1,npar);
                fprintf(ficgp,")");    free_matrix(hess,1,npar,1,npar);
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  }
              i=i+ncovmodel;  
            }  /*************** hessian matrix ****************/
          }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
        }  {
      }    int i;
    }    int l=1, lmax=20;
    fclose(ficgp);    double k1,k2;
 }  /* end gnuplot */    double p2[MAXPARM+1]; /* identical to x */
     double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 /*************** Moving average **************/    double fx;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    int k=0,kmax=10;
     double l1;
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    fx=func(x);
       for (i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
           mobaverage[(int)agedeb][i][cptcod]=0.;      l1=pow(10,l);
          delts=delt;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      for(k=1 ; k <kmax; k=k+1){
       for (i=1; i<=nlstate;i++){        delt = delta*(l1*k);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        p2[theta]=x[theta] +delt;
           for (cpt=0;cpt<=4;cpt++){        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        p2[theta]=x[theta]-delt;
           }        k2=func(p2)-fx;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        /*res= (k1-2.0*fx+k2)/delt/delt; */
         }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
     }  #ifdef DEBUGHESS
            printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 /************** Forecasting ******************/        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          k=kmax;
          }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   int *popage;          k=kmax; l=lmax*10;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        }
   double *popeffectif,*popcount;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double ***p3mat;          delts=delt;
   char fileresf[FILENAMELENGTH];        }
       }
  agelim=AGESUP;    }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    delti[theta]=delts;
     return res; 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    
    }
    
   strcpy(fileresf,"f");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   strcat(fileresf,fileres);  {
   if((ficresf=fopen(fileresf,"w"))==NULL) {    int i;
     printf("Problem with forecast resultfile: %s\n", fileresf);    int l=1, lmax=20;
   }    double k1,k2,k3,k4,res,fx;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double p2[MAXPARM+1];
     int k;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     fx=func(x);
   if (mobilav==1) {    for (k=1; k<=2; k++) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1;i<=npar;i++) p2[i]=x[i];
     movingaverage(agedeb, fage, ageminpar, mobaverage);      p2[thetai]=x[thetai]+delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    
   if (stepm<=12) stepsize=1;      p2[thetai]=x[thetai]+delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   agelim=AGESUP;      k2=func(p2)-fx;
      
   hstepm=1;      p2[thetai]=x[thetai]-delti[thetai]/k;
   hstepm=hstepm/stepm;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   yp1=modf(dateintmean,&yp);      k3=func(p2)-fx;
   anprojmean=yp;    
   yp2=modf((yp1*12),&yp);      p2[thetai]=x[thetai]-delti[thetai]/k;
   mprojmean=yp;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   yp1=modf((yp2*30.5),&yp);      k4=func(p2)-fx;
   jprojmean=yp;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   if(jprojmean==0) jprojmean=1;  #ifdef DEBUG
   if(mprojmean==0) jprojmean=1;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  #endif
      }
   for(cptcov=1;cptcov<=i2;cptcov++){    return res;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  }
       k=k+1;  
       fprintf(ficresf,"\n#******");  /************** Inverse of matrix **************/
       for(j=1;j<=cptcoveff;j++) {  void ludcmp(double **a, int n, int *indx, double *d) 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  { 
       }    int i,imax,j,k; 
       fprintf(ficresf,"******\n");    double big,dum,sum,temp; 
       fprintf(ficresf,"# StartingAge FinalAge");    double *vv; 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);   
          vv=vector(1,n); 
          *d=1.0; 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    for (i=1;i<=n;i++) { 
         fprintf(ficresf,"\n");      big=0.0; 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      vv[i]=1.0/big; 
           nhstepm = nhstepm/hstepm;    } 
              for (j=1;j<=n;j++) { 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1;i<j;i++) { 
           oldm=oldms;savm=savms;        sum=a[i][j]; 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                a[i][j]=sum; 
           for (h=0; h<=nhstepm; h++){      } 
             if (h==(int) (calagedate+YEARM*cpt)) {      big=0.0; 
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      for (i=j;i<=n;i++) { 
             }        sum=a[i][j]; 
             for(j=1; j<=nlstate+ndeath;j++) {        for (k=1;k<j;k++) 
               kk1=0.;kk2=0;          sum -= a[i][k]*a[k][j]; 
               for(i=1; i<=nlstate;i++) {                      a[i][j]=sum; 
                 if (mobilav==1)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          big=dum; 
                 else {          imax=i; 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        } 
                 }      } 
                      if (j != imax) { 
               }        for (k=1;k<=n;k++) { 
               if (h==(int)(calagedate+12*cpt)){          dum=a[imax][k]; 
                 fprintf(ficresf," %.3f", kk1);          a[imax][k]=a[j][k]; 
                                  a[j][k]=dum; 
               }        } 
             }        *d = -(*d); 
           }        vv[imax]=vv[j]; 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } 
         }      indx[j]=imax; 
       }      if (a[j][j] == 0.0) a[j][j]=TINY; 
     }      if (j != n) { 
   }        dum=1.0/(a[j][j]); 
                for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      } 
     } 
   fclose(ficresf);    free_vector(vv,1,n);  /* Doesn't work */
 }  ;
 /************** Forecasting ******************/  } 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
    void lubksb(double **a, int n, int *indx, double b[]) 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  { 
   int *popage;    int i,ii=0,ip,j; 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double sum; 
   double *popeffectif,*popcount;   
   double ***p3mat,***tabpop,***tabpopprev;    for (i=1;i<=n;i++) { 
   char filerespop[FILENAMELENGTH];      ip=indx[i]; 
       sum=b[ip]; 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      b[ip]=b[i]; 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if (ii) 
   agelim=AGESUP;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      else if (sum) ii=i; 
        b[i]=sum; 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    } 
      for (i=n;i>=1;i--) { 
        sum=b[i]; 
   strcpy(filerespop,"pop");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   strcat(filerespop,fileres);      b[i]=sum/a[i][i]; 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    } 
     printf("Problem with forecast resultfile: %s\n", filerespop);  } 
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);  void pstamp(FILE *fichier)
   {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /************ Frequencies ********************/
     movingaverage(agedeb, fage, ageminpar, mobaverage);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   }  {  /* Some frequencies */
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int i, m, jk, j1, bool, z1,j;
   if (stepm<=12) stepsize=1;    int first;
      double ***freq; /* Frequencies */
   agelim=AGESUP;    double *pp, **prop;
      double pos,posprop, k2, dateintsum=0,k2cpt=0;
   hstepm=1;    char fileresp[FILENAMELENGTH];
   hstepm=hstepm/stepm;    
      pp=vector(1,nlstate);
   if (popforecast==1) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
     if((ficpop=fopen(popfile,"r"))==NULL) {    strcpy(fileresp,"p");
       printf("Problem with population file : %s\n",popfile);exit(0);    strcat(fileresp,fileres);
     }    if((ficresp=fopen(fileresp,"w"))==NULL) {
     popage=ivector(0,AGESUP);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     popeffectif=vector(0,AGESUP);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     popcount=vector(0,AGESUP);      exit(0);
        }
     i=1;      freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    j1=0;
        
     imx=i;    j=cptcoveff;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }  
     first=1;
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
       k=k+1;    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
       fprintf(ficrespop,"\n#******");    /*    j1++;
       for(j=1;j<=cptcoveff;j++) {  */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
       }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       fprintf(ficrespop,"******\n");          scanf("%d", i);*/
       fprintf(ficrespop,"# Age");        for (i=-5; i<=nlstate+ndeath; i++)  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       if (popforecast==1)  fprintf(ficrespop," [Population]");            for(m=iagemin; m <= iagemax+3; m++)
                    freq[i][jk][m]=0;
       for (cpt=0; cpt<=0;cpt++) {        
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for (i=1; i<=nlstate; i++)  
                  for(m=iagemin; m <= iagemax+3; m++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            prop[i][m]=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        
           nhstepm = nhstepm/hstepm;        dateintsum=0;
                  k2cpt=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (i=1; i<=imx; i++) {
           oldm=oldms;savm=savms;          bool=1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                    for (z1=1; z1<=cptcoveff; z1++)       
           for (h=0; h<=nhstepm; h++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
             if (h==(int) (calagedate+YEARM*cpt)) {                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                bool=0;
             }                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
             for(j=1; j<=nlstate+ndeath;j++) {                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
               kk1=0.;kk2=0;                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
               for(i=1; i<=nlstate;i++) {                              /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                 if (mobilav==1)              } 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }
                 else {   
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          if (bool==1){
                 }            for(m=firstpass; m<=lastpass; m++){
               }              k2=anint[m][i]+(mint[m][i]/12.);
               if (h==(int)(calagedate+12*cpt)){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   /*fprintf(ficrespop," %.3f", kk1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               }                if (m<lastpass) {
             }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             for(i=1; i<=nlstate;i++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
               kk1=0.;                }
                 for(j=1; j<=nlstate;j++){                
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                 }                  dateintsum=dateintsum+k2;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                  k2cpt++;
             }                }
                 /*}*/
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          }
           }        } /* end i */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         
         }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       }        pstamp(ficresp);
          if  (cptcovn>0) {
   /******/          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          fprintf(ficresp, "**********\n#");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficlog, "\n#********** Variable "); 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          fprintf(ficlog, "**********\n#");
           nhstepm = nhstepm/hstepm;        }
                  for(i=1; i<=nlstate;i++) 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           oldm=oldms;savm=savms;        fprintf(ficresp, "\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          
           for (h=0; h<=nhstepm; h++){        for(i=iagemin; i <= iagemax+3; i++){
             if (h==(int) (calagedate+YEARM*cpt)) {          if(i==iagemax+3){
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            fprintf(ficlog,"Total");
             }          }else{
             for(j=1; j<=nlstate+ndeath;j++) {            if(first==1){
               kk1=0.;kk2=0;              first=0;
               for(i=1; i<=nlstate;i++) {                            printf("See log file for details...\n");
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                }
               }            fprintf(ficlog,"Age %d", i);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          }
             }          for(jk=1; jk <=nlstate ; jk++){
           }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              pp[jk] += freq[jk][m][i]; 
         }          }
       }          for(jk=1; jk <=nlstate ; jk++){
    }            for(m=-1, pos=0; m <=0 ; m++)
   }              pos += freq[jk][m][i];
              if(pp[jk]>=1.e-10){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              if(first==1){
                 printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   if (popforecast==1) {              }
     free_ivector(popage,0,AGESUP);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     free_vector(popeffectif,0,AGESUP);            }else{
     free_vector(popcount,0,AGESUP);              if(first==1)
   }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   fclose(ficrespop);          }
 }  
           for(jk=1; jk <=nlstate ; jk++){
 /***********************************************/            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 /**************** Main Program *****************/              pp[jk] += freq[jk][m][i];
 /***********************************************/          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 int main(int argc, char *argv[])            pos += pp[jk];
 {            posprop += prop[jk][i];
           }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          for(jk=1; jk <=nlstate ; jk++){
   double agedeb, agefin,hf;            if(pos>=1.e-5){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double fret;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double **xi,tmp,delta;            }else{
               if(first==1)
   double dum; /* Dummy variable */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double ***p3mat;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int *indx;            }
   char line[MAXLINE], linepar[MAXLINE];            if( i <= iagemax){
   char title[MAXLINE];              if(pos>=1.e-5){
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];                /*probs[i][jk][j1]= pp[jk]/pos;*/
                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];              }
               else
   char filerest[FILENAMELENGTH];                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   char fileregp[FILENAMELENGTH];            }
   char popfile[FILENAMELENGTH];          }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          
   int firstobs=1, lastobs=10;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   int sdeb, sfin; /* Status at beginning and end */            for(m=-1; m <=nlstate+ndeath; m++)
   int c,  h , cpt,l;              if(freq[jk][m][i] !=0 ) {
   int ju,jl, mi;              if(first==1)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   int mobilav=0,popforecast=0;              }
   int hstepm, nhstepm;          if(i <= iagemax)
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;            fprintf(ficresp,"\n");
           if(first==1)
   double bage, fage, age, agelim, agebase;            printf("Others in log...\n");
   double ftolpl=FTOL;          fprintf(ficlog,"\n");
   double **prlim;        }
   double *severity;        /*}*/
   double ***param; /* Matrix of parameters */    }
   double  *p;    dateintmean=dateintsum/k2cpt; 
   double **matcov; /* Matrix of covariance */   
   double ***delti3; /* Scale */    fclose(ficresp);
   double *delti; /* Scale */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   double ***eij, ***vareij;    free_vector(pp,1,nlstate);
   double **varpl; /* Variances of prevalence limits by age */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   double *epj, vepp;    /* End of Freq */
   double kk1, kk2;  }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
    /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   char version[80]="Imach version 0.8e, May 2002, INED-EUROREVES ";  {  
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
   char z[1]="c", occ;    */
 #include <sys/time.h>   
 #include <time.h>    int i, m, jk, j1, bool, z1,j;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
      double **prop;
   /* long total_usecs;    double posprop; 
   struct timeval start_time, end_time;    double  y2; /* in fractional years */
      int iagemin, iagemax;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int first; /** to stop verbosity which is redirected to log file */
   getcwd(pathcd, size);  
     iagemin= (int) agemin;
   printf("\n%s",version);    iagemax= (int) agemax;
   if(argc <=1){    /*pp=vector(1,nlstate);*/
     printf("\nEnter the parameter file name: ");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     scanf("%s",pathtot);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   }    j1=0;
   else{    
     strcpy(pathtot,argv[1]);    /*j=cptcoveff;*/
   }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    
   /*cygwin_split_path(pathtot,path,optionfile);    first=1;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   /* cutv(path,optionfile,pathtot,'\\');*/      /*for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;*/
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        for (i=1; i<=nlstate; i++)  
   chdir(path);          for(m=iagemin; m <= iagemax+3; m++)
   replace(pathc,path);            prop[i][m]=0.0;
        
 /*-------- arguments in the command line --------*/        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
   strcpy(fileres,"r");          if  (cptcovn>0) {
   strcat(fileres, optionfilefiname);            for (z1=1; z1<=cptcoveff; z1++) 
   strcat(fileres,".txt");    /* Other files have txt extension */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
   /*---------arguments file --------*/          } 
           if (bool==1) { 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     printf("Problem with optionfile %s\n",optionfile);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     goto end;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   strcpy(filereso,"o");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   strcat(filereso,fileres);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   if((ficparo=fopen(filereso,"w"))==NULL) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     printf("Problem with Output resultfile: %s\n", filereso);goto end;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
   /* Reads comments: lines beginning with '#' */              }
   while((c=getc(ficpar))=='#' && c!= EOF){            } /* end selection of waves */
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        for(i=iagemin; i <= iagemax+3; i++){  
     fputs(line,ficparo);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   }            posprop += prop[jk][i]; 
   ungetc(c,ficpar);          } 
           
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          for(jk=1; jk <=nlstate ; jk++){     
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);            if( i <=  iagemax){ 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);              if(posprop>=1.e-5){ 
 while((c=getc(ficpar))=='#' && c!= EOF){                probs[i][jk][j1]= prop[jk][i]/posprop;
     ungetc(c,ficpar);              } else{
     fgets(line, MAXLINE, ficpar);                if(first==1){
     puts(line);                  first=0;
     fputs(line,ficparo);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   }                }
   ungetc(c,ficpar);              }
              } 
              }/* end jk */ 
   covar=matrix(0,NCOVMAX,1,n);        }/* end i */ 
   cptcovn=0;      /*} *//* end i1 */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    } /* end j1 */
     
   ncovmodel=2+cptcovn;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /*free_vector(pp,1,nlstate);*/
      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   /* Read guess parameters */  }  /* End of prevalence */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  /************* Waves Concatenation ***************/
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     puts(line);  {
     fputs(line,ficparo);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   }       Death is a valid wave (if date is known).
   ungetc(c,ficpar);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       and mw[mi+1][i]. dh depends on stepm.
     for(i=1; i <=nlstate; i++)       */
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int i, mi, m;
       fprintf(ficparo,"%1d%1d",i1,j1);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       printf("%1d%1d",i,j);       double sum=0., jmean=0.;*/
       for(k=1; k<=ncovmodel;k++){    int first;
         fscanf(ficpar," %lf",&param[i][j][k]);    int j, k=0,jk, ju, jl;
         printf(" %lf",param[i][j][k]);    double sum=0.;
         fprintf(ficparo," %lf",param[i][j][k]);    first=0;
       }    jmin=100000;
       fscanf(ficpar,"\n");    jmax=-1;
       printf("\n");    jmean=0.;
       fprintf(ficparo,"\n");    for(i=1; i<=imx; i++){
     }      mi=0;
        m=firstpass;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   p=param[1][1];          mw[++mi][i]=m;
          if(m >=lastpass)
   /* Reads comments: lines beginning with '#' */          break;
   while((c=getc(ficpar))=='#' && c!= EOF){        else
     ungetc(c,ficpar);          m++;
     fgets(line, MAXLINE, ficpar);      }/* end while */
     puts(line);      if (s[m][i] > nlstate){
     fputs(line,ficparo);        mi++;     /* Death is another wave */
   }        /* if(mi==0)  never been interviewed correctly before death */
   ungetc(c,ficpar);           /* Only death is a correct wave */
         mw[mi][i]=m;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){      wav[i]=mi;
     for(j=1; j <=nlstate+ndeath-1; j++){      if(mi==0){
       fscanf(ficpar,"%1d%1d",&i1,&j1);        nbwarn++;
       printf("%1d%1d",i,j);        if(first==0){
       fprintf(ficparo,"%1d%1d",i1,j1);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       for(k=1; k<=ncovmodel;k++){          first=1;
         fscanf(ficpar,"%le",&delti3[i][j][k]);        }
         printf(" %le",delti3[i][j][k]);        if(first==1){
         fprintf(ficparo," %le",delti3[i][j][k]);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       }        }
       fscanf(ficpar,"\n");      } /* end mi==0 */
       printf("\n");    } /* End individuals */
       fprintf(ficparo,"\n");  
     }    for(i=1; i<=imx; i++){
   }      for(mi=1; mi<wav[i];mi++){
   delti=delti3[1][1];        if (stepm <=0)
            dh[mi][i]=1;
   /* Reads comments: lines beginning with '#' */        else{
   while((c=getc(ficpar))=='#' && c!= EOF){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     ungetc(c,ficpar);            if (agedc[i] < 2*AGESUP) {
     fgets(line, MAXLINE, ficpar);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     puts(line);              if(j==0) j=1;  /* Survives at least one month after exam */
     fputs(line,ficparo);              else if(j<0){
   }                nberr++;
   ungetc(c,ficpar);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  j=1; /* Temporary Dangerous patch */
   matcov=matrix(1,npar,1,npar);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   for(i=1; i <=npar; i++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fscanf(ficpar,"%s",&str);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     printf("%s",str);              }
     fprintf(ficparo,"%s",str);              k=k+1;
     for(j=1; j <=i; j++){              if (j >= jmax){
       fscanf(ficpar," %le",&matcov[i][j]);                jmax=j;
       printf(" %.5le",matcov[i][j]);                ijmax=i;
       fprintf(ficparo," %.5le",matcov[i][j]);              }
     }              if (j <= jmin){
     fscanf(ficpar,"\n");                jmin=j;
     printf("\n");                ijmin=i;
     fprintf(ficparo,"\n");              }
   }              sum=sum+j;
   for(i=1; i <=npar; i++)              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     for(j=i+1;j<=npar;j++)              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       matcov[i][j]=matcov[j][i];            }
              }
   printf("\n");          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */            k=k+1;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            if (j >= jmax) {
      strcat(rfileres,".");    /* */              jmax=j;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */              ijmax=i;
     if((ficres =fopen(rfileres,"w"))==NULL) {            }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            else if (j <= jmin){
     }              jmin=j;
     fprintf(ficres,"#%s\n",version);              ijmin=i;
                }
     /*-------- data file ----------*/            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     if((fic=fopen(datafile,"r"))==NULL)    {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       printf("Problem with datafile: %s\n", datafile);goto end;            if(j<0){
     }              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     n= lastobs;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     severity = vector(1,maxwav);            }
     outcome=imatrix(1,maxwav+1,1,n);            sum=sum+j;
     num=ivector(1,n);          }
     moisnais=vector(1,n);          jk= j/stepm;
     annais=vector(1,n);          jl= j -jk*stepm;
     moisdc=vector(1,n);          ju= j -(jk+1)*stepm;
     andc=vector(1,n);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     agedc=vector(1,n);            if(jl==0){
     cod=ivector(1,n);              dh[mi][i]=jk;
     weight=vector(1,n);              bh[mi][i]=0;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            }else{ /* We want a negative bias in order to only have interpolation ie
     mint=matrix(1,maxwav,1,n);                    * to avoid the price of an extra matrix product in likelihood */
     anint=matrix(1,maxwav,1,n);              dh[mi][i]=jk+1;
     s=imatrix(1,maxwav+1,1,n);              bh[mi][i]=ju;
     adl=imatrix(1,maxwav+1,1,n);                }
     tab=ivector(1,NCOVMAX);          }else{
     ncodemax=ivector(1,8);            if(jl <= -ju){
               dh[mi][i]=jk;
     i=1;              bh[mi][i]=jl;       /* bias is positive if real duration
     while (fgets(line, MAXLINE, fic) != NULL)    {                                   * is higher than the multiple of stepm and negative otherwise.
       if ((i >= firstobs) && (i <=lastobs)) {                                   */
                    }
         for (j=maxwav;j>=1;j--){            else{
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              dh[mi][i]=jk+1;
           strcpy(line,stra);              bh[mi][i]=ju;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            if(dh[mi][i]==0){
         }              dh[mi][i]=1; /* At least one step */
                      bh[mi][i]=ju; /* At least one step */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            }
           } /* end if mle */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      } /* end wave */
     }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    jmean=sum/k;
         for (j=ncovcol;j>=1;j--){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         }   }
         num[i]=atol(stra);  
          /*********** Tricode ****************************/
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  {
     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
         i=i+1;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       }    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
     }     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     /* printf("ii=%d", ij);    /* nbcode[Tvar[j]][1]= 
        scanf("%d",i);*/    */
   imx=i-1; /* Number of individuals */  
     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   /* for (i=1; i<=imx; i++){    int modmaxcovj=0; /* Modality max of covariates j */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    int cptcode=0; /* Modality max of covariates j */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    int modmincovj=0; /* Modality min of covariates j */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/  
    /*  for (i=1; i<=imx; i++){    cptcoveff=0; 
      if (s[4][i]==9)  s[4][i]=-1;   
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    for (k=-1; k < maxncov; k++) Ndum[k]=0;
      for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
    
   /* Calculation of the number of parameter from char model*/    /* Loop on covariates without age and products */
   Tvar=ivector(1,15);    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
   Tprod=ivector(1,15);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
   Tvaraff=ivector(1,15);                                 modality of this covariate Vj*/ 
   Tvard=imatrix(1,15,1,2);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   Tage=ivector(1,15);                                            * If product of Vn*Vm, still boolean *:
                                          * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   if (strlen(model) >1){                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
     j=0, j1=0, k1=1, k2=1;        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
     j=nbocc(model,'+');                                        modality of the nth covariate of individual i. */
     j1=nbocc(model,'*');        if (ij > modmaxcovj)
     cptcovn=j+1;          modmaxcovj=ij; 
     cptcovprod=j1;        else if (ij < modmincovj) 
              modmincovj=ij; 
     strcpy(modelsav,model);        if ((ij < -1) && (ij > NCOVMAX)){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
       printf("Error. Non available option model=%s ",model);          exit(1);
       goto end;        }else
     }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
            /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     for(i=(j+1); i>=1;i--){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       cutv(stra,strb,modelsav,'+');        /* getting the maximum value of the modality of the covariate
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/           female is 1, then modmaxcovj=1.*/
       /*scanf("%d",i);*/      }
       if (strchr(strb,'*')) {      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
         cutv(strd,strc,strb,'*');      cptcode=modmaxcovj;
         if (strcmp(strc,"age")==0) {      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
           cptcovprod--;     /*for (i=0; i<=cptcode; i++) {*/
           cutv(strb,stre,strd,'V');      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
           Tvar[i]=atoi(stre);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
           cptcovage++;        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
             Tage[cptcovage]=i;          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
             /*printf("stre=%s ", stre);*/        }
         }        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
         else if (strcmp(strd,"age")==0) {           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
           cptcovprod--;      } /* Ndum[-1] number of undefined modalities */
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
           cptcovage++;      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
           Tage[cptcovage]=i;      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
         }         modmincovj=3; modmaxcovj = 7;
         else {         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
           cutv(strb,stre,strc,'V');         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
           Tvar[i]=ncovcol+k1;         variables V1_1 and V1_2.
           cutv(strb,strc,strd,'V');         nbcode[Tvar[j]][ij]=k;
           Tprod[k1]=i;         nbcode[Tvar[j]][1]=0;
           Tvard[k1][1]=atoi(strc);         nbcode[Tvar[j]][2]=1;
           Tvard[k1][2]=atoi(stre);         nbcode[Tvar[j]][3]=2;
           Tvar[cptcovn+k2]=Tvard[k1][1];      */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      ij=1; /* ij is similar to i but can jumps over null modalities */
           for (k=1; k<=lastobs;k++)      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           k1++;          /*recode from 0 */
           k2=k2+2;          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
         }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
       }                                       k is a modality. If we have model=V1+V1*sex 
       else {                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            ij++;
        /*  scanf("%d",i);*/          }
       cutv(strd,strc,strb,'V');          if (ij > ncodemax[j]) break; 
       Tvar[i]=atoi(strc);        }  /* end of loop on */
       }      } /* end of loop on modality */ 
       strcpy(modelsav,stra);      } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    
         scanf("%d",i);*/   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     }    
 }    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   printf("cptcovprod=%d ", cptcovprod);     Ndum[ij]++; 
   scanf("%d ",i);*/   } 
     fclose(fic);  
    ij=1;
     /*  if(mle==1){*/   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
     if (weightopt != 1) { /* Maximisation without weights*/     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
       for(i=1;i<=n;i++) weight[i]=1.0;     if((Ndum[i]!=0) && (i<=ncovcol)){
     }       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     /*-calculation of age at interview from date of interview and age at death -*/       Tvaraff[ij]=i; /*For printing (unclear) */
     agev=matrix(1,maxwav,1,imx);       ij++;
      }else
     for (i=1; i<=imx; i++) {         Tvaraff[ij]=0;
       for(m=2; (m<= maxwav); m++) {   }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){   ij--;
          anint[m][i]=9999;   cptcoveff=ij; /*Number of total covariates*/
          s[m][i]=-1;  
        }  }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }  
     }  /*********** Health Expectancies ****************/
   
     for (i=1; i<=imx; i++)  {  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){  {
         if(s[m][i] >0){    /* Health expectancies, no variances */
           if (s[m][i] >= nlstate+1) {    int i, j, nhstepm, hstepm, h, nstepm;
             if(agedc[i]>0)    int nhstepma, nstepma; /* Decreasing with age */
               if(moisdc[i]!=99 && andc[i]!=9999)    double age, agelim, hf;
                 agev[m][i]=agedc[i];    double ***p3mat;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    double eip;
            else {  
               if (andc[i]!=9999){    pstamp(ficreseij);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
               agev[m][i]=-1;    fprintf(ficreseij,"# Age");
               }    for(i=1; i<=nlstate;i++){
             }      for(j=1; j<=nlstate;j++){
           }        fprintf(ficreseij," e%1d%1d ",i,j);
           else if(s[m][i] !=9){ /* Should no more exist */      }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      fprintf(ficreseij," e%1d. ",i);
             if(mint[m][i]==99 || anint[m][i]==9999)    }
               agev[m][i]=1;    fprintf(ficreseij,"\n");
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];    
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    if(estepm < stepm){
             }      printf ("Problem %d lower than %d\n",estepm, stepm);
             else if(agev[m][i] >agemax){    }
               agemax=agev[m][i];    else  hstepm=estepm;   
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    /* We compute the life expectancy from trapezoids spaced every estepm months
             }     * This is mainly to measure the difference between two models: for example
             /*agev[m][i]=anint[m][i]-annais[i];*/     * if stepm=24 months pijx are given only every 2 years and by summing them
             /*   agev[m][i] = age[i]+2*m;*/     * we are calculating an estimate of the Life Expectancy assuming a linear 
           }     * progression in between and thus overestimating or underestimating according
           else { /* =9 */     * to the curvature of the survival function. If, for the same date, we 
             agev[m][i]=1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             s[m][i]=-1;     * to compare the new estimate of Life expectancy with the same linear 
           }     * hypothesis. A more precise result, taking into account a more precise
         }     * curvature will be obtained if estepm is as small as stepm. */
         else /*= 0 Unknown */  
           agev[m][i]=1;    /* For example we decided to compute the life expectancy with the smallest unit */
       }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
     for (i=1; i<=imx; i++)  {       Look at hpijx to understand the reason of that which relies in memory size
       for(m=1; (m<= maxwav); m++){       and note for a fixed period like estepm months */
         if (s[m][i] > (nlstate+ndeath)) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           printf("Error: Wrong value in nlstate or ndeath\n");         survival function given by stepm (the optimization length). Unfortunately it
           goto end;       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
     }    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
     agelim=AGESUP;
     free_vector(severity,1,maxwav);    /* If stepm=6 months */
     free_imatrix(outcome,1,maxwav+1,1,n);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     free_vector(moisnais,1,n);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     free_vector(annais,1,n);      
     /* free_matrix(mint,1,maxwav,1,n);  /* nhstepm age range expressed in number of stepm */
        free_matrix(anint,1,maxwav,1,n);*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     free_vector(moisdc,1,n);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(andc,1,n);    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    for (age=bage; age<=fage; age ++){ 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
          /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* Concatenates waves */      /* if (stepm >= YEARM) hstepm=1;*/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       Tcode=ivector(1,100);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       ncodemax[1]=1;      
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
            
    codtab=imatrix(1,100,1,10);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    h=0;      
    m=pow(2,cptcoveff);      printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
    for(k=1;k<=cptcoveff; k++){      
      for(i=1; i <=(m/pow(2,k));i++){      /* Computing expectancies */
        for(j=1; j <= ncodemax[k]; j++){      for(i=1; i<=nlstate;i++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        for(j=1; j<=nlstate;j++)
            h++;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            
          }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        }  
      }          }
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      fprintf(ficreseij,"%3.0f",age );
       codtab[1][2]=1;codtab[2][2]=2; */      for(i=1; i<=nlstate;i++){
    /* for(i=1; i <=m ;i++){        eip=0;
       for(k=1; k <=cptcovn; k++){        for(j=1; j<=nlstate;j++){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          eip +=eij[i][j][(int)age];
       }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       printf("\n");        }
       }        fprintf(ficreseij,"%9.4f", eip );
       scanf("%d",i);*/      }
          fprintf(ficreseij,"\n");
    /* Calculates basic frequencies. Computes observed prevalence at single age      
        and prints on file fileres'p'. */    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        printf("\n");
        fprintf(ficlog,"\n");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
        {
     /* For Powell, parameters are in a vector p[] starting at p[1]    /* Covariances of health expectancies eij and of total life expectancies according
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */     to initial status i, ei. .
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     if(mle==1){    int nhstepma, nstepma; /* Decreasing with age */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double age, agelim, hf;
     }    double ***p3matp, ***p3matm, ***varhe;
        double **dnewm,**doldm;
     /*--------- results files --------------*/    double *xp, *xm;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    double **gp, **gm;
      double ***gradg, ***trgradg;
     int theta;
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double eip, vip;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      for(k=1; k <=(nlstate+ndeath); k++){    xp=vector(1,npar);
        if (k != i)    xm=vector(1,npar);
          {    dnewm=matrix(1,nlstate*nlstate,1,npar);
            printf("%d%d ",i,k);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
            fprintf(ficres,"%1d%1d ",i,k);    
            for(j=1; j <=ncovmodel; j++){    pstamp(ficresstdeij);
              printf("%f ",p[jk]);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
              fprintf(ficres,"%f ",p[jk]);    fprintf(ficresstdeij,"# Age");
              jk++;    for(i=1; i<=nlstate;i++){
            }      for(j=1; j<=nlstate;j++)
            printf("\n");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
            fprintf(ficres,"\n");      fprintf(ficresstdeij," e%1d. ",i);
          }    }
      }    fprintf(ficresstdeij,"\n");
    }  
  if(mle==1){    pstamp(ficrescveij);
     /* Computing hessian and covariance matrix */    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     ftolhess=ftol; /* Usually correct */    fprintf(ficrescveij,"# Age");
     hesscov(matcov, p, npar, delti, ftolhess, func);    for(i=1; i<=nlstate;i++)
  }      for(j=1; j<=nlstate;j++){
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        cptj= (j-1)*nlstate+i;
     printf("# Scales (for hessian or gradient estimation)\n");        for(i2=1; i2<=nlstate;i2++)
      for(i=1,jk=1; i <=nlstate; i++){          for(j2=1; j2<=nlstate;j2++){
       for(j=1; j <=nlstate+ndeath; j++){            cptj2= (j2-1)*nlstate+i2;
         if (j!=i) {            if(cptj2 <= cptj)
           fprintf(ficres,"%1d%1d",i,j);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           printf("%1d%1d",i,j);          }
           for(k=1; k<=ncovmodel;k++){      }
             printf(" %.5e",delti[jk]);    fprintf(ficrescveij,"\n");
             fprintf(ficres," %.5e",delti[jk]);    
             jk++;    if(estepm < stepm){
           }      printf ("Problem %d lower than %d\n",estepm, stepm);
           printf("\n");    }
           fprintf(ficres,"\n");    else  hstepm=estepm;   
         }    /* We compute the life expectancy from trapezoids spaced every estepm months
       }     * This is mainly to measure the difference between two models: for example
      }     * if stepm=24 months pijx are given only every 2 years and by summing them
         * we are calculating an estimate of the Life Expectancy assuming a linear 
     k=1;     * progression in between and thus overestimating or underestimating according
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     * to the curvature of the survival function. If, for the same date, we 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     for(i=1;i<=npar;i++){     * to compare the new estimate of Life expectancy with the same linear 
       /*  if (k>nlstate) k=1;     * hypothesis. A more precise result, taking into account a more precise
       i1=(i-1)/(ncovmodel*nlstate)+1;     * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficres,"%3d",i);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       printf("%3d",i);       nhstepm is the number of hstepm from age to agelim 
       for(j=1; j<=i;j++){       nstepm is the number of stepm from age to agelin. 
         fprintf(ficres," %.5e",matcov[i][j]);       Look at hpijx to understand the reason of that which relies in memory size
         printf(" %.5e",matcov[i][j]);       and note for a fixed period like estepm months */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficres,"\n");       survival function given by stepm (the optimization length). Unfortunately it
       printf("\n");       means that if the survival funtion is printed only each two years of age and if
       k++;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     }       results. So we changed our mind and took the option of the best precision.
        */
     while((c=getc(ficpar))=='#' && c!= EOF){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);    /* If stepm=6 months */
       puts(line);    /* nhstepm age range expressed in number of stepm */
       fputs(line,ficparo);    agelim=AGESUP;
     }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     ungetc(c,ficpar);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     estepm=0;    /* if (stepm >= YEARM) hstepm=1;*/
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     if (estepm==0 || estepm < stepm) estepm=stepm;    
     if (fage <= 2) {    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       bage = ageminpar;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fage = agemaxpar;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
        gp=matrix(0,nhstepm,1,nlstate*nlstate);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    for (age=bage; age<=fage; age ++){ 
        nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     while((c=getc(ficpar))=='#' && c!= EOF){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     ungetc(c,ficpar);      /* if (stepm >= YEARM) hstepm=1;*/
     fgets(line, MAXLINE, ficpar);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     puts(line);  
     fputs(line,ficparo);      /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   ungetc(c,ficpar);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      /* Computing  Variances of health expectancies */
            /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   while((c=getc(ficpar))=='#' && c!= EOF){         decrease memory allocation */
     ungetc(c,ficpar);      for(theta=1; theta <=npar; theta++){
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++){ 
     puts(line);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fputs(line,ficparo);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   }        }
   ungetc(c,ficpar);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
          hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        for(j=1; j<= nlstate; j++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   fprintf(ficparo,"pop_based=%d\n",popbased);                gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   fprintf(ficres,"pop_based=%d\n",popbased);              }
            }
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);       
     fgets(line, MAXLINE, ficpar);        for(ij=1; ij<= nlstate*nlstate; ij++)
     puts(line);          for(h=0; h<=nhstepm-1; h++){
     fputs(line,ficparo);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   }          }
   ungetc(c,ficpar);      }/* End theta */
       
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      for(h=0; h<=nhstepm-1; h++)
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
 while((c=getc(ficpar))=='#' && c!= EOF){      
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);       for(ij=1;ij<=nlstate*nlstate;ij++)
     puts(line);        for(ji=1;ji<=nlstate*nlstate;ji++)
     fputs(line,ficparo);          varhe[ij][ji][(int)age] =0.;
   }  
   ungetc(c,ficpar);       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);       for(h=0;h<=nhstepm-1;h++){
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        for(k=0;k<=nhstepm-1;k++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
 /*------------ gnuplot -------------*/              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);        }
        }
 /*------------ free_vector  -------------*/  
  chdir(path);      /* Computing expectancies */
        hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
  free_ivector(wav,1,imx);      for(i=1; i<=nlstate;i++)
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        for(j=1; j<=nlstate;j++)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  free_ivector(num,1,n);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
  free_vector(agedc,1,n);            
  /*free_matrix(covar,1,NCOVMAX,1,n);*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
  fclose(ficparo);  
  fclose(ficres);          }
   
 /*--------- index.htm --------*/      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        eip=0.;
         vip=0.;
          for(j=1; j<=nlstate;j++){
   /*--------------- Prevalence limit --------------*/          eip += eij[i][j][(int)age];
            for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   strcpy(filerespl,"pl");            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   strcat(filerespl,fileres);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   }      }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      fprintf(ficresstdeij,"\n");
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");      fprintf(ficrescveij,"%3.0f",age );
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      for(i=1; i<=nlstate;i++)
   fprintf(ficrespl,"\n");        for(j=1; j<=nlstate;j++){
            cptj= (j-1)*nlstate+i;
   prlim=matrix(1,nlstate,1,nlstate);          for(i2=1; i2<=nlstate;i2++)
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(j2=1; j2<=nlstate;j2++){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              cptj2= (j2-1)*nlstate+i2;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if(cptj2 <= cptj)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            }
   k=0;        }
   agebase=ageminpar;      fprintf(ficrescveij,"\n");
   agelim=agemaxpar;     
   ftolpl=1.e-10;    }
   i1=cptcoveff;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   if (cptcovn < 1){i1=1;}    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   for(cptcov=1;cptcov<=i1;cptcov++){    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         k=k+1;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    printf("\n");
         fprintf(ficrespl,"\n#******");    fprintf(ficlog,"\n");
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_vector(xm,1,npar);
         fprintf(ficrespl,"******\n");    free_vector(xp,1,npar);
            free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         for (age=agebase; age<=agelim; age++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           fprintf(ficrespl,"%.0f",age );  }
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);  /************ Variance ******************/
           fprintf(ficrespl,"\n");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         }  {
       }    /* Variance of health expectancies */
     }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   fclose(ficrespl);    /* double **newm;*/
     double **dnewm,**doldm;
   /*------------- h Pij x at various ages ------------*/    double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    int k;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    double *xp;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double **gp, **gm;  /* for var eij */
   }    double ***gradg, ***trgradg; /*for var eij */
   printf("Computing pij: result on file '%s' \n", filerespij);    double **gradgp, **trgradgp; /* for var p point j */
      double *gpp, *gmp; /* for var p point j */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   /*if (stepm<=24) stepsize=2;*/    double ***p3mat;
     double age,agelim, hf;
   agelim=AGESUP;    double ***mobaverage;
   hstepm=stepsize*YEARM; /* Every year of age */    int theta;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    char digit[4];
      char digitp[25];
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    char fileresprobmorprev[FILENAMELENGTH];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    if(popbased==1){
         fprintf(ficrespij,"\n#****** ");      if(mobilav!=0)
         for(j=1;j<=cptcoveff;j++)        strcpy(digitp,"-populbased-mobilav-");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      else strcpy(digitp,"-populbased-nomobil-");
         fprintf(ficrespij,"******\n");    }
            else 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      strcpy(digitp,"-stablbased-");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    if (mobilav!=0) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           oldm=oldms;savm=savms;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficrespij,"# Age");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           for(i=1; i<=nlstate;i++)      }
             for(j=1; j<=nlstate+ndeath;j++)    }
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");    strcpy(fileresprobmorprev,"prmorprev"); 
            for (h=0; h<=nhstepm; h++){    sprintf(digit,"%-d",ij);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
             for(i=1; i<=nlstate;i++)    strcat(fileresprobmorprev,digit); /* Tvar to be done */
               for(j=1; j<=nlstate+ndeath;j++)    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    strcat(fileresprobmorprev,fileres);
             fprintf(ficrespij,"\n");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
              }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           fprintf(ficrespij,"\n");    }
         }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     }   
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fclose(ficrespij);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   /*---------- Forecasting ------------------*/        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   if((stepm == 1) && (strcmp(model,".")==0)){    }  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    fprintf(ficresprobmorprev,"\n");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    fprintf(ficgp,"\n# Routine varevsij");
   }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   else{    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     erreur=108;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  /*   } */
   }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   /*---------- Health expectancies and variances ------------*/    if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   strcpy(filerest,"t");    else
   strcat(filerest,fileres);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   if((ficrest=fopen(filerest,"w"))==NULL) {    fprintf(ficresvij,"# Age");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
   strcpy(filerese,"e");    xp=vector(1,npar);
   strcat(filerese,fileres);    dnewm=matrix(1,nlstate,1,npar);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    doldm=matrix(1,nlstate,1,nlstate);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
  strcpy(fileresv,"v");    gpp=vector(nlstate+1,nlstate+ndeath);
   strcat(fileresv,fileres);    gmp=vector(nlstate+1,nlstate+ndeath);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    
   }    if(estepm < stepm){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      printf ("Problem %d lower than %d\n",estepm, stepm);
   calagedate=-1;    }
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
   k=0;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   for(cptcov=1;cptcov<=i1;cptcov++){       nhstepm is the number of hstepm from age to agelim 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       nstepm is the number of stepm from age to agelin. 
       k=k+1;       Look at function hpijx to understand why (it is linked to memory size questions) */
       fprintf(ficrest,"\n#****** ");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(j=1;j<=cptcoveff;j++)       survival function given by stepm (the optimization length). Unfortunately it
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       means that if the survival funtion is printed every two years of age and if
       fprintf(ficrest,"******\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
       fprintf(ficreseij,"\n#****** ");    */
       for(j=1;j<=cptcoveff;j++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    agelim = AGESUP;
       fprintf(ficreseij,"******\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fprintf(ficresvij,"\n#****** ");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(j=1;j<=cptcoveff;j++)      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       fprintf(ficresvij,"******\n");      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       oldm=oldms;savm=savms;        }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
          if (popbased==1) {
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          if(mobilav ==0){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            for(i=1; i<=nlstate;i++)
       fprintf(ficrest,"\n");              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
       epj=vector(1,nlstate+1);            for(i=1; i<=nlstate;i++)
       for(age=bage; age <=fage ;age++){              prlim[i][i]=mobaverage[(int)age][i][ij];
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          }
         if (popbased==1) {        }
           for(i=1; i<=nlstate;i++)    
             prlim[i][i]=probs[(int)age][i][k];        for(j=1; j<= nlstate; j++){
         }          for(h=0; h<=nhstepm; h++){
                    for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         fprintf(ficrest," %4.0f",age);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        /* This for computing probability of death (h=1 means
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/           computed over hstepm matrices product = hstepm*stepm months) 
           }           as a weighted average of prlim.
           epj[nlstate+1] +=epj[j];        */
         }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
         for(i=1, vepp=0.;i <=nlstate;i++)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           for(j=1;j <=nlstate;j++)        }    
             vepp += vareij[i][j][(int)age];        /* end probability of death */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficrest,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }   
     }        if (popbased==1) {
   }          if(mobilav ==0){
 free_matrix(mint,1,maxwav,1,n);            for(i=1; i<=nlstate;i++)
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);              prlim[i][i]=probs[(int)age][i][ij];
     free_vector(weight,1,n);          }else{ /* mobilav */ 
   fclose(ficreseij);            for(i=1; i<=nlstate;i++)
   fclose(ficresvij);              prlim[i][i]=mobaverage[(int)age][i][ij];
   fclose(ficrest);          }
   fclose(ficpar);        }
   free_vector(epj,1,nlstate+1);  
          for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   /*------- Variance limit prevalence------*/            for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   strcpy(fileresvpl,"vpl");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   strcat(fileresvpl,fileres);          }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        /* This for computing probability of death (h=1 means
     exit(0);           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   k=0;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   for(cptcov=1;cptcov<=i1;cptcov++){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }    
       k=k+1;        /* end probability of death */
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)        for(j=1; j<= nlstate; j++) /* vareij */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(h=0; h<=nhstepm; h++){
       fprintf(ficresvpl,"******\n");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     }        }
  }  
       } /* End theta */
   fclose(ficresvpl);  
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for(theta=1; theta <=npar; theta++)
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            trgradg[h][j][theta]=gradg[h][theta][j];
    
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        for(theta=1; theta <=npar; theta++)
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          trgradgp[j][theta]=gradgp[theta][j];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   free_matrix(matcov,1,npar,1,npar);      for(i=1;i<=nlstate;i++)
   free_vector(delti,1,npar);        for(j=1;j<=nlstate;j++)
   free_matrix(agev,1,maxwav,1,imx);          vareij[i][j][(int)age] =0.;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
       for(h=0;h<=nhstepm;h++){
   if(erreur >0)        for(k=0;k<=nhstepm;k++){
     printf("End of Imach with error or warning %d\n",erreur);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   else   printf("End of Imach\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          for(i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate;j++)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   /*printf("Total time was %d uSec.\n", total_usecs);*/        }
   /*------ End -----------*/      }
     
       /* pptj */
  end:      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 #ifdef windows      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   /* chdir(pathcd);*/      for(j=nlstate+1;j<=nlstate+ndeath;j++)
 #endif        for(i=nlstate+1;i<=nlstate+ndeath;i++)
  /*system("wgnuplot graph.plt");*/          varppt[j][i]=doldmp[j][i];
  /*system("../gp37mgw/wgnuplot graph.plt");*/      /* end ppptj */
  /*system("cd ../gp37mgw");*/      /*  x centered again */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
  strcpy(plotcmd,GNUPLOTPROGRAM);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
  strcat(plotcmd," ");   
  strcat(plotcmd,optionfilegnuplot);      if (popbased==1) {
  system(plotcmd);        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
 #ifdef windows            prlim[i][i]=probs[(int)age][i][ij];
   while (z[0] != 'q') {        }else{ /* mobilav */ 
     /* chdir(path); */          for(i=1; i<=nlstate;i++)
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");            prlim[i][i]=mobaverage[(int)age][i][ij];
     scanf("%s",z);        }
     if (z[0] == 'c') system("./imach");      }
     else if (z[0] == 'e') system(optionfilehtm);               
     else if (z[0] == 'g') system(plotcmd);      /* This for computing probability of death (h=1 means
     else if (z[0] == 'q') exit(0);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   }         as a weighted average of prlim.
 #endif      */
 }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.44  
changed lines
  Added in v.1.166


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>