Diff for /imach/src/imach.c between versions 1.44 and 1.84

version 1.44, 2002/05/24 13:01:48 version 1.84, 2003/06/13 21:44:43
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.84  2003/06/13 21:44:43  brouard
      * imach.c (Repository): Replace "freqsummary" at a correct
   This program computes Healthy Life Expectancies from    place. It differs from routine "prevalence" which may be called
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    many times. Probs is memory consuming and must be used with
   first survey ("cross") where individuals from different ages are    parcimony.
   interviewed on their health status or degree of disability (in the    Version 0.95a2 (should output exactly the same maximization than 0.8a2)
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.83  2003/06/10 13:39:11  lievre
   (if any) in individual health status.  Health expectancies are    *** empty log message ***
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.82  2003/06/05 15:57:20  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Add log in  imach.c and  fullversion number is now printed.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave  */
   conditional to be observed in state i at the first wave. Therefore  /*
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where     Interpolated Markov Chain
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Short summary of the programme:
   where the markup *Covariates have to be included here again* invites    
   you to do it.  More covariates you add, slower the    This program computes Healthy Life Expectancies from
   convergence.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
   The advantage of this computer programme, compared to a simple    interviewed on their health status or degree of disability (in the
   multinomial logistic model, is clear when the delay between waves is not    case of a health survey which is our main interest) -2- at least a
   identical for each individual. Also, if a individual missed an    second wave of interviews ("longitudinal") which measure each change
   intermediate interview, the information is lost, but taken into    (if any) in individual health status.  Health expectancies are
   account using an interpolation or extrapolation.      computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
   hPijx is the probability to be observed in state i at age x+h    Maximum Likelihood of the parameters involved in the model.  The
   conditional to the observed state i at age x. The delay 'h' can be    simplest model is the multinomial logistic model where pij is the
   split into an exact number (nh*stepm) of unobserved intermediate    probability to be observed in state j at the second wave
   states. This elementary transition (by month or quarter trimester,    conditional to be observed in state i at the first wave. Therefore
   semester or year) is model as a multinomial logistic.  The hPx    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   matrix is simply the matrix product of nh*stepm elementary matrices    'age' is age and 'sex' is a covariate. If you want to have a more
   and the contribution of each individual to the likelihood is simply    complex model than "constant and age", you should modify the program
   hPijx.    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
   Also this programme outputs the covariance matrix of the parameters but also    convergence.
   of the life expectancies. It also computes the prevalence limits.  
      The advantage of this computer programme, compared to a simple
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    multinomial logistic model, is clear when the delay between waves is not
            Institut national d'études démographiques, Paris.    identical for each individual. Also, if a individual missed an
   This software have been partly granted by Euro-REVES, a concerted action    intermediate interview, the information is lost, but taken into
   from the European Union.    account using an interpolation or extrapolation.  
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    hPijx is the probability to be observed in state i at age x+h
   can be accessed at http://euroreves.ined.fr/imach .    conditional to the observed state i at age x. The delay 'h' can be
   **********************************************************************/    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
 #include <math.h>    semester or year) is modelled as a multinomial logistic.  The hPx
 #include <stdio.h>    matrix is simply the matrix product of nh*stepm elementary matrices
 #include <stdlib.h>    and the contribution of each individual to the likelihood is simply
 #include <unistd.h>    hPijx.
   
 #define MAXLINE 256    Also this programme outputs the covariance matrix of the parameters but also
 #define GNUPLOTPROGRAM "gnuplot"    of the life expectancies. It also computes the stable prevalence. 
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    
 #define FILENAMELENGTH 80    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /*#define DEBUG*/             Institut national d'études démographiques, Paris.
 #define windows    This software have been partly granted by Euro-REVES, a concerted action
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    from the European Union.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    can be accessed at http://euroreves.ined.fr/imach .
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define NINTERVMAX 8    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    **********************************************************************/
 #define NCOVMAX 8 /* Maximum number of covariates */  /*
 #define MAXN 20000    main
 #define YEARM 12. /* Number of months per year */    read parameterfile
 #define AGESUP 130    read datafile
 #define AGEBASE 40    concatwav
     freqsummary
     if (mle >= 1)
 int erreur; /* Error number */      mlikeli
 int nvar;    print results files
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    if mle==1 
 int npar=NPARMAX;       computes hessian
 int nlstate=2; /* Number of live states */    read end of parameter file: agemin, agemax, bage, fage, estepm
 int ndeath=1; /* Number of dead states */        begin-prev-date,...
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    open gnuplot file
 int popbased=0;    open html file
     stable prevalence
 int *wav; /* Number of waves for this individuual 0 is possible */     for age prevalim()
 int maxwav; /* Maxim number of waves */    h Pij x
 int jmin, jmax; /* min, max spacing between 2 waves */    variance of p varprob
 int mle, weightopt;    forecasting if prevfcast==1 prevforecast call prevalence()
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    health expectancies
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Variance-covariance of DFLE
 double jmean; /* Mean space between 2 waves */    prevalence()
 double **oldm, **newm, **savm; /* Working pointers to matrices */     movingaverage()
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    varevsij() 
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    if popbased==1 varevsij(,popbased)
 FILE *ficgp,*ficresprob,*ficpop;    total life expectancies
 FILE *ficreseij;    Variance of stable prevalence
   char filerese[FILENAMELENGTH];   end
  FILE  *ficresvij;  */
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];  
    
 #define NR_END 1  #include <math.h>
 #define FREE_ARG char*  #include <stdio.h>
 #define FTOL 1.0e-10  #include <stdlib.h>
   #include <unistd.h>
 #define NRANSI  
 #define ITMAX 200  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 #define TOL 2.0e-4  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 80
 #define CGOLD 0.3819660  /*#define DEBUG*/
 #define ZEPS 1.0e-10  #define windows
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define GOLD 1.618034  
 #define GLIMIT 100.0  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define TINY 1.0e-20  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 static double maxarg1,maxarg2;  #define NINTERVMAX 8
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    #define NCOVMAX 8 /* Maximum number of covariates */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define MAXN 20000
 #define rint(a) floor(a+0.5)  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 static double sqrarg;  #define AGEBASE 40
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #ifdef windows
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
 int imx;  #else
 int stepm;  #define DIRSEPARATOR '/'
 /* Stepm, step in month: minimum step interpolation*/  #define ODIRSEPARATOR '\\'
   #endif
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  /* $Id$ */
   /* $State$ */
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char fullversion[]="$Revision$ $Date$"; 
 double **pmmij, ***probs, ***mobaverage;  int erreur; /* Error number */
 double dateintmean=0;  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 double *weight;  int npar=NPARMAX;
 int **s; /* Status */  int nlstate=2; /* Number of live states */
 double *agedc, **covar, idx;  int ndeath=1; /* Number of dead states */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /**************** split *************************/  int jmin, jmax; /* min, max spacing between 2 waves */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int mle, weightopt;
 {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    char *s;                             /* pointer */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int  l1, l2;                         /* length counters */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
    l1 = strlen( path );                 /* length of path */  double jmean; /* Mean space between 2 waves */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #ifdef windows  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    s = strrchr( path, '\\' );           /* find last / */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #else  FILE *ficlog, *ficrespow;
    s = strrchr( path, '/' );            /* find last / */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #endif  FILE *ficresprobmorprev;
    if ( s == NULL ) {                   /* no directory, so use current */  FILE *fichtm; /* Html File */
 #if     defined(__bsd__)                /* get current working directory */  FILE *ficreseij;
       extern char       *getwd( );  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
       if ( getwd( dirc ) == NULL ) {  char fileresv[FILENAMELENGTH];
 #else  FILE  *ficresvpl;
       extern char       *getcwd( );  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #endif  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
          return( GLOCK_ERROR_GETCWD );  
       }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       strcpy( name, path );             /* we've got it */  char filelog[FILENAMELENGTH]; /* Log file */
    } else {                             /* strip direcotry from path */  char filerest[FILENAMELENGTH];
       s++;                              /* after this, the filename */  char fileregp[FILENAMELENGTH];
       l2 = strlen( s );                 /* length of filename */  char popfile[FILENAMELENGTH];
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  #define NR_END 1
    }  #define FREE_ARG char*
    l1 = strlen( dirc );                 /* length of directory */  #define FTOL 1.0e-10
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define NRANSI 
 #else  #define ITMAX 200 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif  #define TOL 2.0e-4 
    s = strrchr( name, '.' );            /* find last / */  
    s++;  #define CGOLD 0.3819660 
    strcpy(ext,s);                       /* save extension */  #define ZEPS 1.0e-10 
    l1= strlen( name);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);  #define GOLD 1.618034 
    finame[l1-l2]= 0;  #define GLIMIT 100.0 
    return( 0 );                         /* we're done */  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /******************************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 void replace(char *s, char*t)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   int i;  
   int lg=20;  static double sqrarg;
   i=0;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   lg=strlen(t);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  int imx; 
     if (t[i]== '\\') s[i]='/';  int stepm;
   }  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 int nbocc(char *s, char occ)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   int i,j=0;  int m,nb;
   int lg=20;  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   i=0;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   lg=strlen(s);  double **pmmij, ***probs;
   for(i=0; i<= lg; i++) {  double dateintmean=0;
   if  (s[i] == occ ) j++;  
   }  double *weight;
   return j;  int **s; /* Status */
 }  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 void cutv(char *u,char *v, char*t, char occ)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   int i,lg,j,p=0;  double ftolhess; /* Tolerance for computing hessian */
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  /**************** split *************************/
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   }  {
     char  *ss;                            /* pointer */
   lg=strlen(t);    int   l1, l2;                         /* length counters */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    l1 = strlen(path );                   /* length of path */
   }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      u[p]='\0';    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
    for(j=0; j<= lg; j++) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     if (j>=(p+1))(v[j-p-1] = t[j]);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   }      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /********************** nrerror ********************/        return( GLOCK_ERROR_GETCWD );
       }
 void nrerror(char error_text[])      strcpy( name, path );               /* we've got it */
 {    } else {                              /* strip direcotry from path */
   fprintf(stderr,"ERREUR ...\n");      ss++;                               /* after this, the filename */
   fprintf(stderr,"%s\n",error_text);      l2 = strlen( ss );                  /* length of filename */
   exit(1);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
 /*********************** vector *******************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 double *vector(int nl, int nh)      dirc[l1-l2] = 0;                    /* add zero */
 {    }
   double *v;    l1 = strlen( dirc );                  /* length of directory */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #ifdef windows
   if (!v) nrerror("allocation failure in vector");    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   return v-nl+NR_END;  #else
 }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
 /************************ free vector ******************/    ss = strrchr( name, '.' );            /* find last / */
 void free_vector(double*v, int nl, int nh)    ss++;
 {    strcpy(ext,ss);                       /* save extension */
   free((FREE_ARG)(v+nl-NR_END));    l1= strlen( name);
 }    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
 /************************ivector *******************************/    finame[l1-l2]= 0;
 int *ivector(long nl,long nh)    return( 0 );                          /* we're done */
 {  }
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  /******************************************/
   return v-nl+NR_END;  
 }  void replace(char *s, char*t)
   {
 /******************free ivector **************************/    int i;
 void free_ivector(int *v, long nl, long nh)    int lg=20;
 {    i=0;
   free((FREE_ARG)(v+nl-NR_END));    lg=strlen(t);
 }    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 /******************* imatrix *******************************/      if (t[i]== '\\') s[i]='/';
 int **imatrix(long nrl, long nrh, long ncl, long nch)    }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  }
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int nbocc(char *s, char occ)
   int **m;  {
      int i,j=0;
   /* allocate pointers to rows */    int lg=20;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    i=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    lg=strlen(s);
   m += NR_END;    for(i=0; i<= lg; i++) {
   m -= nrl;    if  (s[i] == occ ) j++;
      }
      return j;
   /* allocate rows and set pointers to them */  }
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void cutv(char *u,char *v, char*t, char occ)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    /* cuts string t into u and v where u is ended by char occ excluding it
         and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;       gives u="abcedf" and v="ghi2j" */
      int i,lg,j,p=0;
   /* return pointer to array of pointers to rows */    i=0;
   return m;    for(j=0; j<=strlen(t)-1; j++) {
 }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    lg=strlen(t);
       int **m;    for(j=0; j<p; j++) {
       long nch,ncl,nrh,nrl;      (u[j] = t[j]);
      /* free an int matrix allocated by imatrix() */    }
 {       u[p]='\0';
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));     for(j=0; j<= lg; j++) {
 }      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
 /******************* matrix *******************************/  }
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  /********************** nrerror ********************/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  void nrerror(char error_text[])
   {
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    fprintf(stderr,"ERREUR ...\n");
   if (!m) nrerror("allocation failure 1 in matrix()");    fprintf(stderr,"%s\n",error_text);
   m += NR_END;    exit(EXIT_FAILURE);
   m -= nrl;  }
   /*********************** vector *******************/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double *vector(int nl, int nh)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    double *v;
   m[nrl] -= ncl;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return v-nl+NR_END;
   return m;  }
 }  
   /************************ free vector ******************/
 /*************************free matrix ************************/  void free_vector(double*v, int nl, int nh)
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /************************ivector *******************************/
   char *cvector(long nl,long nh)
 /******************* ma3x *******************************/  {
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    char *v;
 {    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    if (!v) nrerror("allocation failure in cvector");
   double ***m;    return v-nl+NR_END;
   }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /******************free ivector **************************/
   m += NR_END;  void free_cvector(char *v, long nl, long nh)
   m -= nrl;  {
     free((FREE_ARG)(v+nl-NR_END));
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /************************ivector *******************************/
   m[nrl] -= ncl;  int *ivector(long nl,long nh)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if (!v) nrerror("allocation failure in ivector");
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    return v-nl+NR_END;
   m[nrl][ncl] += NR_END;  }
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  /******************free ivector **************************/
     m[nrl][j]=m[nrl][j-1]+nlay;  void free_ivector(int *v, long nl, long nh)
    {
   for (i=nrl+1; i<=nrh; i++) {    free((FREE_ARG)(v+nl-NR_END));
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  }
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  /******************* imatrix *******************************/
   }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   return m;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 }  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 /*************************free ma3x ************************/    int **m; 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    
 {    /* allocate pointers to rows */ 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if (!m) nrerror("allocation failure 1 in matrix()"); 
   free((FREE_ARG)(m+nrl-NR_END));    m += NR_END; 
 }    m -= nrl; 
     
 /***************** f1dim *************************/    
 extern int ncom;    /* allocate rows and set pointers to them */ 
 extern double *pcom,*xicom;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 extern double (*nrfunc)(double []);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      m[nrl] += NR_END; 
 double f1dim(double x)    m[nrl] -= ncl; 
 {    
   int j;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double f;    
   double *xt;    /* return pointer to array of pointers to rows */ 
      return m; 
   xt=vector(1,ncom);  } 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /****************** free_imatrix *************************/
   free_vector(xt,1,ncom);  void free_imatrix(m,nrl,nrh,ncl,nch)
   return f;        int **m;
 }        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
 /*****************brent *************************/  { 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 {    free((FREE_ARG) (m+nrl-NR_END)); 
   int iter;  } 
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /******************* matrix *******************************/
   double ftemp;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
      double **m;
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   x=w=v=bx;    if (!m) nrerror("allocation failure 1 in matrix()");
   fw=fv=fx=(*f)(x);    m += NR_END;
   for (iter=1;iter<=ITMAX;iter++) {    m -= nrl;
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf(".");fflush(stdout);    m[nrl] += NR_END;
 #ifdef DEBUG    m[nrl] -= ncl;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #endif    return m;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
       *xmin=x;     */
       return fx;  }
     }  
     ftemp=fu;  /*************************free matrix ************************/
     if (fabs(e) > tol1) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       r=(x-w)*(fx-fv);  {
       q=(x-v)*(fx-fw);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       p=(x-v)*q-(x-w)*r;    free((FREE_ARG)(m+nrl-NR_END));
       q=2.0*(q-r);  }
       if (q > 0.0) p = -p;  
       q=fabs(q);  /******************* ma3x *******************************/
       etemp=e;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       e=d;  {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    double ***m;
       else {  
         d=p/q;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         u=x+d;    if (!m) nrerror("allocation failure 1 in matrix()");
         if (u-a < tol2 || b-u < tol2)    m += NR_END;
           d=SIGN(tol1,xm-x);    m -= nrl;
       }  
     } else {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    m[nrl] -= ncl;
     fu=(*f)(u);  
     if (fu <= fx) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         SHFT(fv,fw,fx,fu)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         } else {    m[nrl][ncl] += NR_END;
           if (u < x) a=u; else b=u;    m[nrl][ncl] -= nll;
           if (fu <= fw || w == x) {    for (j=ncl+1; j<=nch; j++) 
             v=w;      m[nrl][j]=m[nrl][j-1]+nlay;
             w=u;    
             fv=fw;    for (i=nrl+1; i<=nrh; i++) {
             fw=fu;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
           } else if (fu <= fv || v == x || v == w) {      for (j=ncl+1; j<=nch; j++) 
             v=u;        m[i][j]=m[i][j-1]+nlay;
             fv=fu;    }
           }    return m; 
         }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   nrerror("Too many iterations in brent");    */
   *xmin=x;  }
   return fx;  
 }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 /****************** mnbrak ***********************/  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             double (*func)(double))    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   double ulim,u,r,q, dum;  
   double fu;  /***************** f1dim *************************/
    extern int ncom; 
   *fa=(*func)(*ax);  extern double *pcom,*xicom;
   *fb=(*func)(*bx);  extern double (*nrfunc)(double []); 
   if (*fb > *fa) {   
     SHFT(dum,*ax,*bx,dum)  double f1dim(double x) 
       SHFT(dum,*fb,*fa,dum)  { 
       }    int j; 
   *cx=(*bx)+GOLD*(*bx-*ax);    double f;
   *fc=(*func)(*cx);    double *xt; 
   while (*fb > *fc) {   
     r=(*bx-*ax)*(*fb-*fc);    xt=vector(1,ncom); 
     q=(*bx-*cx)*(*fb-*fa);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    f=(*nrfunc)(xt); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    free_vector(xt,1,ncom); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    return f; 
     if ((*bx-u)*(u-*cx) > 0.0) {  } 
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /*****************brent *************************/
       fu=(*func)(u);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       if (fu < *fc) {  { 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    int iter; 
           SHFT(*fb,*fc,fu,(*func)(u))    double a,b,d,etemp;
           }    double fu,fv,fw,fx;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    double ftemp;
       u=ulim;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       fu=(*func)(u);    double e=0.0; 
     } else {   
       u=(*cx)+GOLD*(*cx-*bx);    a=(ax < cx ? ax : cx); 
       fu=(*func)(u);    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
     SHFT(*ax,*bx,*cx,u)    fw=fv=fx=(*f)(x); 
       SHFT(*fa,*fb,*fc,fu)    for (iter=1;iter<=ITMAX;iter++) { 
       }      xm=0.5*(a+b); 
 }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 /*************** linmin ************************/      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 int ncom;  #ifdef DEBUG
 double *pcom,*xicom;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double (*nrfunc)(double []);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #endif
 {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double brent(double ax, double bx, double cx,        *xmin=x; 
                double (*f)(double), double tol, double *xmin);        return fx; 
   double f1dim(double x);      } 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      ftemp=fu;
               double *fc, double (*func)(double));      if (fabs(e) > tol1) { 
   int j;        r=(x-w)*(fx-fv); 
   double xx,xmin,bx,ax;        q=(x-v)*(fx-fw); 
   double fx,fb,fa;        p=(x-v)*q-(x-w)*r; 
          q=2.0*(q-r); 
   ncom=n;        if (q > 0.0) p = -p; 
   pcom=vector(1,n);        q=fabs(q); 
   xicom=vector(1,n);        etemp=e; 
   nrfunc=func;        e=d; 
   for (j=1;j<=n;j++) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     pcom[j]=p[j];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     xicom[j]=xi[j];        else { 
   }          d=p/q; 
   ax=0.0;          u=x+d; 
   xx=1.0;          if (u-a < tol2 || b-u < tol2) 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);            d=SIGN(tol1,xm-x); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        } 
 #ifdef DEBUG      } else { 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #endif      } 
   for (j=1;j<=n;j++) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     xi[j] *= xmin;      fu=(*f)(u); 
     p[j] += xi[j];      if (fu <= fx) { 
   }        if (u >= x) a=x; else b=x; 
   free_vector(xicom,1,n);        SHFT(v,w,x,u) 
   free_vector(pcom,1,n);          SHFT(fv,fw,fx,fu) 
 }          } else { 
             if (u < x) a=u; else b=u; 
 /*************** powell ************************/            if (fu <= fw || w == x) { 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,              v=w; 
             double (*func)(double []))              w=u; 
 {              fv=fw; 
   void linmin(double p[], double xi[], int n, double *fret,              fw=fu; 
               double (*func)(double []));            } else if (fu <= fv || v == x || v == w) { 
   int i,ibig,j;              v=u; 
   double del,t,*pt,*ptt,*xit;              fv=fu; 
   double fp,fptt;            } 
   double *xits;          } 
   pt=vector(1,n);    } 
   ptt=vector(1,n);    nrerror("Too many iterations in brent"); 
   xit=vector(1,n);    *xmin=x; 
   xits=vector(1,n);    return fx; 
   *fret=(*func)(p);  } 
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /****************** mnbrak ***********************/
     fp=(*fret);  
     ibig=0;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     del=0.0;              double (*func)(double)) 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  { 
     for (i=1;i<=n;i++)    double ulim,u,r,q, dum;
       printf(" %d %.12f",i, p[i]);    double fu; 
     printf("\n");   
     for (i=1;i<=n;i++) {    *fa=(*func)(*ax); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    *fb=(*func)(*bx); 
       fptt=(*fret);    if (*fb > *fa) { 
 #ifdef DEBUG      SHFT(dum,*ax,*bx,dum) 
       printf("fret=%lf \n",*fret);        SHFT(dum,*fb,*fa,dum) 
 #endif        } 
       printf("%d",i);fflush(stdout);    *cx=(*bx)+GOLD*(*bx-*ax); 
       linmin(p,xit,n,fret,func);    *fc=(*func)(*cx); 
       if (fabs(fptt-(*fret)) > del) {    while (*fb > *fc) { 
         del=fabs(fptt-(*fret));      r=(*bx-*ax)*(*fb-*fc); 
         ibig=i;      q=(*bx-*cx)*(*fb-*fa); 
       }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 #ifdef DEBUG        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       printf("%d %.12e",i,(*fret));      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       for (j=1;j<=n;j++) {      if ((*bx-u)*(u-*cx) > 0.0) { 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        fu=(*func)(u); 
         printf(" x(%d)=%.12e",j,xit[j]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       }        fu=(*func)(u); 
       for(j=1;j<=n;j++)        if (fu < *fc) { 
         printf(" p=%.12e",p[j]);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       printf("\n");            SHFT(*fb,*fc,fu,(*func)(u)) 
 #endif            } 
     }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        u=ulim; 
 #ifdef DEBUG        fu=(*func)(u); 
       int k[2],l;      } else { 
       k[0]=1;        u=(*cx)+GOLD*(*cx-*bx); 
       k[1]=-1;        fu=(*func)(u); 
       printf("Max: %.12e",(*func)(p));      } 
       for (j=1;j<=n;j++)      SHFT(*ax,*bx,*cx,u) 
         printf(" %.12e",p[j]);        SHFT(*fa,*fb,*fc,fu) 
       printf("\n");        } 
       for(l=0;l<=1;l++) {  } 
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /*************** linmin ************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  int ncom; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double *pcom,*xicom;
       }  double (*nrfunc)(double []); 
 #endif   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
       free_vector(xit,1,n);    double brent(double ax, double bx, double cx, 
       free_vector(xits,1,n);                 double (*f)(double), double tol, double *xmin); 
       free_vector(ptt,1,n);    double f1dim(double x); 
       free_vector(pt,1,n);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       return;                double *fc, double (*func)(double)); 
     }    int j; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    double xx,xmin,bx,ax; 
     for (j=1;j<=n;j++) {    double fx,fb,fa;
       ptt[j]=2.0*p[j]-pt[j];   
       xit[j]=p[j]-pt[j];    ncom=n; 
       pt[j]=p[j];    pcom=vector(1,n); 
     }    xicom=vector(1,n); 
     fptt=(*func)(ptt);    nrfunc=func; 
     if (fptt < fp) {    for (j=1;j<=n;j++) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      pcom[j]=p[j]; 
       if (t < 0.0) {      xicom[j]=xi[j]; 
         linmin(p,xit,n,fret,func);    } 
         for (j=1;j<=n;j++) {    ax=0.0; 
           xi[j][ibig]=xi[j][n];    xx=1.0; 
           xi[j][n]=xit[j];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 #ifdef DEBUG  #ifdef DEBUG
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for(j=1;j<=n;j++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           printf(" %.12e",xit[j]);  #endif
         printf("\n");    for (j=1;j<=n;j++) { 
 #endif      xi[j] *= xmin; 
       }      p[j] += xi[j]; 
     }    } 
   }    free_vector(xicom,1,n); 
 }    free_vector(pcom,1,n); 
   } 
 /**** Prevalence limit ****************/  
   /*************** powell ************************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 {              double (*func)(double [])) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  { 
      matrix by transitions matrix until convergence is reached */    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
   int i, ii,j,k;    int i,ibig,j; 
   double min, max, maxmin, maxmax,sumnew=0.;    double del,t,*pt,*ptt,*xit;
   double **matprod2();    double fp,fptt;
   double **out, cov[NCOVMAX], **pmij();    double *xits;
   double **newm;    pt=vector(1,n); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    ptt=vector(1,n); 
     xit=vector(1,n); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    xits=vector(1,n); 
     for (j=1;j<=nlstate+ndeath;j++){    *fret=(*func)(p); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     }    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
    cov[1]=1.;      ibig=0; 
        del=0.0; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     newm=savm;      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     /* Covariates have to be included here again */      for (i=1;i<=n;i++) {
      cov[2]=agefin;        printf(" %d %.12f",i, p[i]);
          fprintf(ficlog," %d %.12lf",i, p[i]);
       for (k=1; k<=cptcovn;k++) {        fprintf(ficrespow," %.12lf", p[i]);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      printf("\n");
       }      fprintf(ficlog,"\n");
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      fprintf(ficrespow,"\n");
       for (k=1; k<=cptcovprod;k++)      for (i=1;i<=n;i++) { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #ifdef DEBUG
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        printf("fret=%lf \n",*fret);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        fprintf(ficlog,"fret=%lf \n",*fret);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #endif
         printf("%d",i);fflush(stdout);
     savm=oldm;        fprintf(ficlog,"%d",i);fflush(ficlog);
     oldm=newm;        linmin(p,xit,n,fret,func); 
     maxmax=0.;        if (fabs(fptt-(*fret)) > del) { 
     for(j=1;j<=nlstate;j++){          del=fabs(fptt-(*fret)); 
       min=1.;          ibig=i; 
       max=0.;        } 
       for(i=1; i<=nlstate; i++) {  #ifdef DEBUG
         sumnew=0;        printf("%d %.12e",i,(*fret));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        fprintf(ficlog,"%d %.12e",i,(*fret));
         prlim[i][j]= newm[i][j]/(1-sumnew);        for (j=1;j<=n;j++) {
         max=FMAX(max,prlim[i][j]);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         min=FMIN(min,prlim[i][j]);          printf(" x(%d)=%.12e",j,xit[j]);
       }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       maxmin=max-min;        }
       maxmax=FMAX(maxmax,maxmin);        for(j=1;j<=n;j++) {
     }          printf(" p=%.12e",p[j]);
     if(maxmax < ftolpl){          fprintf(ficlog," p=%.12e",p[j]);
       return prlim;        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
 }  #endif
       } 
 /*************** transition probabilities ***************/      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        int k[2],l;
 {        k[0]=1;
   double s1, s2;        k[1]=-1;
   /*double t34;*/        printf("Max: %.12e",(*func)(p));
   int i,j,j1, nc, ii, jj;        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
     for(i=1; i<= nlstate; i++){          printf(" %.12e",p[j]);
     for(j=1; j<i;j++){          fprintf(ficlog," %.12e",p[j]);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        }
         /*s2 += param[i][j][nc]*cov[nc];*/        printf("\n");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fprintf(ficlog,"\n");
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        for(l=0;l<=1;l++) {
       }          for (j=1;j<=n;j++) {
       ps[i][j]=s2;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(j=i+1; j<=nlstate+ndeath;j++){          }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        }
       }  #endif
       ps[i][j]=s2;  
     }  
   }        free_vector(xit,1,n); 
     /*ps[3][2]=1;*/        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   for(i=1; i<= nlstate; i++){        free_vector(pt,1,n); 
      s1=0;        return; 
     for(j=1; j<i; j++)      } 
       s1+=exp(ps[i][j]);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for(j=i+1; j<=nlstate+ndeath; j++)      for (j=1;j<=n;j++) { 
       s1+=exp(ps[i][j]);        ptt[j]=2.0*p[j]-pt[j]; 
     ps[i][i]=1./(s1+1.);        xit[j]=p[j]-pt[j]; 
     for(j=1; j<i; j++)        pt[j]=p[j]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } 
     for(j=i+1; j<=nlstate+ndeath; j++)      fptt=(*func)(ptt); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      if (fptt < fp) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   } /* end i */        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          for (j=1;j<=n;j++) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){            xi[j][ibig]=xi[j][n]; 
       ps[ii][jj]=0;            xi[j][n]=xit[j]; 
       ps[ii][ii]=1;          }
     }  #ifdef DEBUG
   }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){            printf(" %.12e",xit[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){            fprintf(ficlog," %.12e",xit[j]);
      printf("%lf ",ps[ii][jj]);          }
    }          printf("\n");
     printf("\n ");          fprintf(ficlog,"\n");
     }  #endif
     printf("\n ");printf("%lf ",cov[2]);*/        }
 /*      } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    } 
   goto end;*/  } 
     return ps;  
 }  /**** Prevalence limit (stable prevalence)  ****************/
   
 /**************** Product of 2 matrices ******************/  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 {       matrix by transitions matrix until convergence is reached */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    int i, ii,j,k;
   /* in, b, out are matrice of pointers which should have been initialized    double min, max, maxmin, maxmax,sumnew=0.;
      before: only the contents of out is modified. The function returns    double **matprod2();
      a pointer to pointers identical to out */    double **out, cov[NCOVMAX], **pmij();
   long i, j, k;    double **newm;
   for(i=nrl; i<= nrh; i++)    double agefin, delaymax=50 ; /* Max number of years to converge */
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    for (ii=1;ii<=nlstate+ndeath;ii++)
         out[i][k] +=in[i][j]*b[j][k];      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   return out;      }
 }  
      cov[1]=1.;
    
 /************* Higher Matrix Product ***************/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      newm=savm;
 {      /* Covariates have to be included here again */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month       cov[2]=agefin;
      duration (i.e. until    
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        for (k=1; k<=cptcovn;k++) {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      (typically every 2 years instead of every month which is too big).          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
      Model is determined by parameters x and covariates have to be        }
      included manually here.        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
      */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   int i, j, d, h, k;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double **out, cov[NCOVMAX];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double **newm;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)      savm=oldm;
     for (j=1;j<=nlstate+ndeath;j++){      oldm=newm;
       oldm[i][j]=(i==j ? 1.0 : 0.0);      maxmax=0.;
       po[i][j][0]=(i==j ? 1.0 : 0.0);      for(j=1;j<=nlstate;j++){
     }        min=1.;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        max=0.;
   for(h=1; h <=nhstepm; h++){        for(i=1; i<=nlstate; i++) {
     for(d=1; d <=hstepm; d++){          sumnew=0;
       newm=savm;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       /* Covariates have to be included here again */          prlim[i][j]= newm[i][j]/(1-sumnew);
       cov[1]=1.;          max=FMAX(max,prlim[i][j]);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          min=FMIN(min,prlim[i][j]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        }
       for (k=1; k<=cptcovage;k++)        maxmin=max-min;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        maxmax=FMAX(maxmax,maxmin);
       for (k=1; k<=cptcovprod;k++)      }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      if(maxmax < ftolpl){
         return prlim;
       }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************** transition probabilities ***************/ 
       savm=oldm;  
       oldm=newm;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     }  {
     for(i=1; i<=nlstate+ndeath; i++)    double s1, s2;
       for(j=1;j<=nlstate+ndeath;j++) {    /*double t34;*/
         po[i][j][h]=newm[i][j];    int i,j,j1, nc, ii, jj;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */      for(i=1; i<= nlstate; i++){
       }      for(j=1; j<i;j++){
   } /* end h */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   return po;          /*s2 += param[i][j][nc]*cov[nc];*/
 }          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
 /*************** log-likelihood *************/        ps[i][j]=s2;
 double func( double *x)        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
 {      }
   int i, ii, j, k, mi, d, kk;      for(j=i+1; j<=nlstate+ndeath;j++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double **out;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double sw; /* Sum of weights */          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   double lli; /* Individual log likelihood */        }
   long ipmx;        ps[i][j]=s2;
   /*extern weight */      }
   /* We are differentiating ll according to initial status */    }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      /*ps[3][2]=1;*/
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);    for(i=1; i<= nlstate; i++){
   */       s1=0;
   cov[1]=1.;      for(j=1; j<i; j++)
         s1+=exp(ps[i][j]);
   for(k=1; k<=nlstate; k++) ll[k]=0.;      for(j=i+1; j<=nlstate+ndeath; j++)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        s1+=exp(ps[i][j]);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      ps[i][i]=1./(s1+1.);
     for(mi=1; mi<= wav[i]-1; mi++){      for(j=1; j<i; j++)
       for (ii=1;ii<=nlstate+ndeath;ii++)        ps[i][j]= exp(ps[i][j])*ps[i][i];
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for(j=i+1; j<=nlstate+ndeath; j++)
       for(d=0; d<dh[mi][i]; d++){        ps[i][j]= exp(ps[i][j])*ps[i][i];
         newm=savm;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    } /* end i */
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         }      for(jj=1; jj<= nlstate+ndeath; jj++){
                ps[ii][jj]=0;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        ps[ii][ii]=1;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      }
         savm=oldm;    }
         oldm=newm;  
          
            /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       } /* end mult */      for(jj=1; jj<= nlstate+ndeath; jj++){
             printf("%lf ",ps[ii][jj]);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);     }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      printf("\n ");
       ipmx +=1;      }
       sw += weight[i];      printf("\n ");printf("%lf ",cov[2]);*/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*
     } /* end of wave */    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   } /* end of individual */    goto end;*/
       return ps;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /**************** Product of 2 matrices ******************/
   return -l;  
 }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 /*********** Maximum Likelihood Estimation ***************/       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))       before: only the contents of out is modified. The function returns
 {       a pointer to pointers identical to out */
   int i,j, iter;    long i, j, k;
   double **xi,*delti;    for(i=nrl; i<= nrh; i++)
   double fret;      for(k=ncolol; k<=ncoloh; k++)
   xi=matrix(1,npar,1,npar);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for (i=1;i<=npar;i++)          out[i][k] +=in[i][j]*b[j][k];
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);    return out;
   printf("Powell\n");  }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /************* Higher Matrix Product ***************/
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 }  {
     /* Computes the transition matrix starting at age 'age' over 
 /**** Computes Hessian and covariance matrix ***/       'nhstepm*hstepm*stepm' months (i.e. until
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 {       nhstepm*hstepm matrices. 
   double  **a,**y,*x,pd;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double **hess;       (typically every 2 years instead of every month which is too big 
   int i, j,jk;       for the memory).
   int *indx;       Model is determined by parameters x and covariates have to be 
        included manually here. 
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);       */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
   hess=matrix(1,npar,1,npar);    double **newm;
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* Hstepm could be zero and should return the unit matrix */
   for (i=1;i<=npar;i++){    for (i=1;i<=nlstate+ndeath;i++)
     printf("%d",i);fflush(stdout);      for (j=1;j<=nlstate+ndeath;j++){
     hess[i][i]=hessii(p,ftolhess,i,delti);        oldm[i][j]=(i==j ? 1.0 : 0.0);
     /*printf(" %f ",p[i]);*/        po[i][j][0]=(i==j ? 1.0 : 0.0);
     /*printf(" %lf ",hess[i][i]);*/      }
   }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(h=1; h <=nhstepm; h++){
   for (i=1;i<=npar;i++) {      for(d=1; d <=hstepm; d++){
     for (j=1;j<=npar;j++)  {        newm=savm;
       if (j>i) {        /* Covariates have to be included here again */
         printf(".%d%d",i,j);fflush(stdout);        cov[1]=1.;
         hess[i][j]=hessij(p,delti,i,j);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         hess[j][i]=hess[i][j];            for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /*printf(" %lf ",hess[i][j]);*/        for (k=1; k<=cptcovage;k++)
       }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     }        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   printf("\n");  
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   a=matrix(1,npar,1,npar);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   y=matrix(1,npar,1,npar);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   x=vector(1,npar);        savm=oldm;
   indx=ivector(1,npar);        oldm=newm;
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      for(i=1; i<=nlstate+ndeath; i++)
   ludcmp(a,npar,indx,&pd);        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
   for (j=1;j<=npar;j++) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     for (i=1;i<=npar;i++) x[i]=0;           */
     x[j]=1;        }
     lubksb(a,npar,indx,x);    } /* end h */
     for (i=1;i<=npar;i++){    return po;
       matcov[i][j]=x[i];  }
     }  
   }  
   /*************** log-likelihood *************/
   printf("\n#Hessian matrix#\n");  double func( double *x)
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++) {    int i, ii, j, k, mi, d, kk;
       printf("%.3e ",hess[i][j]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
     printf("\n");    double sw; /* Sum of weights */
   }    double lli; /* Individual log likelihood */
     int s1, s2;
   /* Recompute Inverse */    double bbh, survp;
   for (i=1;i<=npar;i++)    long ipmx;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /*extern weight */
   ludcmp(a,npar,indx,&pd);    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /*  printf("\n#Hessian matrix recomputed#\n");    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   for (j=1;j<=npar;j++) {    */
     for (i=1;i<=npar;i++) x[i]=0;    cov[1]=1.;
     x[j]=1;  
     lubksb(a,npar,indx,x);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];    if(mle==1){
       printf("%.3e ",y[i][j]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     printf("\n");        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(a,1,npar,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(y,1,npar,1,npar);            }
   free_vector(x,1,npar);          for(d=0; d<dh[mi][i]; d++){
   free_ivector(indx,1,npar);            newm=savm;
   free_matrix(hess,1,npar,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*************** hessian matrix ****************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 double hessii( double x[], double delta, int theta, double delti[])            savm=oldm;
 {            oldm=newm;
   int i;          } /* end mult */
   int l=1, lmax=20;        
   double k1,k2;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double p2[NPARMAX+1];          /* But now since version 0.9 we anticipate for bias and large stepm.
   double res;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double fx;           * the nearest (and in case of equal distance, to the lowest) interval but now
   int k=0,kmax=10;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double l1;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   fx=func(x);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   for (i=1;i<=npar;i++) p2[i]=x[i];           * -stepm/2 to stepm/2 .
   for(l=0 ; l <=lmax; l++){           * For stepm=1 the results are the same as for previous versions of Imach.
     l1=pow(10,l);           * For stepm > 1 the results are less biased than in previous versions. 
     delts=delt;           */
     for(k=1 ; k <kmax; k=k+1){          s1=s[mw[mi][i]][i];
       delt = delta*(l1*k);          s2=s[mw[mi+1][i]][i];
       p2[theta]=x[theta] +delt;          bbh=(double)bh[mi][i]/(double)stepm; 
       k1=func(p2)-fx;          /* bias is positive if real duration
       p2[theta]=x[theta]-delt;           * is higher than the multiple of stepm and negative otherwise.
       k2=func(p2)-fx;           */
       /*res= (k1-2.0*fx+k2)/delt/delt; */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          if( s2 > nlstate){ 
                  /* i.e. if s2 is a death state and if the date of death is known then the contribution
 #ifdef DEBUG               to the likelihood is the probability to die between last step unit time and current 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);               step unit time, which is also the differences between probability to die before dh 
 #endif               and probability to die before dh-stepm . 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */               In version up to 0.92 likelihood was computed
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          as if date of death was unknown. Death was treated as any other
         k=kmax;          health state: the date of the interview describes the actual state
       }          and not the date of a change in health state. The former idea was
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          to consider that at each interview the state was recorded
         k=kmax; l=lmax*10.;          (healthy, disable or death) and IMaCh was corrected; but when we
       }          introduced the exact date of death then we should have modified
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          the contribution of an exact death to the likelihood. This new
         delts=delt;          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
   }          interview up to one month before death multiplied by the
   delti[theta]=delts;          probability to die within a month. Thanks to Chris
   return res;          Jackson for correcting this bug.  Former versions increased
            mortality artificially. The bad side is that we add another loop
 }          which slows down the processing. The difference can be up to 10%
           lower mortality.
 double hessij( double x[], double delti[], int thetai,int thetaj)            */
 {            lli=log(out[s1][s2] - savm[s1][s2]);
   int i;          }else{
   int l=1, l1, lmax=20;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double k1,k2,k3,k4,res,fx;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double p2[NPARMAX+1];          } 
   int k;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   fx=func(x);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for (k=1; k<=2; k++) {          ipmx +=1;
     for (i=1;i<=npar;i++) p2[i]=x[i];          sw += weight[i];
     p2[thetai]=x[thetai]+delti[thetai]/k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        } /* end of wave */
     k1=func(p2)-fx;      } /* end of individual */
      }  else if(mle==2){
     p2[thetai]=x[thetai]+delti[thetai]/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     k2=func(p2)-fx;        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetai]=x[thetai]-delti[thetai]/k;            for (j=1;j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     k3=func(p2)-fx;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
     p2[thetai]=x[thetai]-delti[thetai]/k;          for(d=0; d<=dh[mi][i]; d++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            newm=savm;
     k4=func(p2)-fx;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            for (kk=1; kk<=cptcovage;kk++) {
 #ifdef DEBUG              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            }
 #endif            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   return res;            savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /************** Inverse of matrix **************/        
 void ludcmp(double **a, int n, int *indx, double *d)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 {          /* But now since version 0.9 we anticipate for bias and large stepm.
   int i,imax,j,k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double big,dum,sum,temp;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double *vv;           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
   vv=vector(1,n);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   *d=1.0;           * probability in order to take into account the bias as a fraction of the way
   for (i=1;i<=n;i++) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     big=0.0;           * -stepm/2 to stepm/2 .
     for (j=1;j<=n;j++)           * For stepm=1 the results are the same as for previous versions of Imach.
       if ((temp=fabs(a[i][j])) > big) big=temp;           * For stepm > 1 the results are less biased than in previous versions. 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           */
     vv[i]=1.0/big;          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   for (j=1;j<=n;j++) {          bbh=(double)bh[mi][i]/(double)stepm; 
     for (i=1;i<j;i++) {          /* bias is positive if real duration
       sum=a[i][j];           * is higher than the multiple of stepm and negative otherwise.
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           */
       a[i][j]=sum;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     big=0.0;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     for (i=j;i<=n;i++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       sum=a[i][j];          /*if(lli ==000.0)*/
       for (k=1;k<j;k++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         sum -= a[i][k]*a[k][j];          ipmx +=1;
       a[i][j]=sum;          sw += weight[i];
       if ( (dum=vv[i]*fabs(sum)) >= big) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         big=dum;        } /* end of wave */
         imax=i;      } /* end of individual */
       }    }  else if(mle==3){  /* exponential inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (j != imax) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (k=1;k<=n;k++) {        for(mi=1; mi<= wav[i]-1; mi++){
         dum=a[imax][k];          for (ii=1;ii<=nlstate+ndeath;ii++)
         a[imax][k]=a[j][k];            for (j=1;j<=nlstate+ndeath;j++){
         a[j][k]=dum;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       *d = -(*d);            }
       vv[imax]=vv[j];          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
     indx[j]=imax;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if (a[j][j] == 0.0) a[j][j]=TINY;            for (kk=1; kk<=cptcovage;kk++) {
     if (j != n) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       dum=1.0/(a[j][j]);            }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   free_vector(vv,1,n);  /* Doesn't work */            oldm=newm;
 ;          } /* end mult */
 }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 void lubksb(double **a, int n, int *indx, double b[])          /* But now since version 0.9 we anticipate for bias and large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int i,ii=0,ip,j;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double sum;           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for (i=1;i<=n;i++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     ip=indx[i];           * probability in order to take into account the bias as a fraction of the way
     sum=b[ip];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     b[ip]=b[i];           * -stepm/2 to stepm/2 .
     if (ii)           * For stepm=1 the results are the same as for previous versions of Imach.
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           * For stepm > 1 the results are less biased than in previous versions. 
     else if (sum) ii=i;           */
     b[i]=sum;          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   for (i=n;i>=1;i--) {          bbh=(double)bh[mi][i]/(double)stepm; 
     sum=b[i];          /* bias is positive if real duration
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           * is higher than the multiple of stepm and negative otherwise.
     b[i]=sum/a[i][i];           */
   }          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
 }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 /************ Frequencies ********************/          /*if(lli ==000.0)*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 {  /* Some frequencies */          ipmx +=1;
            sw += weight[i];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***freq; /* Frequencies */        } /* end of wave */
   double *pp;      } /* end of individual */
   double pos, k2, dateintsum=0,k2cpt=0;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   FILE *ficresp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char fileresp[FILENAMELENGTH];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   pp=vector(1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (j=1;j<=nlstate+ndeath;j++){
   strcpy(fileresp,"p");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresp,fileres);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficresp=fopen(fileresp,"w"))==NULL) {            }
     printf("Problem with prevalence resultfile: %s\n", fileresp);          for(d=0; d<dh[mi][i]; d++){
     exit(0);            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            for (kk=1; kk<=cptcovage;kk++) {
   j1=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   j=cptcoveff;          
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(k1=1; k1<=j;k1++){            savm=oldm;
     for(i1=1; i1<=ncodemax[k1];i1++){            oldm=newm;
       j1++;          } /* end mult */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        
         scanf("%d", i);*/          s1=s[mw[mi][i]][i];
       for (i=-1; i<=nlstate+ndeath; i++)            s2=s[mw[mi+1][i]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            if( s2 > nlstate){ 
           for(m=agemin; m <= agemax+3; m++)            lli=log(out[s1][s2] - savm[s1][s2]);
             freq[i][jk][m]=0;          }else{
                  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       dateintsum=0;          }
       k2cpt=0;          ipmx +=1;
       for (i=1; i<=imx; i++) {          sw += weight[i];
         bool=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if  (cptcovn>0) {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           for (z1=1; z1<=cptcoveff; z1++)        } /* end of wave */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      } /* end of individual */
               bool=0;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if (bool==1) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=firstpass; m<=lastpass; m++){        for(mi=1; mi<= wav[i]-1; mi++){
             k2=anint[m][i]+(mint[m][i]/12.);          for (ii=1;ii<=nlstate+ndeath;ii++)
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            for (j=1;j<=nlstate+ndeath;j++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==1) agev[m][i]=agemax+2;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if (m<lastpass) {            }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          for(d=0; d<dh[mi][i]; d++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            newm=savm;
               }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                          for (kk=1; kk<=cptcovage;kk++) {
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 dateintsum=dateintsum+k2;            }
                 k2cpt++;          
               }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
       }          } /* end mult */
                
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
       if  (cptcovn>0) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         fprintf(ficresp, "\n#********** Variable ");          ipmx +=1;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          sw += weight[i];
         fprintf(ficresp, "**********\n#");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       for(i=1; i<=nlstate;i++)        } /* end of wave */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      } /* end of individual */
       fprintf(ficresp, "\n");    } /* End of if */
          for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(i=(int)agemin; i <= (int)agemax+3; i++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         if(i==(int)agemax+3)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           printf("Total");    /*exit(0); */
         else    return -l;
           printf("Age %d", i);  }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];  /*********** Maximum Likelihood Estimation ***************/
         }  
         for(jk=1; jk <=nlstate ; jk++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           for(m=-1, pos=0; m <=0 ; m++)  {
             pos += freq[jk][m][i];    int i,j, iter;
           if(pp[jk]>=1.e-10)    double **xi;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double fret;
           else    char filerespow[FILENAMELENGTH];
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    xi=matrix(1,npar,1,npar);
         }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
         for(jk=1; jk <=nlstate ; jk++){        xi[i][j]=(i==j ? 1.0 : 0.0);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             pp[jk] += freq[jk][m][i];    strcpy(filerespow,"pow"); 
         }    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
         for(jk=1,pos=0; jk <=nlstate ; jk++)      printf("Problem with resultfile: %s\n", filerespow);
           pos += pp[jk];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         for(jk=1; jk <=nlstate ; jk++){    }
           if(pos>=1.e-5)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    for (i=1;i<=nlstate;i++)
           else      for(j=1;j<=nlstate+ndeath;j++)
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           if( i <= (int) agemax){    fprintf(ficrespow,"\n");
             if(pos>=1.e-5){    powell(p,xi,npar,ftol,&iter,&fret,func);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;    fclose(ficrespow);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
             }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             else    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
           }  }
         }  
          /**** Computes Hessian and covariance matrix ***/
         for(jk=-1; jk <=nlstate+ndeath; jk++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           for(m=-1; m <=nlstate+ndeath; m++)  {
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double  **a,**y,*x,pd;
         if(i <= (int) agemax)    double **hess;
           fprintf(ficresp,"\n");    int i, j,jk;
         printf("\n");    int *indx;
       }  
     }    double hessii(double p[], double delta, int theta, double delti[]);
   }    double hessij(double p[], double delti[], int i, int j);
   dateintmean=dateintsum/k2cpt;    void lubksb(double **a, int npar, int *indx, double b[]) ;
      void ludcmp(double **a, int npar, int *indx, double *d) ;
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    hess=matrix(1,npar,1,npar);
   free_vector(pp,1,nlstate);  
      printf("\nCalculation of the hessian matrix. Wait...\n");
   /* End of Freq */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 }    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
 /************ Prevalence ********************/      fprintf(ficlog,"%d",i);fflush(ficlog);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      hess[i][i]=hessii(p,ftolhess,i,delti);
 {  /* Some frequencies */      /*printf(" %f ",p[i]);*/
        /*printf(" %lf ",hess[i][i]);*/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    }
   double ***freq; /* Frequencies */    
   double *pp;    for (i=1;i<=npar;i++) {
   double pos, k2;      for (j=1;j<=npar;j++)  {
         if (j>i) { 
   pp=vector(1,nlstate);          printf(".%d%d",i,j);fflush(stdout);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
            hess[i][j]=hessij(p,delti,i,j);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          hess[j][i]=hess[i][j];    
   j1=0;          /*printf(" %lf ",hess[i][j]);*/
          }
   j=cptcoveff;      }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }
      printf("\n");
   for(k1=1; k1<=j;k1++){    fprintf(ficlog,"\n");
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
          fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for (i=-1; i<=nlstate+ndeath; i++)      
         for (jk=-1; jk<=nlstate+ndeath; jk++)      a=matrix(1,npar,1,npar);
           for(m=agemin; m <= agemax+3; m++)    y=matrix(1,npar,1,npar);
             freq[i][jk][m]=0;    x=vector(1,npar);
          indx=ivector(1,npar);
       for (i=1; i<=imx; i++) {    for (i=1;i<=npar;i++)
         bool=1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         if  (cptcovn>0) {    ludcmp(a,npar,indx,&pd);
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    for (j=1;j<=npar;j++) {
               bool=0;      for (i=1;i<=npar;i++) x[i]=0;
         }      x[j]=1;
         if (bool==1) {      lubksb(a,npar,indx,x);
           for(m=firstpass; m<=lastpass; m++){      for (i=1;i<=npar;i++){ 
             k2=anint[m][i]+(mint[m][i]/12.);        matcov[i][j]=x[i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      }
               if(agev[m][i]==0) agev[m][i]=agemax+1;    }
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {    printf("\n#Hessian matrix#\n");
                 if (calagedate>0)    fprintf(ficlog,"\n#Hessian matrix#\n");
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    for (i=1;i<=npar;i++) { 
                 else      for (j=1;j<=npar;j++) { 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        printf("%.3e ",hess[i][j]);
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        fprintf(ficlog,"%.3e ",hess[i][j]);
               }      }
             }      printf("\n");
           }      fprintf(ficlog,"\n");
         }    }
       }  
       for(i=(int)agemin; i <= (int)agemax+3; i++){    /* Recompute Inverse */
         for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=npar;i++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             pp[jk] += freq[jk][m][i];    ludcmp(a,npar,indx,&pd);
         }  
         for(jk=1; jk <=nlstate ; jk++){    /*  printf("\n#Hessian matrix recomputed#\n");
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];    for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
              x[j]=1;
         for(jk=1; jk <=nlstate ; jk++){      lubksb(a,npar,indx,x);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      for (i=1;i<=npar;i++){ 
             pp[jk] += freq[jk][m][i];        y[i][j]=x[i];
         }        printf("%.3e ",y[i][j]);
                fprintf(ficlog,"%.3e ",y[i][j]);
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      }
              printf("\n");
         for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog,"\n");
           if( i <= (int) agemax){    }
             if(pos>=1.e-5){    */
               probs[i][jk][j1]= pp[jk]/pos;  
             }    free_matrix(a,1,npar,1,npar);
           }    free_matrix(y,1,npar,1,npar);
         }    free_vector(x,1,npar);
            free_ivector(indx,1,npar);
       }    free_matrix(hess,1,npar,1,npar);
     }  
   }  
   }
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*************** hessian matrix ****************/
   free_vector(pp,1,nlstate);  double hessii( double x[], double delta, int theta, double delti[])
    {
 }  /* End of Freq */    int i;
     int l=1, lmax=20;
 /************* Waves Concatenation ***************/    double k1,k2;
     double p2[NPARMAX+1];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double res;
 {    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double fx;
      Death is a valid wave (if date is known).    int k=0,kmax=10;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double l1;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.    fx=func(x);
      */    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
   int i, mi, m;      l1=pow(10,l);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      delts=delt;
      double sum=0., jmean=0.;*/      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   int j, k=0,jk, ju, jl;        p2[theta]=x[theta] +delt;
   double sum=0.;        k1=func(p2)-fx;
   jmin=1e+5;        p2[theta]=x[theta]-delt;
   jmax=-1;        k2=func(p2)-fx;
   jmean=0.;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   for(i=1; i<=imx; i++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     mi=0;        
     m=firstpass;  #ifdef DEBUG
     while(s[m][i] <= nlstate){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       if(s[m][i]>=1)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         mw[++mi][i]=m;  #endif
       if(m >=lastpass)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         break;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       else          k=kmax;
         m++;        }
     }/* end while */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     if (s[m][i] > nlstate){          k=kmax; l=lmax*10.;
       mi++;     /* Death is another wave */        }
       /* if(mi==0)  never been interviewed correctly before death */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
          /* Only death is a correct wave */          delts=delt;
       mw[mi][i]=m;        }
     }      }
     }
     wav[i]=mi;    delti[theta]=delts;
     if(mi==0)    return res; 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    
   }  }
   
   for(i=1; i<=imx; i++){  double hessij( double x[], double delti[], int thetai,int thetaj)
     for(mi=1; mi<wav[i];mi++){  {
       if (stepm <=0)    int i;
         dh[mi][i]=1;    int l=1, l1, lmax=20;
       else{    double k1,k2,k3,k4,res,fx;
         if (s[mw[mi+1][i]][i] > nlstate) {    double p2[NPARMAX+1];
           if (agedc[i] < 2*AGESUP) {    int k;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */    fx=func(x);
           k=k+1;    for (k=1; k<=2; k++) {
           if (j >= jmax) jmax=j;      for (i=1;i<=npar;i++) p2[i]=x[i];
           if (j <= jmin) jmin=j;      p2[thetai]=x[thetai]+delti[thetai]/k;
           sum=sum+j;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      k1=func(p2)-fx;
           }    
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
         else{      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      k2=func(p2)-fx;
           k=k+1;    
           if (j >= jmax) jmax=j;      p2[thetai]=x[thetai]-delti[thetai]/k;
           else if (j <= jmin)jmin=j;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      k3=func(p2)-fx;
           sum=sum+j;    
         }      p2[thetai]=x[thetai]-delti[thetai]/k;
         jk= j/stepm;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         jl= j -jk*stepm;      k4=func(p2)-fx;
         ju= j -(jk+1)*stepm;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         if(jl <= -ju)  #ifdef DEBUG
           dh[mi][i]=jk;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         else      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           dh[mi][i]=jk+1;  #endif
         if(dh[mi][i]==0)    }
           dh[mi][i]=1; /* At least one step */    return res;
       }  }
     }  
   }  /************** Inverse of matrix **************/
   jmean=sum/k;  void ludcmp(double **a, int n, int *indx, double *d) 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  { 
  }    int i,imax,j,k; 
 /*********** Tricode ****************************/    double big,dum,sum,temp; 
 void tricode(int *Tvar, int **nbcode, int imx)    double *vv; 
 {   
   int Ndum[20],ij=1, k, j, i;    vv=vector(1,n); 
   int cptcode=0;    *d=1.0; 
   cptcoveff=0;    for (i=1;i<=n;i++) { 
        big=0.0; 
   for (k=0; k<19; k++) Ndum[k]=0;      for (j=1;j<=n;j++) 
   for (k=1; k<=7; k++) ncodemax[k]=0;        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      vv[i]=1.0/big; 
     for (i=1; i<=imx; i++) {    } 
       ij=(int)(covar[Tvar[j]][i]);    for (j=1;j<=n;j++) { 
       Ndum[ij]++;      for (i=1;i<j;i++) { 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        sum=a[i][j]; 
       if (ij > cptcode) cptcode=ij;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     }        a[i][j]=sum; 
       } 
     for (i=0; i<=cptcode; i++) {      big=0.0; 
       if(Ndum[i]!=0) ncodemax[j]++;      for (i=j;i<=n;i++) { 
     }        sum=a[i][j]; 
     ij=1;        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     for (i=1; i<=ncodemax[j]; i++) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       for (k=0; k<=19; k++) {          big=dum; 
         if (Ndum[k] != 0) {          imax=i; 
           nbcode[Tvar[j]][ij]=k;        } 
                } 
           ij++;      if (j != imax) { 
         }        for (k=1;k<=n;k++) { 
         if (ij > ncodemax[j]) break;          dum=a[imax][k]; 
       }            a[imax][k]=a[j][k]; 
     }          a[j][k]=dum; 
   }          } 
         *d = -(*d); 
  for (k=0; k<19; k++) Ndum[k]=0;        vv[imax]=vv[j]; 
       } 
  for (i=1; i<=ncovmodel-2; i++) {      indx[j]=imax; 
       ij=Tvar[i];      if (a[j][j] == 0.0) a[j][j]=TINY; 
       Ndum[ij]++;      if (j != n) { 
     }        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
  ij=1;      } 
  for (i=1; i<=10; i++) {    } 
    if((Ndum[i]!=0) && (i<=ncovcol)){    free_vector(vv,1,n);  /* Doesn't work */
      Tvaraff[ij]=i;  ;
      ij++;  } 
    }  
  }  void lubksb(double **a, int n, int *indx, double b[]) 
    { 
     cptcoveff=ij-1;    int i,ii=0,ip,j; 
 }    double sum; 
    
 /*********** Health Expectancies ****************/    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      sum=b[ip]; 
       b[ip]=b[i]; 
 {      if (ii) 
   /* Health expectancies */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      else if (sum) ii=i; 
   double age, agelim, hf;      b[i]=sum; 
   double ***p3mat,***varhe;    } 
   double **dnewm,**doldm;    for (i=n;i>=1;i--) { 
   double *xp;      sum=b[i]; 
   double **gp, **gm;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   double ***gradg, ***trgradg;      b[i]=sum/a[i][i]; 
   int theta;    } 
   } 
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);  /************ Frequencies ********************/
   dnewm=matrix(1,nlstate*2,1,npar);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   doldm=matrix(1,nlstate*2,1,nlstate*2);  {  /* Some frequencies */
      
   fprintf(ficreseij,"# Health expectancies\n");    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   fprintf(ficreseij,"# Age");    int first;
   for(i=1; i<=nlstate;i++)    double ***freq; /* Frequencies */
     for(j=1; j<=nlstate;j++)    double *pp, **prop;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   fprintf(ficreseij,"\n");    FILE *ficresp;
     char fileresp[FILENAMELENGTH];
   if(estepm < stepm){    
     printf ("Problem %d lower than %d\n",estepm, stepm);    pp=vector(1,nlstate);
   }    prop=matrix(1,nlstate,iagemin,iagemax+3);
   else  hstepm=estepm;      strcpy(fileresp,"p");
   /* We compute the life expectancy from trapezoids spaced every estepm months    strcat(fileresp,fileres);
    * This is mainly to measure the difference between two models: for example    if((ficresp=fopen(fileresp,"w"))==NULL) {
    * if stepm=24 months pijx are given only every 2 years and by summing them      printf("Problem with prevalence resultfile: %s\n", fileresp);
    * we are calculating an estimate of the Life Expectancy assuming a linear      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
    * progression inbetween and thus overestimating or underestimating according      exit(0);
    * to the curvature of the survival function. If, for the same date, we    }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
    * to compare the new estimate of Life expectancy with the same linear    j1=0;
    * hypothesis. A more precise result, taking into account a more precise    
    * curvature will be obtained if estepm is as small as stepm. */    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    first=1;
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    for(k1=1; k1<=j;k1++){
      Look at hpijx to understand the reason of that which relies in memory size      for(i1=1; i1<=ncodemax[k1];i1++){
      and note for a fixed period like estepm months */        j1++;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
      survival function given by stepm (the optimization length). Unfortunately it          scanf("%d", i);*/
      means that if the survival funtion is printed only each two years of age and if        for (i=-1; i<=nlstate+ndeath; i++)  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          for (jk=-1; jk<=nlstate+ndeath; jk++)  
      results. So we changed our mind and took the option of the best precision.            for(m=iagemin; m <= iagemax+3; m++)
   */              freq[i][jk][m]=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
       for (i=1; i<=nlstate; i++)  
   agelim=AGESUP;        for(m=iagemin; m <= iagemax+3; m++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          prop[i][m]=0;
     /* nhstepm age range expressed in number of stepm */        
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        dateintsum=0;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        k2cpt=0;
     /* if (stepm >= YEARM) hstepm=1;*/        for (i=1; i<=imx; i++) {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          bool=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if  (cptcovn>0) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            for (z1=1; z1<=cptcoveff; z1++) 
     gp=matrix(0,nhstepm,1,nlstate*2);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     gm=matrix(0,nhstepm,1,nlstate*2);                bool=0;
           }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          if (bool==1){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            for(m=firstpass; m<=lastpass; m++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                k2=anint[m][i]+(mint[m][i]/12.);
                /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     /* Computing Variances of health expectancies */                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
      for(theta=1; theta <=npar; theta++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for(i=1; i<=npar; i++){                }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                
       }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                    dateintsum=dateintsum+k2;
                    k2cpt++;
       cptj=0;                }
       for(j=1; j<= nlstate; j++){                /*}*/
         for(i=1; i<=nlstate; i++){            }
           cptj=cptj+1;          }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;         
           }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         }  
       }        if  (cptcovn>0) {
                fprintf(ficresp, "\n#********** Variable "); 
                for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(i=1; i<=npar; i++)          fprintf(ficresp, "**********\n#");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(i=1; i<=nlstate;i++) 
                fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       cptj=0;        fprintf(ficresp, "\n");
       for(j=1; j<= nlstate; j++){        
         for(i=1;i<=nlstate;i++){        for(i=iagemin; i <= iagemax+3; i++){
           cptj=cptj+1;          if(i==iagemax+3){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            fprintf(ficlog,"Total");
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          }else{
           }            if(first==1){
         }              first=0;
       }              printf("See log file for details...\n");
                  }
                fprintf(ficlog,"Age %d", i);
           }
       for(j=1; j<= nlstate*2; j++)          for(jk=1; jk <=nlstate ; jk++){
         for(h=0; h<=nhstepm-1; h++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              pp[jk] += freq[jk][m][i]; 
         }          }
           for(jk=1; jk <=nlstate ; jk++){
      }            for(m=-1, pos=0; m <=0 ; m++)
                  pos += freq[jk][m][i];
 /* End theta */            if(pp[jk]>=1.e-10){
               if(first==1){
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
      for(h=0; h<=nhstepm-1; h++)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(j=1; j<=nlstate*2;j++)            }else{
         for(theta=1; theta <=npar; theta++)              if(first==1)
         trgradg[h][j][theta]=gradg[h][theta][j];                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
      for(i=1;i<=nlstate*2;i++)          }
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
      printf("%d|",(int)age);fflush(stdout);              pp[jk] += freq[jk][m][i];
     for(h=0;h<=nhstepm-1;h++){          }       
       for(k=0;k<=nhstepm-1;k++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);            pos += pp[jk];
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);            posprop += prop[jk][i];
         for(i=1;i<=nlstate*2;i++)          }
           for(j=1;j<=nlstate*2;j++)          for(jk=1; jk <=nlstate ; jk++){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;            if(pos>=1.e-5){
       }              if(first==1)
     }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                  }else{
     /* Computing expectancies */              if(first==1)
     for(i=1; i<=nlstate;i++)                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for(j=1; j<=nlstate;j++)              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;            if( i <= iagemax){
                        if(pos>=1.e-5){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
         }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
     fprintf(ficreseij,"%3.0f",age );              else
     cptj=0;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){          }
         cptj++;          
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          for(jk=-1; jk <=nlstate+ndeath; jk++)
       }            for(m=-1; m <=nlstate+ndeath; m++)
     fprintf(ficreseij,"\n");              if(freq[jk][m][i] !=0 ) {
                  if(first==1)
     free_matrix(gm,0,nhstepm,1,nlstate*2);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_matrix(gp,0,nhstepm,1,nlstate*2);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);              }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          if(i <= iagemax)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficresp,"\n");
   }          if(first==1)
   free_vector(xp,1,npar);            printf("Others in log...\n");
   free_matrix(dnewm,1,nlstate*2,1,npar);          fprintf(ficlog,"\n");
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      }
 }    }
     dateintmean=dateintsum/k2cpt; 
 /************ Variance ******************/   
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    fclose(ficresp);
 {    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   /* Variance of health expectancies */    free_vector(pp,1,nlstate);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   double **newm;    /* End of Freq */
   double **dnewm,**doldm;  }
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;  /************ Prevalence ********************/
   double *xp;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   double **gp, **gm;  {  
   double ***gradg, ***trgradg;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   double ***p3mat;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   double age,agelim, hf;       We still use firstpass and lastpass as another selection.
   int theta;    */
    
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   fprintf(ficresvij,"# Age");    double ***freq; /* Frequencies */
   for(i=1; i<=nlstate;i++)    double *pp, **prop;
     for(j=1; j<=nlstate;j++)    double pos,posprop; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double  y2; /* in fractional years */
   fprintf(ficresvij,"\n");    int iagemin, iagemax;
   
   xp=vector(1,npar);    iagemin= (int) agemin;
   dnewm=matrix(1,nlstate,1,npar);    iagemax= (int) agemax;
   doldm=matrix(1,nlstate,1,nlstate);    /*pp=vector(1,nlstate);*/
      prop=matrix(1,nlstate,iagemin,iagemax+3); 
   if(estepm < stepm){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     printf ("Problem %d lower than %d\n",estepm, stepm);    j1=0;
   }    
   else  hstepm=estepm;      j=cptcoveff;
   /* For example we decided to compute the life expectancy with the smallest unit */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    
      nhstepm is the number of hstepm from age to agelim    for(k1=1; k1<=j;k1++){
      nstepm is the number of stepm from age to agelin.      for(i1=1; i1<=ncodemax[k1];i1++){
      Look at hpijx to understand the reason of that which relies in memory size        j1++;
      and note for a fixed period like k years */        
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for (i=1; i<=nlstate; i++)  
      survival function given by stepm (the optimization length). Unfortunately it          for(m=iagemin; m <= iagemax+3; m++)
      means that if the survival funtion is printed only each two years of age and if            prop[i][m]=0.0;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       
      results. So we changed our mind and took the option of the best precision.        for (i=1; i<=imx; i++) { /* Each individual */
   */          bool=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          if  (cptcovn>0) {
   agelim = AGESUP;            for (z1=1; z1<=cptcoveff; z1++) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                bool=0;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          } 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (bool==1) { 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     gp=matrix(0,nhstepm,1,nlstate);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     gm=matrix(0,nhstepm,1,nlstate);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(theta=1; theta <=npar; theta++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(i=1; i<=npar; i++){ /* Computes gradient */                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                    prop[s[m][i]][(int)agev[m][i]] += weight[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
       if (popbased==1) {              }
         for(i=1; i<=nlstate;i++)            } /* end selection of waves */
           prlim[i][i]=probs[(int)age][i][ij];          }
       }        }
          for(i=iagemin; i <= iagemax+3; i++){  
       for(j=1; j<= nlstate; j++){          
         for(h=0; h<=nhstepm; h++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            posprop += prop[jk][i]; 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          } 
         }  
       }          for(jk=1; jk <=nlstate ; jk++){     
                if( i <=  iagemax){ 
       for(i=1; i<=npar; i++) /* Computes gradient */              if(posprop>=1.e-5){ 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                probs[i][jk][j1]= prop[jk][i]/posprop;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            } 
            }/* end jk */ 
       if (popbased==1) {        }/* end i */ 
         for(i=1; i<=nlstate;i++)      } /* end i1 */
           prlim[i][i]=probs[(int)age][i][ij];    } /* end k1 */
       }    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       for(j=1; j<= nlstate; j++){    /*free_vector(pp,1,nlstate);*/
         for(h=0; h<=nhstepm; h++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  }  /* End of prevalence */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  /************* Waves Concatenation ***************/
       }  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       for(j=1; j<= nlstate; j++)  {
         for(h=0; h<=nhstepm; h++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];       Death is a valid wave (if date is known).
         }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     } /* End theta */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);       */
   
     for(h=0; h<=nhstepm; h++)    int i, mi, m;
       for(j=1; j<=nlstate;j++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         for(theta=1; theta <=npar; theta++)       double sum=0., jmean=0.;*/
           trgradg[h][j][theta]=gradg[h][theta][j];    int first;
     int j, k=0,jk, ju, jl;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    double sum=0.;
     for(i=1;i<=nlstate;i++)    first=0;
       for(j=1;j<=nlstate;j++)    jmin=1e+5;
         vareij[i][j][(int)age] =0.;    jmax=-1;
     jmean=0.;
     for(h=0;h<=nhstepm;h++){    for(i=1; i<=imx; i++){
       for(k=0;k<=nhstepm;k++){      mi=0;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      m=firstpass;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      while(s[m][i] <= nlstate){
         for(i=1;i<=nlstate;i++)        if(s[m][i]>=1)
           for(j=1;j<=nlstate;j++)          mw[++mi][i]=m;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        if(m >=lastpass)
       }          break;
     }        else
           m++;
     fprintf(ficresvij,"%.0f ",age );      }/* end while */
     for(i=1; i<=nlstate;i++)      if (s[m][i] > nlstate){
       for(j=1; j<=nlstate;j++){        mi++;     /* Death is another wave */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        /* if(mi==0)  never been interviewed correctly before death */
       }           /* Only death is a correct wave */
     fprintf(ficresvij,"\n");        mw[mi][i]=m;
     free_matrix(gp,0,nhstepm,1,nlstate);      }
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      wav[i]=mi;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      if(mi==0){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(first==0){
   } /* End age */          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
            first=1;
   free_vector(xp,1,npar);        }
   free_matrix(doldm,1,nlstate,1,npar);        if(first==1){
   free_matrix(dnewm,1,nlstate,1,nlstate);          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
         }
 }      } /* end mi==0 */
     } /* End individuals */
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for(i=1; i<=imx; i++){
 {      for(mi=1; mi<wav[i];mi++){
   /* Variance of prevalence limit */        if (stepm <=0)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          dh[mi][i]=1;
   double **newm;        else{
   double **dnewm,**doldm;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   int i, j, nhstepm, hstepm;            if (agedc[i] < 2*AGESUP) {
   int k, cptcode;            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   double *xp;            if(j==0) j=1;  /* Survives at least one month after exam */
   double *gp, *gm;            k=k+1;
   double **gradg, **trgradg;            if (j >= jmax) jmax=j;
   double age,agelim;            if (j <= jmin) jmin=j;
   int theta;            sum=sum+j;
                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   fprintf(ficresvpl,"# Age");            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for(i=1; i<=nlstate;i++)            }
       fprintf(ficresvpl," %1d-%1d",i,i);          }
   fprintf(ficresvpl,"\n");          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   xp=vector(1,npar);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   dnewm=matrix(1,nlstate,1,npar);            k=k+1;
   doldm=matrix(1,nlstate,1,nlstate);            if (j >= jmax) jmax=j;
              else if (j <= jmin)jmin=j;
   hstepm=1*YEARM; /* Every year of age */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   agelim = AGESUP;            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            sum=sum+j;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          }
     if (stepm >= YEARM) hstepm=1;          jk= j/stepm;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          jl= j -jk*stepm;
     gradg=matrix(1,npar,1,nlstate);          ju= j -(jk+1)*stepm;
     gp=vector(1,nlstate);          if(mle <=1){ 
     gm=vector(1,nlstate);            if(jl==0){
               dh[mi][i]=jk;
     for(theta=1; theta <=npar; theta++){              bh[mi][i]=0;
       for(i=1; i<=npar; i++){ /* Computes gradient */            }else{ /* We want a negative bias in order to only have interpolation ie
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                    * at the price of an extra matrix product in likelihood */
       }              dh[mi][i]=jk+1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              bh[mi][i]=ju;
       for(i=1;i<=nlstate;i++)            }
         gp[i] = prlim[i][i];          }else{
                if(jl <= -ju){
       for(i=1; i<=npar; i++) /* Computes gradient */              dh[mi][i]=jk;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              bh[mi][i]=jl;       /* bias is positive if real duration
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                                   * is higher than the multiple of stepm and negative otherwise.
       for(i=1;i<=nlstate;i++)                                   */
         gm[i] = prlim[i][i];            }
             else{
       for(i=1;i<=nlstate;i++)              dh[mi][i]=jk+1;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              bh[mi][i]=ju;
     } /* End theta */            }
             if(dh[mi][i]==0){
     trgradg =matrix(1,nlstate,1,npar);              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
     for(j=1; j<=nlstate;j++)              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for(theta=1; theta <=npar; theta++)            }
         trgradg[j][theta]=gradg[theta][j];          }
         } /* end if mle */
     for(i=1;i<=nlstate;i++)      } /* end wave */
       varpl[i][(int)age] =0.;    }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    jmean=sum/k;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     for(i=1;i<=nlstate;i++)    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */   }
   
     fprintf(ficresvpl,"%.0f ",age );  /*********** Tricode ****************************/
     for(i=1; i<=nlstate;i++)  void tricode(int *Tvar, int **nbcode, int imx)
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  {
     fprintf(ficresvpl,"\n");    
     free_vector(gp,1,nlstate);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     free_vector(gm,1,nlstate);    int cptcode=0;
     free_matrix(gradg,1,npar,1,nlstate);    cptcoveff=0; 
     free_matrix(trgradg,1,nlstate,1,npar);   
   } /* End age */    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   free_matrix(dnewm,1,nlstate,1,nlstate);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
 }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
 /************ Variance of one-step probabilities  ******************/        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 {                                         Tvar[j]. If V=sex and male is 0 and 
   int i, j, i1, k1, j1, z1;                                         female is 1, then  cptcode=1.*/
   int k=0, cptcode;      }
   double **dnewm,**doldm;  
   double *xp;      for (i=0; i<=cptcode; i++) {
   double *gp, *gm;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   double **gradg, **trgradg;      }
   double age,agelim, cov[NCOVMAX];  
   int theta;      ij=1; 
   char fileresprob[FILENAMELENGTH];      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
   strcpy(fileresprob,"prob");          if (Ndum[k] != 0) {
   strcat(fileresprob,fileres);            nbcode[Tvar[j]][ij]=k; 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     printf("Problem with resultfile: %s\n", fileresprob);            
   }            ij++;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          }
            if (ij > ncodemax[j]) break; 
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");        }  
   fprintf(ficresprob,"# Age");      } 
   for(i=1; i<=nlstate;i++)    }  
     for(j=1; j<=(nlstate+ndeath);j++)  
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
    for (i=1; i<=ncovmodel-2; i++) { 
   fprintf(ficresprob,"\n");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
      Ndum[ij]++;
   xp=vector(1,npar);   }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));   ij=1;
     for (i=1; i<= maxncov; i++) {
   cov[1]=1;     if((Ndum[i]!=0) && (i<=ncovcol)){
   j=cptcoveff;       Tvaraff[ij]=i; /*For printing */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       ij++;
   j1=0;     }
   for(k1=1; k1<=1;k1++){   }
     for(i1=1; i1<=ncodemax[k1];i1++){   
     j1++;   cptcoveff=ij-1; /*Number of simple covariates*/
   }
     if  (cptcovn>0) {  
       fprintf(ficresprob, "\n#********** Variable ");  /*********** Health Expectancies ****************/
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(ficresprob, "**********\n#");  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     }  
      {
       for (age=bage; age<=fage; age ++){    /* Health expectancies */
         cov[2]=age;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         for (k=1; k<=cptcovn;k++) {    double age, agelim, hf;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    double ***p3mat,***varhe;
              double **dnewm,**doldm;
         }    double *xp;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double **gp, **gm;
         for (k=1; k<=cptcovprod;k++)    double ***gradg, ***trgradg;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int theta;
          
         gradg=matrix(1,npar,1,9);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         trgradg=matrix(1,9,1,npar);    xp=vector(1,npar);
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    dnewm=matrix(1,nlstate*nlstate,1,npar);
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        
         for(theta=1; theta <=npar; theta++){    fprintf(ficreseij,"# Health expectancies\n");
           for(i=1; i<=npar; i++)    fprintf(ficreseij,"# Age");
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
              fprintf(ficreseij,"\n");
           k=0;  
           for(i=1; i<= (nlstate+ndeath); i++){    if(estepm < stepm){
             for(j=1; j<=(nlstate+ndeath);j++){      printf ("Problem %d lower than %d\n",estepm, stepm);
               k=k+1;    }
               gp[k]=pmmij[i][j];    else  hstepm=estepm;   
             }    /* We compute the life expectancy from trapezoids spaced every estepm months
           }     * This is mainly to measure the difference between two models: for example
               * if stepm=24 months pijx are given only every 2 years and by summing them
           for(i=1; i<=npar; i++)     * we are calculating an estimate of the Life Expectancy assuming a linear 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);     * progression in between and thus overestimating or underestimating according
         * to the curvature of the survival function. If, for the same date, we 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           k=0;     * to compare the new estimate of Life expectancy with the same linear 
           for(i=1; i<=(nlstate+ndeath); i++){     * hypothesis. A more precise result, taking into account a more precise
             for(j=1; j<=(nlstate+ndeath);j++){     * curvature will be obtained if estepm is as small as stepm. */
               k=k+1;  
               gm[k]=pmmij[i][j];    /* For example we decided to compute the life expectancy with the smallest unit */
             }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           }       nhstepm is the number of hstepm from age to agelim 
             nstepm is the number of stepm from age to agelin. 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)       Look at hpijx to understand the reason of that which relies in memory size
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];         and note for a fixed period like estepm months */
         }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)       means that if the survival funtion is printed only each two years of age and if
           for(theta=1; theta <=npar; theta++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             trgradg[j][theta]=gradg[theta][j];       results. So we changed our mind and took the option of the best precision.
            */
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
            agelim=AGESUP;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
              /* nhstepm age range expressed in number of stepm */
         k=0;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         for(i=1; i<=(nlstate+ndeath); i++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           for(j=1; j<=(nlstate+ndeath);j++){      /* if (stepm >= YEARM) hstepm=1;*/
             k=k+1;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             gm[k]=pmmij[i][j];      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
            gm=matrix(0,nhstepm,1,nlstate*nlstate);
      /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      }*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
    
         fprintf(ficresprob,"\n%d ",(int)age);  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)  
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));      /* Computing Variances of health expectancies */
    
       }       for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    
   }        cptj=0;
   free_vector(xp,1,npar);        for(j=1; j<= nlstate; j++){
   fclose(ficresprob);          for(i=1; i<=nlstate; i++){
              cptj=cptj+1;
 }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 /******************* Printing html file ***********/            }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          }
                   int lastpass, int stepm, int weightopt, char model[],\        }
                   int imx,int jmin, int jmax, double jmeanint,char optionfile[], \       
                   char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\       
                   char version[], int popforecast, int estepm ,/* \ */        for(i=1; i<=npar; i++) 
                   double jprev1, double mprev1,double anprev1, \          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   double jprev2, double mprev2,double anprev2){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   int jj1, k1, i1, cpt;        
   FILE *fichtm;        cptj=0;
   /*char optionfilehtm[FILENAMELENGTH];*/        for(j=1; j<= nlstate; j++){
           for(i=1;i<=nlstate;i++){
   strcpy(optionfilehtm,optionfile);            cptj=cptj+1;
   strcat(optionfilehtm,".htm");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   }            }
           }
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        for(j=1; j<= nlstate*nlstate; j++)
 \n          for(h=0; h<=nhstepm-1; h++){
 Total number of observations=%d <br>\n            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          }
 <hr  size=\"2\" color=\"#EC5E5E\">       } 
  <ul><li>Parameter files<br>\n     
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  /* End theta */
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);  
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n       for(h=0; h<=nhstepm-1; h++)
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        for(j=1; j<=nlstate*nlstate;j++)
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          for(theta=1; theta <=npar; theta++)
  - Life expectancies by age and initial health status (estepm=%2d months):            trgradg[h][j][theta]=gradg[h][theta][j];
    <a href=\"e%s\">e%s</a> <br>\n</li>", \       
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
        for(i=1;i<=nlstate*nlstate;i++)
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n        for(j=1;j<=nlstate*nlstate;j++)
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          varhe[i][j][(int)age] =0.;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n       printf("%d|",(int)age);fflush(stdout);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
  if(popforecast==1) fprintf(fichtm,"\n          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          for(i=1;i<=nlstate*nlstate;i++)
         <br>",fileres,fileres,fileres,fileres);            for(j=1;j<=nlstate*nlstate;j++)
  else              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        }
 fprintf(fichtm," <li>Graphs</li><p>");      }
       /* Computing expectancies */
  m=cptcoveff;      for(i=1; i<=nlstate;i++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  jj1=0;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
  for(k1=1; k1<=m;k1++){            
    for(i1=1; i1<=ncodemax[k1];i1++){  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        jj1++;  
        if (cptcovn > 0) {          }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)      fprintf(ficreseij,"%3.0f",age );
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      cptj=0;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      for(i=1; i<=nlstate;i++)
        }        for(j=1; j<=nlstate;j++){
        /* Pij */          cptj++;
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 <img src=\"pe%s%d1.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);            }
        /* Quasi-incidences */      fprintf(ficreseij,"\n");
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>     
 <img src=\"pe%s%d2.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);          free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        /* Stable prevalence in each health state */      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        for(cpt=1; cpt<nlstate;cpt++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }    }
     for(cpt=1; cpt<=nlstate;cpt++) {    printf("\n");
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    fprintf(ficlog,"\n");
 interval) in state (%d): v%s%d%d.png <br>  
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      free_vector(xp,1,npar);
      }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      for(cpt=1; cpt<=nlstate;cpt++) {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  }
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  /************ Variance ******************/
 health expectancies in states (1) and (2): e%s%d.png<br>  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  {
 fprintf(fichtm,"\n</body>");    /* Variance of health expectancies */
    }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
    }    /* double **newm;*/
 fclose(fichtm);    double **dnewm,**doldm;
 }    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
 /******************* Gnuplot file **************/    int k, cptcode;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double *xp;
     double **gp, **gm;  /* for var eij */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    double ***gradg, ***trgradg; /*for var eij */
   int ng;    double **gradgp, **trgradgp; /* for var p point j */
   strcpy(optionfilegnuplot,optionfilefiname);    double *gpp, *gmp; /* for var p point j */
   strcat(optionfilegnuplot,".gp.txt");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    double ***p3mat;
     printf("Problem with file %s",optionfilegnuplot);    double age,agelim, hf;
   }    double ***mobaverage;
     int theta;
 #ifdef windows    char digit[4];
     fprintf(ficgp,"cd \"%s\" \n",pathc);    char digitp[25];
 #endif  
 m=pow(2,cptcoveff);    char fileresprobmorprev[FILENAMELENGTH];
    
  /* 1eme*/    if(popbased==1){
   for (cpt=1; cpt<= nlstate ; cpt ++) {      if(mobilav!=0)
    for (k1=1; k1<= m ; k1 ++) {        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
 #ifdef windows    }
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    else 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      strcpy(digitp,"-stablbased-");
 #endif  
 #ifdef unix    if (mobilav!=0) {
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 #endif        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
 for (i=1; i<= nlstate ; i ++) {      }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    strcpy(fileresprobmorprev,"prmorprev"); 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    sprintf(digit,"%-d",ij);
     for (i=1; i<= nlstate ; i ++) {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 }    strcat(fileresprobmorprev,fileres);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
      for (i=1; i<= nlstate ; i ++) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 #ifdef unix    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 #endif    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
    }      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
   /*2 eme*/        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
   for (k1=1; k1<= m ; k1 ++) {    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
          fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
     for (i=1; i<= nlstate+1 ; i ++) {      exit(0);
       k=2*i;    }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    else{
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficgp,"\n# Routine varevsij");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
 }        printf("Problem with html file: %s\n", optionfilehtm);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      exit(0);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    else{
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 }      }
       fprintf(ficgp,"\" t\"\" w l 0,");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresvij,"# Age");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       else fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficresvij,"\n");
     }  
   }    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
   /*3eme*/    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   for (k1=1; k1<= m ; k1 ++) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    gpp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    gmp=vector(nlstate+1,nlstate+ndeath);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    if(estepm < stepm){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      printf ("Problem %d lower than %d\n",estepm, stepm);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
 */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for (i=1; i< nlstate ; i ++) {       nhstepm is the number of hstepm from age to agelim 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like k years */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
   /* CV preval stat */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for (k1=1; k1<= m ; k1 ++) {       results. So we changed our mind and took the option of the best precision.
     for (cpt=1; cpt<nlstate ; cpt ++) {    */
       k=3;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    agelim = AGESUP;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       for (i=1; i< nlstate ; i ++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficgp,"+$%d",k+i+1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
            gp=matrix(0,nhstepm,1,nlstate);
       l=3+(nlstate+ndeath)*cpt;      gm=matrix(0,nhstepm,1,nlstate);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;      for(theta=1; theta <=npar; theta++){
         fprintf(ficgp,"+$%d",l+i+1);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          }
     }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   /* proba elementaires */        if (popbased==1) {
    for(i=1,jk=1; i <=nlstate; i++){          if(mobilav ==0){
     for(k=1; k <=(nlstate+ndeath); k++){            for(i=1; i<=nlstate;i++)
       if (k != i) {              prlim[i][i]=probs[(int)age][i][ij];
         for(j=1; j <=ncovmodel; j++){          }else{ /* mobilav */ 
                    for(i=1; i<=nlstate;i++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              prlim[i][i]=mobaverage[(int)age][i][ij];
           jk++;          }
           fprintf(ficgp,"\n");        }
         }    
       }        for(j=1; j<= nlstate; j++){
     }          for(h=0; h<=nhstepm; h++){
    }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          }
      for(jk=1; jk <=m; jk++) {        }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        /* This for computing probability of death (h=1 means
        if (ng==2)           computed over hstepm matrices product = hstepm*stepm months) 
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");           as a weighted average of prlim.
        else        */
          fprintf(ficgp,"\nset title \"Probability\"\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
        i=1;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
        for(k2=1; k2<=nlstate; k2++) {        }    
          k3=i;        /* end probability of death */
          for(k=1; k<=(nlstate+ndeath); k++) {  
            if (k != k2){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
              if(ng==2)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                fprintf(ficgp," %f*exp(p%d+p%d*x",stepm/YEARM,i,i+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
              else        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);   
              ij=1;        if (popbased==1) {
              for(j=3; j <=ncovmodel; j++) {          if(mobilav ==0){
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            for(i=1; i<=nlstate;i++)
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              prlim[i][i]=probs[(int)age][i][ij];
                  ij++;          }else{ /* mobilav */ 
                }            for(i=1; i<=nlstate;i++)
                else              prlim[i][i]=mobaverage[(int)age][i][ij];
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
              }        }
              fprintf(ficgp,")/(1");  
                      for(j=1; j<= nlstate; j++){
              for(k1=1; k1 <=nlstate; k1++){            for(h=0; h<=nhstepm; h++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                ij=1;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                for(j=3; j <=ncovmodel; j++){          }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        /* This for computing probability of death (h=1 means
                    ij++;           computed over hstepm matrices product = hstepm*stepm months) 
                  }           as a weighted average of prlim.
                  else        */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                fprintf(ficgp,")");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
              }        }    
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        /* end probability of death */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;        for(j=1; j<= nlstate; j++) /* vareij */
            }          for(h=0; h<=nhstepm; h++){
          }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
        }          }
      }  
    }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
    fclose(ficgp);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 }  /* end gnuplot */        }
   
       } /* End theta */
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
   int i, cpt, cptcod;      for(h=0; h<=nhstepm; h++) /* veij */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        for(j=1; j<=nlstate;j++)
       for (i=1; i<=nlstate;i++)          for(theta=1; theta <=npar; theta++)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            trgradg[h][j][theta]=gradg[h][theta][j];
           mobaverage[(int)agedeb][i][cptcod]=0.;  
          for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        for(theta=1; theta <=npar; theta++)
       for (i=1; i<=nlstate;i++){          trgradgp[j][theta]=gradgp[theta][j];
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           }      for(i=1;i<=nlstate;i++)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        for(j=1;j<=nlstate;j++)
         }          vareij[i][j][(int)age] =0.;
       }  
     }      for(h=0;h<=nhstepm;h++){
            for(k=0;k<=nhstepm;k++){
 }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
 /************** Forecasting ******************/            for(j=1;j<=nlstate;j++)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      }
   int *popage;    
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      /* pptj */
   double *popeffectif,*popcount;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   double ***p3mat;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   char fileresf[FILENAMELENGTH];      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
  agelim=AGESUP;          varppt[j][i]=doldmp[j][i];
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      /* end ppptj */
       /*  x centered again */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     
   strcpy(fileresf,"f");      if (popbased==1) {
   strcat(fileresf,fileres);        if(mobilav ==0){
   if((ficresf=fopen(fileresf,"w"))==NULL) {          for(i=1; i<=nlstate;i++)
     printf("Problem with forecast resultfile: %s\n", fileresf);            prlim[i][i]=probs[(int)age][i][ij];
   }        }else{ /* mobilav */ 
   printf("Computing forecasting: result on file '%s' \n", fileresf);          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        }
       }
   if (mobilav==1) {               
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* This for computing probability of death (h=1 means
     movingaverage(agedeb, fage, ageminpar, mobaverage);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   }         as a weighted average of prlim.
       */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if (stepm<=12) stepsize=1;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   agelim=AGESUP;      }    
        /* end probability of death */
   hstepm=1;  
   hstepm=hstepm/stepm;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   yp1=modf(dateintmean,&yp);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   anprojmean=yp;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   yp2=modf((yp1*12),&yp);        for(i=1; i<=nlstate;i++){
   mprojmean=yp;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   yp1=modf((yp2*30.5),&yp);        }
   jprojmean=yp;      } 
   if(jprojmean==0) jprojmean=1;      fprintf(ficresprobmorprev,"\n");
   if(mprojmean==0) jprojmean=1;  
        fprintf(ficresvij,"%.0f ",age );
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   for(cptcov=1;cptcov<=i2;cptcov++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
       k=k+1;      fprintf(ficresvij,"\n");
       fprintf(ficresf,"\n#******");      free_matrix(gp,0,nhstepm,1,nlstate);
       for(j=1;j<=cptcoveff;j++) {      free_matrix(gm,0,nhstepm,1,nlstate);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       fprintf(ficresf,"******\n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresf,"# StartingAge FinalAge");    } /* End age */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    free_vector(gpp,nlstate+1,nlstate+ndeath);
          free_vector(gmp,nlstate+1,nlstate+ndeath);
          free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fprintf(ficresf,"\n");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           nhstepm = nhstepm/hstepm;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
              fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
           oldm=oldms;savm=savms;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
            fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
           for (h=0; h<=nhstepm; h++){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             if (h==(int) (calagedate+YEARM*cpt)) {  */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    free_vector(xp,1,npar);
               kk1=0.;kk2=0;    free_matrix(doldm,1,nlstate,1,nlstate);
               for(i=1; i<=nlstate;i++) {                  free_matrix(dnewm,1,nlstate,1,npar);
                 if (mobilav==1)    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                 else {    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 }    fclose(ficresprobmorprev);
                    fclose(ficgp);
               }    fclose(fichtm);
               if (h==(int)(calagedate+12*cpt)){  }  /* end varevsij */
                 fprintf(ficresf," %.3f", kk1);  
                          /************ Variance of prevlim ******************/
               }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
             }  {
           }    /* Variance of prevalence limit */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         }    double **newm;
       }    double **dnewm,**doldm;
     }    int i, j, nhstepm, hstepm;
   }    int k, cptcode;
            double *xp;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *gp, *gm;
     double **gradg, **trgradg;
   fclose(ficresf);    double age,agelim;
 }    int theta;
 /************** Forecasting ******************/     
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
      fprintf(ficresvpl,"# Age");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    for(i=1; i<=nlstate;i++)
   int *popage;        fprintf(ficresvpl," %1d-%1d",i,i);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficresvpl,"\n");
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;    xp=vector(1,npar);
   char filerespop[FILENAMELENGTH];    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    hstepm=1*YEARM; /* Every year of age */
   agelim=AGESUP;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   strcpy(filerespop,"pop");      gradg=matrix(1,npar,1,nlstate);
   strcat(filerespop,fileres);      gp=vector(1,nlstate);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      gm=vector(1,nlstate);
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }      for(theta=1; theta <=npar; theta++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (mobilav==1) {        for(i=1;i<=nlstate;i++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          gp[i] = prlim[i][i];
     movingaverage(agedeb, fage, ageminpar, mobaverage);      
   }        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   stepsize=(int) (stepm+YEARM-1)/YEARM;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (stepm<=12) stepsize=1;        for(i=1;i<=nlstate;i++)
            gm[i] = prlim[i][i];
   agelim=AGESUP;  
          for(i=1;i<=nlstate;i++)
   hstepm=1;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   hstepm=hstepm/stepm;      } /* End theta */
    
   if (popforecast==1) {      trgradg =matrix(1,nlstate,1,npar);
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);      for(j=1; j<=nlstate;j++)
     }        for(theta=1; theta <=npar; theta++)
     popage=ivector(0,AGESUP);          trgradg[j][theta]=gradg[theta][j];
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);      for(i=1;i<=nlstate;i++)
            varpl[i][(int)age] =0.;
     i=1;        matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
          for(i=1;i<=nlstate;i++)
     imx=i;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i2;cptcov++){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      fprintf(ficresvpl,"\n");
       k=k+1;      free_vector(gp,1,nlstate);
       fprintf(ficrespop,"\n#******");      free_vector(gm,1,nlstate);
       for(j=1;j<=cptcoveff;j++) {      free_matrix(gradg,1,npar,1,nlstate);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_matrix(trgradg,1,nlstate,1,npar);
       }    } /* End age */
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");    free_vector(xp,1,npar);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    free_matrix(doldm,1,nlstate,1,npar);
       if (popforecast==1)  fprintf(ficrespop," [Population]");    free_matrix(dnewm,1,nlstate,1,nlstate);
        
       for (cpt=0; cpt<=0;cpt++) {  }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
          /************ Variance of one-step probabilities  ******************/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  {
           nhstepm = nhstepm/hstepm;    int i, j=0,  i1, k1, l1, t, tj;
              int k2, l2, j1,  z1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k=0,l, cptcode;
           oldm=oldms;savm=savms;    int first=1, first1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
            double **dnewm,**doldm;
           for (h=0; h<=nhstepm; h++){    double *xp;
             if (h==(int) (calagedate+YEARM*cpt)) {    double *gp, *gm;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double **gradg, **trgradg;
             }    double **mu;
             for(j=1; j<=nlstate+ndeath;j++) {    double age,agelim, cov[NCOVMAX];
               kk1=0.;kk2=0;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
               for(i=1; i<=nlstate;i++) {                  int theta;
                 if (mobilav==1)    char fileresprob[FILENAMELENGTH];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    char fileresprobcov[FILENAMELENGTH];
                 else {    char fileresprobcor[FILENAMELENGTH];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }    double ***varpij;
               }  
               if (h==(int)(calagedate+12*cpt)){    strcpy(fileresprob,"prob"); 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    strcat(fileresprob,fileres);
                   /*fprintf(ficrespop," %.3f", kk1);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      printf("Problem with resultfile: %s\n", fileresprob);
               }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
             }    }
             for(i=1; i<=nlstate;i++){    strcpy(fileresprobcov,"probcov"); 
               kk1=0.;    strcat(fileresprobcov,fileres);
                 for(j=1; j<=nlstate;j++){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      printf("Problem with resultfile: %s\n", fileresprobcov);
                 }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    }
             }    strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      printf("Problem with resultfile: %s\n", fileresprobcor);
           }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
         }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /******/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficresprob,"# Age");
           nhstepm = nhstepm/hstepm;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
              fprintf(ficresprobcov,"# Age");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           oldm=oldms;savm=savms;    fprintf(ficresprobcov,"# Age");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    for(i=1; i<=nlstate;i++)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(j=1; j<=(nlstate+ndeath);j++){
             }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficresprobcov," p%1d-%1d ",i,j);
               kk1=0.;kk2=0;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
               for(i=1; i<=nlstate;i++) {                    }  
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];       /* fprintf(ficresprob,"\n");
               }    fprintf(ficresprobcov,"\n");
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fprintf(ficresprobcor,"\n");
             }   */
           }   xp=vector(1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
    }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   }    first=1;
      if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   if (popforecast==1) {      exit(0);
     free_ivector(popage,0,AGESUP);    }
     free_vector(popeffectif,0,AGESUP);    else{
     free_vector(popcount,0,AGESUP);      fprintf(ficgp,"\n# Routine varprob");
   }    }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with html file: %s\n", optionfilehtm);
   fclose(ficrespop);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
 }      exit(0);
     }
 /***********************************************/    else{
 /**************** Main Program *****************/      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 /***********************************************/      fprintf(fichtm,"\n");
   
 int main(int argc, char *argv[])      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
 {      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;    }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
     cov[1]=1;
   double fret;    tj=cptcoveff;
   double **xi,tmp,delta;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
   double dum; /* Dummy variable */    for(t=1; t<=tj;t++){
   double ***p3mat;      for(i1=1; i1<=ncodemax[t];i1++){ 
   int *indx;        j1++;
   char line[MAXLINE], linepar[MAXLINE];        if  (cptcovn>0) {
   char title[MAXLINE];          fprintf(ficresprob, "\n#********** Variable "); 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];          fprintf(ficresprob, "**********\n#\n");
            fprintf(ficresprobcov, "\n#********** Variable "); 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
   char filerest[FILENAMELENGTH];          
   char fileregp[FILENAMELENGTH];          fprintf(ficgp, "\n#********** Variable "); 
   char popfile[FILENAMELENGTH];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          fprintf(ficgp, "**********\n#\n");
   int firstobs=1, lastobs=10;          
   int sdeb, sfin; /* Status at beginning and end */          
   int c,  h , cpt,l;          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   int ju,jl, mi;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          
   int mobilav=0,popforecast=0;          fprintf(ficresprobcor, "\n#********** Variable ");    
   int hstepm, nhstepm;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          fprintf(ficresprobcor, "**********\n#");    
         }
   double bage, fage, age, agelim, agebase;        
   double ftolpl=FTOL;        for (age=bage; age<=fage; age ++){ 
   double **prlim;          cov[2]=age;
   double *severity;          for (k=1; k<=cptcovn;k++) {
   double ***param; /* Matrix of parameters */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   double  *p;          }
   double **matcov; /* Matrix of covariance */          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double ***delti3; /* Scale */          for (k=1; k<=cptcovprod;k++)
   double *delti; /* Scale */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double ***eij, ***vareij;          
   double **varpl; /* Variances of prevalence limits by age */          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   double *epj, vepp;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   double kk1, kk2;          gp=vector(1,(nlstate)*(nlstate+ndeath));
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          gm=vector(1,(nlstate)*(nlstate+ndeath));
        
           for(theta=1; theta <=npar; theta++){
   char version[80]="Imach version 0.8e, May 2002, INED-EUROREVES ";            for(i=1; i<=npar; i++)
   char *alph[]={"a","a","b","c","d","e"}, str[4];              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   char z[1]="c", occ;            
 #include <sys/time.h>            k=0;
 #include <time.h>            for(i=1; i<= (nlstate); i++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              for(j=1; j<=(nlstate+ndeath);j++){
                  k=k+1;
   /* long total_usecs;                gp[k]=pmmij[i][j];
   struct timeval start_time, end_time;              }
              }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            
   getcwd(pathcd, size);            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   printf("\n%s",version);      
   if(argc <=1){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     printf("\nEnter the parameter file name: ");            k=0;
     scanf("%s",pathtot);            for(i=1; i<=(nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
   else{                k=k+1;
     strcpy(pathtot,argv[1]);                gm[k]=pmmij[i][j];
   }              }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/            }
   /*cygwin_split_path(pathtot,path,optionfile);       
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   /* cutv(path,optionfile,pathtot,'\\');*/              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   chdir(path);            for(theta=1; theta <=npar; theta++)
   replace(pathc,path);              trgradg[j][theta]=gradg[theta][j];
           
 /*-------- arguments in the command line --------*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   strcpy(fileres,"r");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   strcat(fileres, optionfilefiname);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   strcat(fileres,".txt");    /* Other files have txt extension */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /*---------arguments file --------*/  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          
     printf("Problem with optionfile %s\n",optionfile);          k=0;
     goto end;          for(i=1; i<=(nlstate); i++){
   }            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
   strcpy(filereso,"o");              mu[k][(int) age]=pmmij[i][j];
   strcat(filereso,fileres);            }
   if((ficparo=fopen(filereso,"w"))==NULL) {          }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){          /*printf("\n%d ",(int)age);
     ungetc(c,ficpar);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     fgets(line, MAXLINE, ficpar);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     puts(line);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     fputs(line,ficparo);            }*/
   }  
   ungetc(c,ficpar);          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          fprintf(ficresprobcor,"\n%d ",(int)age);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 while((c=getc(ficpar))=='#' && c!= EOF){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     ungetc(c,ficpar);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     fgets(line, MAXLINE, ficpar);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     puts(line);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     fputs(line,ficparo);          }
   }          i=0;
   ungetc(c,ficpar);          for (k=1; k<=(nlstate);k++){
              for (l=1; l<=(nlstate+ndeath);l++){ 
                  i=i++;
   covar=matrix(0,NCOVMAX,1,n);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   cptcovn=0;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   ncovmodel=2+cptcovn;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */              }
              }
   /* Read guess parameters */          }/* end of loop for state */
   /* Reads comments: lines beginning with '#' */        } /* end of loop for age */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);        /* Confidence intervalle of pij  */
     fgets(line, MAXLINE, ficpar);        /*
     puts(line);          fprintf(ficgp,"\nset noparametric;unset label");
     fputs(line,ficparo);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   ungetc(c,ficpar);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
            fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     for(i=1; i <=nlstate; i++)          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     for(j=1; j <=nlstate+ndeath-1; j++){        */
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       printf("%1d%1d",i,j);        first1=1;
       for(k=1; k<=ncovmodel;k++){        for (k2=1; k2<=(nlstate);k2++){
         fscanf(ficpar," %lf",&param[i][j][k]);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         printf(" %lf",param[i][j][k]);            if(l2==k2) continue;
         fprintf(ficparo," %lf",param[i][j][k]);            j=(k2-1)*(nlstate+ndeath)+l2;
       }            for (k1=1; k1<=(nlstate);k1++){
       fscanf(ficpar,"\n");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       printf("\n");                if(l1==k1) continue;
       fprintf(ficparo,"\n");                i=(k1-1)*(nlstate+ndeath)+l1;
     }                if(i<=j) continue;
                  for (age=bage; age<=fage; age ++){ 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   p=param[1][1];                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   /* Reads comments: lines beginning with '#' */                    mu1=mu[i][(int) age]/stepm*YEARM ;
   while((c=getc(ficpar))=='#' && c!= EOF){                    mu2=mu[j][(int) age]/stepm*YEARM;
     ungetc(c,ficpar);                    c12=cv12/sqrt(v1*v2);
     fgets(line, MAXLINE, ficpar);                    /* Computing eigen value of matrix of covariance */
     puts(line);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     fputs(line,ficparo);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   }                    /* Eigen vectors */
   ungetc(c,ficpar);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    v21=(lc1-v1)/cv12*v11;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                    v12=-v21;
   for(i=1; i <=nlstate; i++){                    v22=v11;
     for(j=1; j <=nlstate+ndeath-1; j++){                    tnalp=v21/v11;
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    if(first1==1){
       printf("%1d%1d",i,j);                      first1=0;
       fprintf(ficparo,"%1d%1d",i1,j1);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       for(k=1; k<=ncovmodel;k++){                    }
         fscanf(ficpar,"%le",&delti3[i][j][k]);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         printf(" %le",delti3[i][j][k]);                    /*printf(fignu*/
         fprintf(ficparo," %le",delti3[i][j][k]);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       fscanf(ficpar,"\n");                    if(first==1){
       printf("\n");                      first=0;
       fprintf(ficparo,"\n");                      fprintf(ficgp,"\nset parametric;unset label");
     }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   delti=delti3[1][1];                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                        fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
   /* Reads comments: lines beginning with '#' */                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
     ungetc(c,ficpar);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     fgets(line, MAXLINE, ficpar);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     puts(line);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     fputs(line,ficparo);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   ungetc(c,ficpar);                    }else{
                        first=0;
   matcov=matrix(1,npar,1,npar);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
   for(i=1; i <=npar; i++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     fscanf(ficpar,"%s",&str);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     printf("%s",str);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     fprintf(ficparo,"%s",str);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     for(j=1; j <=i; j++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fscanf(ficpar," %le",&matcov[i][j]);                    }/* if first */
       printf(" %.5le",matcov[i][j]);                  } /* age mod 5 */
       fprintf(ficparo," %.5le",matcov[i][j]);                } /* end loop age */
     }                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
     fscanf(ficpar,"\n");                first=1;
     printf("\n");              } /*l12 */
     fprintf(ficparo,"\n");            } /* k12 */
   }          } /*l1 */
   for(i=1; i <=npar; i++)        }/* k1 */
     for(j=i+1;j<=npar;j++)      } /* loop covariates */
       matcov[i][j]=matcov[j][i];    }
        free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   printf("\n");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     /*-------- Rewriting paramater file ----------*/    fclose(ficresprobcov);
      strcpy(rfileres,"r");    /* "Rparameterfile */    fclose(ficresprobcor);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    fclose(ficgp);
      strcat(rfileres,".");    /* */    fclose(fichtm);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  }
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
     }  /******************* Printing html file ***********/
     fprintf(ficres,"#%s\n",version);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                        int lastpass, int stepm, int weightopt, char model[],\
     /*-------- data file ----------*/                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     if((fic=fopen(datafile,"r"))==NULL)    {                    int popforecast, int estepm ,\
       printf("Problem with datafile: %s\n", datafile);goto end;                    double jprev1, double mprev1,double anprev1, \
     }                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     n= lastobs;    /*char optionfilehtm[FILENAMELENGTH];*/
     severity = vector(1,maxwav);    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
     outcome=imatrix(1,maxwav+1,1,n);      printf("Problem with %s \n",optionfilehtm), exit(0);
     num=ivector(1,n);      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     moisnais=vector(1,n);    }
     annais=vector(1,n);  
     moisdc=vector(1,n);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
     andc=vector(1,n);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
     agedc=vector(1,n);   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
     cod=ivector(1,n);   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
     weight=vector(1,n);   - Life expectancies by age and initial health status (estepm=%2d months): 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */     <a href=\"e%s\">e%s</a> <br>\n</li>", \
     mint=matrix(1,maxwav,1,n);    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);   m=cptcoveff;
     ncodemax=ivector(1,8);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
     i=1;   jj1=0;
     while (fgets(line, MAXLINE, fic) != NULL)    {   for(k1=1; k1<=m;k1++){
       if ((i >= firstobs) && (i <=lastobs)) {     for(i1=1; i1<=ncodemax[k1];i1++){
               jj1++;
         for (j=maxwav;j>=1;j--){       if (cptcovn > 0) {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           strcpy(line,stra);         for (cpt=1; cpt<=cptcoveff;cpt++) 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }       }
               /* Pij */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);         for(cpt=1; cpt<nlstate;cpt++){
         for (j=ncovcol;j>=1;j--){           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
         }         }
         num[i]=atol(stra);       for(cpt=1; cpt<=nlstate;cpt++) {
                  fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and
         i=i+1;  health expectancies in states (1) and (2): e%s%d.png<br>
       }  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
     }     } /* end i1 */
     /* printf("ii=%d", ij);   }/* End k1 */
        scanf("%d",i);*/   fprintf(fichtm,"</ul>");
   imx=i-1; /* Number of individuals */  
   
   /* for (i=1; i<=imx; i++){   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
     }*/   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
    /*  for (i=1; i<=imx; i++){   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
      if (s[4][i]==9)  s[4][i]=-1;   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
    
    /*  if(popforecast==1) fprintf(fichtm,"\n */
   /* Calculation of the number of parameter from char model*/  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   Tvar=ivector(1,15);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   Tprod=ivector(1,15);  /*      <br>",fileres,fileres,fileres,fileres); */
   Tvaraff=ivector(1,15);  /*  else  */
   Tvard=imatrix(1,15,1,2);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   Tage=ivector(1,15);        fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
      
   if (strlen(model) >1){   m=cptcoveff;
     j=0, j1=0, k1=1, k2=1;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');   jj1=0;
     cptcovn=j+1;   for(k1=1; k1<=m;k1++){
     cptcovprod=j1;     for(i1=1; i1<=ncodemax[k1];i1++){
           jj1++;
     strcpy(modelsav,model);       if (cptcovn > 0) {
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       printf("Error. Non available option model=%s ",model);         for (cpt=1; cpt<=cptcoveff;cpt++) 
       goto end;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           }
     for(i=(j+1); i>=1;i--){       for(cpt=1; cpt<=nlstate;cpt++) {
       cutv(stra,strb,modelsav,'+');         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  interval) in state (%d): v%s%d%d.png <br>
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
       /*scanf("%d",i);*/       }
       if (strchr(strb,'*')) {     } /* end i1 */
         cutv(strd,strc,strb,'*');   }/* End k1 */
         if (strcmp(strc,"age")==0) {   fprintf(fichtm,"</ul>");
           cptcovprod--;  fclose(fichtm);
           cutv(strb,stre,strd,'V');  }
           Tvar[i]=atoi(stre);  
           cptcovage++;  /******************* Gnuplot file **************/
             Tage[cptcovage]=i;  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
             /*printf("stre=%s ", stre);*/  
         }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         else if (strcmp(strd,"age")==0) {    int ng;
           cptcovprod--;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
           cutv(strb,stre,strc,'V');      printf("Problem with file %s",optionfilegnuplot);
           Tvar[i]=atoi(stre);      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
           cptcovage++;    }
           Tage[cptcovage]=i;  
         }    /*#ifdef windows */
         else {      fprintf(ficgp,"cd \"%s\" \n",pathc);
           cutv(strb,stre,strc,'V');      /*#endif */
           Tvar[i]=ncovcol+k1;  m=pow(2,cptcoveff);
           cutv(strb,strc,strd,'V');    
           Tprod[k1]=i;   /* 1eme*/
           Tvard[k1][1]=atoi(strc);    for (cpt=1; cpt<= nlstate ; cpt ++) {
           Tvard[k1][2]=atoi(stre);     for (k1=1; k1<= m ; k1 ++) {
           Tvar[cptcovn+k2]=Tvard[k1][1];       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       for (i=1; i<= nlstate ; i ++) {
           k1++;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           k2=k2+2;         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }       }
       }       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
       else {       for (i=1; i<= nlstate ; i ++) {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
        /*  scanf("%d",i);*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
       cutv(strd,strc,strb,'V');       } 
       Tvar[i]=atoi(strc);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
       }       for (i=1; i<= nlstate ; i ++) {
       strcpy(modelsav,stra);           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         scanf("%d",i);*/       }  
     }       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
 }     }
      }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /*2 eme*/
   printf("cptcovprod=%d ", cptcovprod);    
   scanf("%d ",i);*/    for (k1=1; k1<= m ; k1 ++) { 
     fclose(fic);      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     /*  if(mle==1){*/      
     if (weightopt != 1) { /* Maximisation without weights*/      for (i=1; i<= nlstate+1 ; i ++) {
       for(i=1;i<=n;i++) weight[i]=1.0;        k=2*i;
     }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
     /*-calculation of age at interview from date of interview and age at death -*/        for (j=1; j<= nlstate+1 ; j ++) {
     agev=matrix(1,maxwav,1,imx);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
     for (i=1; i<=imx; i++) {        }   
       for(m=2; (m<= maxwav); m++) {        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          anint[m][i]=9999;        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
          s[m][i]=-1;        for (j=1; j<= nlstate+1 ; j ++) {
        }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          else fprintf(ficgp," \%%*lf (\%%*lf)");
       }        }   
     }        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
     for (i=1; i<=imx; i++)  {        for (j=1; j<= nlstate+1 ; j ++) {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       for(m=1; (m<= maxwav); m++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
         if(s[m][i] >0){        }   
           if (s[m][i] >= nlstate+1) {        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
             if(agedc[i]>0)        else fprintf(ficgp,"\" t\"\" w l 0,");
               if(moisdc[i]!=99 && andc[i]!=9999)      }
                 agev[m][i]=agedc[i];    }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    
            else {    /*3eme*/
               if (andc[i]!=9999){    
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    for (k1=1; k1<= m ; k1 ++) { 
               agev[m][i]=-1;      for (cpt=1; cpt<= nlstate ; cpt ++) {
               }        k=2+nlstate*(2*cpt-2);
             }        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           }        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
           else if(s[m][i] !=9){ /* Should no more exist */        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             if(mint[m][i]==99 || anint[m][i]==9999)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
               agev[m][i]=1;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             else if(agev[m][i] <agemin){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
               agemin=agev[m][i];          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          
             }        */
             else if(agev[m][i] >agemax){        for (i=1; i< nlstate ; i ++) {
               agemax=agev[m][i];          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          
             }        } 
             /*agev[m][i]=anint[m][i]-annais[i];*/      }
             /*   agev[m][i] = age[i]+2*m;*/    }
           }    
           else { /* =9 */    /* CV preval stable (period) */
             agev[m][i]=1;    for (k1=1; k1<= m ; k1 ++) { 
             s[m][i]=-1;      for (cpt=1; cpt<=nlstate ; cpt ++) {
           }        k=3;
         }        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         else /*= 0 Unknown */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
           agev[m][i]=1;        
       }        for (i=1; i< nlstate ; i ++)
              fprintf(ficgp,"+$%d",k+i+1);
     }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     for (i=1; i<=imx; i++)  {        
       for(m=1; (m<= maxwav); m++){        l=3+(nlstate+ndeath)*cpt;
         if (s[m][i] > (nlstate+ndeath)) {        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
           printf("Error: Wrong value in nlstate or ndeath\n");          for (i=1; i< nlstate ; i ++) {
           goto end;          l=3+(nlstate+ndeath)*cpt;
         }          fprintf(ficgp,"+$%d",l+i+1);
       }        }
     }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    }  
     
     free_vector(severity,1,maxwav);    /* proba elementaires */
     free_imatrix(outcome,1,maxwav+1,1,n);    for(i=1,jk=1; i <=nlstate; i++){
     free_vector(moisnais,1,n);      for(k=1; k <=(nlstate+ndeath); k++){
     free_vector(annais,1,n);        if (k != i) {
     /* free_matrix(mint,1,maxwav,1,n);          for(j=1; j <=ncovmodel; j++){
        free_matrix(anint,1,maxwav,1,n);*/            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     free_vector(moisdc,1,n);            jk++; 
     free_vector(andc,1,n);            fprintf(ficgp,"\n");
           }
            }
     wav=ivector(1,imx);      }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);     }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
         for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     /* Concatenates waves */       for(jk=1; jk <=m; jk++) {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       Tcode=ivector(1,100);         else
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);           fprintf(ficgp,"\nset title \"Probability\"\n");
       ncodemax[1]=1;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);         i=1;
               for(k2=1; k2<=nlstate; k2++) {
    codtab=imatrix(1,100,1,10);           k3=i;
    h=0;           for(k=1; k<=(nlstate+ndeath); k++) {
    m=pow(2,cptcoveff);             if (k != k2){
                 if(ng==2)
    for(k=1;k<=cptcoveff; k++){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
      for(i=1; i <=(m/pow(2,k));i++){               else
        for(j=1; j <= ncodemax[k]; j++){                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){               ij=1;
            h++;               for(j=3; j <=ncovmodel; j++) {
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
          }                   ij++;
        }                 }
      }                 else
    }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);               }
       codtab[1][2]=1;codtab[2][2]=2; */               fprintf(ficgp,")/(1");
    /* for(i=1; i <=m ;i++){               
       for(k=1; k <=cptcovn; k++){               for(k1=1; k1 <=nlstate; k1++){   
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       }                 ij=1;
       printf("\n");                 for(j=3; j <=ncovmodel; j++){
       }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       scanf("%d",i);*/                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                         ij++;
    /* Calculates basic frequencies. Computes observed prevalence at single age                   }
        and prints on file fileres'p'. */                   else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                     }
                     fprintf(ficgp,")");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               i=i+ncovmodel;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */             }
                 } /* end k */
     /* For Powell, parameters are in a vector p[] starting at p[1]         } /* end k2 */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       } /* end jk */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */     } /* end ng */
      fclose(ficgp); 
     if(mle==1){  }  /* end gnuplot */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }  
      /*************** Moving average **************/
     /*--------- results files --------------*/  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
      int i, cpt, cptcod;
     int modcovmax =1;
    jk=1;    int mobilavrange, mob;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double age;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
      for(k=1; k <=(nlstate+ndeath); k++){                             a covariate has 2 modalities */
        if (k != i)    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
          {  
            printf("%d%d ",i,k);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
            fprintf(ficres,"%1d%1d ",i,k);      if(mobilav==1) mobilavrange=5; /* default */
            for(j=1; j <=ncovmodel; j++){      else mobilavrange=mobilav;
              printf("%f ",p[jk]);      for (age=bage; age<=fage; age++)
              fprintf(ficres,"%f ",p[jk]);        for (i=1; i<=nlstate;i++)
              jk++;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
            }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
            printf("\n");      /* We keep the original values on the extreme ages bage, fage and for 
            fprintf(ficres,"\n");         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          }         we use a 5 terms etc. until the borders are no more concerned. 
      }      */ 
    }      for (mob=3;mob <=mobilavrange;mob=mob+2){
  if(mle==1){        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     /* Computing hessian and covariance matrix */          for (i=1; i<=nlstate;i++){
     ftolhess=ftol; /* Usually correct */            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     hesscov(matcov, p, npar, delti, ftolhess, func);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
  }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     printf("# Scales (for hessian or gradient estimation)\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
      for(i=1,jk=1; i <=nlstate; i++){                }
       for(j=1; j <=nlstate+ndeath; j++){              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
         if (j!=i) {            }
           fprintf(ficres,"%1d%1d",i,j);          }
           printf("%1d%1d",i,j);        }/* end age */
           for(k=1; k<=ncovmodel;k++){      }/* end mob */
             printf(" %.5e",delti[jk]);    }else return -1;
             fprintf(ficres," %.5e",delti[jk]);    return 0;
             jk++;  }/* End movingaverage */
           }  
           printf("\n");  
           fprintf(ficres,"\n");  /************** Forecasting ******************/
         }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       }    /* proj1, year, month, day of starting projection 
      }       agemin, agemax range of age
           dateprev1 dateprev2 range of dates during which prevalence is computed
     k=1;       anproj2 year of en of projection (same day and month as proj1).
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     for(i=1;i<=npar;i++){    int *popage;
       /*  if (k>nlstate) k=1;    double agec; /* generic age */
       i1=(i-1)/(ncovmodel*nlstate)+1;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    double *popeffectif,*popcount;
       printf("%s%d%d",alph[k],i1,tab[i]);*/    double ***p3mat;
       fprintf(ficres,"%3d",i);    double ***mobaverage;
       printf("%3d",i);    char fileresf[FILENAMELENGTH];
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);    agelim=AGESUP;
         printf(" %.5e",matcov[i][j]);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       }   
       fprintf(ficres,"\n");    strcpy(fileresf,"f"); 
       printf("\n");    strcat(fileresf,fileres);
       k++;    if((ficresf=fopen(fileresf,"w"))==NULL) {
     }      printf("Problem with forecast resultfile: %s\n", fileresf);
          fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     while((c=getc(ficpar))=='#' && c!= EOF){    }
       ungetc(c,ficpar);    printf("Computing forecasting: result on file '%s' \n", fileresf);
       fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
       puts(line);  
       fputs(line,ficparo);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     }  
     ungetc(c,ficpar);    if (mobilav!=0) {
     estepm=0;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     if (estepm==0 || estepm < stepm) estepm=stepm;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     if (fage <= 2) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       bage = ageminpar;      }
       fage = agemaxpar;    }
     }  
        stepsize=(int) (stepm+YEARM-1)/YEARM;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    if (stepm<=12) stepsize=1;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    if(estepm < stepm){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
     while((c=getc(ficpar))=='#' && c!= EOF){    else  hstepm=estepm;   
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    hstepm=hstepm/stepm; 
     puts(line);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     fputs(line,ficparo);                                 fractional in yp1 */
   }    anprojmean=yp;
   ungetc(c,ficpar);    yp2=modf((yp1*12),&yp);
      mprojmean=yp;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    yp1=modf((yp2*30.5),&yp);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    jprojmean=yp;
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    if(jprojmean==0) jprojmean=1;
          if(mprojmean==0) jprojmean=1;
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    i1=cptcoveff;
     fgets(line, MAXLINE, ficpar);    if (cptcovn < 1){i1=1;}
     puts(line);    
     fputs(line,ficparo);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   }    
   ungetc(c,ficpar);    fprintf(ficresf,"#****** Routine prevforecast **\n");
    
   /*            if (h==(int)(YEARM*yearp)){ */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   fscanf(ficpar,"pop_based=%d\n",&popbased);        fprintf(ficresf,"\n#******");
   fprintf(ficparo,"pop_based=%d\n",popbased);          for(j=1;j<=cptcoveff;j++) {
   fprintf(ficres,"pop_based=%d\n",popbased);            fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
          }
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresf,"******\n");
     ungetc(c,ficpar);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     fgets(line, MAXLINE, ficpar);        for(j=1; j<=nlstate+ndeath;j++){ 
     puts(line);          for(i=1; i<=nlstate;i++)              
     fputs(line,ficparo);            fprintf(ficresf," p%d%d",i,j);
   }          fprintf(ficresf," p.%d",j);
   ungetc(c,ficpar);        }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          fprintf(ficresf,"\n");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 while((c=getc(ficpar))=='#' && c!= EOF){            nhstepm = nhstepm/hstepm; 
     ungetc(c,ficpar);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);            oldm=oldms;savm=savms;
     puts(line);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fputs(line,ficparo);          
   }            for (h=0; h<=nhstepm; h++){
   ungetc(c,ficpar);              if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                for(j=1;j<=cptcoveff;j++) 
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
 /*------------ gnuplot -------------*/                for(i=1; i<=nlstate;i++) {
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);                  if (mobilav==1) 
                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 /*------------ free_vector  -------------*/                  else {
  chdir(path);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                    }
  free_ivector(wav,1,imx);                  if (h*hstepm/YEARM*stepm== yearp) {
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                    }
  free_ivector(num,1,n);                } /* end i */
  free_vector(agedc,1,n);                if (h*hstepm/YEARM*stepm==yearp) {
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                  fprintf(ficresf," %.3f", ppij);
  fclose(ficparo);                }
  fclose(ficres);              }/* end j */
             } /* end h */
 /*--------- index.htm --------*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        } /* end yearp */
       } /* end cptcod */
      } /* end  cptcov */
   /*--------------- Prevalence limit --------------*/         
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);    fclose(ficresf);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }  /************** Forecasting *****not tested NB*************/
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   fprintf(ficrespl,"#Prevalence limit\n");    
   fprintf(ficrespl,"#Age ");    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    int *popage;
   fprintf(ficrespl,"\n");    double calagedatem, agelim, kk1, kk2;
      double *popeffectif,*popcount;
   prlim=matrix(1,nlstate,1,nlstate);    double ***p3mat,***tabpop,***tabpopprev;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***mobaverage;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char filerespop[FILENAMELENGTH];
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   k=0;    agelim=AGESUP;
   agebase=ageminpar;    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   agelim=agemaxpar;    
   ftolpl=1.e-10;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   i1=cptcoveff;    
   if (cptcovn < 1){i1=1;}    
     strcpy(filerespop,"pop"); 
   for(cptcov=1;cptcov<=i1;cptcov++){    strcat(filerespop,fileres);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if((ficrespop=fopen(filerespop,"w"))==NULL) {
         k=k+1;      printf("Problem with forecast resultfile: %s\n", filerespop);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
         fprintf(ficrespl,"\n#******");    }
         for(j=1;j<=cptcoveff;j++)    printf("Computing forecasting: result on file '%s' \n", filerespop);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
         fprintf(ficrespl,"******\n");  
            if (cptcoveff==0) ncodemax[cptcoveff]=1;
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if (mobilav!=0) {
           fprintf(ficrespl,"%.0f",age );      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for(i=1; i<=nlstate;i++)      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           fprintf(ficrespl," %.5f", prlim[i][i]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficrespl,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }      }
       }    }
     }  
   fclose(ficrespl);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
   /*------------- h Pij x at various ages ------------*/    
      agelim=AGESUP;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    hstepm=1;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    hstepm=hstepm/stepm; 
   }    
   printf("Computing pij: result on file '%s' \n", filerespij);    if (popforecast==1) {
        if((ficpop=fopen(popfile,"r"))==NULL) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;        printf("Problem with population file : %s\n",popfile);exit(0);
   /*if (stepm<=24) stepsize=2;*/        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
   agelim=AGESUP;      popage=ivector(0,AGESUP);
   hstepm=stepsize*YEARM; /* Every year of age */      popeffectif=vector(0,AGESUP);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      popcount=vector(0,AGESUP);
        
   k=0;      i=1;   
   for(cptcov=1;cptcov<=i1;cptcov++){      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
       k=k+1;      imx=i;
         fprintf(ficrespij,"\n#****** ");      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
         for(j=1;j<=cptcoveff;j++)    }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
             for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        k=k+1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficrespop,"\n#******");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(j=1;j<=cptcoveff;j++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficrespop,"******\n");
           fprintf(ficrespij,"# Age");        fprintf(ficrespop,"# Age");
           for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
             for(j=1; j<=nlstate+ndeath;j++)        if (popforecast==1)  fprintf(ficrespop," [Population]");
               fprintf(ficrespij," %1d-%1d",i,j);        
           fprintf(ficrespij,"\n");        for (cpt=0; cpt<=0;cpt++) { 
            for (h=0; h<=nhstepm; h++){          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          
             for(i=1; i<=nlstate;i++)          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
               for(j=1; j<=nlstate+ndeath;j++)            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            nhstepm = nhstepm/hstepm; 
             fprintf(ficrespij,"\n");            
              }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            oldm=oldms;savm=savms;
           fprintf(ficrespij,"\n");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         }          
     }            for (h=0; h<=nhstepm; h++){
   }              if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);              } 
               for(j=1; j<=nlstate+ndeath;j++) {
   fclose(ficrespij);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
   /*---------- Forecasting ------------------*/                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   if((stepm == 1) && (strcmp(model,".")==0)){                  else {
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                  }
   }                }
   else{                if (h==(int)(calagedatem+12*cpt)){
     erreur=108;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                    /*fprintf(ficrespop," %.3f", kk1);
   }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                  }
               }
   /*---------- Health expectancies and variances ------------*/              for(i=1; i<=nlstate;i++){
                 kk1=0.;
   strcpy(filerest,"t");                  for(j=1; j<=nlstate;j++){
   strcat(filerest,fileres);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   if((ficrest=fopen(filerest,"w"))==NULL) {                  }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   }              }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   strcpy(filerese,"e");            }
   strcat(filerese,fileres);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficreseij=fopen(filerese,"w"))==NULL) {          }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        }
   }   
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    /******/
   
  strcpy(fileresv,"v");        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   strcat(fileresv,fileres);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   }            nhstepm = nhstepm/hstepm; 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            
   calagedate=-1;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   k=0;            for (h=0; h<=nhstepm; h++){
   for(cptcov=1;cptcov<=i1;cptcov++){              if (h==(int) (calagedatem+YEARM*cpt)) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       k=k+1;              } 
       fprintf(ficrest,"\n#****** ");              for(j=1; j<=nlstate+ndeath;j++) {
       for(j=1;j<=cptcoveff;j++)                kk1=0.;kk2=0;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                for(i=1; i<=nlstate;i++) {              
       fprintf(ficrest,"******\n");                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
       fprintf(ficreseij,"\n#****** ");                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
       for(j=1;j<=cptcoveff;j++)              }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       fprintf(ficreseij,"******\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
       fprintf(ficresvij,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)     } 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficresvij,"******\n");   
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    if (popforecast==1) {
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        free_ivector(popage,0,AGESUP);
        free_vector(popeffectif,0,AGESUP);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      free_vector(popcount,0,AGESUP);
       oldm=oldms;savm=savms;    }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
    } /* End of popforecast */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /***********************************************/
       fprintf(ficrest,"\n");  /**************** Main Program *****************/
   /***********************************************/
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){  int main(int argc, char *argv[])
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  {
         if (popbased==1) {    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
           for(i=1; i<=nlstate;i++)    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
             prlim[i][i]=probs[(int)age][i][k];    double agedeb, agefin,hf;
         }    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
          
         fprintf(ficrest," %4.0f",age);    double fret;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    double **xi,tmp,delta;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    double dum; /* Dummy variable */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    double ***p3mat;
           }    double ***mobaverage;
           epj[nlstate+1] +=epj[j];    int *indx;
         }    char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
         for(i=1, vepp=0.;i <=nlstate;i++)    int firstobs=1, lastobs=10;
           for(j=1;j <=nlstate;j++)    int sdeb, sfin; /* Status at beginning and end */
             vepp += vareij[i][j][(int)age];    int c,  h , cpt,l;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    int ju,jl, mi;
         for(j=1;j <=nlstate;j++){    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
         }    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
         fprintf(ficrest,"\n");    int mobilav=0,popforecast=0;
       }    int hstepm, nhstepm;
     }    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   }    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    double bage, fage, age, agelim, agebase;
     free_vector(weight,1,n);    double ftolpl=FTOL;
   fclose(ficreseij);    double **prlim;
   fclose(ficresvij);    double *severity;
   fclose(ficrest);    double ***param; /* Matrix of parameters */
   fclose(ficpar);    double  *p;
   free_vector(epj,1,nlstate+1);    double **matcov; /* Matrix of covariance */
      double ***delti3; /* Scale */
   /*------- Variance limit prevalence------*/      double *delti; /* Scale */
     double ***eij, ***vareij;
   strcpy(fileresvpl,"vpl");    double **varpl; /* Variances of prevalence limits by age */
   strcat(fileresvpl,fileres);    double *epj, vepp;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    double kk1, kk2;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     exit(0);  
   }    char *alph[]={"a","a","b","c","d","e"}, str[4];
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
   
   k=0;    char z[1]="c", occ;
   for(cptcov=1;cptcov<=i1;cptcov++){  #include <sys/time.h>
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  #include <time.h>
       k=k+1;    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
       fprintf(ficresvpl,"\n#****** ");   
       for(j=1;j<=cptcoveff;j++)    /* long total_usecs;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       struct timeval start_time, end_time;
       fprintf(ficresvpl,"******\n");    
             gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    getcwd(pathcd, size);
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    printf("\n%s\n%s",version,fullversion);
     }    if(argc <=1){
  }      printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
   fclose(ficresvpl);    }
     else{
   /*---------- End : free ----------------*/      strcpy(pathtot,argv[1]);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    }
      /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /*cygwin_split_path(pathtot,path,optionfile);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
      /* cutv(path,optionfile,pathtot,'\\');*/
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    chdir(path);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    replace(pathc,path);
    
   free_matrix(matcov,1,npar,1,npar);    /*-------- arguments in the command line --------*/
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);    /* Log file */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
   if(erreur >0)    if((ficlog=fopen(filelog,"w"))==NULL)    {
     printf("End of Imach with error or warning %d\n",erreur);      printf("Problem with logfile %s\n",filelog);
   else   printf("End of Imach\n");      goto end;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    }
      fprintf(ficlog,"Log filename:%s\n",filelog);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    fprintf(ficlog,"\n%s",version);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    fprintf(ficlog,"\nEnter the parameter file name: ");
   /*------ End -----------*/    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
  end:    /* */
 #ifdef windows    strcpy(fileres,"r");
   /* chdir(pathcd);*/    strcat(fileres, optionfilefiname);
 #endif    strcat(fileres,".txt");    /* Other files have txt extension */
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/    /*---------arguments file --------*/
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    if((ficpar=fopen(optionfile,"r"))==NULL)    {
  strcpy(plotcmd,GNUPLOTPROGRAM);      printf("Problem with optionfile %s\n",optionfile);
  strcat(plotcmd," ");      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
  strcat(plotcmd,optionfilegnuplot);      goto end;
  system(plotcmd);    }
   
 #ifdef windows    strcpy(filereso,"o");
   while (z[0] != 'q') {    strcat(filereso,fileres);
     /* chdir(path); */    if((ficparo=fopen(filereso,"w"))==NULL) {
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      printf("Problem with Output resultfile: %s\n", filereso);
     scanf("%s",z);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
     if (z[0] == 'c') system("./imach");      goto end;
     else if (z[0] == 'e') system(optionfilehtm);    }
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);    /* Reads comments: lines beginning with '#' */
   }    while((c=getc(ficpar))=='#' && c!= EOF){
 #endif      ungetc(c,ficpar);
 }      fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.44  
changed lines
  Added in v.1.84


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>