Diff for /imach/src/imach.c between versions 1.44 and 1.88

version 1.44, 2002/05/24 13:01:48 version 1.88, 2003/06/23 17:54:56
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.88  2003/06/23 17:54:56  brouard
      * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.87  2003/06/18 12:26:01  brouard
   first survey ("cross") where individuals from different ages are    Version 0.96
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.86  2003/06/17 20:04:08  brouard
   second wave of interviews ("longitudinal") which measure each change    (Module): Change position of html and gnuplot routines and added
   (if any) in individual health status.  Health expectancies are    routine fileappend.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.85  2003/06/17 13:12:43  brouard
   Maximum Likelihood of the parameters involved in the model.  The    * imach.c (Repository): Check when date of death was earlier that
   simplest model is the multinomial logistic model where pij is the    current date of interview. It may happen when the death was just
   probability to be observed in state j at the second wave    prior to the death. In this case, dh was negative and likelihood
   conditional to be observed in state i at the first wave. Therefore    was wrong (infinity). We still send an "Error" but patch by
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    assuming that the date of death was just one stepm after the
   'age' is age and 'sex' is a covariate. If you want to have a more    interview.
   complex model than "constant and age", you should modify the program    (Repository): Because some people have very long ID (first column)
   where the markup *Covariates have to be included here again* invites    we changed int to long in num[] and we added a new lvector for
   you to do it.  More covariates you add, slower the    memory allocation. But we also truncated to 8 characters (left
   convergence.    truncation)
     (Repository): No more line truncation errors.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.84  2003/06/13 21:44:43  brouard
   identical for each individual. Also, if a individual missed an    * imach.c (Repository): Replace "freqsummary" at a correct
   intermediate interview, the information is lost, but taken into    place. It differs from routine "prevalence" which may be called
   account using an interpolation or extrapolation.      many times. Probs is memory consuming and must be used with
     parcimony.
   hPijx is the probability to be observed in state i at age x+h    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.83  2003/06/10 13:39:11  lievre
   states. This elementary transition (by month or quarter trimester,    *** empty log message ***
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.82  2003/06/05 15:57:20  brouard
   and the contribution of each individual to the likelihood is simply    Add log in  imach.c and  fullversion number is now printed.
   hPijx.  
   */
   Also this programme outputs the covariance matrix of the parameters but also  /*
   of the life expectancies. It also computes the prevalence limits.     Interpolated Markov Chain
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Short summary of the programme:
            Institut national d'études démographiques, Paris.    
   This software have been partly granted by Euro-REVES, a concerted action    This program computes Healthy Life Expectancies from
   from the European Union.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   It is copyrighted identically to a GNU software product, ie programme and    first survey ("cross") where individuals from different ages are
   software can be distributed freely for non commercial use. Latest version    interviewed on their health status or degree of disability (in the
   can be accessed at http://euroreves.ined.fr/imach .    case of a health survey which is our main interest) -2- at least a
   **********************************************************************/    second wave of interviews ("longitudinal") which measure each change
      (if any) in individual health status.  Health expectancies are
 #include <math.h>    computed from the time spent in each health state according to a
 #include <stdio.h>    model. More health states you consider, more time is necessary to reach the
 #include <stdlib.h>    Maximum Likelihood of the parameters involved in the model.  The
 #include <unistd.h>    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 #define MAXLINE 256    conditional to be observed in state i at the first wave. Therefore
 #define GNUPLOTPROGRAM "gnuplot"    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    'age' is age and 'sex' is a covariate. If you want to have a more
 #define FILENAMELENGTH 80    complex model than "constant and age", you should modify the program
 /*#define DEBUG*/    where the markup *Covariates have to be included here again* invites
 #define windows    you to do it.  More covariates you add, slower the
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    convergence.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     The advantage of this computer programme, compared to a simple
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    multinomial logistic model, is clear when the delay between waves is not
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 #define NINTERVMAX 8    account using an interpolation or extrapolation.  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    hPijx is the probability to be observed in state i at age x+h
 #define NCOVMAX 8 /* Maximum number of covariates */    conditional to the observed state i at age x. The delay 'h' can be
 #define MAXN 20000    split into an exact number (nh*stepm) of unobserved intermediate
 #define YEARM 12. /* Number of months per year */    states. This elementary transition (by month, quarter,
 #define AGESUP 130    semester or year) is modelled as a multinomial logistic.  The hPx
 #define AGEBASE 40    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
     hPijx.
 int erreur; /* Error number */  
 int nvar;    Also this programme outputs the covariance matrix of the parameters but also
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    of the life expectancies. It also computes the stable prevalence. 
 int npar=NPARMAX;    
 int nlstate=2; /* Number of live states */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int ndeath=1; /* Number of dead states */             Institut national d'études démographiques, Paris.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    This software have been partly granted by Euro-REVES, a concerted action
 int popbased=0;    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 int *wav; /* Number of waves for this individuual 0 is possible */    software can be distributed freely for non commercial use. Latest version
 int maxwav; /* Maxim number of waves */    can be accessed at http://euroreves.ined.fr/imach .
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    
 double jmean; /* Mean space between 2 waves */    **********************************************************************/
 double **oldm, **newm, **savm; /* Working pointers to matrices */  /*
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    main
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    read parameterfile
 FILE *ficgp,*ficresprob,*ficpop;    read datafile
 FILE *ficreseij;    concatwav
   char filerese[FILENAMELENGTH];    freqsummary
  FILE  *ficresvij;    if (mle >= 1)
   char fileresv[FILENAMELENGTH];      mlikeli
  FILE  *ficresvpl;    print results files
   char fileresvpl[FILENAMELENGTH];    if mle==1 
        computes hessian
 #define NR_END 1    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define FREE_ARG char*        begin-prev-date,...
 #define FTOL 1.0e-10    open gnuplot file
     open html file
 #define NRANSI    stable prevalence
 #define ITMAX 200     for age prevalim()
     h Pij x
 #define TOL 2.0e-4    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 #define CGOLD 0.3819660    health expectancies
 #define ZEPS 1.0e-10    Variance-covariance of DFLE
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    prevalence()
      movingaverage()
 #define GOLD 1.618034    varevsij() 
 #define GLIMIT 100.0    if popbased==1 varevsij(,popbased)
 #define TINY 1.0e-20    total life expectancies
     Variance of stable prevalence
 static double maxarg1,maxarg2;   end
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)   
   #include <math.h>
 static double sqrarg;  #include <stdio.h>
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #include <stdlib.h>
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #include <unistd.h>
   
 int imx;  #include <sys/time.h>
 int stepm;  #include <time.h>
 /* Stepm, step in month: minimum step interpolation*/  #include "timeval.h"
   
 int estepm;  #define MAXLINE 256
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int m,nb;  #define FILENAMELENGTH 132
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  /*#define DEBUG*/
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  /*#define windows*/
 double **pmmij, ***probs, ***mobaverage;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double dateintmean=0;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 double *weight;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int **s; /* Status */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 double ftolhess; /* Tolerance for computing hessian */  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 /**************** split *************************/  #define YEARM 12. /* Number of months per year */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define AGESUP 130
 {  #define AGEBASE 40
    char *s;                             /* pointer */  #ifdef unix
    int  l1, l2;                         /* length counters */  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
    l1 = strlen( path );                 /* length of path */  #else
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define DIRSEPARATOR '\\'
 #ifdef windows  #define ODIRSEPARATOR '/'
    s = strrchr( path, '\\' );           /* find last / */  #endif
 #else  
    s = strrchr( path, '/' );            /* find last / */  /* $Id$ */
 #endif  /* $State$ */
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
       extern char       *getwd( );  char fullversion[]="$Revision$ $Date$"; 
   int erreur; /* Error number */
       if ( getwd( dirc ) == NULL ) {  int nvar;
 #else  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       extern char       *getcwd( );  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int ndeath=1; /* Number of dead states */
 #endif  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
          return( GLOCK_ERROR_GETCWD );  int popbased=0;
       }  
       strcpy( name, path );             /* we've got it */  int *wav; /* Number of waves for this individuual 0 is possible */
    } else {                             /* strip direcotry from path */  int maxwav; /* Maxim number of waves */
       s++;                              /* after this, the filename */  int jmin, jmax; /* min, max spacing between 2 waves */
       l2 = strlen( s );                 /* length of filename */  int gipmx, gsw; /* Global variables on the number of contributions 
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );                     to the likelihood and the sum of weights (done by funcone)*/
       strcpy( name, s );                /* save file name */  int mle, weightopt;
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       dirc[l1-l2] = 0;                  /* add zero */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    l1 = strlen( dirc );                 /* length of directory */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #ifdef windows  double jmean; /* Mean space between 2 waves */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #else  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #endif  FILE *ficlog, *ficrespow;
    s = strrchr( name, '.' );            /* find last / */  int globpr; /* Global variable for printing or not */
    s++;  double fretone; /* Only one call to likelihood */
    strcpy(ext,s);                       /* save extension */  long ipmx; /* Number of contributions */
    l1= strlen( name);  double sw; /* Sum of weights */
    l2= strlen( s)+1;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    strncpy( finame, name, l1-l2);  FILE *ficresilk;
    finame[l1-l2]= 0;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    return( 0 );                         /* we're done */  FILE *ficresprobmorprev;
 }  FILE *fichtm; /* Html File */
   FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /******************************************/  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 void replace(char *s, char*t)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   int i;  char title[MAXLINE];
   int lg=20;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   i=0;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   lg=strlen(t);  char tmpout[FILENAMELENGTH]; 
   for(i=0; i<= lg; i++) {  char command[FILENAMELENGTH];
     (s[i] = t[i]);  int  outcmd=0;
     if (t[i]== '\\') s[i]='/';  
   }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 }  char lfileres[FILENAMELENGTH];
   char filelog[FILENAMELENGTH]; /* Log file */
 int nbocc(char *s, char occ)  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
   int i,j=0;  char popfile[FILENAMELENGTH];
   int lg=20;  
   i=0;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #define NR_END 1
   if  (s[i] == occ ) j++;  #define FREE_ARG char*
   }  #define FTOL 1.0e-10
   return j;  
 }  #define NRANSI 
   #define ITMAX 200 
 void cutv(char *u,char *v, char*t, char occ)  
 {  #define TOL 2.0e-4 
   int i,lg,j,p=0;  
   i=0;  #define CGOLD 0.3819660 
   for(j=0; j<=strlen(t)-1; j++) {  #define ZEPS 1.0e-10 
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   }  
   #define GOLD 1.618034 
   lg=strlen(t);  #define GLIMIT 100.0 
   for(j=0; j<p; j++) {  #define TINY 1.0e-20 
     (u[j] = t[j]);  
   }  static double maxarg1,maxarg2;
      u[p]='\0';  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
    for(j=0; j<= lg; j++) {    
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   }  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
 /********************** nrerror ********************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 void nrerror(char error_text[])  
 {  int imx; 
   fprintf(stderr,"ERREUR ...\n");  int stepm;
   fprintf(stderr,"%s\n",error_text);  /* Stepm, step in month: minimum step interpolation*/
   exit(1);  
 }  int estepm;
 /*********************** vector *******************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 double *vector(int nl, int nh)  
 {  int m,nb;
   double *v;  long *num;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   if (!v) nrerror("allocation failure in vector");  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   return v-nl+NR_END;  double **pmmij, ***probs;
 }  double dateintmean=0;
   
 /************************ free vector ******************/  double *weight;
 void free_vector(double*v, int nl, int nh)  int **s; /* Status */
 {  double *agedc, **covar, idx;
   free((FREE_ARG)(v+nl-NR_END));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /************************ivector *******************************/  double ftolhess; /* Tolerance for computing hessian */
 int *ivector(long nl,long nh)  
 {  /**************** split *************************/
   int *v;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  {
   if (!v) nrerror("allocation failure in ivector");    char  *ss;                            /* pointer */
   return v-nl+NR_END;    int   l1, l2;                         /* length counters */
 }  
     l1 = strlen(path );                   /* length of path */
 /******************free ivector **************************/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 void free_ivector(int *v, long nl, long nh)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so use current */
   free((FREE_ARG)(v+nl-NR_END));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 /******************* imatrix *******************************/      /*    extern  char* getcwd ( char *buf , int len);*/
 int **imatrix(long nrl, long nrh, long ncl, long nch)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */        return( GLOCK_ERROR_GETCWD );
 {      }
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;      strcpy( name, path );               /* we've got it */
   int **m;    } else {                              /* strip direcotry from path */
        ss++;                               /* after this, the filename */
   /* allocate pointers to rows */      l2 = strlen( ss );                  /* length of filename */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!m) nrerror("allocation failure 1 in matrix()");      strcpy( name, ss );         /* save file name */
   m += NR_END;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m -= nrl;      dirc[l1-l2] = 0;                    /* add zero */
      }
      l1 = strlen( dirc );                  /* length of directory */
   /* allocate rows and set pointers to them */    /*#ifdef windows
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #else
   m[nrl] += NR_END;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m[nrl] -= ncl;  #endif
      */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    ss = strrchr( name, '.' );            /* find last / */
      ss++;
   /* return pointer to array of pointers to rows */    strcpy(ext,ss);                       /* save extension */
   return m;    l1= strlen( name);
 }    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
 /****************** free_imatrix *************************/    finame[l1-l2]= 0;
 void free_imatrix(m,nrl,nrh,ncl,nch)    return( 0 );                          /* we're done */
       int **m;  }
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  
 {  /******************************************/
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  void replace(char *s, char*t)
 }  {
     int i;
 /******************* matrix *******************************/    int lg=20;
 double **matrix(long nrl, long nrh, long ncl, long nch)    i=0;
 {    lg=strlen(t);
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    for(i=0; i<= lg; i++) {
   double **m;      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  int nbocc(char *s, char occ)
   {
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int i,j=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int lg=20;
   m[nrl] += NR_END;    i=0;
   m[nrl] -= ncl;    lg=strlen(s);
     for(i=0; i<= lg; i++) {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if  (s[i] == occ ) j++;
   return m;    }
 }    return j;
   }
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    /* cuts string t into u and v where u is ended by char occ excluding it
   free((FREE_ARG)(m+nrl-NR_END));       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 }       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
 /******************* ma3x *******************************/    i=0;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    for(j=0; j<=strlen(t)-1; j++) {
 {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    }
   double ***m;  
     lg=strlen(t);
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    for(j=0; j<p; j++) {
   if (!m) nrerror("allocation failure 1 in matrix()");      (u[j] = t[j]);
   m += NR_END;    }
   m -= nrl;       u[p]='\0';
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));     for(j=0; j<= lg; j++) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      if (j>=(p+1))(v[j-p-1] = t[j]);
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;  }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /********************** nrerror ********************/
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  void nrerror(char error_text[])
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  {
   m[nrl][ncl] += NR_END;    fprintf(stderr,"ERREUR ...\n");
   m[nrl][ncl] -= nll;    fprintf(stderr,"%s\n",error_text);
   for (j=ncl+1; j<=nch; j++)    exit(EXIT_FAILURE);
     m[nrl][j]=m[nrl][j-1]+nlay;  }
    /*********************** vector *******************/
   for (i=nrl+1; i<=nrh; i++) {  double *vector(int nl, int nh)
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  {
     for (j=ncl+1; j<=nch; j++)    double *v;
       m[i][j]=m[i][j-1]+nlay;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   }    if (!v) nrerror("allocation failure in vector");
   return m;    return v-nl+NR_END;
 }  }
   
 /*************************free ma3x ************************/  /************************ free vector ******************/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  void free_vector(double*v, int nl, int nh)
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    free((FREE_ARG)(v+nl-NR_END));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /************************ivector *******************************/
   int *ivector(long nl,long nh)
 /***************** f1dim *************************/  {
 extern int ncom;    int *v;
 extern double *pcom,*xicom;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 extern double (*nrfunc)(double []);    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
 double f1dim(double x)  }
 {  
   int j;  /******************free ivector **************************/
   double f;  void free_ivector(int *v, long nl, long nh)
   double *xt;  {
      free((FREE_ARG)(v+nl-NR_END));
   xt=vector(1,ncom);  }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /************************lvector *******************************/
   free_vector(xt,1,ncom);  long *lvector(long nl,long nh)
   return f;  {
 }    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 /*****************brent *************************/    if (!v) nrerror("allocation failure in ivector");
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    return v-nl+NR_END;
 {  }
   int iter;  
   double a,b,d,etemp;  /******************free lvector **************************/
   double fu,fv,fw,fx;  void free_lvector(long *v, long nl, long nh)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    free((FREE_ARG)(v+nl-NR_END));
   double e=0.0;  }
    
   a=(ax < cx ? ax : cx);  /******************* imatrix *******************************/
   b=(ax > cx ? ax : cx);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   x=w=v=bx;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   fw=fv=fx=(*f)(x);  { 
   for (iter=1;iter<=ITMAX;iter++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     xm=0.5*(a+b);    int **m; 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    /* allocate pointers to rows */ 
     printf(".");fflush(stdout);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()"); 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    m += NR_END; 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    m -= nrl; 
 #endif    
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    
       *xmin=x;    /* allocate rows and set pointers to them */ 
       return fx;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     ftemp=fu;    m[nrl] += NR_END; 
     if (fabs(e) > tol1) {    m[nrl] -= ncl; 
       r=(x-w)*(fx-fv);    
       q=(x-v)*(fx-fw);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       p=(x-v)*q-(x-w)*r;    
       q=2.0*(q-r);    /* return pointer to array of pointers to rows */ 
       if (q > 0.0) p = -p;    return m; 
       q=fabs(q);  } 
       etemp=e;  
       e=d;  /****************** free_imatrix *************************/
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  void free_imatrix(m,nrl,nrh,ncl,nch)
         d=CGOLD*(e=(x >= xm ? a-x : b-x));        int **m;
       else {        long nch,ncl,nrh,nrl; 
         d=p/q;       /* free an int matrix allocated by imatrix() */ 
         u=x+d;  { 
         if (u-a < tol2 || b-u < tol2)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
           d=SIGN(tol1,xm-x);    free((FREE_ARG) (m+nrl-NR_END)); 
       }  } 
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  {
     fu=(*f)(u);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     if (fu <= fx) {    double **m;
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         SHFT(fv,fw,fx,fu)    if (!m) nrerror("allocation failure 1 in matrix()");
         } else {    m += NR_END;
           if (u < x) a=u; else b=u;    m -= nrl;
           if (fu <= fw || w == x) {  
             v=w;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             w=u;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             fv=fw;    m[nrl] += NR_END;
             fw=fu;    m[nrl] -= ncl;
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
             fv=fu;    return m;
           }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         }     */
   }  }
   nrerror("Too many iterations in brent");  
   *xmin=x;  /*************************free matrix ************************/
   return fx;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 }  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 /****************** mnbrak ***********************/    free((FREE_ARG)(m+nrl-NR_END));
   }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  /******************* ma3x *******************************/
 {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double ulim,u,r,q, dum;  {
   double fu;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
      double ***m;
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   if (*fb > *fa) {    if (!m) nrerror("allocation failure 1 in matrix()");
     SHFT(dum,*ax,*bx,dum)    m += NR_END;
       SHFT(dum,*fb,*fa,dum)    m -= nrl;
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   *fc=(*func)(*cx);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   while (*fb > *fc) {    m[nrl] += NR_END;
     r=(*bx-*ax)*(*fb-*fc);    m[nrl] -= ncl;
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if ((*bx-u)*(u-*cx) > 0.0) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       fu=(*func)(u);    m[nrl][ncl] += NR_END;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    m[nrl][ncl] -= nll;
       fu=(*func)(u);    for (j=ncl+1; j<=nch; j++) 
       if (fu < *fc) {      m[nrl][j]=m[nrl][j-1]+nlay;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    
           SHFT(*fb,*fc,fu,(*func)(u))    for (i=nrl+1; i<=nrh; i++) {
           }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      for (j=ncl+1; j<=nch; j++) 
       u=ulim;        m[i][j]=m[i][j-1]+nlay;
       fu=(*func)(u);    }
     } else {    return m; 
       u=(*cx)+GOLD*(*cx-*bx);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       fu=(*func)(u);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     }    */
     SHFT(*ax,*bx,*cx,u)  }
       SHFT(*fa,*fb,*fc,fu)  
       }  /*************************free ma3x ************************/
 }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 /*************** linmin ************************/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 int ncom;    free((FREE_ARG)(m+nrl-NR_END));
 double *pcom,*xicom;  }
 double (*nrfunc)(double []);  
    /***************** f1dim *************************/
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  extern int ncom; 
 {  extern double *pcom,*xicom;
   double brent(double ax, double bx, double cx,  extern double (*nrfunc)(double []); 
                double (*f)(double), double tol, double *xmin);   
   double f1dim(double x);  double f1dim(double x) 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  { 
               double *fc, double (*func)(double));    int j; 
   int j;    double f;
   double xx,xmin,bx,ax;    double *xt; 
   double fx,fb,fa;   
      xt=vector(1,ncom); 
   ncom=n;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   pcom=vector(1,n);    f=(*nrfunc)(xt); 
   xicom=vector(1,n);    free_vector(xt,1,ncom); 
   nrfunc=func;    return f; 
   for (j=1;j<=n;j++) {  } 
     pcom[j]=p[j];  
     xicom[j]=xi[j];  /*****************brent *************************/
   }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   ax=0.0;  { 
   xx=1.0;    int iter; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    double a,b,d,etemp;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    double fu,fv,fw,fx;
 #ifdef DEBUG    double ftemp;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 #endif    double e=0.0; 
   for (j=1;j<=n;j++) {   
     xi[j] *= xmin;    a=(ax < cx ? ax : cx); 
     p[j] += xi[j];    b=(ax > cx ? ax : cx); 
   }    x=w=v=bx; 
   free_vector(xicom,1,n);    fw=fv=fx=(*f)(x); 
   free_vector(pcom,1,n);    for (iter=1;iter<=ITMAX;iter++) { 
 }      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 /*************** powell ************************/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      printf(".");fflush(stdout);
             double (*func)(double []))      fprintf(ficlog,".");fflush(ficlog);
 {  #ifdef DEBUG
   void linmin(double p[], double xi[], int n, double *fret,      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
               double (*func)(double []));      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int i,ibig,j;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double del,t,*pt,*ptt,*xit;  #endif
   double fp,fptt;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double *xits;        *xmin=x; 
   pt=vector(1,n);        return fx; 
   ptt=vector(1,n);      } 
   xit=vector(1,n);      ftemp=fu;
   xits=vector(1,n);      if (fabs(e) > tol1) { 
   *fret=(*func)(p);        r=(x-w)*(fx-fv); 
   for (j=1;j<=n;j++) pt[j]=p[j];        q=(x-v)*(fx-fw); 
   for (*iter=1;;++(*iter)) {        p=(x-v)*q-(x-w)*r; 
     fp=(*fret);        q=2.0*(q-r); 
     ibig=0;        if (q > 0.0) p = -p; 
     del=0.0;        q=fabs(q); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        etemp=e; 
     for (i=1;i<=n;i++)        e=d; 
       printf(" %d %.12f",i, p[i]);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     printf("\n");          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for (i=1;i<=n;i++) {        else { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];          d=p/q; 
       fptt=(*fret);          u=x+d; 
 #ifdef DEBUG          if (u-a < tol2 || b-u < tol2) 
       printf("fret=%lf \n",*fret);            d=SIGN(tol1,xm-x); 
 #endif        } 
       printf("%d",i);fflush(stdout);      } else { 
       linmin(p,xit,n,fret,func);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       if (fabs(fptt-(*fret)) > del) {      } 
         del=fabs(fptt-(*fret));      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         ibig=i;      fu=(*f)(u); 
       }      if (fu <= fx) { 
 #ifdef DEBUG        if (u >= x) a=x; else b=x; 
       printf("%d %.12e",i,(*fret));        SHFT(v,w,x,u) 
       for (j=1;j<=n;j++) {          SHFT(fv,fw,fx,fu) 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);          } else { 
         printf(" x(%d)=%.12e",j,xit[j]);            if (u < x) a=u; else b=u; 
       }            if (fu <= fw || w == x) { 
       for(j=1;j<=n;j++)              v=w; 
         printf(" p=%.12e",p[j]);              w=u; 
       printf("\n");              fv=fw; 
 #endif              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {              v=u; 
 #ifdef DEBUG              fv=fu; 
       int k[2],l;            } 
       k[0]=1;          } 
       k[1]=-1;    } 
       printf("Max: %.12e",(*func)(p));    nrerror("Too many iterations in brent"); 
       for (j=1;j<=n;j++)    *xmin=x; 
         printf(" %.12e",p[j]);    return fx; 
       printf("\n");  } 
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /****************** mnbrak ***********************/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         }              double (*func)(double)) 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  { 
       }    double ulim,u,r,q, dum;
 #endif    double fu; 
    
     *fa=(*func)(*ax); 
       free_vector(xit,1,n);    *fb=(*func)(*bx); 
       free_vector(xits,1,n);    if (*fb > *fa) { 
       free_vector(ptt,1,n);      SHFT(dum,*ax,*bx,dum) 
       free_vector(pt,1,n);        SHFT(dum,*fb,*fa,dum) 
       return;        } 
     }    *cx=(*bx)+GOLD*(*bx-*ax); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    *fc=(*func)(*cx); 
     for (j=1;j<=n;j++) {    while (*fb > *fc) { 
       ptt[j]=2.0*p[j]-pt[j];      r=(*bx-*ax)*(*fb-*fc); 
       xit[j]=p[j]-pt[j];      q=(*bx-*cx)*(*fb-*fa); 
       pt[j]=p[j];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     fptt=(*func)(ptt);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     if (fptt < fp) {      if ((*bx-u)*(u-*cx) > 0.0) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        fu=(*func)(u); 
       if (t < 0.0) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         linmin(p,xit,n,fret,func);        fu=(*func)(u); 
         for (j=1;j<=n;j++) {        if (fu < *fc) { 
           xi[j][ibig]=xi[j][n];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           xi[j][n]=xit[j];            SHFT(*fb,*fc,fu,(*func)(u)) 
         }            } 
 #ifdef DEBUG      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        u=ulim; 
         for(j=1;j<=n;j++)        fu=(*func)(u); 
           printf(" %.12e",xit[j]);      } else { 
         printf("\n");        u=(*cx)+GOLD*(*cx-*bx); 
 #endif        fu=(*func)(u); 
       }      } 
     }      SHFT(*ax,*bx,*cx,u) 
   }        SHFT(*fa,*fb,*fc,fu) 
 }        } 
   } 
 /**** Prevalence limit ****************/  
   /*************** linmin ************************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  int ncom; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  double *pcom,*xicom;
      matrix by transitions matrix until convergence is reached */  double (*nrfunc)(double []); 
    
   int i, ii,j,k;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double min, max, maxmin, maxmax,sumnew=0.;  { 
   double **matprod2();    double brent(double ax, double bx, double cx, 
   double **out, cov[NCOVMAX], **pmij();                 double (*f)(double), double tol, double *xmin); 
   double **newm;    double f1dim(double x); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    int j; 
     for (j=1;j<=nlstate+ndeath;j++){    double xx,xmin,bx,ax; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double fx,fb,fa;
     }   
     ncom=n; 
    cov[1]=1.;    pcom=vector(1,n); 
      xicom=vector(1,n); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    nrfunc=func; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for (j=1;j<=n;j++) { 
     newm=savm;      pcom[j]=p[j]; 
     /* Covariates have to be included here again */      xicom[j]=xi[j]; 
      cov[2]=agefin;    } 
      ax=0.0; 
       for (k=1; k<=cptcovn;k++) {    xx=1.0; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       }  #ifdef DEBUG
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (k=1; k<=cptcovprod;k++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #endif
     for (j=1;j<=n;j++) { 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      xi[j] *= xmin; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      p[j] += xi[j]; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    } 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
     savm=oldm;  } 
     oldm=newm;  
     maxmax=0.;  /*************** powell ************************/
     for(j=1;j<=nlstate;j++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       min=1.;              double (*func)(double [])) 
       max=0.;  { 
       for(i=1; i<=nlstate; i++) {    void linmin(double p[], double xi[], int n, double *fret, 
         sumnew=0;                double (*func)(double [])); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    int i,ibig,j; 
         prlim[i][j]= newm[i][j]/(1-sumnew);    double del,t,*pt,*ptt,*xit;
         max=FMAX(max,prlim[i][j]);    double fp,fptt;
         min=FMIN(min,prlim[i][j]);    double *xits;
       }    pt=vector(1,n); 
       maxmin=max-min;    ptt=vector(1,n); 
       maxmax=FMAX(maxmax,maxmin);    xit=vector(1,n); 
     }    xits=vector(1,n); 
     if(maxmax < ftolpl){    *fret=(*func)(p); 
       return prlim;    for (j=1;j<=n;j++) pt[j]=p[j]; 
     }    for (*iter=1;;++(*iter)) { 
   }      fp=(*fret); 
 }      ibig=0; 
       del=0.0; 
 /*************** transition probabilities ***************/      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      fprintf(ficrespow,"%d %.12f",*iter,*fret);
 {      for (i=1;i<=n;i++) {
   double s1, s2;        printf(" %d %.12f",i, p[i]);
   /*double t34;*/        fprintf(ficlog," %d %.12lf",i, p[i]);
   int i,j,j1, nc, ii, jj;        fprintf(ficrespow," %.12lf", p[i]);
       }
     for(i=1; i<= nlstate; i++){      printf("\n");
     for(j=1; j<i;j++){      fprintf(ficlog,"\n");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      fprintf(ficrespow,"\n");
         /*s2 += param[i][j][nc]*cov[nc];*/      for (i=1;i<=n;i++) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        fptt=(*fret); 
       }  #ifdef DEBUG
       ps[i][j]=s2;        printf("fret=%lf \n",*fret);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
     for(j=i+1; j<=nlstate+ndeath;j++){        printf("%d",i);fflush(stdout);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fprintf(ficlog,"%d",i);fflush(ficlog);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        linmin(p,xit,n,fret,func); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        if (fabs(fptt-(*fret)) > del) { 
       }          del=fabs(fptt-(*fret)); 
       ps[i][j]=s2;          ibig=i; 
     }        } 
   }  #ifdef DEBUG
     /*ps[3][2]=1;*/        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   for(i=1; i<= nlstate; i++){        for (j=1;j<=n;j++) {
      s1=0;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for(j=1; j<i; j++)          printf(" x(%d)=%.12e",j,xit[j]);
       s1+=exp(ps[i][j]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for(j=i+1; j<=nlstate+ndeath; j++)        }
       s1+=exp(ps[i][j]);        for(j=1;j<=n;j++) {
     ps[i][i]=1./(s1+1.);          printf(" p=%.12e",p[j]);
     for(j=1; j<i; j++)          fprintf(ficlog," p=%.12e",p[j]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        }
     for(j=i+1; j<=nlstate+ndeath; j++)        printf("\n");
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fprintf(ficlog,"\n");
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #endif
   } /* end i */      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #ifdef DEBUG
     for(jj=1; jj<= nlstate+ndeath; jj++){        int k[2],l;
       ps[ii][jj]=0;        k[0]=1;
       ps[ii][ii]=1;        k[1]=-1;
     }        printf("Max: %.12e",(*func)(p));
   }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          fprintf(ficlog," %.12e",p[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){        }
      printf("%lf ",ps[ii][jj]);        printf("\n");
    }        fprintf(ficlog,"\n");
     printf("\n ");        for(l=0;l<=1;l++) {
     }          for (j=1;j<=n;j++) {
     printf("\n ");printf("%lf ",cov[2]);*/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 /*            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   goto end;*/          }
     return ps;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
 /**************** Product of 2 matrices ******************/  #endif
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {        free_vector(xit,1,n); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        free_vector(xits,1,n); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        free_vector(ptt,1,n); 
   /* in, b, out are matrice of pointers which should have been initialized        free_vector(pt,1,n); 
      before: only the contents of out is modified. The function returns        return; 
      a pointer to pointers identical to out */      } 
   long i, j, k;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for(i=nrl; i<= nrh; i++)      for (j=1;j<=n;j++) { 
     for(k=ncolol; k<=ncoloh; k++)        ptt[j]=2.0*p[j]-pt[j]; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        xit[j]=p[j]-pt[j]; 
         out[i][k] +=in[i][j]*b[j][k];        pt[j]=p[j]; 
       } 
   return out;      fptt=(*func)(ptt); 
 }      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
 /************* Higher Matrix Product ***************/          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )            xi[j][ibig]=xi[j][n]; 
 {            xi[j][n]=xit[j]; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          }
      duration (i.e. until  #ifdef DEBUG
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      (typically every 2 years instead of every month which is too big).          for(j=1;j<=n;j++){
      Model is determined by parameters x and covariates have to be            printf(" %.12e",xit[j]);
      included manually here.            fprintf(ficlog," %.12e",xit[j]);
           }
      */          printf("\n");
           fprintf(ficlog,"\n");
   int i, j, d, h, k;  #endif
   double **out, cov[NCOVMAX];        }
   double **newm;      } 
     } 
   /* Hstepm could be zero and should return the unit matrix */  } 
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  /**** Prevalence limit (stable prevalence)  ****************/
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for(h=1; h <=nhstepm; h++){       matrix by transitions matrix until convergence is reached */
     for(d=1; d <=hstepm; d++){  
       newm=savm;    int i, ii,j,k;
       /* Covariates have to be included here again */    double min, max, maxmin, maxmax,sumnew=0.;
       cov[1]=1.;    double **matprod2();
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    double **out, cov[NCOVMAX], **pmij();
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double **newm;
       for (k=1; k<=cptcovage;k++)    double agefin, delaymax=50 ; /* Max number of years to converge */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)    for (ii=1;ii<=nlstate+ndeath;ii++)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/     cov[1]=1.;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   
                    pmij(pmmij,cov,ncovmodel,x,nlstate));   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       savm=oldm;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       oldm=newm;      newm=savm;
     }      /* Covariates have to be included here again */
     for(i=1; i<=nlstate+ndeath; i++)       cov[2]=agefin;
       for(j=1;j<=nlstate+ndeath;j++) {    
         po[i][j][h]=newm[i][j];        for (k=1; k<=cptcovn;k++) {
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       }        }
   } /* end h */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   return po;        for (k=1; k<=cptcovprod;k++)
 }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 /*************** log-likelihood *************/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 double func( double *x)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      savm=oldm;
   double **out;      oldm=newm;
   double sw; /* Sum of weights */      maxmax=0.;
   double lli; /* Individual log likelihood */      for(j=1;j<=nlstate;j++){
   long ipmx;        min=1.;
   /*extern weight */        max=0.;
   /* We are differentiating ll according to initial status */        for(i=1; i<=nlstate; i++) {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          sumnew=0;
   /*for(i=1;i<imx;i++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     printf(" %d\n",s[4][i]);          prlim[i][j]= newm[i][j]/(1-sumnew);
   */          max=FMAX(max,prlim[i][j]);
   cov[1]=1.;          min=FMIN(min,prlim[i][j]);
         }
   for(k=1; k<=nlstate; k++) ll[k]=0.;        maxmin=max-min;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        maxmax=FMAX(maxmax,maxmin);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      }
     for(mi=1; mi<= wav[i]-1; mi++){      if(maxmax < ftolpl){
       for (ii=1;ii<=nlstate+ndeath;ii++)        return prlim;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      }
       for(d=0; d<dh[mi][i]; d++){    }
         newm=savm;  }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  /*************** transition probabilities ***************/ 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
          {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double s1, s2;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /*double t34;*/
         savm=oldm;    int i,j,j1, nc, ii, jj;
         oldm=newm;  
              for(i=1; i<= nlstate; i++){
              for(j=1; j<i;j++){
       } /* end mult */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                /*s2 += param[i][j][nc]*cov[nc];*/
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       ipmx +=1;        }
       sw += weight[i];        ps[i][j]=s2;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     } /* end of wave */      }
   } /* end of individual */      for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        }
   return -l;        ps[i][j]=s2;
 }      }
     }
       /*ps[3][2]=1;*/
 /*********** Maximum Likelihood Estimation ***************/  
     for(i=1; i<= nlstate; i++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))       s1=0;
 {      for(j=1; j<i; j++)
   int i,j, iter;        s1+=exp(ps[i][j]);
   double **xi,*delti;      for(j=i+1; j<=nlstate+ndeath; j++)
   double fret;        s1+=exp(ps[i][j]);
   xi=matrix(1,npar,1,npar);      ps[i][i]=1./(s1+1.);
   for (i=1;i<=npar;i++)      for(j=1; j<i; j++)
     for (j=1;j<=npar;j++)        ps[i][j]= exp(ps[i][j])*ps[i][i];
       xi[i][j]=(i==j ? 1.0 : 0.0);      for(j=i+1; j<=nlstate+ndeath; j++)
   printf("Powell\n");        ps[i][j]= exp(ps[i][j])*ps[i][i];
   powell(p,xi,npar,ftol,&iter,&fret,func);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
 }        ps[ii][jj]=0;
         ps[ii][ii]=1;
 /**** Computes Hessian and covariance matrix ***/      }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    }
 {  
   double  **a,**y,*x,pd;  
   double **hess;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   int i, j,jk;      for(jj=1; jj<= nlstate+ndeath; jj++){
   int *indx;       printf("%lf ",ps[ii][jj]);
      }
   double hessii(double p[], double delta, int theta, double delti[]);      printf("\n ");
   double hessij(double p[], double delti[], int i, int j);      }
   void lubksb(double **a, int npar, int *indx, double b[]) ;      printf("\n ");printf("%lf ",cov[2]);*/
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*
     for(i=1; i<= npar; i++) printf("%f ",x[i]);
   hess=matrix(1,npar,1,npar);    goto end;*/
       return ps;
   printf("\nCalculation of the hessian matrix. Wait...\n");  }
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  /**************** Product of 2 matrices ******************/
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     /*printf(" %lf ",hess[i][i]);*/  {
   }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for (i=1;i<=npar;i++) {    /* in, b, out are matrice of pointers which should have been initialized 
     for (j=1;j<=npar;j++)  {       before: only the contents of out is modified. The function returns
       if (j>i) {       a pointer to pointers identical to out */
         printf(".%d%d",i,j);fflush(stdout);    long i, j, k;
         hess[i][j]=hessij(p,delti,i,j);    for(i=nrl; i<= nrh; i++)
         hess[j][i]=hess[i][j];          for(k=ncolol; k<=ncoloh; k++)
         /*printf(" %lf ",hess[i][j]);*/        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       }          out[i][k] +=in[i][j]*b[j][k];
     }  
   }    return out;
   printf("\n");  }
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
    /************* Higher Matrix Product ***************/
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   x=vector(1,npar);  {
   indx=ivector(1,npar);    /* Computes the transition matrix starting at age 'age' over 
   for (i=1;i<=npar;i++)       'nhstepm*hstepm*stepm' months (i.e. until
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   ludcmp(a,npar,indx,&pd);       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   for (j=1;j<=npar;j++) {       (typically every 2 years instead of every month which is too big 
     for (i=1;i<=npar;i++) x[i]=0;       for the memory).
     x[j]=1;       Model is determined by parameters x and covariates have to be 
     lubksb(a,npar,indx,x);       included manually here. 
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];       */
     }  
   }    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
   printf("\n#Hessian matrix#\n");    double **newm;
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {    /* Hstepm could be zero and should return the unit matrix */
       printf("%.3e ",hess[i][j]);    for (i=1;i<=nlstate+ndeath;i++)
     }      for (j=1;j<=nlstate+ndeath;j++){
     printf("\n");        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   /* Recompute Inverse */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=npar;i++)    for(h=1; h <=nhstepm; h++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      for(d=1; d <=hstepm; d++){
   ludcmp(a,npar,indx,&pd);        newm=savm;
         /* Covariates have to be included here again */
   /*  printf("\n#Hessian matrix recomputed#\n");        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   for (j=1;j<=npar;j++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for (i=1;i<=npar;i++) x[i]=0;        for (k=1; k<=cptcovage;k++)
     x[j]=1;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     lubksb(a,npar,indx,x);        for (k=1; k<=cptcovprod;k++)
     for (i=1;i<=npar;i++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  
     }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     printf("\n");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
   free_matrix(a,1,npar,1,npar);        oldm=newm;
   free_matrix(y,1,npar,1,npar);      }
   free_vector(x,1,npar);      for(i=1; i<=nlstate+ndeath; i++)
   free_ivector(indx,1,npar);        for(j=1;j<=nlstate+ndeath;j++) {
   free_matrix(hess,1,npar,1,npar);          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
            */
 }        }
     } /* end h */
 /*************** hessian matrix ****************/    return po;
 double hessii( double x[], double delta, int theta, double delti[])  }
 {  
   int i;  
   int l=1, lmax=20;  /*************** log-likelihood *************/
   double k1,k2;  double func( double *x)
   double p2[NPARMAX+1];  {
   double res;    int i, ii, j, k, mi, d, kk;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double fx;    double **out;
   int k=0,kmax=10;    double sw; /* Sum of weights */
   double l1;    double lli; /* Individual log likelihood */
     int s1, s2;
   fx=func(x);    double bbh, survp;
   for (i=1;i<=npar;i++) p2[i]=x[i];    long ipmx;
   for(l=0 ; l <=lmax; l++){    /*extern weight */
     l1=pow(10,l);    /* We are differentiating ll according to initial status */
     delts=delt;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for(k=1 ; k <kmax; k=k+1){    /*for(i=1;i<imx;i++) 
       delt = delta*(l1*k);      printf(" %d\n",s[4][i]);
       p2[theta]=x[theta] +delt;    */
       k1=func(p2)-fx;    cov[1]=1.;
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    if(mle==1){
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 #ifdef DEBUG        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for(mi=1; mi<= wav[i]-1; mi++){
 #endif          for (ii=1;ii<=nlstate+ndeath;ii++)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            for (j=1;j<=nlstate+ndeath;j++){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         k=kmax;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          for(d=0; d<dh[mi][i]; d++){
         k=kmax; l=lmax*10.;            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            for (kk=1; kk<=cptcovage;kk++) {
         delts=delt;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   delti[theta]=delts;            savm=oldm;
   return res;            oldm=newm;
            } /* end mult */
 }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 double hessij( double x[], double delti[], int thetai,int thetaj)          /* But now since version 0.9 we anticipate for bias and large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int i;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   int l=1, l1, lmax=20;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double k1,k2,k3,k4,res,fx;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double p2[NPARMAX+1];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   int k;           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   fx=func(x);           * -stepm/2 to stepm/2 .
   for (k=1; k<=2; k++) {           * For stepm=1 the results are the same as for previous versions of Imach.
     for (i=1;i<=npar;i++) p2[i]=x[i];           * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetai]=x[thetai]+delti[thetai]/k;           */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          s1=s[mw[mi][i]][i];
     k1=func(p2)-fx;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
     p2[thetai]=x[thetai]+delti[thetai]/k;          /* bias is positive if real duration
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * is higher than the multiple of stepm and negative otherwise.
     k2=func(p2)-fx;           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     p2[thetai]=x[thetai]-delti[thetai]/k;          if( s2 > nlstate){ 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     k3=func(p2)-fx;               to the likelihood is the probability to die between last step unit time and current 
                 step unit time, which is also the differences between probability to die before dh 
     p2[thetai]=x[thetai]-delti[thetai]/k;               and probability to die before dh-stepm . 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;               In version up to 0.92 likelihood was computed
     k4=func(p2)-fx;          as if date of death was unknown. Death was treated as any other
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          health state: the date of the interview describes the actual state
 #ifdef DEBUG          and not the date of a change in health state. The former idea was
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          to consider that at each interview the state was recorded
 #endif          (healthy, disable or death) and IMaCh was corrected; but when we
   }          introduced the exact date of death then we should have modified
   return res;          the contribution of an exact death to the likelihood. This new
 }          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
 /************** Inverse of matrix **************/          and month of death but the probability to survive from last
 void ludcmp(double **a, int n, int *indx, double *d)          interview up to one month before death multiplied by the
 {          probability to die within a month. Thanks to Chris
   int i,imax,j,k;          Jackson for correcting this bug.  Former versions increased
   double big,dum,sum,temp;          mortality artificially. The bad side is that we add another loop
   double *vv;          which slows down the processing. The difference can be up to 10%
            lower mortality.
   vv=vector(1,n);            */
   *d=1.0;            lli=log(out[s1][s2] - savm[s1][s2]);
   for (i=1;i<=n;i++) {          }else{
     big=0.0;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for (j=1;j<=n;j++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       if ((temp=fabs(a[i][j])) > big) big=temp;          } 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     vv[i]=1.0/big;          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for (j=1;j<=n;j++) {          ipmx +=1;
     for (i=1;i<j;i++) {          sw += weight[i];
       sum=a[i][j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        } /* end of wave */
       a[i][j]=sum;      } /* end of individual */
     }    }  else if(mle==2){
     big=0.0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=j;i<=n;i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       sum=a[i][j];        for(mi=1; mi<= wav[i]-1; mi++){
       for (k=1;k<j;k++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         sum -= a[i][k]*a[k][j];            for (j=1;j<=nlstate+ndeath;j++){
       a[i][j]=sum;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if ( (dum=vv[i]*fabs(sum)) >= big) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         big=dum;            }
         imax=i;          for(d=0; d<=dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if (j != imax) {            for (kk=1; kk<=cptcovage;kk++) {
       for (k=1;k<=n;k++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         dum=a[imax][k];            }
         a[imax][k]=a[j][k];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         a[j][k]=dum;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
       *d = -(*d);            oldm=newm;
       vv[imax]=vv[j];          } /* end mult */
     }        
     indx[j]=imax;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     if (a[j][j] == 0.0) a[j][j]=TINY;          /* But now since version 0.9 we anticipate for bias and large stepm.
     if (j != n) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       dum=1.0/(a[j][j]);           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           * the nearest (and in case of equal distance, to the lowest) interval but now
     }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   free_vector(vv,1,n);  /* Doesn't work */           * probability in order to take into account the bias as a fraction of the way
 ;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
 void lubksb(double **a, int n, int *indx, double b[])           * For stepm > 1 the results are less biased than in previous versions. 
 {           */
   int i,ii=0,ip,j;          s1=s[mw[mi][i]][i];
   double sum;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   for (i=1;i<=n;i++) {          /* bias is positive if real duration
     ip=indx[i];           * is higher than the multiple of stepm and negative otherwise.
     sum=b[ip];           */
     b[ip]=b[i];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     if (ii)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     else if (sum) ii=i;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     b[i]=sum;          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for (i=n;i>=1;i--) {          ipmx +=1;
     sum=b[i];          sw += weight[i];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     b[i]=sum/a[i][i];        } /* end of wave */
   }      } /* end of individual */
 }    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /************ Frequencies ********************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for(mi=1; mi<= wav[i]-1; mi++){
 {  /* Some frequencies */          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***freq; /* Frequencies */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *pp;            }
   double pos, k2, dateintsum=0,k2cpt=0;          for(d=0; d<dh[mi][i]; d++){
   FILE *ficresp;            newm=savm;
   char fileresp[FILENAMELENGTH];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   pp=vector(1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   strcpy(fileresp,"p");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   strcat(fileresp,fileres);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if((ficresp=fopen(fileresp,"w"))==NULL) {            savm=oldm;
     printf("Problem with prevalence resultfile: %s\n", fileresp);            oldm=newm;
     exit(0);          } /* end mult */
   }        
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   j1=0;          /* But now since version 0.9 we anticipate for bias and large stepm.
             * If stepm is larger than one month (smallest stepm) and if the exact delay 
   j=cptcoveff;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for(k1=1; k1<=j;k1++){           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     for(i1=1; i1<=ncodemax[k1];i1++){           * probability in order to take into account the bias as a fraction of the way
       j1++;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           * -stepm/2 to stepm/2 .
         scanf("%d", i);*/           * For stepm=1 the results are the same as for previous versions of Imach.
       for (i=-1; i<=nlstate+ndeath; i++)             * For stepm > 1 the results are less biased than in previous versions. 
         for (jk=-1; jk<=nlstate+ndeath; jk++)             */
           for(m=agemin; m <= agemax+3; m++)          s1=s[mw[mi][i]][i];
             freq[i][jk][m]=0;          s2=s[mw[mi+1][i]][i];
                bbh=(double)bh[mi][i]/(double)stepm; 
       dateintsum=0;          /* bias is positive if real duration
       k2cpt=0;           * is higher than the multiple of stepm and negative otherwise.
       for (i=1; i<=imx; i++) {           */
         bool=1;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         if  (cptcovn>0) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for (z1=1; z1<=cptcoveff; z1++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /*if(lli ==000.0)*/
               bool=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         }          ipmx +=1;
         if (bool==1) {          sw += weight[i];
           for(m=firstpass; m<=lastpass; m++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             k2=anint[m][i]+(mint[m][i]/12.);        } /* end of wave */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      } /* end of individual */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if (m<lastpass) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
               }            for (j=1;j<=nlstate+ndeath;j++){
                            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                 dateintsum=dateintsum+k2;            }
                 k2cpt++;          for(d=0; d<dh[mi][i]; d++){
               }            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
                  
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if  (cptcovn>0) {            savm=oldm;
         fprintf(ficresp, "\n#********** Variable ");            oldm=newm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          } /* end mult */
         fprintf(ficresp, "**********\n#");        
       }          s1=s[mw[mi][i]][i];
       for(i=1; i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          if( s2 > nlstate){ 
       fprintf(ficresp, "\n");            lli=log(out[s1][s2] - savm[s1][s2]);
                }else{
       for(i=(int)agemin; i <= (int)agemax+3; i++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         if(i==(int)agemax+3)          }
           printf("Total");          ipmx +=1;
         else          sw += weight[i];
           printf("Age %d", i);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=1; jk <=nlstate ; jk++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        } /* end of wave */
             pp[jk] += freq[jk][m][i];      } /* end of individual */
         }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pos += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
           if(pp[jk]>=1.e-10)          for (ii=1;ii<=nlstate+ndeath;ii++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            for (j=1;j<=nlstate+ndeath;j++){
           else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
           for(d=0; d<dh[mi][i]; d++){
         for(jk=1; jk <=nlstate ; jk++){            newm=savm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             pp[jk] += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
         for(jk=1,pos=0; jk <=nlstate ; jk++)          
           pos += pp[jk];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if(pos>=1.e-5)            savm=oldm;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            oldm=newm;
           else          } /* end mult */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        
           if( i <= (int) agemax){          s1=s[mw[mi][i]][i];
             if(pos>=1.e-5){          s2=s[mw[mi+1][i]][i];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               probs[i][jk][j1]= pp[jk]/pos;          ipmx +=1;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             else          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        } /* end of wave */
           }      } /* end of individual */
         }    } /* End of if */
            for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for(jk=-1; jk <=nlstate+ndeath; jk++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           for(m=-1; m <=nlstate+ndeath; m++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    return -l;
         if(i <= (int) agemax)  }
           fprintf(ficresp,"\n");  
         printf("\n");  /*************** log-likelihood *************/
       }  double funcone( double *x)
     }  {
   }    /* Same as likeli but slower because of a lot of printf and if */
   dateintmean=dateintsum/k2cpt;    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   fclose(ficresp);    double **out;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    double lli; /* Individual log likelihood */
   free_vector(pp,1,nlstate);    double llt;
      int s1, s2;
   /* End of Freq */    double bbh, survp;
 }    /*extern weight */
     /* We are differentiating ll according to initial status */
 /************ Prevalence ********************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    /*for(i=1;i<imx;i++) 
 {  /* Some frequencies */      printf(" %d\n",s[4][i]);
      */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    cov[1]=1.;
   double ***freq; /* Frequencies */  
   double *pp;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double pos, k2;  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   pp=vector(1,nlstate);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(mi=1; mi<= wav[i]-1; mi++){
          for (ii=1;ii<=nlstate+ndeath;ii++)
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for (j=1;j<=nlstate+ndeath;j++){
   j1=0;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   j=cptcoveff;          }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for(d=0; d<dh[mi][i]; d++){
            newm=savm;
   for(k1=1; k1<=j;k1++){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(i1=1; i1<=ncodemax[k1];i1++){          for (kk=1; kk<=cptcovage;kk++) {
       j1++;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                }
       for (i=-1; i<=nlstate+ndeath; i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for (jk=-1; jk<=nlstate+ndeath; jk++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=agemin; m <= agemax+3; m++)          savm=oldm;
             freq[i][jk][m]=0;          oldm=newm;
              } /* end mult */
       for (i=1; i<=imx; i++) {        
         bool=1;        s1=s[mw[mi][i]][i];
         if  (cptcovn>0) {        s2=s[mw[mi+1][i]][i];
           for (z1=1; z1<=cptcoveff; z1++)        bbh=(double)bh[mi][i]/(double)stepm; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        /* bias is positive if real duration
               bool=0;         * is higher than the multiple of stepm and negative otherwise.
         }         */
         if (bool==1) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           for(m=firstpass; m<=lastpass; m++){          lli=log(out[s1][s2] - savm[s1][s2]);
             k2=anint[m][i]+(mint[m][i]/12.);        } else if (mle==1){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        } else if(mle==2){
               if(agev[m][i]==1) agev[m][i]=agemax+2;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
               if (m<lastpass) {        } else if(mle==3){  /* exponential inter-extrapolation */
                 if (calagedate>0)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        } else if (mle==4){  /* mle=4 no inter-extrapolation */
                 else          lli=log(out[s1][s2]); /* Original formula */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          lli=log(out[s1][s2]); /* Original formula */
               }        } /* End of if */
             }        ipmx +=1;
           }        sw += weight[i];
         }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for(i=(int)agemin; i <= (int)agemax+3; i++){        if(globpr){
         for(jk=1; jk <=nlstate ; jk++){          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)   %10.6f %10.6f %10.6f ", \
             pp[jk] += freq[jk][m][i];                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         for(jk=1; jk <=nlstate ; jk++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           for(m=-1, pos=0; m <=0 ; m++)            llt +=ll[k]*gipmx/gsw;
             pos += freq[jk][m][i];            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         }          }
                  fprintf(ficresilk," %10.6f\n", -llt);
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      } /* end of wave */
             pp[jk] += freq[jk][m][i];    } /* end of individual */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
            /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
            if(globpr==0){ /* First time we count the contributions and weights */
         for(jk=1; jk <=nlstate ; jk++){          gipmx=ipmx;
           if( i <= (int) agemax){      gsw=sw;
             if(pos>=1.e-5){    }
               probs[i][jk][j1]= pp[jk]/pos;    return -l;
             }  }
           }  
         }  char *subdirf(char fileres[])
          {
       }    
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
      return tmpout;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  }
   free_vector(pp,1,nlstate);  
    char *subdirf2(char fileres[], char *preop)
 }  /* End of Freq */  {
     
 /************* Waves Concatenation ***************/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    strcat(tmpout,preop);
 {    strcat(tmpout,fileres);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    return tmpout;
      Death is a valid wave (if date is known).  }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  char *subdirf3(char fileres[], char *preop, char *preop2)
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  {
      and mw[mi+1][i]. dh depends on stepm.    
      */    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   int i, mi, m;    strcat(tmpout,preop);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    strcat(tmpout,preop2);
      double sum=0., jmean=0.;*/    strcat(tmpout,fileres);
     return tmpout;
   int j, k=0,jk, ju, jl;  }
   double sum=0.;  
   jmin=1e+5;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   jmax=-1;  {
   jmean=0.;    /* This routine should help understanding what is done with 
   for(i=1; i<=imx; i++){       the selection of individuals/waves and
     mi=0;       to check the exact contribution to the likelihood.
     m=firstpass;       Plotting could be done.
     while(s[m][i] <= nlstate){     */
       if(s[m][i]>=1)    int k;
         mw[++mi][i]=m;  
       if(m >=lastpass)    if(*globpri !=0){ /* Just counts and sums, no printings */
         break;      strcpy(fileresilk,"ilk"); 
       else      strcat(fileresilk,fileres);
         m++;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     }/* end while */        printf("Problem with resultfile: %s\n", fileresilk);
     if (s[m][i] > nlstate){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       mi++;     /* Death is another wave */      }
       /* if(mi==0)  never been interviewed correctly before death */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
          /* Only death is a correct wave */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       mw[mi][i]=m;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     }      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     wav[i]=mi;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     if(mi==0)    }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }    *fretone=(*funcone)(p);
     if(*globpri !=0){
   for(i=1; i<=imx; i++){      fclose(ficresilk);
     for(mi=1; mi<wav[i];mi++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       if (stepm <=0)      fflush(fichtm); 
         dh[mi][i]=1;    } 
       else{    return;
         if (s[mw[mi+1][i]][i] > nlstate) {  }
           if (agedc[i] < 2*AGESUP) {  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */  /*********** Maximum Likelihood Estimation ***************/
           k=k+1;  
           if (j >= jmax) jmax=j;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           if (j <= jmin) jmin=j;  {
           sum=sum+j;    int i,j, iter;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    double **xi;
           }    double fret;
         }    double fretone; /* Only one call to likelihood */
         else{    char filerespow[FILENAMELENGTH];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    xi=matrix(1,npar,1,npar);
           k=k+1;    for (i=1;i<=npar;i++)
           if (j >= jmax) jmax=j;      for (j=1;j<=npar;j++)
           else if (j <= jmin)jmin=j;        xi[i][j]=(i==j ? 1.0 : 0.0);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
           sum=sum+j;    strcpy(filerespow,"pow"); 
         }    strcat(filerespow,fileres);
         jk= j/stepm;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         jl= j -jk*stepm;      printf("Problem with resultfile: %s\n", filerespow);
         ju= j -(jk+1)*stepm;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         if(jl <= -ju)    }
           dh[mi][i]=jk;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         else    for (i=1;i<=nlstate;i++)
           dh[mi][i]=jk+1;      for(j=1;j<=nlstate+ndeath;j++)
         if(dh[mi][i]==0)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           dh[mi][i]=1; /* At least one step */    fprintf(ficrespow,"\n");
       }  
     }    powell(p,xi,npar,ftol,&iter,&fret,func);
   }  
   jmean=sum/k;    fclose(ficrespow);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
  }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 /*********** Tricode ****************************/    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 void tricode(int *Tvar, int **nbcode, int imx)  
 {  }
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;  /**** Computes Hessian and covariance matrix ***/
   cptcoveff=0;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    {
   for (k=0; k<19; k++) Ndum[k]=0;    double  **a,**y,*x,pd;
   for (k=1; k<=7; k++) ncodemax[k]=0;    double **hess;
     int i, j,jk;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    int *indx;
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);    double hessii(double p[], double delta, int theta, double delti[]);
       Ndum[ij]++;    double hessij(double p[], double delti[], int i, int j);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    void lubksb(double **a, int npar, int *indx, double b[]) ;
       if (ij > cptcode) cptcode=ij;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     }  
     hess=matrix(1,npar,1,npar);
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;    printf("\nCalculation of the hessian matrix. Wait...\n");
     }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     ij=1;    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
     for (i=1; i<=ncodemax[j]; i++) {      hess[i][i]=hessii(p,ftolhess,i,delti);
       for (k=0; k<=19; k++) {      /*printf(" %f ",p[i]);*/
         if (Ndum[k] != 0) {      /*printf(" %lf ",hess[i][i]);*/
           nbcode[Tvar[j]][ij]=k;    }
              
           ij++;    for (i=1;i<=npar;i++) {
         }      for (j=1;j<=npar;j++)  {
         if (ij > ncodemax[j]) break;        if (j>i) { 
       }            printf(".%d%d",i,j);fflush(stdout);
     }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   }            hess[i][j]=hessij(p,delti,i,j);
           hess[j][i]=hess[i][j];    
  for (k=0; k<19; k++) Ndum[k]=0;          /*printf(" %lf ",hess[i][j]);*/
         }
  for (i=1; i<=ncovmodel-2; i++) {      }
       ij=Tvar[i];    }
       Ndum[ij]++;    printf("\n");
     }    fprintf(ficlog,"\n");
   
  ij=1;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
  for (i=1; i<=10; i++) {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
    if((Ndum[i]!=0) && (i<=ncovcol)){    
      Tvaraff[ij]=i;    a=matrix(1,npar,1,npar);
      ij++;    y=matrix(1,npar,1,npar);
    }    x=vector(1,npar);
  }    indx=ivector(1,npar);
      for (i=1;i<=npar;i++)
     cptcoveff=ij-1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 }    ludcmp(a,npar,indx,&pd);
   
 /*********** Health Expectancies ****************/    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      x[j]=1;
       lubksb(a,npar,indx,x);
 {      for (i=1;i<=npar;i++){ 
   /* Health expectancies */        matcov[i][j]=x[i];
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      }
   double age, agelim, hf;    }
   double ***p3mat,***varhe;  
   double **dnewm,**doldm;    printf("\n#Hessian matrix#\n");
   double *xp;    fprintf(ficlog,"\n#Hessian matrix#\n");
   double **gp, **gm;    for (i=1;i<=npar;i++) { 
   double ***gradg, ***trgradg;      for (j=1;j<=npar;j++) { 
   int theta;        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      }
   xp=vector(1,npar);      printf("\n");
   dnewm=matrix(1,nlstate*2,1,npar);      fprintf(ficlog,"\n");
   doldm=matrix(1,nlstate*2,1,nlstate*2);    }
    
   fprintf(ficreseij,"# Health expectancies\n");    /* Recompute Inverse */
   fprintf(ficreseij,"# Age");    for (i=1;i<=npar;i++)
   for(i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     for(j=1; j<=nlstate;j++)    ludcmp(a,npar,indx,&pd);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");    /*  printf("\n#Hessian matrix recomputed#\n");
   
   if(estepm < stepm){    for (j=1;j<=npar;j++) {
     printf ("Problem %d lower than %d\n",estepm, stepm);      for (i=1;i<=npar;i++) x[i]=0;
   }      x[j]=1;
   else  hstepm=estepm;        lubksb(a,npar,indx,x);
   /* We compute the life expectancy from trapezoids spaced every estepm months      for (i=1;i<=npar;i++){ 
    * This is mainly to measure the difference between two models: for example        y[i][j]=x[i];
    * if stepm=24 months pijx are given only every 2 years and by summing them        printf("%.3e ",y[i][j]);
    * we are calculating an estimate of the Life Expectancy assuming a linear        fprintf(ficlog,"%.3e ",y[i][j]);
    * progression inbetween and thus overestimating or underestimating according      }
    * to the curvature of the survival function. If, for the same date, we      printf("\n");
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      fprintf(ficlog,"\n");
    * to compare the new estimate of Life expectancy with the same linear    }
    * hypothesis. A more precise result, taking into account a more precise    */
    * curvature will be obtained if estepm is as small as stepm. */  
     free_matrix(a,1,npar,1,npar);
   /* For example we decided to compute the life expectancy with the smallest unit */    free_matrix(y,1,npar,1,npar);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    free_vector(x,1,npar);
      nhstepm is the number of hstepm from age to agelim    free_ivector(indx,1,npar);
      nstepm is the number of stepm from age to agelin.    free_matrix(hess,1,npar,1,npar);
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  }
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if  /*************** hessian matrix ****************/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  double hessii( double x[], double delta, int theta, double delti[])
      results. So we changed our mind and took the option of the best precision.  {
   */    int i;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int l=1, lmax=20;
     double k1,k2;
   agelim=AGESUP;    double p2[NPARMAX+1];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double res;
     /* nhstepm age range expressed in number of stepm */    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    double fx;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    int k=0,kmax=10;
     /* if (stepm >= YEARM) hstepm=1;*/    double l1;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fx=func(x);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    for (i=1;i<=npar;i++) p2[i]=x[i];
     gp=matrix(0,nhstepm,1,nlstate*2);    for(l=0 ; l <=lmax; l++){
     gm=matrix(0,nhstepm,1,nlstate*2);      l1=pow(10,l);
       delts=delt;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      for(k=1 ; k <kmax; k=k+1){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        delt = delta*(l1*k);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
     /* Computing Variances of health expectancies */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
      for(theta=1; theta <=npar; theta++){  #ifdef DEBUG
       for(i=1; i<=npar; i++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }  #endif
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       cptj=0;          k=kmax;
       for(j=1; j<= nlstate; j++){        }
         for(i=1; i<=nlstate; i++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           cptj=cptj+1;          k=kmax; l=lmax*10.;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           }          delts=delt;
         }        }
       }      }
          }
          delti[theta]=delts;
       for(i=1; i<=npar; i++)    return res; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    }
        
       cptj=0;  double hessij( double x[], double delti[], int thetai,int thetaj)
       for(j=1; j<= nlstate; j++){  {
         for(i=1;i<=nlstate;i++){    int i;
           cptj=cptj+1;    int l=1, l1, lmax=20;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    double k1,k2,k3,k4,res,fx;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double p2[NPARMAX+1];
           }    int k;
         }  
       }    fx=func(x);
          for (k=1; k<=2; k++) {
          for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1; j<= nlstate*2; j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for(h=0; h<=nhstepm-1; h++){      k1=func(p2)-fx;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      }      k2=func(p2)-fx;
        
 /* End theta */      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      k3=func(p2)-fx;
     
      for(h=0; h<=nhstepm-1; h++)      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(j=1; j<=nlstate*2;j++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(theta=1; theta <=npar; theta++)      k4=func(p2)-fx;
         trgradg[h][j][theta]=gradg[h][theta][j];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      for(i=1;i<=nlstate*2;i++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(j=1;j<=nlstate*2;j++)  #endif
         varhe[i][j][(int)age] =0.;    }
     return res;
      printf("%d|",(int)age);fflush(stdout);  }
     for(h=0;h<=nhstepm-1;h++){  
       for(k=0;k<=nhstepm-1;k++){  /************** Inverse of matrix **************/
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  void ludcmp(double **a, int n, int *indx, double *d) 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  { 
         for(i=1;i<=nlstate*2;i++)    int i,imax,j,k; 
           for(j=1;j<=nlstate*2;j++)    double big,dum,sum,temp; 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    double *vv; 
       }   
     }    vv=vector(1,n); 
     *d=1.0; 
          for (i=1;i<=n;i++) { 
     /* Computing expectancies */      big=0.0; 
     for(i=1; i<=nlstate;i++)      for (j=1;j<=n;j++) 
       for(j=1; j<=nlstate;j++)        if ((temp=fabs(a[i][j])) > big) big=temp; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      vv[i]=1.0/big; 
              } 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
         }        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     fprintf(ficreseij,"%3.0f",age );        a[i][j]=sum; 
     cptj=0;      } 
     for(i=1; i<=nlstate;i++)      big=0.0; 
       for(j=1; j<=nlstate;j++){      for (i=j;i<=n;i++) { 
         cptj++;        sum=a[i][j]; 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        for (k=1;k<j;k++) 
       }          sum -= a[i][k]*a[k][j]; 
     fprintf(ficreseij,"\n");        a[i][j]=sum; 
            if ( (dum=vv[i]*fabs(sum)) >= big) { 
     free_matrix(gm,0,nhstepm,1,nlstate*2);          big=dum; 
     free_matrix(gp,0,nhstepm,1,nlstate*2);          imax=i; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        } 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      } 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (j != imax) { 
   }        for (k=1;k<=n;k++) { 
   free_vector(xp,1,npar);          dum=a[imax][k]; 
   free_matrix(dnewm,1,nlstate*2,1,npar);          a[imax][k]=a[j][k]; 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          a[j][k]=dum; 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        } 
 }        *d = -(*d); 
         vv[imax]=vv[j]; 
 /************ Variance ******************/      } 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      indx[j]=imax; 
 {      if (a[j][j] == 0.0) a[j][j]=TINY; 
   /* Variance of health expectancies */      if (j != n) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        dum=1.0/(a[j][j]); 
   double **newm;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double **dnewm,**doldm;      } 
   int i, j, nhstepm, hstepm, h, nstepm ;    } 
   int k, cptcode;    free_vector(vv,1,n);  /* Doesn't work */
   double *xp;  ;
   double **gp, **gm;  } 
   double ***gradg, ***trgradg;  
   double ***p3mat;  void lubksb(double **a, int n, int *indx, double b[]) 
   double age,agelim, hf;  { 
   int theta;    int i,ii=0,ip,j; 
     double sum; 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");   
   fprintf(ficresvij,"# Age");    for (i=1;i<=n;i++) { 
   for(i=1; i<=nlstate;i++)      ip=indx[i]; 
     for(j=1; j<=nlstate;j++)      sum=b[ip]; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      b[ip]=b[i]; 
   fprintf(ficresvij,"\n");      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   xp=vector(1,npar);      else if (sum) ii=i; 
   dnewm=matrix(1,nlstate,1,npar);      b[i]=sum; 
   doldm=matrix(1,nlstate,1,nlstate);    } 
      for (i=n;i>=1;i--) { 
   if(estepm < stepm){      sum=b[i]; 
     printf ("Problem %d lower than %d\n",estepm, stepm);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
   else  hstepm=estepm;      } 
   /* For example we decided to compute the life expectancy with the smallest unit */  } 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim  /************ Frequencies ********************/
      nstepm is the number of stepm from age to agelin.  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
      Look at hpijx to understand the reason of that which relies in memory size  {  /* Some frequencies */
      and note for a fixed period like k years */    
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      survival function given by stepm (the optimization length). Unfortunately it    int first;
      means that if the survival funtion is printed only each two years of age and if    double ***freq; /* Frequencies */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double *pp, **prop;
      results. So we changed our mind and took the option of the best precision.    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   */    FILE *ficresp;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    char fileresp[FILENAMELENGTH];
   agelim = AGESUP;    
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    pp=vector(1,nlstate);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    prop=matrix(1,nlstate,iagemin,iagemax+3);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    strcpy(fileresp,"p");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresp,fileres);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     gp=matrix(0,nhstepm,1,nlstate);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     gm=matrix(0,nhstepm,1,nlstate);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
     for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){ /* Computes gradient */    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    j1=0;
       }    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      j=cptcoveff;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
       if (popbased==1) {    first=1;
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
          j1++;
       for(j=1; j<= nlstate; j++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         for(h=0; h<=nhstepm; h++){          scanf("%d", i);*/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        for (i=-1; i<=nlstate+ndeath; i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for (jk=-1; jk<=nlstate+ndeath; jk++)  
         }            for(m=iagemin; m <= iagemax+3; m++)
       }              freq[i][jk][m]=0;
      
       for(i=1; i<=npar; i++) /* Computes gradient */      for (i=1; i<=nlstate; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(m=iagemin; m <= iagemax+3; m++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            prop[i][m]=0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        
          dateintsum=0;
       if (popbased==1) {        k2cpt=0;
         for(i=1; i<=nlstate;i++)        for (i=1; i<=imx; i++) {
           prlim[i][i]=probs[(int)age][i][ij];          bool=1;
       }          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
       for(j=1; j<= nlstate; j++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for(h=0; h<=nhstepm; h++){                bool=0;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          if (bool==1){
         }            for(m=firstpass; m<=lastpass; m++){
       }              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for(j=1; j<= nlstate; j++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for(h=0; h<=nhstepm; h++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         }                if (m<lastpass) {
     } /* End theta */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);                }
                 
     for(h=0; h<=nhstepm; h++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       for(j=1; j<=nlstate;j++)                  dateintsum=dateintsum+k2;
         for(theta=1; theta <=npar; theta++)                  k2cpt++;
           trgradg[h][j][theta]=gradg[h][theta][j];                }
                 /*}*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            }
     for(i=1;i<=nlstate;i++)          }
       for(j=1;j<=nlstate;j++)        }
         vareij[i][j][(int)age] =0.;         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){        if  (cptcovn>0) {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          fprintf(ficresp, "\n#********** Variable "); 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for(i=1;i<=nlstate;i++)          fprintf(ficresp, "**********\n#");
           for(j=1;j<=nlstate;j++)        }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        for(i=1; i<=nlstate;i++) 
       }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     }        fprintf(ficresp, "\n");
         
     fprintf(ficresvij,"%.0f ",age );        for(i=iagemin; i <= iagemax+3; i++){
     for(i=1; i<=nlstate;i++)          if(i==iagemax+3){
       for(j=1; j<=nlstate;j++){            fprintf(ficlog,"Total");
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          }else{
       }            if(first==1){
     fprintf(ficresvij,"\n");              first=0;
     free_matrix(gp,0,nhstepm,1,nlstate);              printf("See log file for details...\n");
     free_matrix(gm,0,nhstepm,1,nlstate);            }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            fprintf(ficlog,"Age %d", i);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(jk=1; jk <=nlstate ; jk++){
   } /* End age */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                pp[jk] += freq[jk][m][i]; 
   free_vector(xp,1,npar);          }
   free_matrix(doldm,1,nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){
   free_matrix(dnewm,1,nlstate,1,nlstate);            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
 }            if(pp[jk]>=1.e-10){
               if(first==1){
 /************ Variance of prevlim ******************/              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              }
 {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /* Variance of prevalence limit */            }else{
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              if(first==1)
   double **newm;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double **dnewm,**doldm;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int i, j, nhstepm, hstepm;            }
   int k, cptcode;          }
   double *xp;  
   double *gp, *gm;          for(jk=1; jk <=nlstate ; jk++){
   double **gradg, **trgradg;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double age,agelim;              pp[jk] += freq[jk][m][i];
   int theta;          }       
              for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");            pos += pp[jk];
   fprintf(ficresvpl,"# Age");            posprop += prop[jk][i];
   for(i=1; i<=nlstate;i++)          }
       fprintf(ficresvpl," %1d-%1d",i,i);          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresvpl,"\n");            if(pos>=1.e-5){
               if(first==1)
   xp=vector(1,npar);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   dnewm=matrix(1,nlstate,1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   doldm=matrix(1,nlstate,1,nlstate);            }else{
                if(first==1)
   hstepm=1*YEARM; /* Every year of age */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   agelim = AGESUP;            }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            if( i <= iagemax){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              if(pos>=1.e-5){
     if (stepm >= YEARM) hstepm=1;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                /*probs[i][jk][j1]= pp[jk]/pos;*/
     gradg=matrix(1,npar,1,nlstate);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     gp=vector(1,nlstate);              }
     gm=vector(1,nlstate);              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){ /* Computes gradient */          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          
       }          for(jk=-1; jk <=nlstate+ndeath; jk++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for(m=-1; m <=nlstate+ndeath; m++)
       for(i=1;i<=nlstate;i++)              if(freq[jk][m][i] !=0 ) {
         gp[i] = prlim[i][i];              if(first==1)
                    printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(i=1; i<=npar; i++) /* Computes gradient */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if(i <= iagemax)
       for(i=1;i<=nlstate;i++)            fprintf(ficresp,"\n");
         gm[i] = prlim[i][i];          if(first==1)
             printf("Others in log...\n");
       for(i=1;i<=nlstate;i++)          fprintf(ficlog,"\n");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        }
     } /* End theta */      }
     }
     trgradg =matrix(1,nlstate,1,npar);    dateintmean=dateintsum/k2cpt; 
    
     for(j=1; j<=nlstate;j++)    fclose(ficresp);
       for(theta=1; theta <=npar; theta++)    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
         trgradg[j][theta]=gradg[theta][j];    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     for(i=1;i<=nlstate;i++)    /* End of Freq */
       varpl[i][(int)age] =0.;  }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  /************ Prevalence ********************/
     for(i=1;i<=nlstate;i++)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     fprintf(ficresvpl,"%.0f ",age );       in each health status at the date of interview (if between dateprev1 and dateprev2).
     for(i=1; i<=nlstate;i++)       We still use firstpass and lastpass as another selection.
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    */
     fprintf(ficresvpl,"\n");   
     free_vector(gp,1,nlstate);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     free_vector(gm,1,nlstate);    double ***freq; /* Frequencies */
     free_matrix(gradg,1,npar,1,nlstate);    double *pp, **prop;
     free_matrix(trgradg,1,nlstate,1,npar);    double pos,posprop; 
   } /* End age */    double  y2; /* in fractional years */
     int iagemin, iagemax;
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    iagemin= (int) agemin;
   free_matrix(dnewm,1,nlstate,1,nlstate);    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
 }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 /************ Variance of one-step probabilities  ******************/    j1=0;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    
 {    j=cptcoveff;
   int i, j, i1, k1, j1, z1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   int k=0, cptcode;    
   double **dnewm,**doldm;    for(k1=1; k1<=j;k1++){
   double *xp;      for(i1=1; i1<=ncodemax[k1];i1++){
   double *gp, *gm;        j1++;
   double **gradg, **trgradg;        
   double age,agelim, cov[NCOVMAX];        for (i=1; i<=nlstate; i++)  
   int theta;          for(m=iagemin; m <= iagemax+3; m++)
   char fileresprob[FILENAMELENGTH];            prop[i][m]=0.0;
        
   strcpy(fileresprob,"prob");        for (i=1; i<=imx; i++) { /* Each individual */
   strcat(fileresprob,fileres);          bool=1;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          if  (cptcovn>0) {
     printf("Problem with resultfile: %s\n", fileresprob);            for (z1=1; z1<=cptcoveff; z1++) 
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                bool=0;
            } 
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");          if (bool==1) { 
   fprintf(ficresprob,"# Age");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   for(i=1; i<=nlstate;i++)              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for(j=1; j<=(nlstate+ndeath);j++)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   fprintf(ficresprob,"\n");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
   xp=vector(1,npar);                  prop[s[m][i]][iagemax+3] += weight[i]; 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                } 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));              }
              } /* end selection of waves */
   cov[1]=1;          }
   j=cptcoveff;        }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for(i=iagemin; i <= iagemax+3; i++){  
   j1=0;          
   for(k1=1; k1<=1;k1++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     for(i1=1; i1<=ncodemax[k1];i1++){            posprop += prop[jk][i]; 
     j1++;          } 
   
     if  (cptcovn>0) {          for(jk=1; jk <=nlstate ; jk++){     
       fprintf(ficresprob, "\n#********** Variable ");            if( i <=  iagemax){ 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              if(posprop>=1.e-5){ 
       fprintf(ficresprob, "**********\n#");                probs[i][jk][j1]= prop[jk][i]/posprop;
     }              } 
                } 
       for (age=bage; age<=fage; age ++){          }/* end jk */ 
         cov[2]=age;        }/* end i */ 
         for (k=1; k<=cptcovn;k++) {      } /* end i1 */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    } /* end k1 */
              
         }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /*free_vector(pp,1,nlstate);*/
         for (k=1; k<=cptcovprod;k++)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }  /* End of prevalence */
          
         gradg=matrix(1,npar,1,9);  /************* Waves Concatenation ***************/
         trgradg=matrix(1,9,1,npar);  
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  {
        /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         for(theta=1; theta <=npar; theta++){       Death is a valid wave (if date is known).
           for(i=1; i<=npar; i++)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             xp[i] = x[i] + (i==theta ?delti[theta]:0);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                 and mw[mi+1][i]. dh depends on stepm.
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       */
            
           k=0;    int i, mi, m;
           for(i=1; i<= (nlstate+ndeath); i++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             for(j=1; j<=(nlstate+ndeath);j++){       double sum=0., jmean=0.;*/
               k=k+1;    int first;
               gp[k]=pmmij[i][j];    int j, k=0,jk, ju, jl;
             }    double sum=0.;
           }    first=0;
              jmin=1e+5;
           for(i=1; i<=npar; i++)    jmax=-1;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    jmean=0.;
        for(i=1; i<=imx; i++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      mi=0;
           k=0;      m=firstpass;
           for(i=1; i<=(nlstate+ndeath); i++){      while(s[m][i] <= nlstate){
             for(j=1; j<=(nlstate+ndeath);j++){        if(s[m][i]>=1)
               k=k+1;          mw[++mi][i]=m;
               gm[k]=pmmij[i][j];        if(m >=lastpass)
             }          break;
           }        else
                m++;
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      }/* end while */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        if (s[m][i] > nlstate){
         }        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)           /* Only death is a correct wave */
           for(theta=1; theta <=npar; theta++)        mw[mi][i]=m;
             trgradg[j][theta]=gradg[theta][j];      }
          
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      wav[i]=mi;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      if(mi==0){
                if(first==0){
         pmij(pmmij,cov,ncovmodel,x,nlstate);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                  first=1;
         k=0;        }
         for(i=1; i<=(nlstate+ndeath); i++){        if(first==1){
           for(j=1; j<=(nlstate+ndeath);j++){          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
             k=k+1;        }
             gm[k]=pmmij[i][j];      } /* end mi==0 */
           }    } /* End individuals */
         }  
          for(i=1; i<=imx; i++){
      /*printf("\n%d ",(int)age);      for(mi=1; mi<wav[i];mi++){
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        if (stepm <=0)
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          dh[mi][i]=1;
      }*/        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         fprintf(ficresprob,"\n%d ",(int)age);            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)              if(j==0) j=1;  /* Survives at least one month after exam */
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));              else if(j<0){
                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                j=1; /* Careful Patch */
     }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              k=k+1;
   }              if (j >= jmax) jmax=j;
   free_vector(xp,1,npar);              if (j <= jmin) jmin=j;
   fclose(ficresprob);              sum=sum+j;
                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
 /******************* Printing html file ***********/          }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          else{
                   int lastpass, int stepm, int weightopt, char model[],\            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                   int imx,int jmin, int jmax, double jmeanint,char optionfile[], \            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\            k=k+1;
                   char version[], int popforecast, int estepm ,/* \ */            if (j >= jmax) jmax=j;
                   double jprev1, double mprev1,double anprev1, \            else if (j <= jmin)jmin=j;
                   double jprev2, double mprev2,double anprev2){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   int jj1, k1, i1, cpt;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   FILE *fichtm;            if(j<0){
   /*char optionfilehtm[FILENAMELENGTH];*/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   strcpy(optionfilehtm,optionfile);            }
   strcat(optionfilehtm,".htm");            sum=sum+j;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          }
     printf("Problem with %s \n",optionfilehtm), exit(0);          jk= j/stepm;
   }          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            if(jl==0){
 \n              dh[mi][i]=jk;
 Total number of observations=%d <br>\n              bh[mi][i]=0;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            }else{ /* We want a negative bias in order to only have interpolation ie
 <hr  size=\"2\" color=\"#EC5E5E\">                    * at the price of an extra matrix product in likelihood */
  <ul><li>Parameter files<br>\n              dh[mi][i]=jk+1;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n              bh[mi][i]=ju;
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);            }
           }else{
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n            if(jl <= -ju){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n              dh[mi][i]=jk;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n              bh[mi][i]=jl;       /* bias is positive if real duration
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n                                   * is higher than the multiple of stepm and negative otherwise.
  - Life expectancies by age and initial health status (estepm=%2d months):                                   */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \            }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            else{
               dh[mi][i]=jk+1;
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n              bh[mi][i]=ju;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n            }
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            if(dh[mi][i]==0){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              dh[mi][i]=1; /* At least one step */
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n              bh[mi][i]=ju; /* At least one step */
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
  if(popforecast==1) fprintf(fichtm,"\n          } /* end if mle */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      } /* end wave */
         <br>",fileres,fileres,fileres,fileres);    }
  else    jmean=sum/k;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 fprintf(fichtm," <li>Graphs</li><p>");    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
  jj1=0;  {
  for(k1=1; k1<=m;k1++){    
    for(i1=1; i1<=ncodemax[k1];i1++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
        jj1++;    int cptcode=0;
        if (cptcovn > 0) {    cptcoveff=0; 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");   
          for (cpt=1; cpt<=cptcoveff;cpt++)    for (k=0; k<maxncov; k++) Ndum[k]=0;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    for (k=1; k<=7; k++) ncodemax[k]=0;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
        }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
        /* Pij */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>                                 modality*/ 
 <img src=\"pe%s%d1.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);            ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
        /* Quasi-incidences */        Ndum[ij]++; /*store the modality */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 <img src=\"pe%s%d2.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);            if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
        /* Stable prevalence in each health state */                                         Tvar[j]. If V=sex and male is 0 and 
        for(cpt=1; cpt<nlstate;cpt++){                                         female is 1, then  cptcode=1.*/
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      }
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }      for (i=0; i<=cptcode; i++) {
     for(cpt=1; cpt<=nlstate;cpt++) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      }
 interval) in state (%d): v%s%d%d.png <br>  
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        ij=1; 
      }      for (i=1; i<=ncodemax[j]; i++) {
      for(cpt=1; cpt<=nlstate;cpt++) {        for (k=0; k<= maxncov; k++) {
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          if (Ndum[k] != 0) {
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            nbcode[Tvar[j]][ij]=k; 
      }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            
 health expectancies in states (1) and (2): e%s%d.png<br>            ij++;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }
 fprintf(fichtm,"\n</body>");          if (ij > ncodemax[j]) break; 
    }        }  
    }      } 
 fclose(fichtm);    }  
 }  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;     ij=Tvar[i];
   int ng;     Ndum[ij]++;
   strcpy(optionfilegnuplot,optionfilefiname);   }
   strcat(optionfilegnuplot,".gp.txt");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {   ij=1;
     printf("Problem with file %s",optionfilegnuplot);   for (i=1; i<= maxncov; i++) {
   }     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
 #ifdef windows       ij++;
     fprintf(ficgp,"cd \"%s\" \n",pathc);     }
 #endif   }
 m=pow(2,cptcoveff);   
     cptcoveff=ij-1; /*Number of simple covariates*/
  /* 1eme*/  }
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {  /*********** Health Expectancies ****************/
   
 #ifdef windows  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  {
 #endif    /* Health expectancies */
 #ifdef unix    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    double age, agelim, hf;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    double ***p3mat,***varhe;
 #endif    double **dnewm,**doldm;
     double *xp;
 for (i=1; i<= nlstate ; i ++) {    double **gp, **gm;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double ***gradg, ***trgradg;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int theta;
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     for (i=1; i<= nlstate ; i ++) {    xp=vector(1,npar);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    dnewm=matrix(1,nlstate*nlstate,1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 }    
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficreseij,"# Health expectancies\n");
      for (i=1; i<= nlstate ; i ++) {    fprintf(ficreseij,"# Age");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for(i=1; i<=nlstate;i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(j=1; j<=nlstate;j++)
 }          fprintf(ficreseij," %1d-%1d (SE)",i,j);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    fprintf(ficreseij,"\n");
 #ifdef unix  
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    if(estepm < stepm){
 #endif      printf ("Problem %d lower than %d\n",estepm, stepm);
    }    }
   }    else  hstepm=estepm;   
   /*2 eme*/    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   for (k1=1; k1<= m ; k1 ++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);     * progression in between and thus overestimating or underestimating according
         * to the curvature of the survival function. If, for the same date, we 
     for (i=1; i<= nlstate+1 ; i ++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       k=2*i;     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);     * hypothesis. A more precise result, taking into account a more precise
       for (j=1; j<= nlstate+1 ; j ++) {     * curvature will be obtained if estepm is as small as stepm. */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* For example we decided to compute the life expectancy with the smallest unit */
 }      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       nhstepm is the number of hstepm from age to agelim 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       nstepm is the number of stepm from age to agelin. 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       Look at hpijx to understand the reason of that which relies in memory size
       for (j=1; j<= nlstate+1 ; j ++) {       and note for a fixed period like estepm months */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         else fprintf(ficgp," \%%*lf (\%%*lf)");       survival function given by stepm (the optimization length). Unfortunately it
 }         means that if the survival funtion is printed only each two years of age and if
       fprintf(ficgp,"\" t\"\" w l 0,");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);       results. So we changed our mind and took the option of the best precision.
       for (j=1; j<= nlstate+1 ; j ++) {    */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      agelim=AGESUP;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       else fprintf(ficgp,"\" t\"\" w l 0,");      /* nhstepm age range expressed in number of stepm */
     }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
   /*3eme*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for (k1=1; k1<= m ; k1 ++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     for (cpt=1; cpt<= nlstate ; cpt ++) {      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       k=2+nlstate*(2*cpt-2);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);   
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
       /* Computing Variances of health expectancies */
 */  
       for (i=1; i< nlstate ; i ++) {       for(theta=1; theta <=npar; theta++){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
     }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }    
          cptj=0;
   /* CV preval stat */        for(j=1; j<= nlstate; j++){
     for (k1=1; k1<= m ; k1 ++) {          for(i=1; i<=nlstate; i++){
     for (cpt=1; cpt<nlstate ; cpt ++) {            cptj=cptj+1;
       k=3;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            }
           }
       for (i=1; i< nlstate ; i ++)        }
         fprintf(ficgp,"+$%d",k+i+1);       
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       
              for(i=1; i<=npar; i++) 
       l=3+(nlstate+ndeath)*cpt;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for (i=1; i< nlstate ; i ++) {        
         l=3+(nlstate+ndeath)*cpt;        cptj=0;
         fprintf(ficgp,"+$%d",l+i+1);        for(j=1; j<= nlstate; j++){
       }          for(i=1;i<=nlstate;i++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              cptj=cptj+1;
     }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   }    
                gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   /* proba elementaires */            }
    for(i=1,jk=1; i <=nlstate; i++){          }
     for(k=1; k <=(nlstate+ndeath); k++){        }
       if (k != i) {        for(j=1; j<= nlstate*nlstate; j++)
         for(j=1; j <=ncovmodel; j++){          for(h=0; h<=nhstepm-1; h++){
                    gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          }
           jk++;       } 
           fprintf(ficgp,"\n");     
         }  /* End theta */
       }  
     }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    }  
        for(h=0; h<=nhstepm-1; h++)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        for(j=1; j<=nlstate*nlstate;j++)
      for(jk=1; jk <=m; jk++) {          for(theta=1; theta <=npar; theta++)
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);            trgradg[h][j][theta]=gradg[h][theta][j];
        if (ng==2)       
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else       for(i=1;i<=nlstate*nlstate;i++)
          fprintf(ficgp,"\nset title \"Probability\"\n");        for(j=1;j<=nlstate*nlstate;j++)
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          varhe[i][j][(int)age] =0.;
        i=1;  
        for(k2=1; k2<=nlstate; k2++) {       printf("%d|",(int)age);fflush(stdout);
          k3=i;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
          for(k=1; k<=(nlstate+ndeath); k++) {       for(h=0;h<=nhstepm-1;h++){
            if (k != k2){        for(k=0;k<=nhstepm-1;k++){
              if(ng==2)          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                fprintf(ficgp," %f*exp(p%d+p%d*x",stepm/YEARM,i,i+1);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
              else          for(i=1;i<=nlstate*nlstate;i++)
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            for(j=1;j<=nlstate*nlstate;j++)
              ij=1;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
              for(j=3; j <=ncovmodel; j++) {        }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      /* Computing expectancies */
                  ij++;      for(i=1; i<=nlstate;i++)
                }        for(j=1; j<=nlstate;j++)
                else          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              }            
              fprintf(ficgp,")/(1");  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                
              for(k1=1; k1 <=nlstate; k1++){            }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
                ij=1;      fprintf(ficreseij,"%3.0f",age );
                for(j=3; j <=ncovmodel; j++){      cptj=0;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      for(i=1; i<=nlstate;i++)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(j=1; j<=nlstate;j++){
                    ij++;          cptj++;
                  }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                  else        }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      fprintf(ficreseij,"\n");
                }     
                fprintf(ficgp,")");      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
              }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
              i=i+ncovmodel;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            }    }
          }    printf("\n");
        }    fprintf(ficlog,"\n");
      }  
    }    free_vector(xp,1,npar);
    fclose(ficgp);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 }  /* end gnuplot */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   int i, cpt, cptcod;  {
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    /* Variance of health expectancies */
       for (i=1; i<=nlstate;i++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    /* double **newm;*/
           mobaverage[(int)agedeb][i][cptcod]=0.;    double **dnewm,**doldm;
        double **dnewmp,**doldmp;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    int i, j, nhstepm, hstepm, h, nstepm ;
       for (i=1; i<=nlstate;i++){    int k, cptcode;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double *xp;
           for (cpt=0;cpt<=4;cpt++){    double **gp, **gm;  /* for var eij */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    double ***gradg, ***trgradg; /*for var eij */
           }    double **gradgp, **trgradgp; /* for var p point j */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    double *gpp, *gmp; /* for var p point j */
         }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       }    double ***p3mat;
     }    double age,agelim, hf;
        double ***mobaverage;
 }    int theta;
     char digit[4];
     char digitp[25];
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    char fileresprobmorprev[FILENAMELENGTH];
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    if(popbased==1){
   int *popage;      if(mobilav!=0)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        strcpy(digitp,"-populbased-mobilav-");
   double *popeffectif,*popcount;      else strcpy(digitp,"-populbased-nomobil-");
   double ***p3mat;    }
   char fileresf[FILENAMELENGTH];    else 
       strcpy(digitp,"-stablbased-");
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcpy(fileresf,"f");      }
   strcat(fileresf,fileres);    }
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);    strcpy(fileresprobmorprev,"prmorprev"); 
   }    sprintf(digit,"%-d",ij);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   if (mobilav==1) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   }    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (stepm<=12) stepsize=1;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   agelim=AGESUP;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
   hstepm=1;      for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   yp1=modf(dateintmean,&yp);    }  
   anprojmean=yp;    fprintf(ficresprobmorprev,"\n");
   yp2=modf((yp1*12),&yp);    fprintf(ficgp,"\n# Routine varevsij");
   mprojmean=yp;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   yp1=modf((yp2*30.5),&yp);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   jprojmean=yp;  /*   } */
   if(jprojmean==0) jprojmean=1;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if(mprojmean==0) jprojmean=1;  
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i2;cptcov++){      for(j=1; j<=nlstate;j++)
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       k=k+1;    fprintf(ficresvij,"\n");
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {    xp=vector(1,npar);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficresf,"******\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       fprintf(ficresf,"# StartingAge FinalAge");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
          gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
          gpp=vector(nlstate+1,nlstate+ndeath);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    gmp=vector(nlstate+1,nlstate+ndeath);
         fprintf(ficresf,"\n");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      
     if(estepm < stepm){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      printf ("Problem %d lower than %d\n",estepm, stepm);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;    else  hstepm=estepm;   
              /* For example we decided to compute the life expectancy with the smallest unit */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           oldm=oldms;savm=savms;       nhstepm is the number of hstepm from age to agelim 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         nstepm is the number of stepm from age to agelin. 
               Look at hpijx to understand the reason of that which relies in memory size
           for (h=0; h<=nhstepm; h++){       and note for a fixed period like k years */
             if (h==(int) (calagedate+YEARM*cpt)) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);       survival function given by stepm (the optimization length). Unfortunately it
             }       means that if the survival funtion is printed every two years of age and if
             for(j=1; j<=nlstate+ndeath;j++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               kk1=0.;kk2=0;       results. So we changed our mind and took the option of the best precision.
               for(i=1; i<=nlstate;i++) {                  */
                 if (mobilav==1)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    agelim = AGESUP;
                 else {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                 }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
               if (h==(int)(calagedate+12*cpt)){      gp=matrix(0,nhstepm,1,nlstate);
                 fprintf(ficresf," %.3f", kk1);      gm=matrix(0,nhstepm,1,nlstate);
                          
               }  
             }      for(theta=1; theta <=npar; theta++){
           }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }        }
       }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }  
                if (popbased==1) {
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   fclose(ficresf);              prlim[i][i]=probs[(int)age][i][ij];
 }          }else{ /* mobilav */ 
 /************** Forecasting ******************/            for(i=1; i<=nlstate;i++)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;    
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        for(j=1; j<= nlstate; j++){
   double *popeffectif,*popcount;          for(h=0; h<=nhstepm; h++){
   double ***p3mat,***tabpop,***tabpopprev;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   char filerespop[FILENAMELENGTH];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* This for computing probability of death (h=1 means
   agelim=AGESUP;           computed over hstepm matrices product = hstepm*stepm months) 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;           as a weighted average of prlim.
          */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
   strcpy(filerespop,"pop");        }    
   strcat(filerespop,fileres);        /* end probability of death */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   printf("Computing forecasting: result on file '%s' \n", filerespop);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   
         if (popbased==1) {
   if (mobilav==1) {          if(mobilav ==0){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1; i<=nlstate;i++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;              prlim[i][i]=mobaverage[(int)age][i][ij];
   if (stepm<=12) stepsize=1;          }
          }
   agelim=AGESUP;  
          for(j=1; j<= nlstate; j++){
   hstepm=1;          for(h=0; h<=nhstepm; h++){
   hstepm=hstepm/stepm;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   if (popforecast==1) {          }
     if((ficpop=fopen(popfile,"r"))==NULL) {        }
       printf("Problem with population file : %s\n",popfile);exit(0);        /* This for computing probability of death (h=1 means
     }           computed over hstepm matrices product = hstepm*stepm months) 
     popage=ivector(0,AGESUP);           as a weighted average of prlim.
     popeffectif=vector(0,AGESUP);        */
     popcount=vector(0,AGESUP);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gmp[j]=0.; i<= nlstate; i++)
     i=1;             gmp[j] += prlim[i][i]*p3mat[i][j][1];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        }    
            /* end probability of death */
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        for(j=1; j<= nlstate; j++) /* vareij */
   }          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   for(cptcov=1;cptcov<=i2;cptcov++){          }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       fprintf(ficrespop,"\n#******");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       for(j=1;j<=cptcoveff;j++) {        }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }      } /* End theta */
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");      for(h=0; h<=nhstepm; h++) /* veij */
              for(j=1; j<=nlstate;j++)
       for (cpt=0; cpt<=0;cpt++) {          for(theta=1; theta <=npar; theta++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              trgradg[h][j][theta]=gradg[h][theta][j];
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(theta=1; theta <=npar; theta++)
           nhstepm = nhstepm/hstepm;          trgradgp[j][theta]=gradgp[theta][j];
              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(i=1;i<=nlstate;i++)
                for(j=1;j<=nlstate;j++)
           for (h=0; h<=nhstepm; h++){          vareij[i][j][(int)age] =0.;
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(h=0;h<=nhstepm;h++){
             }        for(k=0;k<=nhstepm;k++){
             for(j=1; j<=nlstate+ndeath;j++) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
               kk1=0.;kk2=0;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
               for(i=1; i<=nlstate;i++) {                        for(i=1;i<=nlstate;i++)
                 if (mobilav==1)            for(j=1;j<=nlstate;j++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                 else {        }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      }
                 }    
               }      /* pptj */
               if (h==(int)(calagedate+12*cpt)){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                   /*fprintf(ficrespop," %.3f", kk1);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        for(i=nlstate+1;i<=nlstate+ndeath;i++)
               }          varppt[j][i]=doldmp[j][i];
             }      /* end ppptj */
             for(i=1; i<=nlstate;i++){      /*  x centered again */
               kk1=0.;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
                 for(j=1; j<=nlstate;j++){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   
                 }      if (popbased==1) {
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        if(mobilav ==0){
             }          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        }else{ /* mobilav */ 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          for(i=1; i<=nlstate;i++)
           }            prlim[i][i]=mobaverage[(int)age][i][ij];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }      }
       }               
        /* This for computing probability of death (h=1 means
   /******/         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           nhstepm = nhstepm/hstepm;      }    
                /* end probability of death */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for (h=0; h<=nhstepm; h++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             if (h==(int) (calagedate+YEARM*cpt)) {        for(i=1; i<=nlstate;i++){
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {      } 
               kk1=0.;kk2=0;      fprintf(ficresprobmorprev,"\n");
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          fprintf(ficresvij,"%.0f ",age );
               }      for(i=1; i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        for(j=1; j<=nlstate;j++){
             }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresvij,"\n");
         }      free_matrix(gp,0,nhstepm,1,nlstate);
       }      free_matrix(gm,0,nhstepm,1,nlstate);
    }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
   if (popforecast==1) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_ivector(popage,0,AGESUP);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_vector(popeffectif,0,AGESUP);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     free_vector(popcount,0,AGESUP);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   fclose(ficrespop);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 /***********************************************/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 /**************** Main Program *****************/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 /***********************************************/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 int main(int argc, char *argv[])    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 {  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;",digitp,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
   double fret;    free_matrix(dnewm,1,nlstate,1,npar);
   double **xi,tmp,delta;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   double dum; /* Dummy variable */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double ***p3mat;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int *indx;    fclose(ficresprobmorprev);
   char line[MAXLINE], linepar[MAXLINE];    fflush(ficgp);
   char title[MAXLINE];    fflush(fichtm); 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  }  /* end varevsij */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
    /************ Variance of prevlim ******************/
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
   char filerest[FILENAMELENGTH];    /* Variance of prevalence limit */
   char fileregp[FILENAMELENGTH];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   char popfile[FILENAMELENGTH];    double **newm;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double **dnewm,**doldm;
   int firstobs=1, lastobs=10;    int i, j, nhstepm, hstepm;
   int sdeb, sfin; /* Status at beginning and end */    int k, cptcode;
   int c,  h , cpt,l;    double *xp;
   int ju,jl, mi;    double *gp, *gm;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    double **gradg, **trgradg;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    double age,agelim;
   int mobilav=0,popforecast=0;    int theta;
   int hstepm, nhstepm;     
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
   double bage, fage, age, agelim, agebase;    for(i=1; i<=nlstate;i++)
   double ftolpl=FTOL;        fprintf(ficresvpl," %1d-%1d",i,i);
   double **prlim;    fprintf(ficresvpl,"\n");
   double *severity;  
   double ***param; /* Matrix of parameters */    xp=vector(1,npar);
   double  *p;    dnewm=matrix(1,nlstate,1,npar);
   double **matcov; /* Matrix of covariance */    doldm=matrix(1,nlstate,1,nlstate);
   double ***delti3; /* Scale */    
   double *delti; /* Scale */    hstepm=1*YEARM; /* Every year of age */
   double ***eij, ***vareij;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   double **varpl; /* Variances of prevalence limits by age */    agelim = AGESUP;
   double *epj, vepp;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double kk1, kk2;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
   char version[80]="Imach version 0.8e, May 2002, INED-EUROREVES ";      gp=vector(1,nlstate);
   char *alph[]={"a","a","b","c","d","e"}, str[4];      gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
   char z[1]="c", occ;        for(i=1; i<=npar; i++){ /* Computes gradient */
 #include <sys/time.h>          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 #include <time.h>        }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   /* long total_usecs;          gp[i] = prlim[i][i];
   struct timeval start_time, end_time;      
          for(i=1; i<=npar; i++) /* Computes gradient */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   getcwd(pathcd, size);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   printf("\n%s",version);          gm[i] = prlim[i][i];
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");        for(i=1;i<=nlstate;i++)
     scanf("%s",pathtot);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   }      } /* End theta */
   else{  
     strcpy(pathtot,argv[1]);      trgradg =matrix(1,nlstate,1,npar);
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      for(j=1; j<=nlstate;j++)
   /*cygwin_split_path(pathtot,path,optionfile);        for(theta=1; theta <=npar; theta++)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          trgradg[j][theta]=gradg[theta][j];
   /* cutv(path,optionfile,pathtot,'\\');*/  
       for(i=1;i<=nlstate;i++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        varpl[i][(int)age] =0.;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   chdir(path);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   replace(pathc,path);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 /*-------- arguments in the command line --------*/  
       fprintf(ficresvpl,"%.0f ",age );
   strcpy(fileres,"r");      for(i=1; i<=nlstate;i++)
   strcat(fileres, optionfilefiname);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   strcat(fileres,".txt");    /* Other files have txt extension */      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
   /*---------arguments file --------*/      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      free_matrix(trgradg,1,nlstate,1,npar);
     printf("Problem with optionfile %s\n",optionfile);    } /* End age */
     goto end;  
   }    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
   strcpy(filereso,"o");    free_matrix(dnewm,1,nlstate,1,nlstate);
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {  }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   /* Reads comments: lines beginning with '#' */  {
   while((c=getc(ficpar))=='#' && c!= EOF){    int i, j=0,  i1, k1, l1, t, tj;
     ungetc(c,ficpar);    int k2, l2, j1,  z1;
     fgets(line, MAXLINE, ficpar);    int k=0,l, cptcode;
     puts(line);    int first=1, first1;
     fputs(line,ficparo);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   }    double **dnewm,**doldm;
   ungetc(c,ficpar);    double *xp;
     double *gp, *gm;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double **gradg, **trgradg;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    double **mu;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double age,agelim, cov[NCOVMAX];
 while((c=getc(ficpar))=='#' && c!= EOF){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     ungetc(c,ficpar);    int theta;
     fgets(line, MAXLINE, ficpar);    char fileresprob[FILENAMELENGTH];
     puts(line);    char fileresprobcov[FILENAMELENGTH];
     fputs(line,ficparo);    char fileresprobcor[FILENAMELENGTH];
   }  
   ungetc(c,ficpar);    double ***varpij;
    
        strcpy(fileresprob,"prob"); 
   covar=matrix(0,NCOVMAX,1,n);    strcat(fileresprob,fileres);
   cptcovn=0;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   ncovmodel=2+cptcovn;    }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    strcpy(fileresprobcov,"probcov"); 
      strcat(fileresprobcov,fileres);
   /* Read guess parameters */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   /* Reads comments: lines beginning with '#' */      printf("Problem with resultfile: %s\n", fileresprobcov);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    strcpy(fileresprobcor,"probcor"); 
     puts(line);    strcat(fileresprobcor,fileres);
     fputs(line,ficparo);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcor);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
      }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     for(i=1; i <=nlstate; i++)    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     for(j=1; j <=nlstate+ndeath-1; j++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficparo,"%1d%1d",i1,j1);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       printf("%1d%1d",i,j);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         printf(" %lf",param[i][j][k]);    fprintf(ficresprob,"# Age");
         fprintf(ficparo," %lf",param[i][j][k]);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       }    fprintf(ficresprobcov,"# Age");
       fscanf(ficpar,"\n");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       printf("\n");    fprintf(ficresprobcov,"# Age");
       fprintf(ficparo,"\n");  
     }  
      for(i=1; i<=nlstate;i++)
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   p=param[1][1];        fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(ficresprobcor," p%1d-%1d ",i,j);
   /* Reads comments: lines beginning with '#' */      }  
   while((c=getc(ficpar))=='#' && c!= EOF){   /* fprintf(ficresprob,"\n");
     ungetc(c,ficpar);    fprintf(ficresprobcov,"\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobcor,"\n");
     puts(line);   */
     fputs(line,ficparo);   xp=vector(1,npar);
   }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   ungetc(c,ficpar);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    first=1;
   for(i=1; i <=nlstate; i++){    fprintf(ficgp,"\n# Routine varprob");
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(fichtm,"\n");
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       for(k=1; k<=ncovmodel;k++){    fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);    cov[1]=1;
       }    tj=cptcoveff;
       fscanf(ficpar,"\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       printf("\n");    j1=0;
       fprintf(ficparo,"\n");    for(t=1; t<=tj;t++){
     }      for(i1=1; i1<=ncodemax[t];i1++){ 
   }        j1++;
   delti=delti3[1][1];        if  (cptcovn>0) {
            fprintf(ficresprob, "\n#********** Variable "); 
   /* Reads comments: lines beginning with '#' */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprob, "**********\n#\n");
     ungetc(c,ficpar);          fprintf(ficresprobcov, "\n#********** Variable "); 
     fgets(line, MAXLINE, ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     puts(line);          fprintf(ficresprobcov, "**********\n#\n");
     fputs(line,ficparo);          
   }          fprintf(ficgp, "\n#********** Variable "); 
   ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficgp, "**********\n#\n");
   matcov=matrix(1,npar,1,npar);          
   for(i=1; i <=npar; i++){          
     fscanf(ficpar,"%s",&str);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     printf("%s",str);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficparo,"%s",str);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     for(j=1; j <=i; j++){          
       fscanf(ficpar," %le",&matcov[i][j]);          fprintf(ficresprobcor, "\n#********** Variable ");    
       printf(" %.5le",matcov[i][j]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficparo," %.5le",matcov[i][j]);          fprintf(ficresprobcor, "**********\n#");    
     }        }
     fscanf(ficpar,"\n");        
     printf("\n");        for (age=bage; age<=fage; age ++){ 
     fprintf(ficparo,"\n");          cov[2]=age;
   }          for (k=1; k<=cptcovn;k++) {
   for(i=1; i <=npar; i++)            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     for(j=i+1;j<=npar;j++)          }
       matcov[i][j]=matcov[j][i];          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              for (k=1; k<=cptcovprod;k++)
   printf("\n");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     /*-------- Rewriting paramater file ----------*/          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      strcpy(rfileres,"r");    /* "Rparameterfile */          gp=vector(1,(nlstate)*(nlstate+ndeath));
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          gm=vector(1,(nlstate)*(nlstate+ndeath));
      strcat(rfileres,".");    /* */      
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          for(theta=1; theta <=npar; theta++){
     if((ficres =fopen(rfileres,"w"))==NULL) {            for(i=1; i<=npar; i++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     }            
     fprintf(ficres,"#%s\n",version);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                
     /*-------- data file ----------*/            k=0;
     if((fic=fopen(datafile,"r"))==NULL)    {            for(i=1; i<= (nlstate); i++){
       printf("Problem with datafile: %s\n", datafile);goto end;              for(j=1; j<=(nlstate+ndeath);j++){
     }                k=k+1;
                 gp[k]=pmmij[i][j];
     n= lastobs;              }
     severity = vector(1,maxwav);            }
     outcome=imatrix(1,maxwav+1,1,n);            
     num=ivector(1,n);            for(i=1; i<=npar; i++)
     moisnais=vector(1,n);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     annais=vector(1,n);      
     moisdc=vector(1,n);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     andc=vector(1,n);            k=0;
     agedc=vector(1,n);            for(i=1; i<=(nlstate); i++){
     cod=ivector(1,n);              for(j=1; j<=(nlstate+ndeath);j++){
     weight=vector(1,n);                k=k+1;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                gm[k]=pmmij[i][j];
     mint=matrix(1,maxwav,1,n);              }
     anint=matrix(1,maxwav,1,n);            }
     s=imatrix(1,maxwav+1,1,n);       
     adl=imatrix(1,maxwav+1,1,n);                for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     tab=ivector(1,NCOVMAX);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     ncodemax=ivector(1,8);          }
   
     i=1;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     while (fgets(line, MAXLINE, fic) != NULL)    {            for(theta=1; theta <=npar; theta++)
       if ((i >= firstobs) && (i <=lastobs)) {              trgradg[j][theta]=gradg[theta][j];
                  
         for (j=maxwav;j>=1;j--){          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           strcpy(line,stra);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          pmij(pmmij,cov,ncovmodel,x,nlstate);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          
           k=0;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1; i<=(nlstate); i++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              mu[k][(int) age]=pmmij[i][j];
         for (j=ncovcol;j>=1;j--){            }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         num[i]=atol(stra);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                      varpij[i][j][(int)age] = doldm[i][j];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         i=i+1;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }            }*/
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/          fprintf(ficresprob,"\n%d ",(int)age);
   imx=i-1; /* Number of individuals */          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     }*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
    /*  for (i=1; i<=imx; i++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
      if (s[4][i]==9)  s[4][i]=-1;          }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          i=0;
            for (k=1; k<=(nlstate);k++){
              for (l=1; l<=(nlstate+ndeath);l++){ 
   /* Calculation of the number of parameter from char model*/              i=i++;
   Tvar=ivector(1,15);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   Tprod=ivector(1,15);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   Tvaraff=ivector(1,15);              for (j=1; j<=i;j++){
   Tvard=imatrix(1,15,1,2);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   Tage=ivector(1,15);                      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                  }
   if (strlen(model) >1){            }
     j=0, j1=0, k1=1, k2=1;          }/* end of loop for state */
     j=nbocc(model,'+');        } /* end of loop for age */
     j1=nbocc(model,'*');  
     cptcovn=j+1;        /* Confidence intervalle of pij  */
     cptcovprod=j1;        /*
              fprintf(ficgp,"\nset noparametric;unset label");
     strcpy(modelsav,model);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       printf("Error. Non available option model=%s ",model);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       goto end;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     for(i=(j+1); i>=1;i--){        */
       cutv(stra,strb,modelsav,'+');  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        first1=1;
       /*scanf("%d",i);*/        for (k2=1; k2<=(nlstate);k2++){
       if (strchr(strb,'*')) {          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         cutv(strd,strc,strb,'*');            if(l2==k2) continue;
         if (strcmp(strc,"age")==0) {            j=(k2-1)*(nlstate+ndeath)+l2;
           cptcovprod--;            for (k1=1; k1<=(nlstate);k1++){
           cutv(strb,stre,strd,'V');              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           Tvar[i]=atoi(stre);                if(l1==k1) continue;
           cptcovage++;                i=(k1-1)*(nlstate+ndeath)+l1;
             Tage[cptcovage]=i;                if(i<=j) continue;
             /*printf("stre=%s ", stre);*/                for (age=bage; age<=fage; age ++){ 
         }                  if ((int)age %5==0){
         else if (strcmp(strd,"age")==0) {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           cptcovprod--;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           cutv(strb,stre,strc,'V');                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           Tvar[i]=atoi(stre);                    mu1=mu[i][(int) age]/stepm*YEARM ;
           cptcovage++;                    mu2=mu[j][(int) age]/stepm*YEARM;
           Tage[cptcovage]=i;                    c12=cv12/sqrt(v1*v2);
         }                    /* Computing eigen value of matrix of covariance */
         else {                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           cutv(strb,stre,strc,'V');                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           Tvar[i]=ncovcol+k1;                    /* Eigen vectors */
           cutv(strb,strc,strd,'V');                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           Tprod[k1]=i;                    /*v21=sqrt(1.-v11*v11); *//* error */
           Tvard[k1][1]=atoi(strc);                    v21=(lc1-v1)/cv12*v11;
           Tvard[k1][2]=atoi(stre);                    v12=-v21;
           Tvar[cptcovn+k2]=Tvard[k1][1];                    v22=v11;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                    tnalp=v21/v11;
           for (k=1; k<=lastobs;k++)                    if(first1==1){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                      first1=0;
           k1++;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           k2=k2+2;                    }
         }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       }                    /*printf(fignu*/
       else {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
        /*  scanf("%d",i);*/                    if(first==1){
       cutv(strd,strc,strb,'V');                      first=0;
       Tvar[i]=atoi(strc);                      fprintf(ficgp,"\nset parametric;unset label");
       }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       strcpy(modelsav,stra);                        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         scanf("%d",i);*/   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                      fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   printf("cptcovprod=%d ", cptcovprod);                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   scanf("%d ",i);*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fclose(fic);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     /*  if(mle==1){*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     if (weightopt != 1) { /* Maximisation without weights*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for(i=1;i<=n;i++) weight[i]=1.0;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     }                    }else{
     /*-calculation of age at interview from date of interview and age at death -*/                      first=0;
     agev=matrix(1,maxwav,1,imx);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     for (i=1; i<=imx; i++) {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for(m=2; (m<= maxwav); m++) {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
          anint[m][i]=9999;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
          s[m][i]=-1;                    }/* if first */
        }                  } /* age mod 5 */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                } /* end loop age */
       }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                first=1;
               } /*l12 */
     for (i=1; i<=imx; i++)  {            } /* k12 */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          } /*l1 */
       for(m=1; (m<= maxwav); m++){        }/* k1 */
         if(s[m][i] >0){      } /* loop covariates */
           if (s[m][i] >= nlstate+1) {    }
             if(agedc[i]>0)    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
               if(moisdc[i]!=99 && andc[i]!=9999)    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
                 agev[m][i]=agedc[i];    free_vector(xp,1,npar);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    fclose(ficresprob);
            else {    fclose(ficresprobcov);
               if (andc[i]!=9999){    fclose(ficresprobcor);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    /*  fclose(ficgp);*/
               agev[m][i]=-1;  }
               }  
             }  
           }  /******************* Printing html file ***********/
           else if(s[m][i] !=9){ /* Should no more exist */  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                    int lastpass, int stepm, int weightopt, char model[],\
             if(mint[m][i]==99 || anint[m][i]==9999)                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
               agev[m][i]=1;                    int popforecast, int estepm ,\
             else if(agev[m][i] <agemin){                    double jprev1, double mprev1,double anprev1, \
               agemin=agev[m][i];                    double jprev2, double mprev2,double anprev2){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    int jj1, k1, i1, cpt;
             }    /*char optionfilehtm[FILENAMELENGTH];*/
             else if(agev[m][i] >agemax){  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
               agemax=agev[m][i];  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
             }  /*   } */
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
           }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
           else { /* =9 */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
             agev[m][i]=1;   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
             s[m][i]=-1;   - Life expectancies by age and initial health status (estepm=%2d months): \
           }     <a href=\"%s\">%s</a> <br>\n</li>", \
         }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
         else /*= 0 Unknown */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
           agev[m][i]=1;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
       }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      
     }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){   m=cptcoveff;
         if (s[m][i] > (nlstate+ndeath)) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;   jj1=0;
         }   for(k1=1; k1<=m;k1++){
       }     for(i1=1; i1<=ncodemax[k1];i1++){
     }       jj1++;
        if (cptcovn > 0) {
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
     free_vector(severity,1,maxwav);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     free_imatrix(outcome,1,maxwav+1,1,n);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     free_vector(moisnais,1,n);       }
     free_vector(annais,1,n);       /* Pij */
     /* free_matrix(mint,1,maxwav,1,n);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
        free_matrix(anint,1,maxwav,1,n);*/  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     free_vector(moisdc,1,n);       /* Quasi-incidences */
     free_vector(andc,1,n);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
      <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     wav=ivector(1,imx);         /* Stable prevalence in each health state */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);         for(cpt=1; cpt<nlstate;cpt++){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
      <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     /* Concatenates waves */         }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exo"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       Tcode=ivector(1,100);       }
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       ncodemax[1]=1;  health expectancies in states (1) and (2): %s%d.png<br>\
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
           } /* end i1 */
    codtab=imatrix(1,100,1,10);   }/* End k1 */
    h=0;   fprintf(fichtm,"</ul>");
    m=pow(2,cptcoveff);  
    
    for(k=1;k<=cptcoveff; k++){   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
      for(i=1; i <=(m/pow(2,k));i++){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
        for(j=1; j <= ncodemax[k]; j++){   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
            h++;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
          }   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
        }           rfileres,rfileres,\
      }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
    }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
       codtab[1][2]=1;codtab[2][2]=2; */           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
    /* for(i=1; i <=m ;i++){           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
       for(k=1; k <=cptcovn; k++){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }  /*  if(popforecast==1) fprintf(fichtm,"\n */
       printf("\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       scanf("%d",i);*/  /*      <br>",fileres,fileres,fileres,fileres); */
      /*  else  */
    /* Calculates basic frequencies. Computes observed prevalence at single age  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
        and prints on file fileres'p'. */  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
       m=cptcoveff;
       if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   jj1=0;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   for(k1=1; k1<=m;k1++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     for(i1=1; i1<=ncodemax[k1];i1++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       jj1++;
             if (cptcovn > 0) {
     /* For Powell, parameters are in a vector p[] starting at p[1]         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */         for (cpt=1; cpt<=cptcoveff;cpt++) 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     if(mle==1){       }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       for(cpt=1; cpt<=nlstate;cpt++) {
     }         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
      interval) in state (%d): %s%d%d.png <br>\
     /*--------- results files --------------*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"pe"),cpt,jj1,subdirf2(optionfilefiname,"pe"),cpt,jj1);  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);       }
       } /* end i1 */
    }/* End k1 */
    jk=1;   fprintf(fichtm,"</ul>");
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   fflush(fichtm);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  }
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){  /******************* Gnuplot file **************/
        if (k != i)  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char path[], double p[]){
          {  
            printf("%d%d ",i,k);    char dirfileres[132],optfileres[132];
            fprintf(ficres,"%1d%1d ",i,k);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
            for(j=1; j <=ncovmodel; j++){    int ng;
              printf("%f ",p[jk]);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
              fprintf(ficres,"%f ",p[jk]);  /*     printf("Problem with file %s",optionfilegnuplot); */
              jk++;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
            }  /*   } */
            printf("\n");  
            fprintf(ficres,"\n");    /*#ifdef windows */
          }    fprintf(ficgp,"cd \"%s\" \n",path);
      }      /*#endif */
    }    m=pow(2,cptcoveff);
  if(mle==1){  
     /* Computing hessian and covariance matrix */    strcpy(dirfileres,optionfilefiname);
     ftolhess=ftol; /* Usually correct */    strcpy(optfileres,"vpl");
     hesscov(matcov, p, npar, delti, ftolhess, func);   /* 1eme*/
  }    for (cpt=1; cpt<= nlstate ; cpt ++) {
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");     for (k1=1; k1<= m ; k1 ++) {
     printf("# Scales (for hessian or gradient estimation)\n");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
      for(i=1,jk=1; i <=nlstate; i++){       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       for(j=1; j <=nlstate+ndeath; j++){       fprintf(ficgp,"set xlabel \"Age\" \n\
         if (j!=i) {  set ylabel \"Probability\" \n\
           fprintf(ficres,"%1d%1d",i,j);  set ter png small\n\
           printf("%1d%1d",i,j);  set size 0.65,0.65\n\
           for(k=1; k<=ncovmodel;k++){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);       for (i=1; i<= nlstate ; i ++) {
             jk++;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           }         else fprintf(ficgp," \%%*lf (\%%*lf)");
           printf("\n");       }
           fprintf(ficres,"\n");       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         }       for (i=1; i<= nlstate ; i ++) {
       }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      }         else fprintf(ficgp," \%%*lf (\%%*lf)");
           } 
     k=1;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       for (i=1; i<= nlstate ; i ++) {
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     for(i=1;i<=npar;i++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
       /*  if (k>nlstate) k=1;       }  
       i1=(i-1)/(ncovmodel*nlstate)+1;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);     }
       printf("%s%d%d",alph[k],i1,tab[i]);*/    }
       fprintf(ficres,"%3d",i);    /*2 eme*/
       printf("%3d",i);    
       for(j=1; j<=i;j++){    for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficres," %.5e",matcov[i][j]);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         printf(" %.5e",matcov[i][j]);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       }      
       fprintf(ficres,"\n");      for (i=1; i<= nlstate+1 ; i ++) {
       printf("\n");        k=2*i;
       k++;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     }        for (j=1; j<= nlstate+1 ; j ++) {
              if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     while((c=getc(ficpar))=='#' && c!= EOF){          else fprintf(ficgp," \%%*lf (\%%*lf)");
       ungetc(c,ficpar);        }   
       fgets(line, MAXLINE, ficpar);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       puts(line);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       fputs(line,ficparo);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     }        for (j=1; j<= nlstate+1 ; j ++) {
     ungetc(c,ficpar);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     estepm=0;          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        }   
     if (estepm==0 || estepm < stepm) estepm=stepm;        fprintf(ficgp,"\" t\"\" w l 0,");
     if (fage <= 2) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       bage = ageminpar;        for (j=1; j<= nlstate+1 ; j ++) {
       fage = agemaxpar;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     }          else fprintf(ficgp," \%%*lf (\%%*lf)");
            }   
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        else fprintf(ficgp,"\" t\"\" w l 0,");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      }
      }
     while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    /*3eme*/
     fgets(line, MAXLINE, ficpar);    
     puts(line);    for (k1=1; k1<= m ; k1 ++) { 
     fputs(line,ficparo);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   }        k=2+nlstate*(2*cpt-2);
   ungetc(c,ficpar);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
          fprintf(ficgp,"set ter png small\n\
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  set size 0.65,0.65\n\
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     ungetc(c,ficpar);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     fgets(line, MAXLINE, ficpar);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     puts(line);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     fputs(line,ficparo);          
   }        */
   ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++) {
            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        } 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      }
     }
   fscanf(ficpar,"pop_based=%d\n",&popbased);    
   fprintf(ficparo,"pop_based=%d\n",popbased);      /* CV preval stable (period) */
   fprintf(ficres,"pop_based=%d\n",popbased);      for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<=nlstate ; cpt ++) {
   while((c=getc(ficpar))=='#' && c!= EOF){        k=3;
     ungetc(c,ficpar);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     puts(line);  set ter png small\nset size 0.65,0.65\n\
     fputs(line,ficparo);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   }        
   ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
 while((c=getc(ficpar))=='#' && c!= EOF){          l=3+(nlstate+ndeath)*cpt;
     ungetc(c,ficpar);          fprintf(ficgp,"+$%d",l+i+1);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     fputs(line,ficparo);      } 
   }    }  
   ungetc(c,ficpar);    
     /* proba elementaires */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    for(i=1,jk=1; i <=nlstate; i++){
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      for(k=1; k <=(nlstate+ndeath); k++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
 /*------------ gnuplot -------------*/            fprintf(ficgp,"\n");
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);          }
          }
 /*------------ free_vector  -------------*/      }
  chdir(path);     }
    
  free_ivector(wav,1,imx);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       for(jk=1; jk <=m; jk++) {
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);           fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
  free_ivector(num,1,n);         if (ng==2)
  free_vector(agedc,1,n);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/         else
  fclose(ficparo);           fprintf(ficgp,"\nset title \"Probability\"\n");
  fclose(ficres);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
 /*--------- index.htm --------*/         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);           for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                 if(ng==2)
   /*--------------- Prevalence limit --------------*/                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else
   strcpy(filerespl,"pl");                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   strcat(filerespl,fileres);               ij=1;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {               for(j=3; j <=ncovmodel; j++) {
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                   ij++;
   fprintf(ficrespl,"#Prevalence limit\n");                 }
   fprintf(ficrespl,"#Age ");                 else
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   fprintf(ficrespl,"\n");               }
                 fprintf(ficgp,")/(1");
   prlim=matrix(1,nlstate,1,nlstate);               
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               for(k1=1; k1 <=nlstate; k1++){   
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 ij=1;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 for(j=3; j <=ncovmodel; j++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   k=0;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   agebase=ageminpar;                     ij++;
   agelim=agemaxpar;                   }
   ftolpl=1.e-10;                   else
   i1=cptcoveff;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   if (cptcovn < 1){i1=1;}                 }
                  fprintf(ficgp,")");
   for(cptcov=1;cptcov<=i1;cptcov++){               }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
         k=k+1;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/               i=i+ncovmodel;
         fprintf(ficrespl,"\n#******");             }
         for(j=1;j<=cptcoveff;j++)           } /* end k */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         } /* end k2 */
         fprintf(ficrespl,"******\n");       } /* end jk */
             } /* end ng */
         for (age=agebase; age<=agelim; age++){     fflush(ficgp); 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  }  /* end gnuplot */
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);  /*************** Moving average **************/
           fprintf(ficrespl,"\n");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         }  
       }    int i, cpt, cptcod;
     }    int modcovmax =1;
   fclose(ficrespl);    int mobilavrange, mob;
     double age;
   /*------------- h Pij x at various ages ------------*/  
      modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                             a covariate has 2 modalities */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   printf("Computing pij: result on file '%s' \n", filerespij);      if(mobilav==1) mobilavrange=5; /* default */
        else mobilavrange=mobilav;
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for (age=bage; age<=fage; age++)
   /*if (stepm<=24) stepsize=2;*/        for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
   agelim=AGESUP;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   hstepm=stepsize*YEARM; /* Every year of age */      /* We keep the original values on the extreme ages bage, fage and for 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           we use a 5 terms etc. until the borders are no more concerned. 
   k=0;      */ 
   for(cptcov=1;cptcov<=i1;cptcov++){      for (mob=3;mob <=mobilavrange;mob=mob+2){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       k=k+1;          for (i=1; i<=nlstate;i++){
         fprintf(ficrespij,"\n#****** ");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
         for(j=1;j<=cptcoveff;j++)              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
         fprintf(ficrespij,"******\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                          mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;        }/* end age */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }/* end mob */
           fprintf(ficrespij,"# Age");    }else return -1;
           for(i=1; i<=nlstate;i++)    return 0;
             for(j=1; j<=nlstate+ndeath;j++)  }/* End movingaverage */
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){  /************** Forecasting ******************/
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
             for(i=1; i<=nlstate;i++)    /* proj1, year, month, day of starting projection 
               for(j=1; j<=nlstate+ndeath;j++)       agemin, agemax range of age
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       dateprev1 dateprev2 range of dates during which prevalence is computed
             fprintf(ficrespij,"\n");       anproj2 year of en of projection (same day and month as proj1).
              }    */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
           fprintf(ficrespij,"\n");    int *popage;
         }    double agec; /* generic age */
     }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   }    double *popeffectif,*popcount;
     double ***p3mat;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   fclose(ficrespij);  
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   /*---------- Forecasting ------------------*/   
   if((stepm == 1) && (strcmp(model,".")==0)){    strcpy(fileresf,"f"); 
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    strcat(fileresf,fileres);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    if((ficresf=fopen(fileresf,"w"))==NULL) {
   }      printf("Problem with forecast resultfile: %s\n", fileresf);
   else{      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     erreur=108;    }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    printf("Computing forecasting: result on file '%s' \n", fileresf);
   }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
    
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   /*---------- Health expectancies and variances ------------*/  
     if (mobilav!=0) {
   strcpy(filerest,"t");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(filerest,fileres);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   if((ficrest=fopen(filerest,"w"))==NULL) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   }      }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
   strcpy(filerese,"e");    if (stepm<=12) stepsize=1;
   strcat(filerese,fileres);    if(estepm < stepm){
   if((ficreseij=fopen(filerese,"w"))==NULL) {      printf ("Problem %d lower than %d\n",estepm, stepm);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    }
   }    else  hstepm=estepm;   
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
     hstepm=hstepm/stepm; 
  strcpy(fileresv,"v");    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   strcat(fileresv,fileres);                                 fractional in yp1 */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    anprojmean=yp;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    yp2=modf((yp1*12),&yp);
   }    mprojmean=yp;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    yp1=modf((yp2*30.5),&yp);
   calagedate=-1;    jprojmean=yp;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    i1=cptcoveff;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if (cptcovn < 1){i1=1;}
       k=k+1;    
       fprintf(ficrest,"\n#****** ");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresf,"#****** Routine prevforecast **\n");
       fprintf(ficrest,"******\n");  
   /*            if (h==(int)(YEARM*yearp)){ */
       fprintf(ficreseij,"\n#****** ");    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(j=1;j<=cptcoveff;j++)      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        k=k+1;
       fprintf(ficreseij,"******\n");        fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
       fprintf(ficresvij,"\n#****** ");          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       for(j=1;j<=cptcoveff;j++)        }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficresf,"******\n");
       fprintf(ficresvij,"******\n");        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for(i=1; i<=nlstate;i++)              
       oldm=oldms;savm=savms;            fprintf(ficresf," p%d%d",i,j);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            fprintf(ficresf," p.%d",j);
          }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       oldm=oldms;savm=savms;          fprintf(ficresf,"\n");
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
      
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
              nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            nhstepm = nhstepm/hstepm; 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficrest,"\n");            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       epj=vector(1,nlstate+1);          
       for(age=bage; age <=fage ;age++){            for (h=0; h<=nhstepm; h++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              if (h*hstepm/YEARM*stepm ==yearp) {
         if (popbased==1) {                fprintf(ficresf,"\n");
           for(i=1; i<=nlstate;i++)                for(j=1;j<=cptcoveff;j++) 
             prlim[i][i]=probs[(int)age][i][k];                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
                      } 
         fprintf(ficrest," %4.0f",age);              for(j=1; j<=nlstate+ndeath;j++) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                ppij=0.;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                for(i=1; i<=nlstate;i++) {
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                  if (mobilav==1) 
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
           }                  else {
           epj[nlstate+1] +=epj[j];                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
         }                  }
                   if (h*hstepm/YEARM*stepm== yearp) {
         for(i=1, vepp=0.;i <=nlstate;i++)                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
           for(j=1;j <=nlstate;j++)                  }
             vepp += vareij[i][j][(int)age];                } /* end i */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                if (h*hstepm/YEARM*stepm==yearp) {
         for(j=1;j <=nlstate;j++){                  fprintf(ficresf," %.3f", ppij);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                }
         }              }/* end j */
         fprintf(ficrest,"\n");            } /* end h */
       }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }          } /* end agec */
   }        } /* end yearp */
 free_matrix(mint,1,maxwav,1,n);      } /* end cptcod */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    } /* end  cptcov */
     free_vector(weight,1,n);         
   fclose(ficreseij);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficresvij);  
   fclose(ficrest);    fclose(ficresf);
   fclose(ficpar);  }
   free_vector(epj,1,nlstate+1);  
    /************** Forecasting *****not tested NB*************/
   /*------- Variance limit prevalence------*/    populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
   strcpy(fileresvpl,"vpl");    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   strcat(fileresvpl,fileres);    int *popage;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    double calagedatem, agelim, kk1, kk2;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    double *popeffectif,*popcount;
     exit(0);    double ***p3mat,***tabpop,***tabpopprev;
   }    double ***mobaverage;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    char filerespop[FILENAMELENGTH];
   
   k=0;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(cptcov=1;cptcov<=i1;cptcov++){    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    agelim=AGESUP;
       k=k+1;    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       fprintf(ficresvpl,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       fprintf(ficresvpl,"******\n");    
          strcpy(filerespop,"pop"); 
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    strcat(filerespop,fileres);
       oldm=oldms;savm=savms;    if((ficrespop=fopen(filerespop,"w"))==NULL) {
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      printf("Problem with forecast resultfile: %s\n", filerespop);
     }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
  }    }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
   fclose(ficresvpl);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
   /*---------- End : free ----------------*/    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
      if (mobilav!=0) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    stepsize=(int) (stepm+YEARM-1)/YEARM;
      if (stepm<=12) stepsize=1;
   free_matrix(matcov,1,npar,1,npar);    
   free_vector(delti,1,npar);    agelim=AGESUP;
   free_matrix(agev,1,maxwav,1,imx);    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    hstepm=1;
     hstepm=hstepm/stepm; 
   if(erreur >0)    
     printf("End of Imach with error or warning %d\n",erreur);    if (popforecast==1) {
   else   printf("End of Imach\n");      if((ficpop=fopen(popfile,"r"))==NULL) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        printf("Problem with population file : %s\n",popfile);exit(0);
          fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      } 
   /*printf("Total time was %d uSec.\n", total_usecs);*/      popage=ivector(0,AGESUP);
   /*------ End -----------*/      popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
  end:      i=1;   
 #ifdef windows      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   /* chdir(pathcd);*/     
 #endif      imx=i;
  /*system("wgnuplot graph.plt");*/      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
  /*system("../gp37mgw/wgnuplot graph.plt");*/    }
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
  strcpy(plotcmd,GNUPLOTPROGRAM);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
  strcat(plotcmd," ");        k=k+1;
  strcat(plotcmd,optionfilegnuplot);        fprintf(ficrespop,"\n#******");
  system(plotcmd);        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 #ifdef windows        }
   while (z[0] != 'q') {        fprintf(ficrespop,"******\n");
     /* chdir(path); */        fprintf(ficrespop,"# Age");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     scanf("%s",z);        if (popforecast==1)  fprintf(ficrespop," [Population]");
     if (z[0] == 'c') system("./imach");        
     else if (z[0] == 'e') system(optionfilehtm);        for (cpt=0; cpt<=0;cpt++) { 
     else if (z[0] == 'g') system(plotcmd);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     else if (z[0] == 'q') exit(0);          
   }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 #endif            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 }            nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /*  replace(pathc,path);*/
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, path,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.44  
changed lines
  Added in v.1.88


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>