Diff for /imach/src/imach.c between versions 1.47 and 1.102

version 1.47, 2002/06/10 13:12:01 version 1.102, 2004/09/15 17:31:30
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.102  2004/09/15 17:31:30  brouard
      Add the possibility to read data file including tab characters.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.101  2004/09/15 10:38:38  brouard
   first survey ("cross") where individuals from different ages are    Fix on curr_time
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.100  2004/07/12 18:29:06  brouard
   second wave of interviews ("longitudinal") which measure each change    Add version for Mac OS X. Just define UNIX in Makefile
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.99  2004/06/05 08:57:40  brouard
   model. More health states you consider, more time is necessary to reach the    *** empty log message ***
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.98  2004/05/16 15:05:56  brouard
   probability to be observed in state j at the second wave    New version 0.97 . First attempt to estimate force of mortality
   conditional to be observed in state i at the first wave. Therefore    directly from the data i.e. without the need of knowing the health
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    state at each age, but using a Gompertz model: log u =a + b*age .
   'age' is age and 'sex' is a covariate. If you want to have a more    This is the basic analysis of mortality and should be done before any
   complex model than "constant and age", you should modify the program    other analysis, in order to test if the mortality estimated from the
   where the markup *Covariates have to be included here again* invites    cross-longitudinal survey is different from the mortality estimated
   you to do it.  More covariates you add, slower the    from other sources like vital statistic data.
   convergence.  
     The same imach parameter file can be used but the option for mle should be -3.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Agnès, who wrote this part of the code, tried to keep most of the
   identical for each individual. Also, if a individual missed an    former routines in order to include the new code within the former code.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Current limitations:
   split into an exact number (nh*stepm) of unobserved intermediate    A) Even if you enter covariates, i.e. with the
   states. This elementary transition (by month or quarter trimester,    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   semester or year) is model as a multinomial logistic.  The hPx    B) There is no computation of Life Expectancy nor Life Table.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.97  2004/02/20 13:25:42  lievre
   hPijx.    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.96  2003/07/15 15:38:55  brouard
      * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    rewritten within the same printf. Workaround: many printfs.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.95  2003/07/08 07:54:34  brouard
   from the European Union.    * imach.c (Repository):
   It is copyrighted identically to a GNU software product, ie programme and    (Repository): Using imachwizard code to output a more meaningful covariance
   software can be distributed freely for non commercial use. Latest version    matrix (cov(a12,c31) instead of numbers.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.94  2003/06/27 13:00:02  brouard
      Just cleaning
 #include <math.h>  
 #include <stdio.h>    Revision 1.93  2003/06/25 16:33:55  brouard
 #include <stdlib.h>    (Module): On windows (cygwin) function asctime_r doesn't
 #include <unistd.h>    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.92  2003/06/25 16:30:45  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): On windows (cygwin) function asctime_r doesn't
 #define FILENAMELENGTH 80    exist so I changed back to asctime which exists.
 /*#define DEBUG*/  
 #define windows    Revision 1.91  2003/06/25 15:30:29  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    * imach.c (Repository): Duplicated warning errors corrected.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    is stamped in powell.  We created a new html file for the graphs
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    concerning matrix of covariance. It has extension -cov.htm.
   
 #define NINTERVMAX 8    Revision 1.90  2003/06/24 12:34:15  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Some bugs corrected for windows. Also, when
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define NCOVMAX 8 /* Maximum number of covariates */    of the covariance matrix to be input.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.89  2003/06/24 12:30:52  brouard
 #define AGESUP 130    (Module): Some bugs corrected for windows. Also, when
 #define AGEBASE 40    mle=-1 a template is output in file "or"mypar.txt with the design
 #ifdef windows    of the covariance matrix to be input.
 #define DIRSEPARATOR '\\'  
 #else    Revision 1.88  2003/06/23 17:54:56  brouard
 #define DIRSEPARATOR '/'    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #endif  
     Revision 1.87  2003/06/18 12:26:01  brouard
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";    Version 0.96
 int erreur; /* Error number */  
 int nvar;    Revision 1.86  2003/06/17 20:04:08  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Change position of html and gnuplot routines and added
 int npar=NPARMAX;    routine fileappend.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.85  2003/06/17 13:12:43  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    * imach.c (Repository): Check when date of death was earlier that
 int popbased=0;    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 int *wav; /* Number of waves for this individuual 0 is possible */    was wrong (infinity). We still send an "Error" but patch by
 int maxwav; /* Maxim number of waves */    assuming that the date of death was just one stepm after the
 int jmin, jmax; /* min, max spacing between 2 waves */    interview.
 int mle, weightopt;    (Repository): Because some people have very long ID (first column)
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    we changed int to long in num[] and we added a new lvector for
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    memory allocation. But we also truncated to 8 characters (left
 double jmean; /* Mean space between 2 waves */    truncation)
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Repository): No more line truncation errors.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.84  2003/06/13 21:44:43  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    * imach.c (Repository): Replace "freqsummary" at a correct
 FILE *fichtm; /* Html File */    place. It differs from routine "prevalence" which may be called
 FILE *ficreseij;    many times. Probs is memory consuming and must be used with
 char filerese[FILENAMELENGTH];    parcimony.
 FILE  *ficresvij;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.83  2003/06/10 13:39:11  lievre
 char fileresvpl[FILENAMELENGTH];    *** empty log message ***
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.82  2003/06/05 15:57:20  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Add log in  imach.c and  fullversion number is now printed.
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  */
   /*
 char filerest[FILENAMELENGTH];     Interpolated Markov Chain
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Short summary of the programme:
     
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define NR_END 1    first survey ("cross") where individuals from different ages are
 #define FREE_ARG char*    interviewed on their health status or degree of disability (in the
 #define FTOL 1.0e-10    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 #define NRANSI    (if any) in individual health status.  Health expectancies are
 #define ITMAX 200    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 #define TOL 2.0e-4    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 #define CGOLD 0.3819660    probability to be observed in state j at the second wave
 #define ZEPS 1.0e-10    conditional to be observed in state i at the first wave. Therefore
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 #define GOLD 1.618034    complex model than "constant and age", you should modify the program
 #define GLIMIT 100.0    where the markup *Covariates have to be included here again* invites
 #define TINY 1.0e-20    you to do it.  More covariates you add, slower the
     convergence.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    The advantage of this computer programme, compared to a simple
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    multinomial logistic model, is clear when the delay between waves is not
      identical for each individual. Also, if a individual missed an
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    intermediate interview, the information is lost, but taken into
 #define rint(a) floor(a+0.5)    account using an interpolation or extrapolation.  
   
 static double sqrarg;    hPijx is the probability to be observed in state i at age x+h
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    conditional to the observed state i at age x. The delay 'h' can be
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 int imx;    semester or year) is modelled as a multinomial logistic.  The hPx
 int stepm;    matrix is simply the matrix product of nh*stepm elementary matrices
 /* Stepm, step in month: minimum step interpolation*/    and the contribution of each individual to the likelihood is simply
     hPijx.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
 int m,nb;    
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;             Institut national d'études démographiques, Paris.
 double **pmmij, ***probs, ***mobaverage;    This software have been partly granted by Euro-REVES, a concerted action
 double dateintmean=0;    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 double *weight;    software can be distributed freely for non commercial use. Latest version
 int **s; /* Status */    can be accessed at http://euroreves.ined.fr/imach .
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    
 double ftolhess; /* Tolerance for computing hessian */    **********************************************************************/
   /*
 /**************** split *************************/    main
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    read parameterfile
 {    read datafile
    char *s;                             /* pointer */    concatwav
    int  l1, l2;                         /* length counters */    freqsummary
     if (mle >= 1)
    l1 = strlen( path );                 /* length of path */      mlikeli
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    print results files
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    if mle==1 
    if ( s == NULL ) {                   /* no directory, so use current */       computes hessian
 #if     defined(__bsd__)                /* get current working directory */    read end of parameter file: agemin, agemax, bage, fage, estepm
       extern char       *getwd( );        begin-prev-date,...
     open gnuplot file
       if ( getwd( dirc ) == NULL ) {    open html file
 #else    stable prevalence
       extern char       *getcwd( );     for age prevalim()
     h Pij x
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    variance of p varprob
 #endif    forecasting if prevfcast==1 prevforecast call prevalence()
          return( GLOCK_ERROR_GETCWD );    health expectancies
       }    Variance-covariance of DFLE
       strcpy( name, path );             /* we've got it */    prevalence()
    } else {                             /* strip direcotry from path */     movingaverage()
       s++;                              /* after this, the filename */    varevsij() 
       l2 = strlen( s );                 /* length of filename */    if popbased==1 varevsij(,popbased)
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    total life expectancies
       strcpy( name, s );                /* save file name */    Variance of stable prevalence
       strncpy( dirc, path, l1 - l2 );   /* now the directory */   end
       dirc[l1-l2] = 0;                  /* add zero */  */
    }  
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }   
 #else  #include <math.h>
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #include <stdio.h>
 #endif  #include <stdlib.h>
    s = strrchr( name, '.' );            /* find last / */  #include <unistd.h>
    s++;  
    strcpy(ext,s);                       /* save extension */  /* #include <sys/time.h> */
    l1= strlen( name);  #include <time.h>
    l2= strlen( s)+1;  #include "timeval.h"
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  /* #include <libintl.h> */
    return( 0 );                         /* we're done */  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 /******************************************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 void replace(char *s, char*t)  /*#define DEBUG*/
 {  /*#define windows*/
   int i;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   int lg=20;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   i=0;  
   lg=strlen(t);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for(i=0; i<= lg; i++) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  #define NINTERVMAX 8
   }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 int nbocc(char *s, char occ)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   int i,j=0;  #define AGESUP 130
   int lg=20;  #define AGEBASE 40
   i=0;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   lg=strlen(s);  #ifdef UNIX
   for(i=0; i<= lg; i++) {  #define DIRSEPARATOR '/'
   if  (s[i] == occ ) j++;  #define ODIRSEPARATOR '\\'
   }  #else
   return j;  #define DIRSEPARATOR '\\'
 }  #define ODIRSEPARATOR '/'
   #endif
 void cutv(char *u,char *v, char*t, char occ)  
 {  /* $Id$ */
   int i,lg,j,p=0;  /* $State$ */
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  char version[]="Imach version 0.97c, September 2004, INED-EUROREVES ";
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char fullversion[]="$Revision$ $Date$"; 
   }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
   lg=strlen(t);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for(j=0; j<p; j++) {  int npar=NPARMAX;
     (u[j] = t[j]);  int nlstate=2; /* Number of live states */
   }  int ndeath=1; /* Number of dead states */
      u[p]='\0';  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  int *wav; /* Number of waves for this individuual 0 is possible */
   }  int maxwav; /* Maxim number of waves */
 }  int jmin, jmax; /* min, max spacing between 2 waves */
   int gipmx, gsw; /* Global variables on the number of contributions 
 /********************** nrerror ********************/                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 void nrerror(char error_text[])  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   fprintf(stderr,"ERREUR ...\n");  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   fprintf(stderr,"%s\n",error_text);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   exit(1);  double jmean; /* Mean space between 2 waves */
 }  double **oldm, **newm, **savm; /* Working pointers to matrices */
 /*********************** vector *******************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 double *vector(int nl, int nh)  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   double *v;  int globpr; /* Global variable for printing or not */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  double fretone; /* Only one call to likelihood */
   if (!v) nrerror("allocation failure in vector");  long ipmx; /* Number of contributions */
   return v-nl+NR_END;  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /************************ free vector ******************/  FILE *ficresilk;
 void free_vector(double*v, int nl, int nh)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   free((FREE_ARG)(v+nl-NR_END));  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /************************ivector *******************************/  FILE  *ficresvij;
 int *ivector(long nl,long nh)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   int *v;  char fileresvpl[FILENAMELENGTH];
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char title[MAXLINE];
   if (!v) nrerror("allocation failure in ivector");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   return v-nl+NR_END;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /******************free ivector **************************/  int  outcmd=0;
 void free_ivector(int *v, long nl, long nh)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /******************* imatrix *******************************/  char fileregp[FILENAMELENGTH];
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char popfile[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
    struct timezone tzp;
   /* allocate pointers to rows */  extern int gettimeofday();
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   if (!m) nrerror("allocation failure 1 in matrix()");  long time_value;
   m += NR_END;  extern long time();
   m -= nrl;  char strcurr[80], strfor[80];
    
    #define NR_END 1
   /* allocate rows and set pointers to them */  #define FREE_ARG char*
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define FTOL 1.0e-10
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define NRANSI 
   m[nrl] -= ncl;  #define ITMAX 200 
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define TOL 2.0e-4 
    
   /* return pointer to array of pointers to rows */  #define CGOLD 0.3819660 
   return m;  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /****************** free_imatrix *************************/  #define GOLD 1.618034 
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define GLIMIT 100.0 
       int **m;  #define TINY 1.0e-20 
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  static double maxarg1,maxarg2;
 {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG) (m+nrl-NR_END));    
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double **m;  int agegomp= AGEGOMP;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int imx; 
   if (!m) nrerror("allocation failure 1 in matrix()");  int stepm=1;
   m += NR_END;  /* Stepm, step in month: minimum step interpolation*/
   m -= nrl;  
   int estepm;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  int m,nb;
   m[nrl] -= ncl;  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   return m;  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double *weight;
 {  int **s; /* Status */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double *agedc, **covar, idx;
   free((FREE_ARG)(m+nrl-NR_END));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /******************* ma3x *******************************/  double ftolhess; /* Tolerance for computing hessian */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  /**************** split *************************/
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double ***m;  {
     /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   if (!m) nrerror("allocation failure 1 in matrix()");    */ 
   m += NR_END;    char  *ss;                            /* pointer */
   m -= nrl;    int   l1, l2;                         /* length counters */
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    l1 = strlen(path );                   /* length of path */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl] += NR_END;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m[nrl] -= ncl;    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      /*    extern  char* getcwd ( char *buf , int len);*/
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m[nrl][ncl] += NR_END;        return( GLOCK_ERROR_GETCWD );
   m[nrl][ncl] -= nll;      }
   for (j=ncl+1; j<=nch; j++)      strcpy( name, path );               /* we've got it */
     m[nrl][j]=m[nrl][j-1]+nlay;    } else {                              /* strip direcotry from path */
        ss++;                               /* after this, the filename */
   for (i=nrl+1; i<=nrh; i++) {      l2 = strlen( ss );                  /* length of filename */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     for (j=ncl+1; j<=nch; j++)      strcpy( name, ss );         /* save file name */
       m[i][j]=m[i][j-1]+nlay;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   }      dirc[l1-l2] = 0;                    /* add zero */
   return m;    }
 }    l1 = strlen( dirc );                  /* length of directory */
     /*#ifdef windows
 /*************************free ma3x ************************/    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #else
 {    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #endif
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    */
   free((FREE_ARG)(m+nrl-NR_END));    ss = strrchr( name, '.' );            /* find last / */
 }    if (ss >0){
       ss++;
 /***************** f1dim *************************/      strcpy(ext,ss);                     /* save extension */
 extern int ncom;      l1= strlen( name);
 extern double *pcom,*xicom;      l2= strlen(ss)+1;
 extern double (*nrfunc)(double []);      strncpy( finame, name, l1-l2);
        finame[l1-l2]= 0;
 double f1dim(double x)    }
 {    return( 0 );                          /* we're done */
   int j;  }
   double f;  
   double *xt;  
    /******************************************/
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  void replace_back_to_slash(char *s, char*t)
   f=(*nrfunc)(xt);  {
   free_vector(xt,1,ncom);    int i;
   return f;    int lg=0;
 }    i=0;
     lg=strlen(t);
 /*****************brent *************************/    for(i=0; i<= lg; i++) {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   int iter;    }
   double a,b,d,etemp;  }
   double fu,fv,fw,fx;  
   double ftemp;  int nbocc(char *s, char occ)
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    int i,j=0;
      int lg=20;
   a=(ax < cx ? ax : cx);    i=0;
   b=(ax > cx ? ax : cx);    lg=strlen(s);
   x=w=v=bx;    for(i=0; i<= lg; i++) {
   fw=fv=fx=(*f)(x);    if  (s[i] == occ ) j++;
   for (iter=1;iter<=ITMAX;iter++) {    }
     xm=0.5*(a+b);    return j;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  void cutv(char *u,char *v, char*t, char occ)
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 #endif       gives u="abcedf" and v="ghi2j" */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    int i,lg,j,p=0;
       *xmin=x;    i=0;
       return fx;    for(j=0; j<=strlen(t)-1; j++) {
     }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     ftemp=fu;    }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);    lg=strlen(t);
       q=(x-v)*(fx-fw);    for(j=0; j<p; j++) {
       p=(x-v)*q-(x-w)*r;      (u[j] = t[j]);
       q=2.0*(q-r);    }
       if (q > 0.0) p = -p;       u[p]='\0';
       q=fabs(q);  
       etemp=e;     for(j=0; j<= lg; j++) {
       e=d;      if (j>=(p+1))(v[j-p-1] = t[j]);
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  
         d=p/q;  /********************** nrerror ********************/
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  void nrerror(char error_text[])
           d=SIGN(tol1,xm-x);  {
       }    fprintf(stderr,"ERREUR ...\n");
     } else {    fprintf(stderr,"%s\n",error_text);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    exit(EXIT_FAILURE);
     }  }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  /*********************** vector *******************/
     fu=(*f)(u);  double *vector(int nl, int nh)
     if (fu <= fx) {  {
       if (u >= x) a=x; else b=x;    double *v;
       SHFT(v,w,x,u)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         SHFT(fv,fw,fx,fu)    if (!v) nrerror("allocation failure in vector");
         } else {    return v-nl+NR_END;
           if (u < x) a=u; else b=u;  }
           if (fu <= fw || w == x) {  
             v=w;  /************************ free vector ******************/
             w=u;  void free_vector(double*v, int nl, int nh)
             fv=fw;  {
             fw=fu;    free((FREE_ARG)(v+nl-NR_END));
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  /************************ivector *******************************/
           }  int *ivector(long nl,long nh)
         }  {
   }    int *v;
   nrerror("Too many iterations in brent");    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   *xmin=x;    if (!v) nrerror("allocation failure in ivector");
   return fx;    return v-nl+NR_END;
 }  }
   
 /****************** mnbrak ***********************/  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  {
             double (*func)(double))    free((FREE_ARG)(v+nl-NR_END));
 {  }
   double ulim,u,r,q, dum;  
   double fu;  /************************lvector *******************************/
    long *lvector(long nl,long nh)
   *fa=(*func)(*ax);  {
   *fb=(*func)(*bx);    long *v;
   if (*fb > *fa) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     SHFT(dum,*ax,*bx,dum)    if (!v) nrerror("allocation failure in ivector");
       SHFT(dum,*fb,*fa,dum)    return v-nl+NR_END;
       }  }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /******************free lvector **************************/
   while (*fb > *fc) {  void free_lvector(long *v, long nl, long nh)
     r=(*bx-*ax)*(*fb-*fc);  {
     q=(*bx-*cx)*(*fb-*fa);    free((FREE_ARG)(v+nl-NR_END));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /******************* imatrix *******************************/
     if ((*bx-u)*(u-*cx) > 0.0) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       fu=(*func)(u);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     } else if ((*cx-u)*(u-ulim) > 0.0) {  { 
       fu=(*func)(u);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       if (fu < *fc) {    int **m; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    
           SHFT(*fb,*fc,fu,(*func)(u))    /* allocate pointers to rows */ 
           }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
       u=ulim;    m += NR_END; 
       fu=(*func)(u);    m -= nrl; 
     } else {    
       u=(*cx)+GOLD*(*cx-*bx);    
       fu=(*func)(u);    /* allocate rows and set pointers to them */ 
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     SHFT(*ax,*bx,*cx,u)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       SHFT(*fa,*fb,*fc,fu)    m[nrl] += NR_END; 
       }    m[nrl] -= ncl; 
 }    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 /*************** linmin ************************/    
     /* return pointer to array of pointers to rows */ 
 int ncom;    return m; 
 double *pcom,*xicom;  } 
 double (*nrfunc)(double []);  
    /****************** free_imatrix *************************/
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void free_imatrix(m,nrl,nrh,ncl,nch)
 {        int **m;
   double brent(double ax, double bx, double cx,        long nch,ncl,nrh,nrl; 
                double (*f)(double), double tol, double *xmin);       /* free an int matrix allocated by imatrix() */ 
   double f1dim(double x);  { 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
               double *fc, double (*func)(double));    free((FREE_ARG) (m+nrl-NR_END)); 
   int j;  } 
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /******************* matrix *******************************/
    double **matrix(long nrl, long nrh, long ncl, long nch)
   ncom=n;  {
   pcom=vector(1,n);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   xicom=vector(1,n);    double **m;
   nrfunc=func;  
   for (j=1;j<=n;j++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     pcom[j]=p[j];    if (!m) nrerror("allocation failure 1 in matrix()");
     xicom[j]=xi[j];    m += NR_END;
   }    m -= nrl;
   ax=0.0;  
   xx=1.0;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m[nrl] += NR_END;
 #ifdef DEBUG    m[nrl] -= ncl;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (j=1;j<=n;j++) {    return m;
     xi[j] *= xmin;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     p[j] += xi[j];     */
   }  }
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /*************************free matrix ************************/
 }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 /*************** powell ************************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    free((FREE_ARG)(m+nrl-NR_END));
             double (*func)(double []))  }
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /******************* ma3x *******************************/
               double (*func)(double []));  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   int i,ibig,j;  {
   double del,t,*pt,*ptt,*xit;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double fp,fptt;    double ***m;
   double *xits;  
   pt=vector(1,n);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   ptt=vector(1,n);    if (!m) nrerror("allocation failure 1 in matrix()");
   xit=vector(1,n);    m += NR_END;
   xits=vector(1,n);    m -= nrl;
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (*iter=1;;++(*iter)) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     fp=(*fret);    m[nrl] += NR_END;
     ibig=0;    m[nrl] -= ncl;
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     printf("\n");    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     for (i=1;i<=n;i++) {    m[nrl][ncl] += NR_END;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m[nrl][ncl] -= nll;
       fptt=(*fret);    for (j=ncl+1; j<=nch; j++) 
 #ifdef DEBUG      m[nrl][j]=m[nrl][j-1]+nlay;
       printf("fret=%lf \n",*fret);    
 #endif    for (i=nrl+1; i<=nrh; i++) {
       printf("%d",i);fflush(stdout);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       linmin(p,xit,n,fret,func);      for (j=ncl+1; j<=nch; j++) 
       if (fabs(fptt-(*fret)) > del) {        m[i][j]=m[i][j-1]+nlay;
         del=fabs(fptt-(*fret));    }
         ibig=i;    return m; 
       }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 #ifdef DEBUG             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       printf("%d %.12e",i,(*fret));    */
       for (j=1;j<=n;j++) {  }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /*************************free ma3x ************************/
       }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for(j=1;j<=n;j++)  {
         printf(" p=%.12e",p[j]);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       printf("\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #endif    free((FREE_ARG)(m+nrl-NR_END));
     }  }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /*************** function subdirf ***********/
       int k[2],l;  char *subdirf(char fileres[])
       k[0]=1;  {
       k[1]=-1;    /* Caution optionfilefiname is hidden */
       printf("Max: %.12e",(*func)(p));    strcpy(tmpout,optionfilefiname);
       for (j=1;j<=n;j++)    strcat(tmpout,"/"); /* Add to the right */
         printf(" %.12e",p[j]);    strcat(tmpout,fileres);
       printf("\n");    return tmpout;
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /*************** function subdirf2 ***********/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  char *subdirf2(char fileres[], char *preop)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    
       }    /* Caution optionfilefiname is hidden */
 #endif    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
     strcat(tmpout,preop);
       free_vector(xit,1,n);    strcat(tmpout,fileres);
       free_vector(xits,1,n);    return tmpout;
       free_vector(ptt,1,n);  }
       free_vector(pt,1,n);  
       return;  /*************** function subdirf3 ***********/
     }  char *subdirf3(char fileres[], char *preop, char *preop2)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  {
     for (j=1;j<=n;j++) {    
       ptt[j]=2.0*p[j]-pt[j];    /* Caution optionfilefiname is hidden */
       xit[j]=p[j]-pt[j];    strcpy(tmpout,optionfilefiname);
       pt[j]=p[j];    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     fptt=(*func)(ptt);    strcat(tmpout,preop2);
     if (fptt < fp) {    strcat(tmpout,fileres);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    return tmpout;
       if (t < 0.0) {  }
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /***************** f1dim *************************/
           xi[j][ibig]=xi[j][n];  extern int ncom; 
           xi[j][n]=xit[j];  extern double *pcom,*xicom;
         }  extern double (*nrfunc)(double []); 
 #ifdef DEBUG   
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  double f1dim(double x) 
         for(j=1;j<=n;j++)  { 
           printf(" %.12e",xit[j]);    int j; 
         printf("\n");    double f;
 #endif    double *xt; 
       }   
     }    xt=vector(1,ncom); 
   }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 /**** Prevalence limit ****************/    return f; 
   } 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /*****************brent *************************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
      matrix by transitions matrix until convergence is reached */  { 
     int iter; 
   int i, ii,j,k;    double a,b,d,etemp;
   double min, max, maxmin, maxmax,sumnew=0.;    double fu,fv,fw,fx;
   double **matprod2();    double ftemp;
   double **out, cov[NCOVMAX], **pmij();    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double **newm;    double e=0.0; 
   double agefin, delaymax=50 ; /* Max number of years to converge */   
     a=(ax < cx ? ax : cx); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    b=(ax > cx ? ax : cx); 
     for (j=1;j<=nlstate+ndeath;j++){    x=w=v=bx; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    fw=fv=fx=(*f)(x); 
     }    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
    cov[1]=1.;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
        /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      printf(".");fflush(stdout);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      fprintf(ficlog,".");fflush(ficlog);
     newm=savm;  #ifdef DEBUG
     /* Covariates have to be included here again */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      cov[2]=agefin;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       for (k=1; k<=cptcovn;k++) {  #endif
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        *xmin=x; 
       }        return fx; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } 
       for (k=1; k<=cptcovprod;k++)      ftemp=fu;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        q=(x-v)*(fx-fw); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        p=(x-v)*q-(x-w)*r; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        q=2.0*(q-r); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        if (q > 0.0) p = -p; 
         q=fabs(q); 
     savm=oldm;        etemp=e; 
     oldm=newm;        e=d; 
     maxmax=0.;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(j=1;j<=nlstate;j++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       min=1.;        else { 
       max=0.;          d=p/q; 
       for(i=1; i<=nlstate; i++) {          u=x+d; 
         sumnew=0;          if (u-a < tol2 || b-u < tol2) 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];            d=SIGN(tol1,xm-x); 
         prlim[i][j]= newm[i][j]/(1-sumnew);        } 
         max=FMAX(max,prlim[i][j]);      } else { 
         min=FMIN(min,prlim[i][j]);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       }      } 
       maxmin=max-min;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       maxmax=FMAX(maxmax,maxmin);      fu=(*f)(u); 
     }      if (fu <= fx) { 
     if(maxmax < ftolpl){        if (u >= x) a=x; else b=x; 
       return prlim;        SHFT(v,w,x,u) 
     }          SHFT(fv,fw,fx,fu) 
   }          } else { 
 }            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 /*************** transition probabilities ***************/              v=w; 
               w=u; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )              fv=fw; 
 {              fw=fu; 
   double s1, s2;            } else if (fu <= fv || v == x || v == w) { 
   /*double t34;*/              v=u; 
   int i,j,j1, nc, ii, jj;              fv=fu; 
             } 
     for(i=1; i<= nlstate; i++){          } 
     for(j=1; j<i;j++){    } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    nrerror("Too many iterations in brent"); 
         /*s2 += param[i][j][nc]*cov[nc];*/    *xmin=x; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return fx; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  } 
       }  
       ps[i][j]=s2;  /****************** mnbrak ***********************/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for(j=i+1; j<=nlstate+ndeath;j++){              double (*func)(double)) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double ulim,u,r,q, dum;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    double fu; 
       }   
       ps[i][j]=s2;    *fa=(*func)(*ax); 
     }    *fb=(*func)(*bx); 
   }    if (*fb > *fa) { 
     /*ps[3][2]=1;*/      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
   for(i=1; i<= nlstate; i++){        } 
      s1=0;    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(j=1; j<i; j++)    *fc=(*func)(*cx); 
       s1+=exp(ps[i][j]);    while (*fb > *fc) { 
     for(j=i+1; j<=nlstate+ndeath; j++)      r=(*bx-*ax)*(*fb-*fc); 
       s1+=exp(ps[i][j]);      q=(*bx-*cx)*(*fb-*fa); 
     ps[i][i]=1./(s1+1.);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for(j=1; j<i; j++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     for(j=i+1; j<=nlstate+ndeath; j++)      if ((*bx-u)*(u-*cx) > 0.0) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fu=(*func)(u); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   } /* end i */        fu=(*func)(u); 
         if (fu < *fc) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for(jj=1; jj<= nlstate+ndeath; jj++){            SHFT(*fb,*fc,fu,(*func)(u)) 
       ps[ii][jj]=0;            } 
       ps[ii][ii]=1;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     }        u=ulim; 
   }        fu=(*func)(u); 
       } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        fu=(*func)(u); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } 
      printf("%lf ",ps[ii][jj]);      SHFT(*ax,*bx,*cx,u) 
    }        SHFT(*fa,*fb,*fc,fu) 
     printf("\n ");        } 
     }  } 
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  /*************** linmin ************************/
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  int ncom; 
     return ps;  double *pcom,*xicom;
 }  double (*nrfunc)(double []); 
    
 /**************** Product of 2 matrices ******************/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double brent(double ax, double bx, double cx, 
 {                 double (*f)(double), double tol, double *xmin); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double f1dim(double x); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   /* in, b, out are matrice of pointers which should have been initialized                double *fc, double (*func)(double)); 
      before: only the contents of out is modified. The function returns    int j; 
      a pointer to pointers identical to out */    double xx,xmin,bx,ax; 
   long i, j, k;    double fx,fb,fa;
   for(i=nrl; i<= nrh; i++)   
     for(k=ncolol; k<=ncoloh; k++)    ncom=n; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    pcom=vector(1,n); 
         out[i][k] +=in[i][j]*b[j][k];    xicom=vector(1,n); 
     nrfunc=func; 
   return out;    for (j=1;j<=n;j++) { 
 }      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
     } 
 /************* Higher Matrix Product ***************/    ax=0.0; 
     xx=1.0; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  #ifdef DEBUG
      duration (i.e. until    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #endif
      (typically every 2 years instead of every month which is too big).    for (j=1;j<=n;j++) { 
      Model is determined by parameters x and covariates have to be      xi[j] *= xmin; 
      included manually here.      p[j] += xi[j]; 
     } 
      */    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
   int i, j, d, h, k;  } 
   double **out, cov[NCOVMAX];  
   double **newm;  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   /* Hstepm could be zero and should return the unit matrix */    long sec_left, days, hours, minutes;
   for (i=1;i<=nlstate+ndeath;i++)    days = (time_sec) / (60*60*24);
     for (j=1;j<=nlstate+ndeath;j++){    sec_left = (time_sec) % (60*60*24);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    hours = (sec_left) / (60*60) ;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    sec_left = (sec_left) %(60*60);
     }    minutes = (sec_left) /60;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    sec_left = (sec_left) % (60);
   for(h=1; h <=nhstepm; h++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     for(d=1; d <=hstepm; d++){    return ascdiff;
       newm=savm;  }
       /* Covariates have to be included here again */  
       cov[1]=1.;  /*************** powell ************************/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];              double (*func)(double [])) 
       for (k=1; k<=cptcovage;k++)  { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    void linmin(double p[], double xi[], int n, double *fret, 
       for (k=1; k<=cptcovprod;k++)                double (*func)(double [])); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
     double fp,fptt;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double *xits;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    int niterf, itmp;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    pt=vector(1,n); 
       savm=oldm;    ptt=vector(1,n); 
       oldm=newm;    xit=vector(1,n); 
     }    xits=vector(1,n); 
     for(i=1; i<=nlstate+ndeath; i++)    *fret=(*func)(p); 
       for(j=1;j<=nlstate+ndeath;j++) {    for (j=1;j<=n;j++) pt[j]=p[j]; 
         po[i][j][h]=newm[i][j];    for (*iter=1;;++(*iter)) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      fp=(*fret); 
          */      ibig=0; 
       }      del=0.0; 
   } /* end h */      last_time=curr_time;
   return po;      (void) gettimeofday(&curr_time,&tzp);
 }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
 /*************** log-likelihood *************/      */
 double func( double *x)     for (i=1;i<=n;i++) {
 {        printf(" %d %.12f",i, p[i]);
   int i, ii, j, k, mi, d, kk;        fprintf(ficlog," %d %.12lf",i, p[i]);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        fprintf(ficrespow," %.12lf", p[i]);
   double **out;      }
   double sw; /* Sum of weights */      printf("\n");
   double lli; /* Individual log likelihood */      fprintf(ficlog,"\n");
   long ipmx;      fprintf(ficrespow,"\n");fflush(ficrespow);
   /*extern weight */      if(*iter <=3){
   /* We are differentiating ll according to initial status */        tm = *localtime(&curr_time.tv_sec);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        strcpy(strcurr,asctime(&tm));
   /*for(i=1;i<imx;i++)  /*       asctime_r(&tm,strcurr); */
     printf(" %d\n",s[4][i]);        forecast_time=curr_time; 
   */        itmp = strlen(strcurr);
   cov[1]=1.;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
   for(k=1; k<=nlstate; k++) ll[k]=0.;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for(niterf=10;niterf<=30;niterf+=10){
     for(mi=1; mi<= wav[i]-1; mi++){          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       for (ii=1;ii<=nlstate+ndeath;ii++)          tmf = *localtime(&forecast_time.tv_sec);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*      asctime_r(&tmf,strfor); */
       for(d=0; d<dh[mi][i]; d++){          strcpy(strfor,asctime(&tmf));
         newm=savm;          itmp = strlen(strfor);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          if(strfor[itmp-1]=='\n')
         for (kk=1; kk<=cptcovage;kk++) {          strfor[itmp-1]='\0';
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      for (i=1;i<=n;i++) { 
         savm=oldm;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         oldm=newm;        fptt=(*fret); 
          #ifdef DEBUG
                printf("fret=%lf \n",*fret);
       } /* end mult */        fprintf(ficlog,"fret=%lf \n",*fret);
        #endif
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        printf("%d",i);fflush(stdout);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        fprintf(ficlog,"%d",i);fflush(ficlog);
       ipmx +=1;        linmin(p,xit,n,fret,func); 
       sw += weight[i];        if (fabs(fptt-(*fret)) > del) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          del=fabs(fptt-(*fret)); 
     } /* end of wave */          ibig=i; 
   } /* end of individual */        } 
   #ifdef DEBUG
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        printf("%d %.12e",i,(*fret));
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        fprintf(ficlog,"%d %.12e",i,(*fret));
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        for (j=1;j<=n;j++) {
   return -l;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
 /*********** Maximum Likelihood Estimation ***************/        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          fprintf(ficlog," p=%.12e",p[j]);
 {        }
   int i,j, iter;        printf("\n");
   double **xi,*delti;        fprintf(ficlog,"\n");
   double fret;  #endif
   xi=matrix(1,npar,1,npar);      } 
   for (i=1;i<=npar;i++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (j=1;j<=npar;j++)  #ifdef DEBUG
       xi[i][j]=(i==j ? 1.0 : 0.0);        int k[2],l;
   printf("Powell\n");        k[0]=1;
   powell(p,xi,npar,ftol,&iter,&fret,func);        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        fprintf(ficlog,"Max: %.12e",(*func)(p));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
 }          fprintf(ficlog," %.12e",p[j]);
         }
 /**** Computes Hessian and covariance matrix ***/        printf("\n");
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        fprintf(ficlog,"\n");
 {        for(l=0;l<=1;l++) {
   double  **a,**y,*x,pd;          for (j=1;j<=n;j++) {
   double **hess;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   int i, j,jk;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int *indx;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   double hessii(double p[], double delta, int theta, double delti[]);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double hessij(double p[], double delti[], int i, int j);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   void lubksb(double **a, int npar, int *indx, double b[]) ;        }
   void ludcmp(double **a, int npar, int *indx, double *d) ;  #endif
   
   hess=matrix(1,npar,1,npar);  
         free_vector(xit,1,n); 
   printf("\nCalculation of the hessian matrix. Wait...\n");        free_vector(xits,1,n); 
   for (i=1;i<=npar;i++){        free_vector(ptt,1,n); 
     printf("%d",i);fflush(stdout);        free_vector(pt,1,n); 
     hess[i][i]=hessii(p,ftolhess,i,delti);        return; 
     /*printf(" %f ",p[i]);*/      } 
     /*printf(" %lf ",hess[i][i]);*/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   }      for (j=1;j<=n;j++) { 
          ptt[j]=2.0*p[j]-pt[j]; 
   for (i=1;i<=npar;i++) {        xit[j]=p[j]-pt[j]; 
     for (j=1;j<=npar;j++)  {        pt[j]=p[j]; 
       if (j>i) {      } 
         printf(".%d%d",i,j);fflush(stdout);      fptt=(*func)(ptt); 
         hess[i][j]=hessij(p,delti,i,j);      if (fptt < fp) { 
         hess[j][i]=hess[i][j];            t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         /*printf(" %lf ",hess[i][j]);*/        if (t < 0.0) { 
       }          linmin(p,xit,n,fret,func); 
     }          for (j=1;j<=n;j++) { 
   }            xi[j][ibig]=xi[j][n]; 
   printf("\n");            xi[j][n]=xit[j]; 
           }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  #ifdef DEBUG
            printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   a=matrix(1,npar,1,npar);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   y=matrix(1,npar,1,npar);          for(j=1;j<=n;j++){
   x=vector(1,npar);            printf(" %.12e",xit[j]);
   indx=ivector(1,npar);            fprintf(ficlog," %.12e",xit[j]);
   for (i=1;i<=npar;i++)          }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          printf("\n");
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog,"\n");
   #endif
   for (j=1;j<=npar;j++) {        }
     for (i=1;i<=npar;i++) x[i]=0;      } 
     x[j]=1;    } 
     lubksb(a,npar,indx,x);  } 
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /**** Prevalence limit (stable prevalence)  ****************/
     }  
   }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   printf("\n#Hessian matrix#\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for (i=1;i<=npar;i++) {       matrix by transitions matrix until convergence is reached */
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);    int i, ii,j,k;
     }    double min, max, maxmin, maxmax,sumnew=0.;
     printf("\n");    double **matprod2();
   }    double **out, cov[NCOVMAX], **pmij();
     double **newm;
   /* Recompute Inverse */    double agefin, delaymax=50 ; /* Max number of years to converge */
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    for (ii=1;ii<=nlstate+ndeath;ii++)
   ludcmp(a,npar,indx,&pd);      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  printf("\n#Hessian matrix recomputed#\n");      }
   
   for (j=1;j<=npar;j++) {     cov[1]=1.;
     for (i=1;i<=npar;i++) x[i]=0;   
     x[j]=1;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     lubksb(a,npar,indx,x);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for (i=1;i<=npar;i++){      newm=savm;
       y[i][j]=x[i];      /* Covariates have to be included here again */
       printf("%.3e ",y[i][j]);       cov[2]=agefin;
     }    
     printf("\n");        for (k=1; k<=cptcovn;k++) {
   }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
   free_matrix(a,1,npar,1,npar);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   free_matrix(y,1,npar,1,npar);        for (k=1; k<=cptcovprod;k++)
   free_vector(x,1,npar);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
 /*************** hessian matrix ****************/      savm=oldm;
 double hessii( double x[], double delta, int theta, double delti[])      oldm=newm;
 {      maxmax=0.;
   int i;      for(j=1;j<=nlstate;j++){
   int l=1, lmax=20;        min=1.;
   double k1,k2;        max=0.;
   double p2[NPARMAX+1];        for(i=1; i<=nlstate; i++) {
   double res;          sumnew=0;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double fx;          prlim[i][j]= newm[i][j]/(1-sumnew);
   int k=0,kmax=10;          max=FMAX(max,prlim[i][j]);
   double l1;          min=FMIN(min,prlim[i][j]);
         }
   fx=func(x);        maxmin=max-min;
   for (i=1;i<=npar;i++) p2[i]=x[i];        maxmax=FMAX(maxmax,maxmin);
   for(l=0 ; l <=lmax; l++){      }
     l1=pow(10,l);      if(maxmax < ftolpl){
     delts=delt;        return prlim;
     for(k=1 ; k <kmax; k=k+1){      }
       delt = delta*(l1*k);    }
       p2[theta]=x[theta] +delt;  }
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  /*************** transition probabilities ***************/ 
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  {
          double s1, s2;
 #ifdef DEBUG    /*double t34;*/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    int i,j,j1, nc, ii, jj;
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      for(i=1; i<= nlstate; i++){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for(j=1; j<i;j++){
         k=kmax;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       }            /*s2 += param[i][j][nc]*cov[nc];*/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         k=kmax; l=lmax*10.;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       }          }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          ps[i][j]=s2;
         delts=delt;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       }        }
     }        for(j=i+1; j<=nlstate+ndeath;j++){
   }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   delti[theta]=delts;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   return res;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
            }
 }          ps[i][j]=s2;
         }
 double hessij( double x[], double delti[], int thetai,int thetaj)      }
 {      /*ps[3][2]=1;*/
   int i;      
   int l=1, l1, lmax=20;      for(i=1; i<= nlstate; i++){
   double k1,k2,k3,k4,res,fx;        s1=0;
   double p2[NPARMAX+1];        for(j=1; j<i; j++)
   int k;          s1+=exp(ps[i][j]);
         for(j=i+1; j<=nlstate+ndeath; j++)
   fx=func(x);          s1+=exp(ps[i][j]);
   for (k=1; k<=2; k++) {        ps[i][i]=1./(s1+1.);
     for (i=1;i<=npar;i++) p2[i]=x[i];        for(j=1; j<i; j++)
     p2[thetai]=x[thetai]+delti[thetai]/k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(j=i+1; j<=nlstate+ndeath; j++)
     k1=func(p2)-fx;          ps[i][j]= exp(ps[i][j])*ps[i][i];
          /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     p2[thetai]=x[thetai]+delti[thetai]/k;      } /* end i */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      
     k2=func(p2)-fx;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          for(jj=1; jj<= nlstate+ndeath; jj++){
     p2[thetai]=x[thetai]-delti[thetai]/k;          ps[ii][jj]=0;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          ps[ii][ii]=1;
     k3=func(p2)-fx;        }
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;      
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 #ifdef DEBUG  /*         printf("ddd %lf ",ps[ii][jj]); */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*       } */
 #endif  /*       printf("\n "); */
   }  /*        } */
   return res;  /*        printf("\n ");printf("%lf ",cov[2]); */
 }         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
 /************** Inverse of matrix **************/        goto end;*/
 void ludcmp(double **a, int n, int *indx, double *d)      return ps;
 {  }
   int i,imax,j,k;  
   double big,dum,sum,temp;  /**************** Product of 2 matrices ******************/
   double *vv;  
    double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   vv=vector(1,n);  {
   *d=1.0;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   for (i=1;i<=n;i++) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     big=0.0;    /* in, b, out are matrice of pointers which should have been initialized 
     for (j=1;j<=n;j++)       before: only the contents of out is modified. The function returns
       if ((temp=fabs(a[i][j])) > big) big=temp;       a pointer to pointers identical to out */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    long i, j, k;
     vv[i]=1.0/big;    for(i=nrl; i<= nrh; i++)
   }      for(k=ncolol; k<=ncoloh; k++)
   for (j=1;j<=n;j++) {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for (i=1;i<j;i++) {          out[i][k] +=in[i][j]*b[j][k];
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    return out;
       a[i][j]=sum;  }
     }  
     big=0.0;  
     for (i=j;i<=n;i++) {  /************* Higher Matrix Product ***************/
       sum=a[i][j];  
       for (k=1;k<j;k++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    /* Computes the transition matrix starting at age 'age' over 
       if ( (dum=vv[i]*fabs(sum)) >= big) {       'nhstepm*hstepm*stepm' months (i.e. until
         big=dum;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         imax=i;       nhstepm*hstepm matrices. 
       }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     }       (typically every 2 years instead of every month which is too big 
     if (j != imax) {       for the memory).
       for (k=1;k<=n;k++) {       Model is determined by parameters x and covariates have to be 
         dum=a[imax][k];       included manually here. 
         a[imax][k]=a[j][k];  
         a[j][k]=dum;       */
       }  
       *d = -(*d);    int i, j, d, h, k;
       vv[imax]=vv[j];    double **out, cov[NCOVMAX];
     }    double **newm;
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;    /* Hstepm could be zero and should return the unit matrix */
     if (j != n) {    for (i=1;i<=nlstate+ndeath;i++)
       dum=1.0/(a[j][j]);      for (j=1;j<=nlstate+ndeath;j++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        oldm[i][j]=(i==j ? 1.0 : 0.0);
     }        po[i][j][0]=(i==j ? 1.0 : 0.0);
   }      }
   free_vector(vv,1,n);  /* Doesn't work */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 ;    for(h=1; h <=nhstepm; h++){
 }      for(d=1; d <=hstepm; d++){
         newm=savm;
 void lubksb(double **a, int n, int *indx, double b[])        /* Covariates have to be included here again */
 {        cov[1]=1.;
   int i,ii=0,ip,j;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double sum;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          for (k=1; k<=cptcovage;k++)
   for (i=1;i<=n;i++) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     ip=indx[i];        for (k=1; k<=cptcovprod;k++)
     sum=b[ip];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     b[ip]=b[i];  
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     else if (sum) ii=i;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     b[i]=sum;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=n;i>=1;i--) {        savm=oldm;
     sum=b[i];        oldm=newm;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      }
     b[i]=sum/a[i][i];      for(i=1; i<=nlstate+ndeath; i++)
   }        for(j=1;j<=nlstate+ndeath;j++) {
 }          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 /************ Frequencies ********************/           */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        }
 {  /* Some frequencies */    } /* end h */
      return po;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  }
   double ***freq; /* Frequencies */  
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  /*************** log-likelihood *************/
   FILE *ficresp;  double func( double *x)
   char fileresp[FILENAMELENGTH];  {
      int i, ii, j, k, mi, d, kk;
   pp=vector(1,nlstate);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **out;
   strcpy(fileresp,"p");    double sw; /* Sum of weights */
   strcat(fileresp,fileres);    double lli; /* Individual log likelihood */
   if((ficresp=fopen(fileresp,"w"))==NULL) {    int s1, s2;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double bbh, survp;
     exit(0);    long ipmx;
   }    /*extern weight */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* We are differentiating ll according to initial status */
   j1=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
   j=cptcoveff;      printf(" %d\n",s[4][i]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    */
      cov[1]=1.;
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    if(mle==1){
         scanf("%d", i);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for(mi=1; mi<= wav[i]-1; mi++){
           for(m=agemin; m <= agemax+3; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             freq[i][jk][m]=0;            for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       dateintsum=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       k2cpt=0;            }
       for (i=1; i<=imx; i++) {          for(d=0; d<dh[mi][i]; d++){
         bool=1;            newm=savm;
         if  (cptcovn>0) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (z1=1; z1<=cptcoveff; z1++)            for (kk=1; kk<=cptcovage;kk++) {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               bool=0;            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (bool==1) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=firstpass; m<=lastpass; m++){            savm=oldm;
             k2=anint[m][i]+(mint[m][i]/12.);            oldm=newm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          } /* end mult */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        
               if(agev[m][i]==1) agev[m][i]=agemax+2;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
               if (m<lastpass) {          /* But now since version 0.9 we anticipate for bias at large stepm.
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           * (in months) between two waves is not a multiple of stepm, we rounded to 
               }           * the nearest (and in case of equal distance, to the lowest) interval but now
                         * we keep into memory the bias bh[mi][i] and also the previous matrix product
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                 dateintsum=dateintsum+k2;           * probability in order to take into account the bias as a fraction of the way
                 k2cpt++;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
               }           * -stepm/2 to stepm/2 .
             }           * For stepm=1 the results are the same as for previous versions of Imach.
           }           * For stepm > 1 the results are less biased than in previous versions. 
         }           */
       }          s1=s[mw[mi][i]][i];
                  s2=s[mw[mi+1][i]][i];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
       if  (cptcovn>0) {           * is higher than the multiple of stepm and negative otherwise.
         fprintf(ficresp, "\n#********** Variable ");           */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         fprintf(ficresp, "**********\n#");          if( s2 > nlstate){ 
       }            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       for(i=1; i<=nlstate;i++)               to the likelihood is the probability to die between last step unit time and current 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);               step unit time, which is also equal to probability to die before dh 
       fprintf(ficresp, "\n");               minus probability to die before dh-stepm . 
                     In version up to 0.92 likelihood was computed
       for(i=(int)agemin; i <= (int)agemax+3; i++){          as if date of death was unknown. Death was treated as any other
         if(i==(int)agemax+3)          health state: the date of the interview describes the actual state
           printf("Total");          and not the date of a change in health state. The former idea was
         else          to consider that at each interview the state was recorded
           printf("Age %d", i);          (healthy, disable or death) and IMaCh was corrected; but when we
         for(jk=1; jk <=nlstate ; jk++){          introduced the exact date of death then we should have modified
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          the contribution of an exact death to the likelihood. This new
             pp[jk] += freq[jk][m][i];          contribution is smaller and very dependent of the step unit
         }          stepm. It is no more the probability to die between last interview
         for(jk=1; jk <=nlstate ; jk++){          and month of death but the probability to survive from last
           for(m=-1, pos=0; m <=0 ; m++)          interview up to one month before death multiplied by the
             pos += freq[jk][m][i];          probability to die within a month. Thanks to Chris
           if(pp[jk]>=1.e-10)          Jackson for correcting this bug.  Former versions increased
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          mortality artificially. The bad side is that we add another loop
           else          which slows down the processing. The difference can be up to 10%
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          lower mortality.
         }            */
             lli=log(out[s1][s2] - savm[s1][s2]);
         for(jk=1; jk <=nlstate ; jk++){          }else{
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             pp[jk] += freq[jk][m][i];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         }          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         for(jk=1,pos=0; jk <=nlstate ; jk++)          /*if(lli ==000.0)*/
           pos += pp[jk];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
           if(pos>=1.e-5)          sw += weight[i];
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           else        } /* end of wave */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      } /* end of individual */
           if( i <= (int) agemax){    }  else if(mle==2){
             if(pos>=1.e-5){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               probs[i][jk][j1]= pp[jk]/pos;        for(mi=1; mi<= wav[i]-1; mi++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          for (ii=1;ii<=nlstate+ndeath;ii++)
             }            for (j=1;j<=nlstate+ndeath;j++){
             else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         }          for(d=0; d<=dh[mi][i]; d++){
                    newm=savm;
         for(jk=-1; jk <=nlstate+ndeath; jk++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(m=-1; m <=nlstate+ndeath; m++)            for (kk=1; kk<=cptcovage;kk++) {
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(i <= (int) agemax)            }
           fprintf(ficresp,"\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         printf("\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     }            oldm=newm;
   }          } /* end mult */
   dateintmean=dateintsum/k2cpt;        
            s1=s[mw[mi][i]][i];
   fclose(ficresp);          s2=s[mw[mi+1][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          bbh=(double)bh[mi][i]/(double)stepm; 
   free_vector(pp,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            ipmx +=1;
   /* End of Freq */          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 /************ Prevalence ********************/      } /* end of individual */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    }  else if(mle==3){  /* exponential inter-extrapolation */
 {  /* Some frequencies */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        for(mi=1; mi<= wav[i]-1; mi++){
   double ***freq; /* Frequencies */          for (ii=1;ii<=nlstate+ndeath;ii++)
   double *pp;            for (j=1;j<=nlstate+ndeath;j++){
   double pos, k2;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   pp=vector(1,nlstate);            }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   j1=0;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   j=cptcoveff;            }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(k1=1; k1<=j;k1++){            savm=oldm;
     for(i1=1; i1<=ncodemax[k1];i1++){            oldm=newm;
       j1++;          } /* end mult */
              
       for (i=-1; i<=nlstate+ndeath; i++)            s1=s[mw[mi][i]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            s2=s[mw[mi+1][i]][i];
           for(m=agemin; m <= agemax+3; m++)          bbh=(double)bh[mi][i]/(double)stepm; 
             freq[i][jk][m]=0;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                ipmx +=1;
       for (i=1; i<=imx; i++) {          sw += weight[i];
         bool=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if  (cptcovn>0) {        } /* end of wave */
           for (z1=1; z1<=cptcoveff; z1++)      } /* end of individual */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    }else if (mle==4){  /* ml=4 no inter-extrapolation */
               bool=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (bool==1) {        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=firstpass; m<=lastpass; m++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             k2=anint[m][i]+(mint[m][i]/12.);            for (j=1;j<=nlstate+ndeath;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==1) agev[m][i]=agemax+2;            }
               if (m<lastpass) {          for(d=0; d<dh[mi][i]; d++){
                 if (calagedate>0)            newm=savm;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 else            for (kk=1; kk<=cptcovage;kk++) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            }
               }          
             }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
       }            oldm=newm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){          } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){        
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          s1=s[mw[mi][i]][i];
             pp[jk] += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
         }          if( s2 > nlstate){ 
         for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=-1, pos=0; m <=0 ; m++)          }else{
             pos += freq[jk][m][i];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
                  ipmx +=1;
         for(jk=1; jk <=nlstate ; jk++){          sw += weight[i];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             pp[jk] += freq[jk][m][i];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        } /* end of wave */
              } /* end of individual */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
              for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1; jk <=nlstate ; jk++){            for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if( i <= (int) agemax){        for(mi=1; mi<= wav[i]-1; mi++){
             if(pos>=1.e-5){          for (ii=1;ii<=nlstate+ndeath;ii++)
               probs[i][jk][j1]= pp[jk]/pos;            for (j=1;j<=nlstate+ndeath;j++){
             }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
                  for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          
   free_vector(pp,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }  /* End of Freq */            savm=oldm;
             oldm=newm;
 /************* Waves Concatenation ***************/          } /* end mult */
         
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          s1=s[mw[mi][i]][i];
 {          s2=s[mw[mi+1][i]][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      Death is a valid wave (if date is known).          ipmx +=1;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          sw += weight[i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      and mw[mi+1][i]. dh depends on stepm.          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      */        } /* end of wave */
       } /* end of individual */
   int i, mi, m;    } /* End of if */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      double sum=0., jmean=0.;*/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int j, k=0,jk, ju, jl;    return -l;
   double sum=0.;  }
   jmin=1e+5;  
   jmax=-1;  /*************** log-likelihood *************/
   jmean=0.;  double funcone( double *x)
   for(i=1; i<=imx; i++){  {
     mi=0;    /* Same as likeli but slower because of a lot of printf and if */
     m=firstpass;    int i, ii, j, k, mi, d, kk;
     while(s[m][i] <= nlstate){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       if(s[m][i]>=1)    double **out;
         mw[++mi][i]=m;    double lli; /* Individual log likelihood */
       if(m >=lastpass)    double llt;
         break;    int s1, s2;
       else    double bbh, survp;
         m++;    /*extern weight */
     }/* end while */    /* We are differentiating ll according to initial status */
     if (s[m][i] > nlstate){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       mi++;     /* Death is another wave */    /*for(i=1;i<imx;i++) 
       /* if(mi==0)  never been interviewed correctly before death */      printf(" %d\n",s[4][i]);
          /* Only death is a correct wave */    */
       mw[mi][i]=m;    cov[1]=1.;
     }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
     wav[i]=mi;  
     if(mi==0)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=1; i<=imx; i++){          for (j=1;j<=nlstate+ndeath;j++){
     for(mi=1; mi<wav[i];mi++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (stepm <=0)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         dh[mi][i]=1;          }
       else{        for(d=0; d<dh[mi][i]; d++){
         if (s[mw[mi+1][i]][i] > nlstate) {          newm=savm;
           if (agedc[i] < 2*AGESUP) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          for (kk=1; kk<=cptcovage;kk++) {
           if(j==0) j=1;  /* Survives at least one month after exam */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           k=k+1;          }
           if (j >= jmax) jmax=j;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (j <= jmin) jmin=j;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           sum=sum+j;          savm=oldm;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          oldm=newm;
           }        } /* end mult */
         }        
         else{        s1=s[mw[mi][i]][i];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        s2=s[mw[mi+1][i]][i];
           k=k+1;        bbh=(double)bh[mi][i]/(double)stepm; 
           if (j >= jmax) jmax=j;        /* bias is positive if real duration
           else if (j <= jmin)jmin=j;         * is higher than the multiple of stepm and negative otherwise.
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */         */
           sum=sum+j;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         }          lli=log(out[s1][s2] - savm[s1][s2]);
         jk= j/stepm;        } else if (mle==1){
         jl= j -jk*stepm;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         ju= j -(jk+1)*stepm;        } else if(mle==2){
         if(jl <= -ju)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           dh[mi][i]=jk;        } else if(mle==3){  /* exponential inter-extrapolation */
         else          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           dh[mi][i]=jk+1;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         if(dh[mi][i]==0)          lli=log(out[s1][s2]); /* Original formula */
           dh[mi][i]=1; /* At least one step */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       }          lli=log(out[s1][s2]); /* Original formula */
     }        } /* End of if */
   }        ipmx +=1;
   jmean=sum/k;        sw += weight[i];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 /*********** Tricode ****************************/        if(globpr){
 void tricode(int *Tvar, int **nbcode, int imx)          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 {   %10.6f %10.6f %10.6f ", \
   int Ndum[20],ij=1, k, j, i;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   int cptcode=0;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   cptcoveff=0;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
              llt +=ll[k]*gipmx/gsw;
   for (k=0; k<19; k++) Ndum[k]=0;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   for (k=1; k<=7; k++) ncodemax[k]=0;          }
           fprintf(ficresilk," %10.6f\n", -llt);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        }
     for (i=1; i<=imx; i++) {      } /* end of wave */
       ij=(int)(covar[Tvar[j]][i]);    } /* end of individual */
       Ndum[ij]++;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       if (ij > cptcode) cptcode=ij;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     }    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
     for (i=0; i<=cptcode; i++) {      gsw=sw;
       if(Ndum[i]!=0) ncodemax[j]++;    }
     }    return -l;
     ij=1;  }
   
   
     for (i=1; i<=ncodemax[j]; i++) {  /*************** function likelione ***********/
       for (k=0; k<=19; k++) {  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         if (Ndum[k] != 0) {  {
           nbcode[Tvar[j]][ij]=k;    /* This routine should help understanding what is done with 
                 the selection of individuals/waves and
           ij++;       to check the exact contribution to the likelihood.
         }       Plotting could be done.
         if (ij > ncodemax[j]) break;     */
       }      int k;
     }  
   }      if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
  for (k=0; k<19; k++) Ndum[k]=0;      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
  for (i=1; i<=ncovmodel-2; i++) {        printf("Problem with resultfile: %s\n", fileresilk);
       ij=Tvar[i];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       Ndum[ij]++;      }
     }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
  ij=1;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
  for (i=1; i<=10; i++) {      for(k=1; k<=nlstate; k++) 
    if((Ndum[i]!=0) && (i<=ncovcol)){        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
      Tvaraff[ij]=i;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      ij++;    }
    }  
  }    *fretone=(*funcone)(p);
      if(*globpri !=0){
     cptcoveff=ij-1;      fclose(ficresilk);
 }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
 /*********** Health Expectancies ****************/    } 
     return;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  }
   
 {  
   /* Health expectancies */  /*********** Maximum Likelihood Estimation ***************/
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  
   double age, agelim, hf;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double ***p3mat,***varhe;  {
   double **dnewm,**doldm;    int i,j, iter;
   double *xp;    double **xi;
   double **gp, **gm;    double fret;
   double ***gradg, ***trgradg;    double fretone; /* Only one call to likelihood */
   int theta;    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    for (i=1;i<=npar;i++)
   xp=vector(1,npar);      for (j=1;j<=npar;j++)
   dnewm=matrix(1,nlstate*2,1,npar);        xi[i][j]=(i==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate*2,1,nlstate*2);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      strcpy(filerespow,"pow"); 
   fprintf(ficreseij,"# Health expectancies\n");    strcat(filerespow,fileres);
   fprintf(ficreseij,"# Age");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   for(i=1; i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
     for(j=1; j<=nlstate;j++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    }
   fprintf(ficreseij,"\n");    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
   if(estepm < stepm){      for(j=1;j<=nlstate+ndeath;j++)
     printf ("Problem %d lower than %d\n",estepm, stepm);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   }    fprintf(ficrespow,"\n");
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    powell(p,xi,npar,ftol,&iter,&fret,func);
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them    fclose(ficrespow);
    * we are calculating an estimate of the Life Expectancy assuming a linear    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
    * progression inbetween and thus overestimating or underestimating according    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    * to the curvature of the survival function. If, for the same date, we    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear  }
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   /* For example we decided to compute the life expectancy with the smallest unit */  {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double  **a,**y,*x,pd;
      nhstepm is the number of hstepm from age to agelim    double **hess;
      nstepm is the number of stepm from age to agelin.    int i, j,jk;
      Look at hpijx to understand the reason of that which relies in memory size    int *indx;
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      survival function given by stepm (the optimization length). Unfortunately it    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      means that if the survival funtion is printed only each two years of age and if    void lubksb(double **a, int npar, int *indx, double b[]) ;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    void ludcmp(double **a, int npar, int *indx, double *d) ;
      results. So we changed our mind and took the option of the best precision.    double gompertz(double p[]);
   */    hess=matrix(1,npar,1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
     printf("\nCalculation of the hessian matrix. Wait...\n");
   agelim=AGESUP;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (i=1;i<=npar;i++){
     /* nhstepm age range expressed in number of stepm */      printf("%d",i);fflush(stdout);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      fprintf(ficlog,"%d",i);fflush(ficlog);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */     
     /* if (stepm >= YEARM) hstepm=1;*/       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*  printf(" %f ",p[i]);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     gp=matrix(0,nhstepm,1,nlstate*2);    }
     gm=matrix(0,nhstepm,1,nlstate*2);    
     for (i=1;i<=npar;i++) {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      for (j=1;j<=npar;j++)  {
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        if (j>i) { 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            printf(".%d%d",i,j);fflush(stdout);
            fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          
           hess[j][i]=hess[i][j];    
     /* Computing Variances of health expectancies */          /*printf(" %lf ",hess[i][j]);*/
         }
      for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("\n");
       }    fprintf(ficlog,"\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       cptj=0;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(j=1; j<= nlstate; j++){    
         for(i=1; i<=nlstate; i++){    a=matrix(1,npar,1,npar);
           cptj=cptj+1;    y=matrix(1,npar,1,npar);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    x=vector(1,npar);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    indx=ivector(1,npar);
           }    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       }    ludcmp(a,npar,indx,&pd);
        
          for (j=1;j<=npar;j++) {
       for(i=1; i<=npar; i++)      for (i=1;i<=npar;i++) x[i]=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      x[j]=1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        lubksb(a,npar,indx,x);
            for (i=1;i<=npar;i++){ 
       cptj=0;        matcov[i][j]=x[i];
       for(j=1; j<= nlstate; j++){      }
         for(i=1;i<=nlstate;i++){    }
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    printf("\n#Hessian matrix#\n");
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    fprintf(ficlog,"\n#Hessian matrix#\n");
           }    for (i=1;i<=npar;i++) { 
         }      for (j=1;j<=npar;j++) { 
       }        printf("%.3e ",hess[i][j]);
       for(j=1; j<= nlstate*2; j++)        fprintf(ficlog,"%.3e ",hess[i][j]);
         for(h=0; h<=nhstepm-1; h++){      }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      printf("\n");
         }      fprintf(ficlog,"\n");
      }    }
      
 /* End theta */    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
      for(h=0; h<=nhstepm-1; h++)  
       for(j=1; j<=nlstate*2;j++)    /*  printf("\n#Hessian matrix recomputed#\n");
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    for (j=1;j<=npar;j++) {
            for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
      for(i=1;i<=nlstate*2;i++)      lubksb(a,npar,indx,x);
       for(j=1;j<=nlstate*2;j++)      for (i=1;i<=npar;i++){ 
         varhe[i][j][(int)age] =0.;        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
      printf("%d|",(int)age);fflush(stdout);        fprintf(ficlog,"%.3e ",y[i][j]);
      for(h=0;h<=nhstepm-1;h++){      }
       for(k=0;k<=nhstepm-1;k++){      printf("\n");
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      fprintf(ficlog,"\n");
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    }
         for(i=1;i<=nlstate*2;i++)    */
           for(j=1;j<=nlstate*2;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    free_matrix(a,1,npar,1,npar);
       }    free_matrix(y,1,npar,1,npar);
     }    free_vector(x,1,npar);
     /* Computing expectancies */    free_ivector(indx,1,npar);
     for(i=1; i<=nlstate;i++)    free_matrix(hess,1,npar,1,npar);
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  }
            
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         }  {
     int i;
     fprintf(ficreseij,"%3.0f",age );    int l=1, lmax=20;
     cptj=0;    double k1,k2;
     for(i=1; i<=nlstate;i++)    double p2[NPARMAX+1];
       for(j=1; j<=nlstate;j++){    double res;
         cptj++;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    double fx;
       }    int k=0,kmax=10;
     fprintf(ficreseij,"\n");    double l1;
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);    fx=func(x);
     free_matrix(gp,0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++) p2[i]=x[i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    for(l=0 ; l <=lmax; l++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      l1=pow(10,l);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      delts=delt;
   }      for(k=1 ; k <kmax; k=k+1){
   printf("\n");        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
   free_vector(xp,1,npar);        k1=func(p2)-fx;
   free_matrix(dnewm,1,nlstate*2,1,npar);        p2[theta]=x[theta]-delt;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        k2=func(p2)-fx;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        /*res= (k1-2.0*fx+k2)/delt/delt; */
 }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
 /************ Variance ******************/  #ifdef DEBUG
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 {        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* Variance of health expectancies */  #endif
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double **newm;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double **dnewm,**doldm;          k=kmax;
   int i, j, nhstepm, hstepm, h, nstepm ;        }
   int k, cptcode;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double *xp;          k=kmax; l=lmax*10.;
   double **gp, **gm;        }
   double ***gradg, ***trgradg;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double ***p3mat;          delts=delt;
   double age,agelim, hf;        }
   int theta;      }
     }
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    delti[theta]=delts;
   fprintf(ficresvij,"# Age");    return res; 
   for(i=1; i<=nlstate;i++)    
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   xp=vector(1,npar);    int i;
   dnewm=matrix(1,nlstate,1,npar);    int l=1, l1, lmax=20;
   doldm=matrix(1,nlstate,1,nlstate);    double k1,k2,k3,k4,res,fx;
      double p2[NPARMAX+1];
   if(estepm < stepm){    int k;
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    fx=func(x);
   else  hstepm=estepm;      for (k=1; k<=2; k++) {
   /* For example we decided to compute the life expectancy with the smallest unit */      for (i=1;i<=npar;i++) p2[i]=x[i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      p2[thetai]=x[thetai]+delti[thetai]/k;
      nhstepm is the number of hstepm from age to agelim      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      nstepm is the number of stepm from age to agelin.      k1=func(p2)-fx;
      Look at hpijx to understand the reason of that which relies in memory size    
      and note for a fixed period like k years */      p2[thetai]=x[thetai]+delti[thetai]/k;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      survival function given by stepm (the optimization length). Unfortunately it      k2=func(p2)-fx;
      means that if the survival funtion is printed only each two years of age and if    
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      p2[thetai]=x[thetai]-delti[thetai]/k;
      results. So we changed our mind and took the option of the best precision.      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   */      k3=func(p2)-fx;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    
   agelim = AGESUP;      p2[thetai]=x[thetai]-delti[thetai]/k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      k4=func(p2)-fx;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #ifdef DEBUG
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     gp=matrix(0,nhstepm,1,nlstate);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     gm=matrix(0,nhstepm,1,nlstate);  #endif
     }
     for(theta=1; theta <=npar; theta++){    return res;
       for(i=1; i<=npar; i++){ /* Computes gradient */  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  /************** Inverse of matrix **************/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    void ludcmp(double **a, int n, int *indx, double *d) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  { 
     int i,imax,j,k; 
       if (popbased==1) {    double big,dum,sum,temp; 
         for(i=1; i<=nlstate;i++)    double *vv; 
           prlim[i][i]=probs[(int)age][i][ij];   
       }    vv=vector(1,n); 
      *d=1.0; 
       for(j=1; j<= nlstate; j++){    for (i=1;i<=n;i++) { 
         for(h=0; h<=nhstepm; h++){      big=0.0; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for (j=1;j<=n;j++) 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        if ((temp=fabs(a[i][j])) > big) big=temp; 
         }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       }      vv[i]=1.0/big; 
        } 
       for(i=1; i<=npar; i++) /* Computes gradient */    for (j=1;j<=n;j++) { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1;i<j;i++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          sum=a[i][j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
       if (popbased==1) {      } 
         for(i=1; i<=nlstate;i++)      big=0.0; 
           prlim[i][i]=probs[(int)age][i][ij];      for (i=j;i<=n;i++) { 
       }        sum=a[i][j]; 
         for (k=1;k<j;k++) 
       for(j=1; j<= nlstate; j++){          sum -= a[i][k]*a[k][j]; 
         for(h=0; h<=nhstepm; h++){        a[i][j]=sum; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          big=dum; 
         }          imax=i; 
       }        } 
       } 
       for(j=1; j<= nlstate; j++)      if (j != imax) { 
         for(h=0; h<=nhstepm; h++){        for (k=1;k<=n;k++) { 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          dum=a[imax][k]; 
         }          a[imax][k]=a[j][k]; 
     } /* End theta */          a[j][k]=dum; 
         } 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        *d = -(*d); 
         vv[imax]=vv[j]; 
     for(h=0; h<=nhstepm; h++)      } 
       for(j=1; j<=nlstate;j++)      indx[j]=imax; 
         for(theta=1; theta <=npar; theta++)      if (a[j][j] == 0.0) a[j][j]=TINY; 
           trgradg[h][j][theta]=gradg[h][theta][j];      if (j != n) { 
         dum=1.0/(a[j][j]); 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for(i=1;i<=nlstate;i++)      } 
       for(j=1;j<=nlstate;j++)    } 
         vareij[i][j][(int)age] =0.;    free_vector(vv,1,n);  /* Doesn't work */
   ;
     for(h=0;h<=nhstepm;h++){  } 
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  void lubksb(double **a, int n, int *indx, double b[]) 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  { 
         for(i=1;i<=nlstate;i++)    int i,ii=0,ip,j; 
           for(j=1;j<=nlstate;j++)    double sum; 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;   
       }    for (i=1;i<=n;i++) { 
     }      ip=indx[i]; 
       sum=b[ip]; 
     fprintf(ficresvij,"%.0f ",age );      b[ip]=b[i]; 
     for(i=1; i<=nlstate;i++)      if (ii) 
       for(j=1; j<=nlstate;j++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      else if (sum) ii=i; 
       }      b[i]=sum; 
     fprintf(ficresvij,"\n");    } 
     free_matrix(gp,0,nhstepm,1,nlstate);    for (i=n;i>=1;i--) { 
     free_matrix(gm,0,nhstepm,1,nlstate);      sum=b[i]; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      b[i]=sum/a[i][i]; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
   } /* End age */  } 
    
   free_vector(xp,1,npar);  /************ Frequencies ********************/
   free_matrix(doldm,1,nlstate,1,npar);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   free_matrix(dnewm,1,nlstate,1,nlstate);  {  /* Some frequencies */
     
 }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
 /************ Variance of prevlim ******************/    double ***freq; /* Frequencies */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double *pp, **prop;
 {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   /* Variance of prevalence limit */    FILE *ficresp;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    char fileresp[FILENAMELENGTH];
   double **newm;    
   double **dnewm,**doldm;    pp=vector(1,nlstate);
   int i, j, nhstepm, hstepm;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   int k, cptcode;    strcpy(fileresp,"p");
   double *xp;    strcat(fileresp,fileres);
   double *gp, *gm;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   double **gradg, **trgradg;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   double age,agelim;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   int theta;      exit(0);
        }
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   fprintf(ficresvpl,"# Age");    j1=0;
   for(i=1; i<=nlstate;i++)    
       fprintf(ficresvpl," %1d-%1d",i,i);    j=cptcoveff;
   fprintf(ficresvpl,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
   xp=vector(1,npar);    first=1;
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    for(k1=1; k1<=j;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
   hstepm=1*YEARM; /* Every year of age */        j1++;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   agelim = AGESUP;          scanf("%d", i);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for (i=-1; i<=nlstate+ndeath; i++)  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     if (stepm >= YEARM) hstepm=1;            for(m=iagemin; m <= iagemax+3; m++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              freq[i][jk][m]=0;
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);      for (i=1; i<=nlstate; i++)  
     gm=vector(1,nlstate);        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
     for(theta=1; theta <=npar; theta++){        
       for(i=1; i<=npar; i++){ /* Computes gradient */        dateintsum=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        k2cpt=0;
       }        for (i=1; i<=imx; i++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          bool=1;
       for(i=1;i<=nlstate;i++)          if  (cptcovn>0) {
         gp[i] = prlim[i][i];            for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       for(i=1; i<=npar; i++) /* Computes gradient */                bool=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if (bool==1){
       for(i=1;i<=nlstate;i++)            for(m=firstpass; m<=lastpass; m++){
         gm[i] = prlim[i][i];              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for(i=1;i<=nlstate;i++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     } /* End theta */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
     trgradg =matrix(1,nlstate,1,npar);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     for(j=1; j<=nlstate;j++)                }
       for(theta=1; theta <=npar; theta++)                
         trgradg[j][theta]=gradg[theta][j];                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
     for(i=1;i<=nlstate;i++)                  k2cpt++;
       varpl[i][(int)age] =0.;                }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                /*}*/
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            }
     for(i=1;i<=nlstate;i++)          }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        }
          
     fprintf(ficresvpl,"%.0f ",age );        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        if  (cptcovn>0) {
     fprintf(ficresvpl,"\n");          fprintf(ficresp, "\n#********** Variable "); 
     free_vector(gp,1,nlstate);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_vector(gm,1,nlstate);          fprintf(ficresp, "**********\n#");
     free_matrix(gradg,1,npar,1,nlstate);        }
     free_matrix(trgradg,1,nlstate,1,npar);        for(i=1; i<=nlstate;i++) 
   } /* End age */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
   free_vector(xp,1,npar);        
   free_matrix(doldm,1,nlstate,1,npar);        for(i=iagemin; i <= iagemax+3; i++){
   free_matrix(dnewm,1,nlstate,1,nlstate);          if(i==iagemax+3){
             fprintf(ficlog,"Total");
 }          }else{
             if(first==1){
 /************ Variance of one-step probabilities  ******************/              first=0;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              printf("See log file for details...\n");
 {            }
   int i, j,  i1, k1, l1;            fprintf(ficlog,"Age %d", i);
   int k2, l2, j1,  z1;          }
   int k=0,l, cptcode;          for(jk=1; jk <=nlstate ; jk++){
   int first=1;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;              pp[jk] += freq[jk][m][i]; 
   double **dnewm,**doldm;          }
   double *xp;          for(jk=1; jk <=nlstate ; jk++){
   double *gp, *gm;            for(m=-1, pos=0; m <=0 ; m++)
   double **gradg, **trgradg;              pos += freq[jk][m][i];
   double **mu;            if(pp[jk]>=1.e-10){
   double age,agelim, cov[NCOVMAX];              if(first==1){
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int theta;              }
   char fileresprob[FILENAMELENGTH];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   char fileresprobcov[FILENAMELENGTH];            }else{
   char fileresprobcor[FILENAMELENGTH];              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double ***varpij;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
   strcpy(fileresprob,"prob");          }
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          for(jk=1; jk <=nlstate ; jk++){
     printf("Problem with resultfile: %s\n", fileresprob);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   }              pp[jk] += freq[jk][m][i];
   strcpy(fileresprobcov,"probcov");          }       
   strcat(fileresprobcov,fileres);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {            pos += pp[jk];
     printf("Problem with resultfile: %s\n", fileresprobcov);            posprop += prop[jk][i];
   }          }
   strcpy(fileresprobcor,"probcor");          for(jk=1; jk <=nlstate ; jk++){
   strcat(fileresprobcor,fileres);            if(pos>=1.e-5){
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {              if(first==1)
     printf("Problem with resultfile: %s\n", fileresprobcor);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            }else{
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);              if(first==1)
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            }
   fprintf(ficresprob,"# Age");            if( i <= iagemax){
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");              if(pos>=1.e-5){
   fprintf(ficresprobcov,"# Age");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");                /*probs[i][jk][j1]= pp[jk]/pos;*/
   fprintf(ficresprobcov,"# Age");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
               else
   for(i=1; i<=nlstate;i++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     for(j=1; j<=(nlstate+ndeath);j++){            }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          }
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     }              for(m=-1; m <=nlstate+ndeath; m++)
   fprintf(ficresprob,"\n");              if(freq[jk][m][i] !=0 ) {
   fprintf(ficresprobcov,"\n");              if(first==1)
   fprintf(ficresprobcor,"\n");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   xp=vector(1,npar);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          if(i <= iagemax)
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            fprintf(ficresp,"\n");
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          if(first==1)
   first=1;            printf("Others in log...\n");
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          fprintf(ficlog,"\n");
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        }
     exit(0);      }
   }    }
   else{    dateintmean=dateintsum/k2cpt; 
     fprintf(ficgp,"\n# Routine varprob");   
   }    fclose(ficresp);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     printf("Problem with html file: %s\n", optionfilehtm);    free_vector(pp,1,nlstate);
     exit(0);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   }    /* End of Freq */
   else{  }
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");  
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  /************ Prevalence ********************/
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
   }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   cov[1]=1;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   j=cptcoveff;       We still use firstpass and lastpass as another selection.
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    */
   j1=0;   
   for(k1=1; k1<=1;k1++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     for(i1=1; i1<=ncodemax[k1];i1++){    double ***freq; /* Frequencies */
     j1++;    double *pp, **prop;
     double pos,posprop; 
     if  (cptcovn>0) {    double  y2; /* in fractional years */
       fprintf(ficresprob, "\n#********** Variable ");    int iagemin, iagemax;
       fprintf(ficresprobcov, "\n#********** Variable ");  
       fprintf(ficgp, "\n#********** Variable ");    iagemin= (int) agemin;
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");    iagemax= (int) agemax;
       fprintf(ficresprobcor, "\n#********** Variable ");    /*pp=vector(1,nlstate);*/
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       fprintf(ficresprob, "**********\n#");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    j1=0;
       fprintf(ficresprobcov, "**********\n#");    
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    j=cptcoveff;
       fprintf(ficgp, "**********\n#");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
       fprintf(ficgp, "**********\n#");    for(k1=1; k1<=j;k1++){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(fichtm, "**********\n#");        j1++;
     }        
            for (i=1; i<=nlstate; i++)  
       for (age=bage; age<=fage; age ++){          for(m=iagemin; m <= iagemax+3; m++)
         cov[2]=age;            prop[i][m]=0.0;
         for (k=1; k<=cptcovn;k++) {       
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for (i=1; i<=imx; i++) { /* Each individual */
         }          bool=1;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          if  (cptcovn>0) {
         for (k=1; k<=cptcovprod;k++)            for (z1=1; z1<=cptcoveff; z1++) 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                        bool=0;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          } 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          if (bool==1) { 
         gp=vector(1,(nlstate)*(nlstate+ndeath));            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         gm=vector(1,(nlstate)*(nlstate+ndeath));              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                  if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         for(theta=1; theta <=npar; theta++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           for(i=1; i<=npar; i++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                          if (s[m][i]>0 && s[m][i]<=nlstate) { 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                            prop[s[m][i]][(int)agev[m][i]] += weight[i];
           k=0;                  prop[s[m][i]][iagemax+3] += weight[i]; 
           for(i=1; i<= (nlstate); i++){                } 
             for(j=1; j<=(nlstate+ndeath);j++){              }
               k=k+1;            } /* end selection of waves */
               gp[k]=pmmij[i][j];          }
             }        }
           }        for(i=iagemin; i <= iagemax+3; i++){  
                    
           for(i=1; i<=npar; i++)          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            posprop += prop[jk][i]; 
              } 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;          for(jk=1; jk <=nlstate ; jk++){     
           for(i=1; i<=(nlstate); i++){            if( i <=  iagemax){ 
             for(j=1; j<=(nlstate+ndeath);j++){              if(posprop>=1.e-5){ 
               k=k+1;                probs[i][jk][j1]= prop[jk][i]/posprop;
               gm[k]=pmmij[i][j];              } 
             }            } 
           }          }/* end jk */ 
              }/* end i */ 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      } /* end i1 */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      } /* end k1 */
         }    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    /*free_vector(pp,1,nlstate);*/
           for(theta=1; theta <=npar; theta++)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             trgradg[j][theta]=gradg[theta][j];  }  /* End of prevalence */
          
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  /************* Waves Concatenation ***************/
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  
          void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         pmij(pmmij,cov,ncovmodel,x,nlstate);  {
            /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         k=0;       Death is a valid wave (if date is known).
         for(i=1; i<=(nlstate); i++){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           for(j=1; j<=(nlstate+ndeath);j++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             k=k+1;       and mw[mi+1][i]. dh depends on stepm.
             mu[k][(int) age]=pmmij[i][j];       */
           }  
         }    int i, mi, m;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)       double sum=0., jmean=0.;*/
             varpij[i][j][(int)age] = doldm[i][j];    int first;
     int j, k=0,jk, ju, jl;
         /*printf("\n%d ",(int)age);    double sum=0.;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    first=0;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    jmin=1e+5;
      }*/    jmax=-1;
     jmean=0.;
         fprintf(ficresprob,"\n%d ",(int)age);    for(i=1; i<=imx; i++){
         fprintf(ficresprobcov,"\n%d ",(int)age);      mi=0;
         fprintf(ficresprobcor,"\n%d ",(int)age);      m=firstpass;
       while(s[m][i] <= nlstate){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        if(s[m][i]>=1)
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          mw[++mi][i]=m;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        if(m >=lastpass)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          break;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        else
         }          m++;
         i=0;      }/* end while */
         for (k=1; k<=(nlstate);k++){      if (s[m][i] > nlstate){
           for (l=1; l<=(nlstate+ndeath);l++){        mi++;     /* Death is another wave */
             i=i++;        /* if(mi==0)  never been interviewed correctly before death */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);           /* Only death is a correct wave */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        mw[mi][i]=m;
             for (j=1; j<=i;j++){      }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      wav[i]=mi;
             }      if(mi==0){
           }        nbwarn++;
         }/* end of loop for state */        if(first==0){
       } /* end of loop for age */          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          first=1;
       for (k1=1; k1<=(nlstate);k1++){        }
         for (l1=1; l1<=(nlstate+ndeath);l1++){        if(first==1){
           if(l1==k1) continue;          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
           i=(k1-1)*(nlstate+ndeath)+l1;        }
           for (k2=1; k2<=(nlstate);k2++){      } /* end mi==0 */
             for (l2=1; l2<=(nlstate+ndeath);l2++){    } /* End individuals */
               if(l2==k2) continue;  
               j=(k2-1)*(nlstate+ndeath)+l2;    for(i=1; i<=imx; i++){
               if(j<=i) continue;      for(mi=1; mi<wav[i];mi++){
               for (age=bage; age<=fage; age ++){        if (stepm <=0)
                 if ((int)age %5==0){          dh[mi][i]=1;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        else{
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            if (agedc[i] < 2*AGESUP) {
                   mu1=mu[i][(int) age]/stepm*YEARM ;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                   mu2=mu[j][(int) age]/stepm*YEARM;              if(j==0) j=1;  /* Survives at least one month after exam */
                   /* Computing eigen value of matrix of covariance */              else if(j<0){
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));                nberr++;
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);                j=1; /* Temporary Dangerous patch */
                   /* Eigen vectors */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   v21=sqrt(1.-v11*v11);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                   v12=-v21;              }
                   v22=v11;              k=k+1;
                   /*printf(fignu*/              if (j >= jmax) jmax=j;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              if (j <= jmin) jmin=j;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */              sum=sum+j;
                   if(first==1){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                     first=0;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                     fprintf(ficgp,"\nset parametric;set nolabel");            }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);          }
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          else{
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);            k=k+1;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            if (j >= jmax) jmax=j;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            else if (j <= jmin)jmin=j;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);            if(j<0){
                   }else{              nberr++;
                     first=0;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            sum=sum+j;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          jk= j/stepm;
                   }/* if first */          jl= j -jk*stepm;
                 } /* age mod 5 */          ju= j -(jk+1)*stepm;
               } /* end loop age */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);            if(jl==0){
               first=1;              dh[mi][i]=jk;
             } /*l12 */              bh[mi][i]=0;
           } /* k12 */            }else{ /* We want a negative bias in order to only have interpolation ie
         } /*l1 */                    * at the price of an extra matrix product in likelihood */
       }/* k1 */              dh[mi][i]=jk+1;
     } /* loop covariates */              bh[mi][i]=ju;
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);            }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          }else{
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            if(jl <= -ju){
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);              dh[mi][i]=jk;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              bh[mi][i]=jl;       /* bias is positive if real duration
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                                   * is higher than the multiple of stepm and negative otherwise.
   }                                   */
   free_vector(xp,1,npar);            }
   fclose(ficresprob);            else{
   fclose(ficresprobcov);              dh[mi][i]=jk+1;
   fclose(ficresprobcor);              bh[mi][i]=ju;
   fclose(ficgp);            }
   fclose(fichtm);            if(dh[mi][i]==0){
 }              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 /******************* Printing html file ***********/            }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          } /* end if mle */
                   int lastpass, int stepm, int weightopt, char model[],\        }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      } /* end wave */
                   int popforecast, int estepm ,\    }
                   double jprev1, double mprev1,double anprev1, \    jmean=sum/k;
                   double jprev2, double mprev2,double anprev2){    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   int jj1, k1, i1, cpt;    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   /*char optionfilehtm[FILENAMELENGTH];*/   }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);  /*********** Tricode ****************************/
   }  void tricode(int *Tvar, int **nbcode, int imx)
   {
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    int Ndum[20],ij=1, k, j, i, maxncov=19;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    int cptcode=0;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    cptcoveff=0; 
  - Life expectancies by age and initial health status (estepm=%2d months):   
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    for (k=0; k<maxncov; k++) Ndum[k]=0;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    for (k=1; k<=7; k++) ncodemax[k]=0;
   
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                                 modality*/ 
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        Ndum[ij]++; /*store the modality */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
  if(popforecast==1) fprintf(fichtm,"\n      }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      for (i=0; i<=cptcode; i++) {
         <br>",fileres,fileres,fileres,fileres);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
  else      }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  
 fprintf(fichtm," <li>Graphs</li><p>");      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
  m=cptcoveff;        for (k=0; k<= maxncov; k++) {
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
  jj1=0;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
  for(k1=1; k1<=m;k1++){            
    for(i1=1; i1<=ncodemax[k1];i1++){            ij++;
      jj1++;          }
      if (cptcovn > 0) {          if (ij > ncodemax[j]) break; 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        }  
        for (cpt=1; cpt<=cptcoveff;cpt++)      } 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    }  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }   for (k=0; k< maxncov; k++) Ndum[k]=0;
      /* Pij */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>   for (i=1; i<=ncovmodel-2; i++) { 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);         /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      /* Quasi-incidences */     ij=Tvar[i];
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>     Ndum[ij]++;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);   }
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){   ij=1;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>   for (i=1; i<= maxncov; i++) {
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     if((Ndum[i]!=0) && (i<=ncovcol)){
        }       Tvaraff[ij]=i; /*For printing */
     for(cpt=1; cpt<=nlstate;cpt++) {       ij++;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident     }
 interval) in state (%d): v%s%d%d.png <br>   }
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     
      }   cptcoveff=ij-1; /*Number of simple covariates*/
      for(cpt=1; cpt<=nlstate;cpt++) {  }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  /*********** Health Expectancies ****************/
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 health expectancies in states (1) and (2): e%s%d.png<br>  
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  {
    }    /* Health expectancies */
  }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 fclose(fichtm);    double age, agelim, hf;
 }    double ***p3mat,***varhe;
     double **dnewm,**doldm;
 /******************* Gnuplot file **************/    double *xp;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double **gp, **gm;
     double ***gradg, ***trgradg;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    int theta;
   int ng;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     printf("Problem with file %s",optionfilegnuplot);    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 #ifdef windows    
     fprintf(ficgp,"cd \"%s\" \n",pathc);    fprintf(ficreseij,"# Health expectancies\n");
 #endif    fprintf(ficreseij,"# Age");
 m=pow(2,cptcoveff);    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
  /* 1eme*/        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficreseij,"\n");
    for (k1=1; k1<= m ; k1 ++) {  
     if(estepm < stepm){
 #ifdef windows      printf ("Problem %d lower than %d\n",estepm, stepm);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    }
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    else  hstepm=estepm;   
 #endif    /* We compute the life expectancy from trapezoids spaced every estepm months
 #ifdef unix     * This is mainly to measure the difference between two models: for example
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     * if stepm=24 months pijx are given only every 2 years and by summing them
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);     * we are calculating an estimate of the Life Expectancy assuming a linear 
 #endif     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
 for (i=1; i<= nlstate ; i ++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     * to compare the new estimate of Life expectancy with the same linear 
   else fprintf(ficgp," \%%*lf (\%%*lf)");     * hypothesis. A more precise result, taking into account a more precise
 }     * curvature will be obtained if estepm is as small as stepm. */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       nhstepm is the number of hstepm from age to agelim 
 }       nstepm is the number of stepm from age to agelin. 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       Look at hpijx to understand the reason of that which relies in memory size
      for (i=1; i<= nlstate ; i ++) {       and note for a fixed period like estepm months */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   else fprintf(ficgp," \%%*lf (\%%*lf)");       survival function given by stepm (the optimization length). Unfortunately it
 }         means that if the survival funtion is printed only each two years of age and if
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 #ifdef unix       results. So we changed our mind and took the option of the best precision.
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    */
 #endif    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    }  
   }    agelim=AGESUP;
   /*2 eme*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* nhstepm age range expressed in number of stepm */
   for (k1=1; k1<= m ; k1 ++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      /* if (stepm >= YEARM) hstepm=1;*/
          nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for (i=1; i<= nlstate+1 ; i ++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       k=2*i;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       for (j=1; j<= nlstate+1 ; j ++) {      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 }           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);   
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");      /* Computing  Variances of health expectancies */
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");       for(theta=1; theta <=npar; theta++){
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(i=1; i<=npar; i++){ 
       for (j=1; j<= nlstate+1 ; j ++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 }      
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        cptj=0;
       else fprintf(ficgp,"\" t\"\" w l 0,");        for(j=1; j<= nlstate; j++){
     }          for(i=1; i<=nlstate; i++){
   }            cptj=cptj+1;
              for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   /*3eme*/              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
   for (k1=1; k1<= m ; k1 ++) {          }
     for (cpt=1; cpt<= nlstate ; cpt ++) {        }
       k=2+nlstate*(2*cpt-2);       
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        for(i=1; i<=npar; i++) 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        cptj=0;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for(j=1; j<= nlstate; j++){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
 */            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
       }          }
     }        }
   }        for(j=1; j<= nlstate*nlstate; j++)
            for(h=0; h<=nhstepm-1; h++){
   /* CV preval stat */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     for (k1=1; k1<= m ; k1 ++) {          }
     for (cpt=1; cpt<nlstate ; cpt ++) {       } 
       k=3;     
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /* End theta */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);       for(h=0; h<=nhstepm-1; h++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        for(j=1; j<=nlstate*nlstate;j++)
                for(theta=1; theta <=npar; theta++)
       l=3+(nlstate+ndeath)*cpt;            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);       
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;       for(i=1;i<=nlstate*nlstate;i++)
         fprintf(ficgp,"+$%d",l+i+1);        for(j=1;j<=nlstate*nlstate;j++)
       }          varhe[i][j][(int)age] =0.;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
     }       printf("%d|",(int)age);fflush(stdout);
   }         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for(h=0;h<=nhstepm-1;h++){
   /* proba elementaires */        for(k=0;k<=nhstepm-1;k++){
    for(i=1,jk=1; i <=nlstate; i++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     for(k=1; k <=(nlstate+ndeath); k++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       if (k != i) {          for(i=1;i<=nlstate*nlstate;i++)
         for(j=1; j <=ncovmodel; j++){            for(j=1;j<=nlstate*nlstate;j++)
                      varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        }
           jk++;      }
           fprintf(ficgp,"\n");      /* Computing expectancies */
         }      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
     }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
    }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          }
        if (ng==2)  
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      fprintf(ficreseij,"%3.0f",age );
        else      cptj=0;
          fprintf(ficgp,"\nset title \"Probability\"\n");      for(i=1; i<=nlstate;i++)
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for(j=1; j<=nlstate;j++){
        i=1;          cptj++;
        for(k2=1; k2<=nlstate; k2++) {          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
          k3=i;        }
          for(k=1; k<=(nlstate+ndeath); k++) {      fprintf(ficreseij,"\n");
            if (k != k2){     
              if(ng==2)      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
              else      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
              ij=1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              for(j=3; j <=ncovmodel; j++) {    }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    printf("\n");
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    fprintf(ficlog,"\n");
                  ij++;  
                }    free_vector(xp,1,npar);
                else    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
              }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
              fprintf(ficgp,")/(1");  }
                
              for(k1=1; k1 <=nlstate; k1++){    /************ Variance ******************/
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
                ij=1;  {
                for(j=3; j <=ncovmodel; j++){    /* Variance of health expectancies */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* double **newm;*/
                    ij++;    double **dnewm,**doldm;
                  }    double **dnewmp,**doldmp;
                  else    int i, j, nhstepm, hstepm, h, nstepm ;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int k, cptcode;
                }    double *xp;
                fprintf(ficgp,")");    double **gp, **gm;  /* for var eij */
              }    double ***gradg, ***trgradg; /*for var eij */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double **gradgp, **trgradgp; /* for var p point j */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    double *gpp, *gmp; /* for var p point j */
              i=i+ncovmodel;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
            }    double ***p3mat;
          }    double age,agelim, hf;
        }    double ***mobaverage;
      }    int theta;
    }    char digit[4];
    fclose(ficgp);    char digitp[25];
 }  /* end gnuplot */  
     char fileresprobmorprev[FILENAMELENGTH];
   
 /*************** Moving average **************/    if(popbased==1){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   int i, cpt, cptcod;      else strcpy(digitp,"-populbased-nomobil-");
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    }
       for (i=1; i<=nlstate;i++)    else 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      strcpy(digitp,"-stablbased-");
           mobaverage[(int)agedeb][i][cptcod]=0.;  
        if (mobilav!=0) {
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for (i=1; i<=nlstate;i++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           for (cpt=0;cpt<=4;cpt++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      }
           }    }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }    strcpy(fileresprobmorprev,"prmorprev"); 
       }    sprintf(digit,"%-d",ij);
     }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
        strcat(fileresprobmorprev,digit); /* Tvar to be done */
 }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 /************** Forecasting ******************/      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   int *popage;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   double *popeffectif,*popcount;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   double ***p3mat;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   char fileresf[FILENAMELENGTH];      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
  agelim=AGESUP;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    }  
     fprintf(ficresprobmorprev,"\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficgp,"\n# Routine varevsij");
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   strcpy(fileresf,"f");  /*   } */
   strcat(fileresf,fileres);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   }    fprintf(ficresvij,"# Age");
   printf("Computing forecasting: result on file '%s' \n", fileresf);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficresvij,"\n");
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    xp=vector(1,npar);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    dnewm=matrix(1,nlstate,1,npar);
   }    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if (stepm<=12) stepsize=1;  
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   agelim=AGESUP;    gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
   hstepm=1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   hstepm=hstepm/stepm;    
   yp1=modf(dateintmean,&yp);    if(estepm < stepm){
   anprojmean=yp;      printf ("Problem %d lower than %d\n",estepm, stepm);
   yp2=modf((yp1*12),&yp);    }
   mprojmean=yp;    else  hstepm=estepm;   
   yp1=modf((yp2*30.5),&yp);    /* For example we decided to compute the life expectancy with the smallest unit */
   jprojmean=yp;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if(jprojmean==0) jprojmean=1;       nhstepm is the number of hstepm from age to agelim 
   if(mprojmean==0) jprojmean=1;       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       and note for a fixed period like k years */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   for(cptcov=1;cptcov<=i2;cptcov++){       survival function given by stepm (the optimization length). Unfortunately it
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       means that if the survival funtion is printed every two years of age and if
       k=k+1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficresf,"\n#******");       results. So we changed our mind and took the option of the best precision.
       for(j=1;j<=cptcoveff;j++) {    */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }    agelim = AGESUP;
       fprintf(ficresf,"******\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficresf,"# StartingAge FinalAge");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      gp=matrix(0,nhstepm,1,nlstate);
         fprintf(ficresf,"\n");      gm=matrix(0,nhstepm,1,nlstate);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(theta=1; theta <=npar; theta++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           nhstepm = nhstepm/hstepm;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           oldm=oldms;savm=savms;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
                if (popbased==1) {
           for (h=0; h<=nhstepm; h++){          if(mobilav ==0){
             if (h==(int) (calagedate+YEARM*cpt)) {            for(i=1; i<=nlstate;i++)
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);              prlim[i][i]=probs[(int)age][i][ij];
             }          }else{ /* mobilav */ 
             for(j=1; j<=nlstate+ndeath;j++) {            for(i=1; i<=nlstate;i++)
               kk1=0.;kk2=0;              prlim[i][i]=mobaverage[(int)age][i][ij];
               for(i=1; i<=nlstate;i++) {                        }
                 if (mobilav==1)        }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    
                 else {        for(j=1; j<= nlstate; j++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          for(h=0; h<=nhstepm; h++){
                 }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
               }          }
               if (h==(int)(calagedate+12*cpt)){        }
                 fprintf(ficresf," %.3f", kk1);        /* This for computing probability of death (h=1 means
                                   computed over hstepm matrices product = hstepm*stepm months) 
               }           as a weighted average of prlim.
             }        */
           }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
     }        /* end probability of death */
   }  
                for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fclose(ficresf);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 }   
 /************** Forecasting ******************/        if (popbased==1) {
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              prlim[i][i]=probs[(int)age][i][ij];
   int *popage;          }else{ /* mobilav */ 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            for(i=1; i<=nlstate;i++)
   double *popeffectif,*popcount;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double ***p3mat,***tabpop,***tabpopprev;          }
   char filerespop[FILENAMELENGTH];        }
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<= nlstate; j++){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(h=0; h<=nhstepm; h++){
   agelim=AGESUP;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }
          /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   strcpy(filerespop,"pop");           as a weighted average of prlim.
   strcat(filerespop,fileres);        */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("Problem with forecast resultfile: %s\n", filerespop);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   printf("Computing forecasting: result on file '%s' \n", filerespop);        }    
         /* end probability of death */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
         for(j=1; j<= nlstate; j++) /* vareij */
   if (mobilav==1) {          for(h=0; h<=nhstepm; h++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     movingaverage(agedeb, fage, ageminpar, mobaverage);          }
   }  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   stepsize=(int) (stepm+YEARM-1)/YEARM;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   if (stepm<=12) stepsize=1;        }
    
   agelim=AGESUP;      } /* End theta */
    
   hstepm=1;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   hstepm=hstepm/stepm;  
        for(h=0; h<=nhstepm; h++) /* veij */
   if (popforecast==1) {        for(j=1; j<=nlstate;j++)
     if((ficpop=fopen(popfile,"r"))==NULL) {          for(theta=1; theta <=npar; theta++)
       printf("Problem with population file : %s\n",popfile);exit(0);            trgradg[h][j][theta]=gradg[h][theta][j];
     }  
     popage=ivector(0,AGESUP);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     popeffectif=vector(0,AGESUP);        for(theta=1; theta <=npar; theta++)
     popcount=vector(0,AGESUP);          trgradgp[j][theta]=gradgp[theta][j];
        
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          for(i=1;i<=nlstate;i++)
     imx=i;        for(j=1;j<=nlstate;j++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          vareij[i][j][(int)age] =0.;
   }  
       for(h=0;h<=nhstepm;h++){
   for(cptcov=1;cptcov<=i2;cptcov++){        for(k=0;k<=nhstepm;k++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       k=k+1;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       fprintf(ficrespop,"\n#******");          for(i=1;i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++) {            for(j=1;j<=nlstate;j++)
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       }        }
       fprintf(ficrespop,"******\n");      }
       fprintf(ficrespop,"# Age");    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      /* pptj */
       if (popforecast==1)  fprintf(ficrespop," [Population]");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
            matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for (cpt=0; cpt<=0;cpt++) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(i=nlstate+1;i<=nlstate+ndeath;i++)
                  varppt[j][i]=doldmp[j][i];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      /* end ppptj */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      /*  x centered again */
           nhstepm = nhstepm/hstepm;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
                prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
           oldm=oldms;savm=savms;      if (popbased==1) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          if(mobilav ==0){
                  for(i=1; i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){            prlim[i][i]=probs[(int)age][i][ij];
             if (h==(int) (calagedate+YEARM*cpt)) {        }else{ /* mobilav */ 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          for(i=1; i<=nlstate;i++)
             }            prlim[i][i]=mobaverage[(int)age][i][ij];
             for(j=1; j<=nlstate+ndeath;j++) {        }
               kk1=0.;kk2=0;      }
               for(i=1; i<=nlstate;i++) {                             
                 if (mobilav==1)      /* This for computing probability of death (h=1 means
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                 else {         as a weighted average of prlim.
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      */
                 }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
               }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
               if (h==(int)(calagedate+12*cpt)){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      }    
                   /*fprintf(ficrespop," %.3f", kk1);      /* end probability of death */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  
               }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
             }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             for(i=1; i<=nlstate;i++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
               kk1=0.;        for(i=1; i<=nlstate;i++){
                 for(j=1; j<=nlstate;j++){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        }
                 }      } 
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      fprintf(ficresprobmorprev,"\n");
             }  
       fprintf(ficresvij,"%.0f ",age );
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      for(i=1; i<=nlstate;i++)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        for(j=1; j<=nlstate;j++){
           }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }      fprintf(ficresvij,"\n");
       }      free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
   /******/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      } /* End age */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    free_vector(gpp,nlstate+1,nlstate+ndeath);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    free_vector(gmp,nlstate+1,nlstate+ndeath);
           nhstepm = nhstepm/hstepm;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
              free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           oldm=oldms;savm=savms;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           for (h=0; h<=nhstepm; h++){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
             if (h==(int) (calagedate+YEARM*cpt)) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
             }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
               kk1=0.;kk2=0;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
               for(i=1; i<=nlstate;i++) {                  fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
               }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  */
             }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    free_vector(xp,1,npar);
       }    free_matrix(doldm,1,nlstate,1,nlstate);
    }    free_matrix(dnewm,1,nlstate,1,npar);
   }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if (popforecast==1) {    fclose(ficresprobmorprev);
     free_ivector(popage,0,AGESUP);    fflush(ficgp);
     free_vector(popeffectif,0,AGESUP);    fflush(fichtm); 
     free_vector(popcount,0,AGESUP);  }  /* end varevsij */
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /************ Variance of prevlim ******************/
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   fclose(ficrespop);  {
 }    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 /***********************************************/    double **newm;
 /**************** Main Program *****************/    double **dnewm,**doldm;
 /***********************************************/    int i, j, nhstepm, hstepm;
     int k, cptcode;
 int main(int argc, char *argv[])    double *xp;
 {    double *gp, *gm;
     double **gradg, **trgradg;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    double age,agelim;
   double agedeb, agefin,hf;    int theta;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;     
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   double fret;    fprintf(ficresvpl,"# Age");
   double **xi,tmp,delta;    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   double dum; /* Dummy variable */    fprintf(ficresvpl,"\n");
   double ***p3mat;  
   int *indx;    xp=vector(1,npar);
   char line[MAXLINE], linepar[MAXLINE];    dnewm=matrix(1,nlstate,1,npar);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    doldm=matrix(1,nlstate,1,nlstate);
   int firstobs=1, lastobs=10;    
   int sdeb, sfin; /* Status at beginning and end */    hstepm=1*YEARM; /* Every year of age */
   int c,  h , cpt,l;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   int ju,jl, mi;    agelim = AGESUP;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   int mobilav=0,popforecast=0;      if (stepm >= YEARM) hstepm=1;
   int hstepm, nhstepm;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   double bage, fage, age, agelim, agebase;      gm=vector(1,nlstate);
   double ftolpl=FTOL;  
   double **prlim;      for(theta=1; theta <=npar; theta++){
   double *severity;        for(i=1; i<=npar; i++){ /* Computes gradient */
   double ***param; /* Matrix of parameters */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double  *p;        }
   double **matcov; /* Matrix of covariance */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double ***delti3; /* Scale */        for(i=1;i<=nlstate;i++)
   double *delti; /* Scale */          gp[i] = prlim[i][i];
   double ***eij, ***vareij;      
   double **varpl; /* Variances of prevalence limits by age */        for(i=1; i<=npar; i++) /* Computes gradient */
   double *epj, vepp;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double kk1, kk2;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        for(i=1;i<=nlstate;i++)
            gm[i] = prlim[i][i];
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   char z[1]="c", occ;  
 #include <sys/time.h>      trgradg =matrix(1,nlstate,1,npar);
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      for(j=1; j<=nlstate;j++)
          for(theta=1; theta <=npar; theta++)
   /* long total_usecs;          trgradg[j][theta]=gradg[theta][j];
   struct timeval start_time, end_time;  
        for(i=1;i<=nlstate;i++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        varpl[i][(int)age] =0.;
   getcwd(pathcd, size);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   printf("\n%s",version);      for(i=1;i<=nlstate;i++)
   if(argc <=1){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);      fprintf(ficresvpl,"%.0f ",age );
   }      for(i=1; i<=nlstate;i++)
   else{        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     strcpy(pathtot,argv[1]);      fprintf(ficresvpl,"\n");
   }      free_vector(gp,1,nlstate);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      free_vector(gm,1,nlstate);
   /*cygwin_split_path(pathtot,path,optionfile);      free_matrix(gradg,1,npar,1,nlstate);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      free_matrix(trgradg,1,nlstate,1,npar);
   /* cutv(path,optionfile,pathtot,'\\');*/    } /* End age */
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    free_vector(xp,1,npar);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    free_matrix(doldm,1,nlstate,1,npar);
   chdir(path);    free_matrix(dnewm,1,nlstate,1,nlstate);
   replace(pathc,path);  
   }
 /*-------- arguments in the command line --------*/  
   /************ Variance of one-step probabilities  ******************/
   strcpy(fileres,"r");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   strcat(fileres, optionfilefiname);  {
   strcat(fileres,".txt");    /* Other files have txt extension */    int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
   /*---------arguments file --------*/    int k=0,l, cptcode;
     int first=1, first1;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     printf("Problem with optionfile %s\n",optionfile);    double **dnewm,**doldm;
     goto end;    double *xp;
   }    double *gp, *gm;
     double **gradg, **trgradg;
   strcpy(filereso,"o");    double **mu;
   strcat(filereso,fileres);    double age,agelim, cov[NCOVMAX];
   if((ficparo=fopen(filereso,"w"))==NULL) {    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    int theta;
   }    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
   /* Reads comments: lines beginning with '#' */    char fileresprobcor[FILENAMELENGTH];
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    double ***varpij;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    strcpy(fileresprob,"prob"); 
     fputs(line,ficparo);    strcat(fileresprob,fileres);
   }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    strcpy(fileresprobcov,"probcov"); 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    strcat(fileresprobcov,fileres);
 while((c=getc(ficpar))=='#' && c!= EOF){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprobcov);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     puts(line);    }
     fputs(line,ficparo);    strcpy(fileresprobcor,"probcor"); 
   }    strcat(fileresprobcor,fileres);
   ungetc(c,ficpar);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcor);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   covar=matrix(0,NCOVMAX,1,n);    }
   cptcovn=0;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   ncovmodel=2+cptcovn;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   /* Read guess parameters */    
   /* Reads comments: lines beginning with '#' */    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprob,"# Age");
     ungetc(c,ficpar);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobcov,"# Age");
     puts(line);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fputs(line,ficparo);    fprintf(ficresprobcov,"# Age");
   }  
   ungetc(c,ficpar);  
      for(i=1; i<=nlstate;i++)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for(j=1; j<=(nlstate+ndeath);j++){
     for(i=1; i <=nlstate; i++)        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     for(j=1; j <=nlstate+ndeath-1; j++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       fprintf(ficparo,"%1d%1d",i1,j1);      }  
       printf("%1d%1d",i,j);   /* fprintf(ficresprob,"\n");
       for(k=1; k<=ncovmodel;k++){    fprintf(ficresprobcov,"\n");
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(ficresprobcor,"\n");
         printf(" %lf",param[i][j][k]);   */
         fprintf(ficparo," %lf",param[i][j][k]);   xp=vector(1,npar);
       }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fscanf(ficpar,"\n");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       printf("\n");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fprintf(ficparo,"\n");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     }    first=1;
      fprintf(ficgp,"\n# Routine varprob");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   p=param[1][1];  
      fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   /* Reads comments: lines beginning with '#' */    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   while((c=getc(ficpar))=='#' && c!= EOF){    file %s<br>\n",optionfilehtmcov);
     ungetc(c,ficpar);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     fgets(line, MAXLINE, ficpar);  and drawn. It helps understanding how is the covariance between two incidences.\
     puts(line);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fputs(line,ficparo);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   ungetc(c,ficpar);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   for(i=1; i <=nlstate; i++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    cov[1]=1;
       printf("%1d%1d",i,j);    tj=cptcoveff;
       fprintf(ficparo,"%1d%1d",i1,j1);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       for(k=1; k<=ncovmodel;k++){    j1=0;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    for(t=1; t<=tj;t++){
         printf(" %le",delti3[i][j][k]);      for(i1=1; i1<=ncodemax[t];i1++){ 
         fprintf(ficparo," %le",delti3[i][j][k]);        j1++;
       }        if  (cptcovn>0) {
       fscanf(ficpar,"\n");          fprintf(ficresprob, "\n#********** Variable "); 
       printf("\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficparo,"\n");          fprintf(ficresprob, "**********\n#\n");
     }          fprintf(ficresprobcov, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   delti=delti3[1][1];          fprintf(ficresprobcov, "**********\n#\n");
            
   /* Reads comments: lines beginning with '#' */          fprintf(ficgp, "\n#********** Variable "); 
   while((c=getc(ficpar))=='#' && c!= EOF){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(ficgp, "**********\n#\n");
     fgets(line, MAXLINE, ficpar);          
     puts(line);          
     fputs(line,ficparo);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   ungetc(c,ficpar);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
   matcov=matrix(1,npar,1,npar);          fprintf(ficresprobcor, "\n#********** Variable ");    
   for(i=1; i <=npar; i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fscanf(ficpar,"%s",&str);          fprintf(ficresprobcor, "**********\n#");    
     printf("%s",str);        }
     fprintf(ficparo,"%s",str);        
     for(j=1; j <=i; j++){        for (age=bage; age<=fage; age ++){ 
       fscanf(ficpar," %le",&matcov[i][j]);          cov[2]=age;
       printf(" %.5le",matcov[i][j]);          for (k=1; k<=cptcovn;k++) {
       fprintf(ficparo," %.5le",matcov[i][j]);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     }          }
     fscanf(ficpar,"\n");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     printf("\n");          for (k=1; k<=cptcovprod;k++)
     fprintf(ficparo,"\n");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }          
   for(i=1; i <=npar; i++)          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     for(j=i+1;j<=npar;j++)          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       matcov[i][j]=matcov[j][i];          gp=vector(1,(nlstate)*(nlstate+ndeath));
              gm=vector(1,(nlstate)*(nlstate+ndeath));
   printf("\n");      
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
     /*-------- Rewriting paramater file ----------*/              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
      strcpy(rfileres,"r");    /* "Rparameterfile */            
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      strcat(rfileres,".");    /* */            
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            k=0;
     if((ficres =fopen(rfileres,"w"))==NULL) {            for(i=1; i<= (nlstate); i++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;              for(j=1; j<=(nlstate+ndeath);j++){
     }                k=k+1;
     fprintf(ficres,"#%s\n",version);                gp[k]=pmmij[i][j];
                  }
     /*-------- data file ----------*/            }
     if((fic=fopen(datafile,"r"))==NULL)    {            
       printf("Problem with datafile: %s\n", datafile);goto end;            for(i=1; i<=npar; i++)
     }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
     n= lastobs;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     severity = vector(1,maxwav);            k=0;
     outcome=imatrix(1,maxwav+1,1,n);            for(i=1; i<=(nlstate); i++){
     num=ivector(1,n);              for(j=1; j<=(nlstate+ndeath);j++){
     moisnais=vector(1,n);                k=k+1;
     annais=vector(1,n);                gm[k]=pmmij[i][j];
     moisdc=vector(1,n);              }
     andc=vector(1,n);            }
     agedc=vector(1,n);       
     cod=ivector(1,n);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     weight=vector(1,n);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          }
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     s=imatrix(1,maxwav+1,1,n);            for(theta=1; theta <=npar; theta++)
     adl=imatrix(1,maxwav+1,1,n);                  trgradg[j][theta]=gradg[theta][j];
     tab=ivector(1,NCOVMAX);          
     ncodemax=ivector(1,8);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     i=1;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     while (fgets(line, MAXLINE, fic) != NULL)    {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       if ((i >= firstobs) && (i <=lastobs)) {          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                  free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          pmij(pmmij,cov,ncovmodel,x,nlstate);
           strcpy(line,stra);          
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          k=0;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1; i<=(nlstate); i++){
         }            for(j=1; j<=(nlstate+ndeath);j++){
                      k=k+1;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              mu[k][(int) age]=pmmij[i][j];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            }
           }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){          /*printf("\n%d ",(int)age);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         num[i]=atol(stra);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                    }*/
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
         i=i+1;          fprintf(ficresprobcor,"\n%d ",(int)age);
       }  
     }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     /* printf("ii=%d", ij);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
        scanf("%d",i);*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   imx=i-1; /* Number of individuals */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   /* for (i=1; i<=imx; i++){          }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          i=0;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          for (k=1; k<=(nlstate);k++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            for (l=1; l<=(nlstate+ndeath);l++){ 
     }*/              i=i++;
    /*  for (i=1; i<=imx; i++){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
      if (s[4][i]==9)  s[4][i]=-1;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/              for (j=1; j<=i;j++){
                  fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                  fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   /* Calculation of the number of parameter from char model*/              }
   Tvar=ivector(1,15);            }
   Tprod=ivector(1,15);          }/* end of loop for state */
   Tvaraff=ivector(1,15);        } /* end of loop for age */
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);              /* Confidence intervalle of pij  */
            /*
   if (strlen(model) >1){          fprintf(ficgp,"\nset noparametric;unset label");
     j=0, j1=0, k1=1, k2=1;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     j=nbocc(model,'+');          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     j1=nbocc(model,'*');          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     cptcovn=j+1;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     cptcovprod=j1;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     strcpy(modelsav,model);        */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       goto end;        first1=1;
     }        for (k2=1; k2<=(nlstate);k2++){
              for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     for(i=(j+1); i>=1;i--){            if(l2==k2) continue;
       cutv(stra,strb,modelsav,'+');            j=(k2-1)*(nlstate+ndeath)+l2;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            for (k1=1; k1<=(nlstate);k1++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       /*scanf("%d",i);*/                if(l1==k1) continue;
       if (strchr(strb,'*')) {                i=(k1-1)*(nlstate+ndeath)+l1;
         cutv(strd,strc,strb,'*');                if(i<=j) continue;
         if (strcmp(strc,"age")==0) {                for (age=bage; age<=fage; age ++){ 
           cptcovprod--;                  if ((int)age %5==0){
           cutv(strb,stre,strd,'V');                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           Tvar[i]=atoi(stre);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           cptcovage++;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
             Tage[cptcovage]=i;                    mu1=mu[i][(int) age]/stepm*YEARM ;
             /*printf("stre=%s ", stre);*/                    mu2=mu[j][(int) age]/stepm*YEARM;
         }                    c12=cv12/sqrt(v1*v2);
         else if (strcmp(strd,"age")==0) {                    /* Computing eigen value of matrix of covariance */
           cptcovprod--;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           cutv(strb,stre,strc,'V');                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           Tvar[i]=atoi(stre);                    /* Eigen vectors */
           cptcovage++;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           Tage[cptcovage]=i;                    /*v21=sqrt(1.-v11*v11); *//* error */
         }                    v21=(lc1-v1)/cv12*v11;
         else {                    v12=-v21;
           cutv(strb,stre,strc,'V');                    v22=v11;
           Tvar[i]=ncovcol+k1;                    tnalp=v21/v11;
           cutv(strb,strc,strd,'V');                    if(first1==1){
           Tprod[k1]=i;                      first1=0;
           Tvard[k1][1]=atoi(strc);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           Tvard[k1][2]=atoi(stre);                    }
           Tvar[cptcovn+k2]=Tvard[k1][1];                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                    /*printf(fignu*/
           for (k=1; k<=lastobs;k++)                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           k1++;                    if(first==1){
           k2=k2+2;                      first=0;
         }                      fprintf(ficgp,"\nset parametric;unset label");
       }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       else {                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
        /*  scanf("%d",i);*/   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       cutv(strd,strc,strb,'V');  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       Tvar[i]=atoi(strc);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       strcpy(modelsav,stra);                        fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         scanf("%d",i);*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   printf("cptcovprod=%d ", cptcovprod);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   scanf("%d ",i);*/                    }else{
     fclose(fic);                      first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     /*  if(mle==1){*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     if (weightopt != 1) { /* Maximisation without weights*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for(i=1;i<=n;i++) weight[i]=1.0;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     /*-calculation of age at interview from date of interview and age at death -*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     agev=matrix(1,maxwav,1,imx);                    }/* if first */
                   } /* age mod 5 */
     for (i=1; i<=imx; i++) {                } /* end loop age */
       for(m=2; (m<= maxwav); m++) {                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                first=1;
          anint[m][i]=9999;              } /*l12 */
          s[m][i]=-1;            } /* k12 */
        }          } /*l1 */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        }/* k1 */
       }      } /* loop covariates */
     }    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     for (i=1; i<=imx; i++)  {    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    free_vector(xp,1,npar);
       for(m=1; (m<= maxwav); m++){    fclose(ficresprob);
         if(s[m][i] >0){    fclose(ficresprobcov);
           if (s[m][i] >= nlstate+1) {    fclose(ficresprobcor);
             if(agedc[i]>0)    fflush(ficgp);
               if(moisdc[i]!=99 && andc[i]!=9999)    fflush(fichtmcov);
                 agev[m][i]=agedc[i];  }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {  
               if (andc[i]!=9999){  /******************* Printing html file ***********/
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
               agev[m][i]=-1;                    int lastpass, int stepm, int weightopt, char model[],\
               }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
             }                    int popforecast, int estepm ,\
           }                    double jprev1, double mprev1,double anprev1, \
           else if(s[m][i] !=9){ /* Should no more exist */                    double jprev2, double mprev2,double anprev2){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    int jj1, k1, i1, cpt;
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
             else if(agev[m][i] <agemin){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
               agemin=agev[m][i];             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/     fprintf(fichtm,"\
             }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
             else if(agev[m][i] >agemax){             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
               agemax=agev[m][i];     fprintf(fichtm,"\
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
             }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
             /*agev[m][i]=anint[m][i]-annais[i];*/     fprintf(fichtm,"\
             /*   agev[m][i] = age[i]+2*m;*/   - Life expectancies by age and initial health status (estepm=%2d months): \
           }     <a href=\"%s\">%s</a> <br>\n</li>",
           else { /* =9 */             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
             agev[m][i]=1;  
             s[m][i]=-1;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
           }  
         }   m=cptcoveff;
         else /*= 0 Unknown */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           agev[m][i]=1;  
       }   jj1=0;
       for(k1=1; k1<=m;k1++){
     }     for(i1=1; i1<=ncodemax[k1];i1++){
     for (i=1; i<=imx; i++)  {       jj1++;
       for(m=1; (m<= maxwav); m++){       if (cptcovn > 0) {
         if (s[m][i] > (nlstate+ndeath)) {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           printf("Error: Wrong value in nlstate or ndeath\n");           for (cpt=1; cpt<=cptcoveff;cpt++) 
           goto end;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       }       }
     }       /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
     free_vector(severity,1,maxwav);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     free_imatrix(outcome,1,maxwav+1,1,n);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     free_vector(moisnais,1,n);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     free_vector(annais,1,n);         /* Stable prevalence in each health state */
     /* free_matrix(mint,1,maxwav,1,n);         for(cpt=1; cpt<nlstate;cpt++){
        free_matrix(anint,1,maxwav,1,n);*/           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     free_vector(moisdc,1,n);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     free_vector(andc,1,n);         }
        for(cpt=1; cpt<=nlstate;cpt++) {
              fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     wav=ivector(1,imx);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);       }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);     } /* end i1 */
       }/* End k1 */
     /* Concatenates waves */   fprintf(fichtm,"</ul>");
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
   
    fprintf(fichtm,"\
       Tcode=ivector(1,100);  \n<br><li><h4> Result files (second order: variances)</h4>\n\
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    codtab=imatrix(1,100,1,10);   fprintf(fichtm,"\
    h=0;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    m=pow(2,cptcoveff);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
    
    for(k=1;k<=cptcoveff; k++){   fprintf(fichtm,"\
      for(i=1; i <=(m/pow(2,k));i++){   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
        for(j=1; j <= ncodemax[k]; j++){           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   fprintf(fichtm,"\
            h++;   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   fprintf(fichtm,"\
          }   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
        }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
      }   fprintf(fichtm,"\
    }   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){  /*  if(popforecast==1) fprintf(fichtm,"\n */
       for(k=1; k <=cptcovn; k++){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       }  /*      <br>",fileres,fileres,fileres,fileres); */
       printf("\n");  /*  else  */
       }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       scanf("%d",i);*/   fflush(fichtm);
       fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      
       jj1=0;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   for(k1=1; k1<=m;k1++){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     for(i1=1; i1<=ncodemax[k1];i1++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       jj1++;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       if (cptcovn > 0) {
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
               for (cpt=1; cpt<=cptcoveff;cpt++) 
     /* For Powell, parameters are in a vector p[] starting at p[1]           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       }
        for(cpt=1; cpt<=nlstate;cpt++) {
     if(mle==1){         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
           }
     /*--------- results files --------------*/       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  health expectancies in states (1) and (2): %s%d.png<br>\
    <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    jk=1;   }/* End k1 */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   fprintf(fichtm,"</ul>");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   fflush(fichtm);
    for(i=1,jk=1; i <=nlstate; i++){  }
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)  /******************* Gnuplot file **************/
          {  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);    char dirfileres[132],optfileres[132];
            for(j=1; j <=ncovmodel; j++){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
              printf("%f ",p[jk]);    int ng;
              fprintf(ficres,"%f ",p[jk]);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
              jk++;  /*     printf("Problem with file %s",optionfilegnuplot); */
            }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
            printf("\n");  /*   } */
            fprintf(ficres,"\n");  
          }    /*#ifdef windows */
      }    fprintf(ficgp,"cd \"%s\" \n",pathc);
    }      /*#endif */
  if(mle==1){    m=pow(2,cptcoveff);
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */    strcpy(dirfileres,optionfilefiname);
     hesscov(matcov, p, npar, delti, ftolhess, func);    strcpy(optfileres,"vpl");
  }   /* 1eme*/
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    for (cpt=1; cpt<= nlstate ; cpt ++) {
     printf("# Scales (for hessian or gradient estimation)\n");     for (k1=1; k1<= m ; k1 ++) {
      for(i=1,jk=1; i <=nlstate; i++){       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       for(j=1; j <=nlstate+ndeath; j++){       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
         if (j!=i) {       fprintf(ficgp,"set xlabel \"Age\" \n\
           fprintf(ficres,"%1d%1d",i,j);  set ylabel \"Probability\" \n\
           printf("%1d%1d",i,j);  set ter png small\n\
           for(k=1; k<=ncovmodel;k++){  set size 0.65,0.65\n\
             printf(" %.5e",delti[jk]);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;       for (i=1; i<= nlstate ; i ++) {
           }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           printf("\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
           fprintf(ficres,"\n");       }
         }       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       }       for (i=1; i<= nlstate ; i ++) {
      }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
     k=1;       } 
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       for (i=1; i<= nlstate ; i ++) {
     for(i=1;i<=npar;i++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       /*  if (k>nlstate) k=1;         else fprintf(ficgp," \%%*lf (\%%*lf)");
       i1=(i-1)/(ncovmodel*nlstate)+1;       }  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       printf("%s%d%d",alph[k],i1,tab[i]);*/     }
       fprintf(ficres,"%3d",i);    }
       printf("%3d",i);    /*2 eme*/
       for(j=1; j<=i;j++){    
         fprintf(ficres," %.5e",matcov[i][j]);    for (k1=1; k1<= m ; k1 ++) { 
         printf(" %.5e",matcov[i][j]);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       fprintf(ficres,"\n");      
       printf("\n");      for (i=1; i<= nlstate+1 ; i ++) {
       k++;        k=2*i;
     }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
            for (j=1; j<= nlstate+1 ; j ++) {
     while((c=getc(ficpar))=='#' && c!= EOF){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       ungetc(c,ficpar);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fgets(line, MAXLINE, ficpar);        }   
       puts(line);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       fputs(line,ficparo);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     ungetc(c,ficpar);        for (j=1; j<= nlstate+1 ; j ++) {
     estepm=0;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     if (estepm==0 || estepm < stepm) estepm=stepm;        }   
     if (fage <= 2) {        fprintf(ficgp,"\" t\"\" w l 0,");
       bage = ageminpar;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fage = agemaxpar;        for (j=1; j<= nlstate+1 ; j ++) {
     }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
              else fprintf(ficgp," \%%*lf (\%%*lf)");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        }   
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        else fprintf(ficgp,"\" t\"\" w l 0,");
        }
     while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    /*3eme*/
     puts(line);    
     fputs(line,ficparo);    for (k1=1; k1<= m ; k1 ++) { 
   }      for (cpt=1; cpt<= nlstate ; cpt ++) {
   ungetc(c,ficpar);        k=2+nlstate*(2*cpt-2);
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        fprintf(ficgp,"set ter png small\n\
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  set size 0.65,0.65\n\
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
              /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   while((c=getc(ficpar))=='#' && c!= EOF){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     ungetc(c,ficpar);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     puts(line);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     fputs(line,ficparo);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   }          
   ungetc(c,ficpar);        */
          for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        } 
       }
   fscanf(ficpar,"pop_based=%d\n",&popbased);    }
   fprintf(ficparo,"pop_based=%d\n",popbased);      
   fprintf(ficres,"pop_based=%d\n",popbased);      /* CV preval stable (period) */
      for (k1=1; k1<= m ; k1 ++) { 
   while((c=getc(ficpar))=='#' && c!= EOF){      for (cpt=1; cpt<=nlstate ; cpt ++) {
     ungetc(c,ficpar);        k=3;
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     puts(line);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     fputs(line,ficparo);  set ter png small\nset size 0.65,0.65\n\
   }  unset log y\n\
   ungetc(c,ficpar);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        for (i=1; i< nlstate ; i ++)
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficgp,"+$%d",k+i+1);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
 while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++) {
     fgets(line, MAXLINE, ficpar);          l=3+(nlstate+ndeath)*cpt;
     puts(line);          fprintf(ficgp,"+$%d",l+i+1);
     fputs(line,ficparo);        }
   }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   ungetc(c,ficpar);      } 
     }  
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /* proba elementaires */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
 /*------------ gnuplot -------------*/            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   strcpy(optionfilegnuplot,optionfilefiname);            jk++; 
   strcat(optionfilegnuplot,".gp");            fprintf(ficgp,"\n");
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          }
     printf("Problem with file %s",optionfilegnuplot);        }
   }      }
   fclose(ficgp);     }
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  
 /*--------- index.htm --------*/     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
   strcpy(optionfilehtm,optionfile);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   strcat(optionfilehtm,".htm");         if (ng==2)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     printf("Problem with %s \n",optionfilehtm), exit(0);         else
   }           fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n         i=1;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n         for(k2=1; k2<=nlstate; k2++) {
 \n           k3=i;
 Total number of observations=%d <br>\n           for(k=1; k<=(nlstate+ndeath); k++) {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n             if (k != k2){
 <hr  size=\"2\" color=\"#EC5E5E\">               if(ng==2)
  <ul><li>Parameter files<br>\n                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n               else
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   fclose(fichtm);               ij=1;
                for(j=3; j <=ncovmodel; j++) {
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                     fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 /*------------ free_vector  -------------*/                   ij++;
  chdir(path);                 }
                   else
  free_ivector(wav,1,imx);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);               }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                 fprintf(ficgp,")/(1");
  free_ivector(num,1,n);               
  free_vector(agedc,1,n);               for(k1=1; k1 <=nlstate; k1++){   
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
  fclose(ficparo);                 ij=1;
  fclose(ficres);                 for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   /*--------------- Prevalence limit --------------*/                     ij++;
                     }
   strcpy(filerespl,"pl");                   else
   strcat(filerespl,fileres);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                 }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                 fprintf(ficgp,")");
   }               }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   fprintf(ficrespl,"#Prevalence limit\n");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   fprintf(ficrespl,"#Age ");               i=i+ncovmodel;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);             }
   fprintf(ficrespl,"\n");           } /* end k */
           } /* end k2 */
   prlim=matrix(1,nlstate,1,nlstate);       } /* end jk */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     } /* end ng */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     fflush(ficgp); 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }  /* end gnuplot */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;  /*************** Moving average **************/
   agebase=ageminpar;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   agelim=agemaxpar;  
   ftolpl=1.e-10;    int i, cpt, cptcod;
   i1=cptcoveff;    int modcovmax =1;
   if (cptcovn < 1){i1=1;}    int mobilavrange, mob;
     double age;
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
         k=k+1;                             a covariate has 2 modalities */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if(mobilav==1) mobilavrange=5; /* default */
         fprintf(ficrespl,"******\n");      else mobilavrange=mobilav;
              for (age=bage; age<=fage; age++)
         for (age=agebase; age<=agelim; age++){        for (i=1; i<=nlstate;i++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           fprintf(ficrespl,"%.0f",age );            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
           for(i=1; i<=nlstate;i++)      /* We keep the original values on the extreme ages bage, fage and for 
           fprintf(ficrespl," %.5f", prlim[i][i]);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           fprintf(ficrespl,"\n");         we use a 5 terms etc. until the borders are no more concerned. 
         }      */ 
       }      for (mob=3;mob <=mobilavrange;mob=mob+2){
     }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   fclose(ficrespl);          for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
   /*------------- h Pij x at various ages ------------*/              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                  for (cpt=1;cpt<=(mob-1)/2;cpt++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                }
   }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   printf("Computing pij: result on file '%s' \n", filerespij);            }
            }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }/* end age */
   /*if (stepm<=24) stepsize=2;*/      }/* end mob */
     }else return -1;
   agelim=AGESUP;    return 0;
   hstepm=stepsize*YEARM; /* Every year of age */  }/* End movingaverage */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
    
   k=0;  /************** Forecasting ******************/
   for(cptcov=1;cptcov<=i1;cptcov++){  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* proj1, year, month, day of starting projection 
       k=k+1;       agemin, agemax range of age
         fprintf(ficrespij,"\n#****** ");       dateprev1 dateprev2 range of dates during which prevalence is computed
         for(j=1;j<=cptcoveff;j++)       anproj2 year of en of projection (same day and month as proj1).
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    */
         fprintf(ficrespij,"******\n");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
            int *popage;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    double agec; /* generic age */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double *popeffectif,*popcount;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***p3mat;
           oldm=oldms;savm=savms;    double ***mobaverage;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      char fileresf[FILENAMELENGTH];
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)    agelim=AGESUP;
             for(j=1; j<=nlstate+ndeath;j++)    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
               fprintf(ficrespij," %1d-%1d",i,j);   
           fprintf(ficrespij,"\n");    strcpy(fileresf,"f"); 
            for (h=0; h<=nhstepm; h++){    strcat(fileresf,fileres);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    if((ficresf=fopen(fileresf,"w"))==NULL) {
             for(i=1; i<=nlstate;i++)      printf("Problem with forecast resultfile: %s\n", fileresf);
               for(j=1; j<=nlstate+ndeath;j++)      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    }
             fprintf(ficrespij,"\n");    printf("Computing forecasting: result on file '%s' \n", fileresf);
              }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         }  
     }    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficrespij);      }
     }
   
   /*---------- Forecasting ------------------*/    stepsize=(int) (stepm+YEARM-1)/YEARM;
   if((stepm == 1) && (strcmp(model,".")==0)){    if (stepm<=12) stepsize=1;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    if(estepm < stepm){
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   else{    else  hstepm=estepm;   
     erreur=108;  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    hstepm=hstepm/stepm; 
   }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                   fractional in yp1 */
     anprojmean=yp;
   /*---------- Health expectancies and variances ------------*/    yp2=modf((yp1*12),&yp);
     mprojmean=yp;
   strcpy(filerest,"t");    yp1=modf((yp2*30.5),&yp);
   strcat(filerest,fileres);    jprojmean=yp;
   if((ficrest=fopen(filerest,"w"))==NULL) {    if(jprojmean==0) jprojmean=1;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    if(mprojmean==0) jprojmean=1;
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
   strcpy(filerese,"e");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   strcat(filerese,fileres);    
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fprintf(ficresf,"#****** Routine prevforecast **\n");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }  /*            if (h==(int)(YEARM*yearp)){ */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
  strcpy(fileresv,"v");        k=k+1;
   strcat(fileresv,fileres);        fprintf(ficresf,"\n#******");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        for(j=1;j<=cptcoveff;j++) {
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }        }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficresf,"******\n");
   calagedate=-1;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
   k=0;            fprintf(ficresf," p%d%d",i,j);
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficresf," p.%d",j);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
       k=k+1;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       fprintf(ficrest,"\n#****** ");          fprintf(ficresf,"\n");
       for(j=1;j<=cptcoveff;j++)          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
       fprintf(ficreseij,"\n#****** ");            nhstepm = nhstepm/hstepm; 
       for(j=1;j<=cptcoveff;j++)            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            oldm=oldms;savm=savms;
       fprintf(ficreseij,"******\n");            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
       fprintf(ficresvij,"\n#****** ");            for (h=0; h<=nhstepm; h++){
       for(j=1;j<=cptcoveff;j++)              if (h*hstepm/YEARM*stepm ==yearp) {
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                fprintf(ficresf,"\n");
       fprintf(ficresvij,"******\n");                for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       oldm=oldms;savm=savms;              } 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                for(j=1; j<=nlstate+ndeath;j++) {
                  ppij=0.;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                for(i=1; i<=nlstate;i++) {
       oldm=oldms;savm=savms;                  if (mobilav==1) 
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                      else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                    }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                  if (h*hstepm/YEARM*stepm== yearp) {
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
       fprintf(ficrest,"\n");                  }
                 } /* end i */
       epj=vector(1,nlstate+1);                if (h*hstepm/YEARM*stepm==yearp) {
       for(age=bage; age <=fage ;age++){                  fprintf(ficresf," %.3f", ppij);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                }
         if (popbased==1) {              }/* end j */
           for(i=1; i<=nlstate;i++)            } /* end h */
             prlim[i][i]=probs[(int)age][i][k];            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }          } /* end agec */
                } /* end yearp */
         fprintf(ficrest," %4.0f",age);      } /* end cptcod */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    } /* end  cptcov */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {         
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }    fclose(ficresf);
           epj[nlstate+1] +=epj[j];  }
         }  
   /************** Forecasting *****not tested NB*************/
         for(i=1, vepp=0.;i <=nlstate;i++)  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
           for(j=1;j <=nlstate;j++)    
             vepp += vareij[i][j][(int)age];    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    int *popage;
         for(j=1;j <=nlstate;j++){    double calagedatem, agelim, kk1, kk2;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    double *popeffectif,*popcount;
         }    double ***p3mat,***tabpop,***tabpopprev;
         fprintf(ficrest,"\n");    double ***mobaverage;
       }    char filerespop[FILENAMELENGTH];
     }  
   }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 free_matrix(mint,1,maxwav,1,n);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    agelim=AGESUP;
     free_vector(weight,1,n);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   fclose(ficreseij);    
   fclose(ficresvij);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   fclose(ficrest);    
   fclose(ficpar);    
   free_vector(epj,1,nlstate+1);    strcpy(filerespop,"pop"); 
      strcat(filerespop,fileres);
   /*------- Variance limit prevalence------*/      if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
   strcpy(fileresvpl,"vpl");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   strcat(fileresvpl,fileres);    }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    printf("Computing forecasting: result on file '%s' \n", filerespop);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
     exit(0);  
   }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
     if (mobilav!=0) {
   k=0;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(cptcov=1;cptcov<=i1;cptcov++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       k=k+1;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficresvpl,"\n#****** ");      }
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");    stepsize=(int) (stepm+YEARM-1)/YEARM;
          if (stepm<=12) stepsize=1;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    
       oldm=oldms;savm=savms;    agelim=AGESUP;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    
     }    hstepm=1;
  }    hstepm=hstepm/stepm; 
     
   fclose(ficresvpl);    if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
   /*---------- End : free ----------------*/        printf("Problem with population file : %s\n",popfile);exit(0);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
        } 
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      popage=ivector(0,AGESUP);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      popeffectif=vector(0,AGESUP);
        popcount=vector(0,AGESUP);
        
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      i=1;   
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);     
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      imx=i;
        for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   free_matrix(matcov,1,npar,1,npar);    }
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   fprintf(fichtm,"\n</body>");        fprintf(ficrespop,"\n#******");
   fclose(fichtm);        for(j=1;j<=cptcoveff;j++) {
   fclose(ficgp);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
          }
         fprintf(ficrespop,"******\n");
   if(erreur >0)        fprintf(ficrespop,"# Age");
     printf("End of Imach with error or warning %d\n",erreur);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   else   printf("End of Imach\n");        if (popforecast==1)  fprintf(ficrespop," [Population]");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        
          for (cpt=0; cpt<=0;cpt++) { 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   /*printf("Total time was %d uSec.\n", total_usecs);*/          
   /*------ End -----------*/          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
  end:            
 #ifdef windows            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* chdir(pathcd);*/            oldm=oldms;savm=savms;
 #endif            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
  /*system("wgnuplot graph.plt");*/          
  /*system("../gp37mgw/wgnuplot graph.plt");*/            for (h=0; h<=nhstepm; h++){
  /*system("cd ../gp37mgw");*/              if (h==(int) (calagedatem+YEARM*cpt)) {
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
  strcpy(plotcmd,GNUPLOTPROGRAM);              } 
  strcat(plotcmd," ");              for(j=1; j<=nlstate+ndeath;j++) {
  strcat(plotcmd,optionfilegnuplot);                kk1=0.;kk2=0;
  system(plotcmd);                for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
 #ifdef windows                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   while (z[0] != 'q') {                  else {
     /* chdir(path); */                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                  }
     scanf("%s",z);                }
     if (z[0] == 'c') system("./imach");                if (h==(int)(calagedatem+12*cpt)){
     else if (z[0] == 'e') system(optionfilehtm);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     else if (z[0] == 'g') system(plotcmd);                    /*fprintf(ficrespop," %.3f", kk1);
     else if (z[0] == 'q') exit(0);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   }                }
 #endif              }
 }              for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.47  
changed lines
  Added in v.1.102


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>