Diff for /imach/src/imach.c between versions 1.47 and 1.110

version 1.47, 2002/06/10 13:12:01 version 1.110, 2006/01/25 00:51:50
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.109  2006/01/24 19:37:15  brouard
   first survey ("cross") where individuals from different ages are    (Module): Comments (lines starting with a #) are allowed in data.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.108  2006/01/19 18:05:42  lievre
   second wave of interviews ("longitudinal") which measure each change    Gnuplot problem appeared...
   (if any) in individual health status.  Health expectancies are    To be fixed
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.107  2006/01/19 16:20:37  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Test existence of gnuplot in imach path
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.106  2006/01/19 13:24:36  brouard
   conditional to be observed in state i at the first wave. Therefore    Some cleaning and links added in html output
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.105  2006/01/05 20:23:19  lievre
   complex model than "constant and age", you should modify the program    *** empty log message ***
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.104  2005/09/30 16:11:43  lievre
   convergence.    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
   The advantage of this computer programme, compared to a simple    that the person is alive, then we can code his/her status as -2
   multinomial logistic model, is clear when the delay between waves is not    (instead of missing=-1 in earlier versions) and his/her
   identical for each individual. Also, if a individual missed an    contributions to the likelihood is 1 - Prob of dying from last
   intermediate interview, the information is lost, but taken into    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   account using an interpolation or extrapolation.      the healthy state at last known wave). Version is 0.98
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.103  2005/09/30 15:54:49  lievre
   conditional to the observed state i at age x. The delay 'h' can be    (Module): sump fixed, loop imx fixed, and simplifications.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.102  2004/09/15 17:31:30  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Add the possibility to read data file including tab characters.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.101  2004/09/15 10:38:38  brouard
   hPijx.    Fix on curr_time
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.100  2004/07/12 18:29:06  brouard
   of the life expectancies. It also computes the prevalence limits.    Add version for Mac OS X. Just define UNIX in Makefile
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.99  2004/06/05 08:57:40  brouard
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.98  2004/05/16 15:05:56  brouard
   It is copyrighted identically to a GNU software product, ie programme and    New version 0.97 . First attempt to estimate force of mortality
   software can be distributed freely for non commercial use. Latest version    directly from the data i.e. without the need of knowing the health
   can be accessed at http://euroreves.ined.fr/imach .    state at each age, but using a Gompertz model: log u =a + b*age .
   **********************************************************************/    This is the basic analysis of mortality and should be done before any
      other analysis, in order to test if the mortality estimated from the
 #include <math.h>    cross-longitudinal survey is different from the mortality estimated
 #include <stdio.h>    from other sources like vital statistic data.
 #include <stdlib.h>  
 #include <unistd.h>    The same imach parameter file can be used but the option for mle should be -3.
   
 #define MAXLINE 256    Agnès, who wrote this part of the code, tried to keep most of the
 #define GNUPLOTPROGRAM "gnuplot"    former routines in order to include the new code within the former code.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    The output is very simple: only an estimate of the intercept and of
 /*#define DEBUG*/    the slope with 95% confident intervals.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Current limitations:
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    B) There is no computation of Life Expectancy nor Life Table.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.97  2004/02/20 13:25:42  lievre
 #define NINTERVMAX 8    Version 0.96d. Population forecasting command line is (temporarily)
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    suppressed.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.96  2003/07/15 15:38:55  brouard
 #define MAXN 20000    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define YEARM 12. /* Number of months per year */    rewritten within the same printf. Workaround: many printfs.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.95  2003/07/08 07:54:34  brouard
 #ifdef windows    * imach.c (Repository):
 #define DIRSEPARATOR '\\'    (Repository): Using imachwizard code to output a more meaningful covariance
 #else    matrix (cov(a12,c31) instead of numbers.
 #define DIRSEPARATOR '/'  
 #endif    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.93  2003/06/25 16:33:55  brouard
 int nvar;    (Module): On windows (cygwin) function asctime_r doesn't
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    exist so I changed back to asctime which exists.
 int npar=NPARMAX;    (Module): Version 0.96b
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.92  2003/06/25 16:30:45  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): On windows (cygwin) function asctime_r doesn't
 int popbased=0;    exist so I changed back to asctime which exists.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.91  2003/06/25 15:30:29  brouard
 int maxwav; /* Maxim number of waves */    * imach.c (Repository): Duplicated warning errors corrected.
 int jmin, jmax; /* min, max spacing between 2 waves */    (Repository): Elapsed time after each iteration is now output. It
 int mle, weightopt;    helps to forecast when convergence will be reached. Elapsed time
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    is stamped in powell.  We created a new html file for the graphs
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    concerning matrix of covariance. It has extension -cov.htm.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.90  2003/06/24 12:34:15  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Some bugs corrected for windows. Also, when
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    of the covariance matrix to be input.
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.89  2003/06/24 12:30:52  brouard
 char filerese[FILENAMELENGTH];    (Module): Some bugs corrected for windows. Also, when
 FILE  *ficresvij;    mle=-1 a template is output in file "or"mypar.txt with the design
 char fileresv[FILENAMELENGTH];    of the covariance matrix to be input.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.88  2003/06/23 17:54:56  brouard
 char title[MAXLINE];    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
     Revision 1.86  2003/06/17 20:04:08  brouard
 char filerest[FILENAMELENGTH];    (Module): Change position of html and gnuplot routines and added
 char fileregp[FILENAMELENGTH];    routine fileappend.
 char popfile[FILENAMELENGTH];  
     Revision 1.85  2003/06/17 13:12:43  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 #define NR_END 1    prior to the death. In this case, dh was negative and likelihood
 #define FREE_ARG char*    was wrong (infinity). We still send an "Error" but patch by
 #define FTOL 1.0e-10    assuming that the date of death was just one stepm after the
     interview.
 #define NRANSI    (Repository): Because some people have very long ID (first column)
 #define ITMAX 200    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 #define TOL 2.0e-4    truncation)
     (Repository): No more line truncation errors.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.84  2003/06/13 21:44:43  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 #define GOLD 1.618034    many times. Probs is memory consuming and must be used with
 #define GLIMIT 100.0    parcimony.
 #define TINY 1.0e-20    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 static double maxarg1,maxarg2;    Revision 1.83  2003/06/10 13:39:11  lievre
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    *** empty log message ***
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.82  2003/06/05 15:57:20  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Add log in  imach.c and  fullversion number is now printed.
 #define rint(a) floor(a+0.5)  
   */
 static double sqrarg;  /*
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)     Interpolated Markov Chain
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Short summary of the programme:
 int imx;    
 int stepm;    This program computes Healthy Life Expectancies from
 /* Stepm, step in month: minimum step interpolation*/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 int estepm;    interviewed on their health status or degree of disability (in the
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 int m,nb;    (if any) in individual health status.  Health expectancies are
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    computed from the time spent in each health state according to a
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    model. More health states you consider, more time is necessary to reach the
 double **pmmij, ***probs, ***mobaverage;    Maximum Likelihood of the parameters involved in the model.  The
 double dateintmean=0;    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 double *weight;    conditional to be observed in state i at the first wave. Therefore
 int **s; /* Status */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 double *agedc, **covar, idx;    'age' is age and 'sex' is a covariate. If you want to have a more
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    you to do it.  More covariates you add, slower the
 double ftolhess; /* Tolerance for computing hessian */    convergence.
   
 /**************** split *************************/    The advantage of this computer programme, compared to a simple
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
    char *s;                             /* pointer */    intermediate interview, the information is lost, but taken into
    int  l1, l2;                         /* length counters */    account using an interpolation or extrapolation.  
   
    l1 = strlen( path );                 /* length of path */    hPijx is the probability to be observed in state i at age x+h
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    conditional to the observed state i at age x. The delay 'h' can be
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    split into an exact number (nh*stepm) of unobserved intermediate
    if ( s == NULL ) {                   /* no directory, so use current */    states. This elementary transition (by month, quarter,
 #if     defined(__bsd__)                /* get current working directory */    semester or year) is modelled as a multinomial logistic.  The hPx
       extern char       *getwd( );    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
       if ( getwd( dirc ) == NULL ) {    hPijx.
 #else  
       extern char       *getcwd( );    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    
 #endif    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
          return( GLOCK_ERROR_GETCWD );             Institut national d'études démographiques, Paris.
       }    This software have been partly granted by Euro-REVES, a concerted action
       strcpy( name, path );             /* we've got it */    from the European Union.
    } else {                             /* strip direcotry from path */    It is copyrighted identically to a GNU software product, ie programme and
       s++;                              /* after this, the filename */    software can be distributed freely for non commercial use. Latest version
       l2 = strlen( s );                 /* length of filename */    can be accessed at http://euroreves.ined.fr/imach .
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       dirc[l1-l2] = 0;                  /* add zero */    
    }    **********************************************************************/
    l1 = strlen( dirc );                 /* length of directory */  /*
 #ifdef windows    main
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    read parameterfile
 #else    read datafile
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    concatwav
 #endif    freqsummary
    s = strrchr( name, '.' );            /* find last / */    if (mle >= 1)
    s++;      mlikeli
    strcpy(ext,s);                       /* save extension */    print results files
    l1= strlen( name);    if mle==1 
    l2= strlen( s)+1;       computes hessian
    strncpy( finame, name, l1-l2);    read end of parameter file: agemin, agemax, bage, fage, estepm
    finame[l1-l2]= 0;        begin-prev-date,...
    return( 0 );                         /* we're done */    open gnuplot file
 }    open html file
     stable prevalence
      for age prevalim()
 /******************************************/    h Pij x
     variance of p varprob
 void replace(char *s, char*t)    forecasting if prevfcast==1 prevforecast call prevalence()
 {    health expectancies
   int i;    Variance-covariance of DFLE
   int lg=20;    prevalence()
   i=0;     movingaverage()
   lg=strlen(t);    varevsij() 
   for(i=0; i<= lg; i++) {    if popbased==1 varevsij(,popbased)
     (s[i] = t[i]);    total life expectancies
     if (t[i]== '\\') s[i]='/';    Variance of stable prevalence
   }   end
 }  */
   
 int nbocc(char *s, char occ)  
 {  
   int i,j=0;   
   int lg=20;  #include <math.h>
   i=0;  #include <stdio.h>
   lg=strlen(s);  #include <stdlib.h>
   for(i=0; i<= lg; i++) {  #include <string.h>
   if  (s[i] == occ ) j++;  #include <unistd.h>
   }  
   return j;  #include <limits.h>
 }  #include <sys/types.h>
   #include <sys/stat.h>
 void cutv(char *u,char *v, char*t, char occ)  #include <errno.h>
 {  extern int errno;
   int i,lg,j,p=0;  
   i=0;  /* #include <sys/time.h> */
   for(j=0; j<=strlen(t)-1; j++) {  #include <time.h>
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #include "timeval.h"
   }  
   /* #include <libintl.h> */
   lg=strlen(t);  /* #define _(String) gettext (String) */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define MAXLINE 256
   }  
      u[p]='\0';  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    for(j=0; j<= lg; j++) {  #define FILENAMELENGTH 132
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /********************** nrerror ********************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 void nrerror(char error_text[])  
 {  #define NINTERVMAX 8
   fprintf(stderr,"ERREUR ...\n");  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   fprintf(stderr,"%s\n",error_text);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   exit(1);  #define NCOVMAX 8 /* Maximum number of covariates */
 }  #define MAXN 20000
 /*********************** vector *******************/  #define YEARM 12. /* Number of months per year */
 double *vector(int nl, int nh)  #define AGESUP 130
 {  #define AGEBASE 40
   double *v;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #ifdef UNIX
   if (!v) nrerror("allocation failure in vector");  #define DIRSEPARATOR '/'
   return v-nl+NR_END;  #define CHARSEPARATOR "/"
 }  #define ODIRSEPARATOR '\\'
   #else
 /************************ free vector ******************/  #define DIRSEPARATOR '\\'
 void free_vector(double*v, int nl, int nh)  #define CHARSEPARATOR "\\"
 {  #define ODIRSEPARATOR '/'
   free((FREE_ARG)(v+nl-NR_END));  #endif
 }  
   /* $Id$ */
 /************************ivector *******************************/  /* $State$ */
 int *ivector(long nl,long nh)  
 {  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
   int *v;  char fullversion[]="$Revision$ $Date$"; 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   if (!v) nrerror("allocation failure in ivector");  int nvar;
   return v-nl+NR_END;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 /******************free ivector **************************/  int ndeath=1; /* Number of dead states */
 void free_ivector(int *v, long nl, long nh)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   free((FREE_ARG)(v+nl-NR_END));  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /******************* imatrix *******************************/  int jmin, jmax; /* min, max spacing between 2 waves */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int mle, weightopt;
   int **m;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   /* allocate pointers to rows */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   if (!m) nrerror("allocation failure 1 in matrix()");  double jmean; /* Mean space between 2 waves */
   m += NR_END;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   m -= nrl;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    FILE *ficlog, *ficrespow;
   /* allocate rows and set pointers to them */  int globpr; /* Global variable for printing or not */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  double fretone; /* Only one call to likelihood */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  long ipmx; /* Number of contributions */
   m[nrl] += NR_END;  double sw; /* Sum of weights */
   m[nrl] -= ncl;  char filerespow[FILENAMELENGTH];
    char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  FILE *ficresilk;
    FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   /* return pointer to array of pointers to rows */  FILE *ficresprobmorprev;
   return m;  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /****************** free_imatrix *************************/  FILE  *ficresvij;
 void free_imatrix(m,nrl,nrh,ncl,nch)  char fileresv[FILENAMELENGTH];
       int **m;  FILE  *ficresvpl;
       long nch,ncl,nrh,nrl;  char fileresvpl[FILENAMELENGTH];
      /* free an int matrix allocated by imatrix() */  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   free((FREE_ARG) (m+nrl-NR_END));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char filelog[FILENAMELENGTH]; /* Log file */
   double **m;  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char popfile[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m -= nrl;  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  struct timezone tzp;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  extern int gettimeofday();
   m[nrl] += NR_END;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m[nrl] -= ncl;  long time_value;
   extern long time();
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char strcurr[80], strfor[80];
   return m;  
 }  char *endptr;
   long lval;
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define NR_END 1
 {  #define FREE_ARG char*
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define FTOL 1.0e-10
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #define NRANSI 
   #define ITMAX 200 
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define TOL 2.0e-4 
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define CGOLD 0.3819660 
   double ***m;  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define GOLD 1.618034 
   m += NR_END;  #define GLIMIT 100.0 
   m -= nrl;  #define TINY 1.0e-20 
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  static double maxarg1,maxarg2;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl] += NR_END;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   m[nrl] -= ncl;    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define rint(a) floor(a+0.5)
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  static double sqrarg;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl][ncl] += NR_END;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   m[nrl][ncl] -= nll;  int agegomp= AGEGOMP;
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  int imx; 
    int stepm=1;
   for (i=nrl+1; i<=nrh; i++) {  /* Stepm, step in month: minimum step interpolation*/
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  int estepm;
       m[i][j]=m[i][j-1]+nlay;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   }  
   return m;  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 /*************************free ma3x ************************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  double dateintmean=0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 /***************** f1dim *************************/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 extern int ncom;  double *lsurv, *lpop, *tpop;
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
    double ftolhess; /* Tolerance for computing hessian */
 double f1dim(double x)  
 {  /**************** split *************************/
   int j;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double f;  {
   double *xt;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         the name of the file (name), its extension only (ext) and its first part of the name (finame)
   xt=vector(1,ncom);    */ 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    char  *ss;                            /* pointer */
   f=(*nrfunc)(xt);    int   l1, l2;                         /* length counters */
   free_vector(xt,1,ncom);  
   return f;    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /*****************brent *************************/    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      strcpy( name, path );               /* we got the fullname name because no directory */
 {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   int iter;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double a,b,d,etemp;      /* get current working directory */
   double fu,fv,fw,fx;      /*    extern  char* getcwd ( char *buf , int len);*/
   double ftemp;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double p,q,r,tol1,tol2,u,v,w,x,xm;        return( GLOCK_ERROR_GETCWD );
   double e=0.0;      }
        /* got dirc from getcwd*/
   a=(ax < cx ? ax : cx);      printf(" DIRC = %s \n",dirc);
   b=(ax > cx ? ax : cx);    } else {                              /* strip direcotry from path */
   x=w=v=bx;      ss++;                               /* after this, the filename */
   fw=fv=fx=(*f)(x);      l2 = strlen( ss );                  /* length of filename */
   for (iter=1;iter<=ITMAX;iter++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     xm=0.5*(a+b);      strcpy( name, ss );         /* save file name */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      dirc[l1-l2] = 0;                    /* add zero */
     printf(".");fflush(stdout);      printf(" DIRC2 = %s \n",dirc);
 #ifdef DEBUG    }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    /* We add a separator at the end of dirc if not exists */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    l1 = strlen( dirc );                  /* length of directory */
 #endif    if( dirc[l1-1] != DIRSEPARATOR ){
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      dirc[l1] =  DIRSEPARATOR;
       *xmin=x;      dirc[l1+1] = 0; 
       return fx;      printf(" DIRC3 = %s \n",dirc);
     }    }
     ftemp=fu;    ss = strrchr( name, '.' );            /* find last / */
     if (fabs(e) > tol1) {    if (ss >0){
       r=(x-w)*(fx-fv);      ss++;
       q=(x-v)*(fx-fw);      strcpy(ext,ss);                     /* save extension */
       p=(x-v)*q-(x-w)*r;      l1= strlen( name);
       q=2.0*(q-r);      l2= strlen(ss)+1;
       if (q > 0.0) p = -p;      strncpy( finame, name, l1-l2);
       q=fabs(q);      finame[l1-l2]= 0;
       etemp=e;    }
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    return( 0 );                          /* we're done */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  
         d=p/q;  
         u=x+d;  /******************************************/
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  void replace_back_to_slash(char *s, char*t)
       }  {
     } else {    int i;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    int lg=0;
     }    i=0;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    lg=strlen(t);
     fu=(*f)(u);    for(i=0; i<= lg; i++) {
     if (fu <= fx) {      (s[i] = t[i]);
       if (u >= x) a=x; else b=x;      if (t[i]== '\\') s[i]='/';
       SHFT(v,w,x,u)    }
         SHFT(fv,fw,fx,fu)  }
         } else {  
           if (u < x) a=u; else b=u;  int nbocc(char *s, char occ)
           if (fu <= fw || w == x) {  {
             v=w;    int i,j=0;
             w=u;    int lg=20;
             fv=fw;    i=0;
             fw=fu;    lg=strlen(s);
           } else if (fu <= fv || v == x || v == w) {    for(i=0; i<= lg; i++) {
             v=u;    if  (s[i] == occ ) j++;
             fv=fu;    }
           }    return j;
         }  }
   }  
   nrerror("Too many iterations in brent");  void cutv(char *u,char *v, char*t, char occ)
   *xmin=x;  {
   return fx;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
        gives u="abcedf" and v="ghi2j" */
 /****************** mnbrak ***********************/    int i,lg,j,p=0;
     i=0;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    for(j=0; j<=strlen(t)-1; j++) {
             double (*func)(double))      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 {    }
   double ulim,u,r,q, dum;  
   double fu;    lg=strlen(t);
      for(j=0; j<p; j++) {
   *fa=(*func)(*ax);      (u[j] = t[j]);
   *fb=(*func)(*bx);    }
   if (*fb > *fa) {       u[p]='\0';
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)     for(j=0; j<= lg; j++) {
       }      if (j>=(p+1))(v[j-p-1] = t[j]);
   *cx=(*bx)+GOLD*(*bx-*ax);    }
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /********************** nrerror ********************/
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  void nrerror(char error_text[])
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  {
     ulim=(*bx)+GLIMIT*(*cx-*bx);    fprintf(stderr,"ERREUR ...\n");
     if ((*bx-u)*(u-*cx) > 0.0) {    fprintf(stderr,"%s\n",error_text);
       fu=(*func)(u);    exit(EXIT_FAILURE);
     } else if ((*cx-u)*(u-ulim) > 0.0) {  }
       fu=(*func)(u);  /*********************** vector *******************/
       if (fu < *fc) {  double *vector(int nl, int nh)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  {
           SHFT(*fb,*fc,fu,(*func)(u))    double *v;
           }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    if (!v) nrerror("allocation failure in vector");
       u=ulim;    return v-nl+NR_END;
       fu=(*func)(u);  }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /************************ free vector ******************/
       fu=(*func)(u);  void free_vector(double*v, int nl, int nh)
     }  {
     SHFT(*ax,*bx,*cx,u)    free((FREE_ARG)(v+nl-NR_END));
       SHFT(*fa,*fb,*fc,fu)  }
       }  
 }  /************************ivector *******************************/
   int *ivector(long nl,long nh)
 /*************** linmin ************************/  {
     int *v;
 int ncom;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 double *pcom,*xicom;    if (!v) nrerror("allocation failure in ivector");
 double (*nrfunc)(double []);    return v-nl+NR_END;
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /******************free ivector **************************/
   double brent(double ax, double bx, double cx,  void free_ivector(int *v, long nl, long nh)
                double (*f)(double), double tol, double *xmin);  {
   double f1dim(double x);    free((FREE_ARG)(v+nl-NR_END));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  }
               double *fc, double (*func)(double));  
   int j;  /************************lvector *******************************/
   double xx,xmin,bx,ax;  long *lvector(long nl,long nh)
   double fx,fb,fa;  {
      long *v;
   ncom=n;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   pcom=vector(1,n);    if (!v) nrerror("allocation failure in ivector");
   xicom=vector(1,n);    return v-nl+NR_END;
   nrfunc=func;  }
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /******************free lvector **************************/
     xicom[j]=xi[j];  void free_lvector(long *v, long nl, long nh)
   }  {
   ax=0.0;    free((FREE_ARG)(v+nl-NR_END));
   xx=1.0;  }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /******************* imatrix *******************************/
 #ifdef DEBUG  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 #endif  { 
   for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     xi[j] *= xmin;    int **m; 
     p[j] += xi[j];    
   }    /* allocate pointers to rows */ 
   free_vector(xicom,1,n);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   free_vector(pcom,1,n);    if (!m) nrerror("allocation failure 1 in matrix()"); 
 }    m += NR_END; 
     m -= nrl; 
 /*************** powell ************************/    
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    
             double (*func)(double []))    /* allocate rows and set pointers to them */ 
 {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   void linmin(double p[], double xi[], int n, double *fret,    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
               double (*func)(double []));    m[nrl] += NR_END; 
   int i,ibig,j;    m[nrl] -= ncl; 
   double del,t,*pt,*ptt,*xit;    
   double fp,fptt;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double *xits;    
   pt=vector(1,n);    /* return pointer to array of pointers to rows */ 
   ptt=vector(1,n);    return m; 
   xit=vector(1,n);  } 
   xits=vector(1,n);  
   *fret=(*func)(p);  /****************** free_imatrix *************************/
   for (j=1;j<=n;j++) pt[j]=p[j];  void free_imatrix(m,nrl,nrh,ncl,nch)
   for (*iter=1;;++(*iter)) {        int **m;
     fp=(*fret);        long nch,ncl,nrh,nrl; 
     ibig=0;       /* free an int matrix allocated by imatrix() */ 
     del=0.0;  { 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     for (i=1;i<=n;i++)    free((FREE_ARG) (m+nrl-NR_END)); 
       printf(" %d %.12f",i, p[i]);  } 
     printf("\n");  
     for (i=1;i<=n;i++) {  /******************* matrix *******************************/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  double **matrix(long nrl, long nrh, long ncl, long nch)
       fptt=(*fret);  {
 #ifdef DEBUG    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       printf("fret=%lf \n",*fret);    double **m;
 #endif  
       printf("%d",i);fflush(stdout);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       linmin(p,xit,n,fret,func);    if (!m) nrerror("allocation failure 1 in matrix()");
       if (fabs(fptt-(*fret)) > del) {    m += NR_END;
         del=fabs(fptt-(*fret));    m -= nrl;
         ibig=i;  
       }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       printf("%d %.12e",i,(*fret));    m[nrl] += NR_END;
       for (j=1;j<=n;j++) {    m[nrl] -= ncl;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }    return m;
       for(j=1;j<=n;j++)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         printf(" p=%.12e",p[j]);     */
       printf("\n");  }
 #endif  
     }  /*************************free matrix ************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 #ifdef DEBUG  {
       int k[2],l;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       k[0]=1;    free((FREE_ARG)(m+nrl-NR_END));
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /******************* ma3x *******************************/
         printf(" %.12e",p[j]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       printf("\n");  {
       for(l=0;l<=1;l++) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         for (j=1;j<=n;j++) {    double ***m;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         }    if (!m) nrerror("allocation failure 1 in matrix()");
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m += NR_END;
       }    m -= nrl;
 #endif  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       free_vector(xit,1,n);    m[nrl] += NR_END;
       free_vector(xits,1,n);    m[nrl] -= ncl;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       return;  
     }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     for (j=1;j<=n;j++) {    m[nrl][ncl] += NR_END;
       ptt[j]=2.0*p[j]-pt[j];    m[nrl][ncl] -= nll;
       xit[j]=p[j]-pt[j];    for (j=ncl+1; j<=nch; j++) 
       pt[j]=p[j];      m[nrl][j]=m[nrl][j-1]+nlay;
     }    
     fptt=(*func)(ptt);    for (i=nrl+1; i<=nrh; i++) {
     if (fptt < fp) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      for (j=ncl+1; j<=nch; j++) 
       if (t < 0.0) {        m[i][j]=m[i][j-1]+nlay;
         linmin(p,xit,n,fret,func);    }
         for (j=1;j<=n;j++) {    return m; 
           xi[j][ibig]=xi[j][n];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
           xi[j][n]=xit[j];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         }    */
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  /*************************free ma3x ************************/
           printf(" %.12e",xit[j]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         printf("\n");  {
 #endif    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }  }
 }  
   /*************** function subdirf ***********/
 /**** Prevalence limit ****************/  char *subdirf(char fileres[])
   {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    strcat(tmpout,"/"); /* Add to the right */
      matrix by transitions matrix until convergence is reached */    strcat(tmpout,fileres);
     return tmpout;
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /*************** function subdirf2 ***********/
   double **out, cov[NCOVMAX], **pmij();  char *subdirf2(char fileres[], char *preop)
   double **newm;  {
   double agefin, delaymax=50 ; /* Max number of years to converge */    
     /* Caution optionfilefiname is hidden */
   for (ii=1;ii<=nlstate+ndeath;ii++)    strcpy(tmpout,optionfilefiname);
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,"/");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
     return tmpout;
    cov[1]=1.;  }
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************** function subdirf3 ***********/
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char *subdirf3(char fileres[], char *preop, char *preop2)
     newm=savm;  {
     /* Covariates have to be included here again */    
      cov[2]=agefin;    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
       for (k=1; k<=cptcovn;k++) {    strcat(tmpout,"/");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcat(tmpout,preop);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    strcat(tmpout,preop2);
       }    strcat(tmpout,fileres);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return tmpout;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /***************** f1dim *************************/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  extern int ncom; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  extern double *pcom,*xicom;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  extern double (*nrfunc)(double []); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);   
   double f1dim(double x) 
     savm=oldm;  { 
     oldm=newm;    int j; 
     maxmax=0.;    double f;
     for(j=1;j<=nlstate;j++){    double *xt; 
       min=1.;   
       max=0.;    xt=vector(1,ncom); 
       for(i=1; i<=nlstate; i++) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         sumnew=0;    f=(*nrfunc)(xt); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    free_vector(xt,1,ncom); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    return f; 
         max=FMAX(max,prlim[i][j]);  } 
         min=FMIN(min,prlim[i][j]);  
       }  /*****************brent *************************/
       maxmin=max-min;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       maxmax=FMAX(maxmax,maxmin);  { 
     }    int iter; 
     if(maxmax < ftolpl){    double a,b,d,etemp;
       return prlim;    double fu,fv,fw,fx;
     }    double ftemp;
   }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 }    double e=0.0; 
    
 /*************** transition probabilities ***************/    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    x=w=v=bx; 
 {    fw=fv=fx=(*f)(x); 
   double s1, s2;    for (iter=1;iter<=ITMAX;iter++) { 
   /*double t34;*/      xm=0.5*(a+b); 
   int i,j,j1, nc, ii, jj;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for(i=1; i<= nlstate; i++){      printf(".");fflush(stdout);
     for(j=1; j<i;j++){      fprintf(ficlog,".");fflush(ficlog);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #ifdef DEBUG
         /*s2 += param[i][j][nc]*cov[nc];*/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
       ps[i][j]=s2;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        *xmin=x; 
     }        return fx; 
     for(j=i+1; j<=nlstate+ndeath;j++){      } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      ftemp=fu;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      if (fabs(e) > tol1) { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        r=(x-w)*(fx-fv); 
       }        q=(x-v)*(fx-fw); 
       ps[i][j]=s2;        p=(x-v)*q-(x-w)*r; 
     }        q=2.0*(q-r); 
   }        if (q > 0.0) p = -p; 
     /*ps[3][2]=1;*/        q=fabs(q); 
         etemp=e; 
   for(i=1; i<= nlstate; i++){        e=d; 
      s1=0;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(j=1; j<i; j++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       s1+=exp(ps[i][j]);        else { 
     for(j=i+1; j<=nlstate+ndeath; j++)          d=p/q; 
       s1+=exp(ps[i][j]);          u=x+d; 
     ps[i][i]=1./(s1+1.);          if (u-a < tol2 || b-u < tol2) 
     for(j=1; j<i; j++)            d=SIGN(tol1,xm-x); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        } 
     for(j=i+1; j<=nlstate+ndeath; j++)      } else { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      } 
   } /* end i */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      if (fu <= fx) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        if (u >= x) a=x; else b=x; 
       ps[ii][jj]=0;        SHFT(v,w,x,u) 
       ps[ii][ii]=1;          SHFT(fv,fw,fx,fu) 
     }          } else { 
   }            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
               v=w; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){              w=u; 
     for(jj=1; jj<= nlstate+ndeath; jj++){              fv=fw; 
      printf("%lf ",ps[ii][jj]);              fw=fu; 
    }            } else if (fu <= fv || v == x || v == w) { 
     printf("\n ");              v=u; 
     }              fv=fu; 
     printf("\n ");printf("%lf ",cov[2]);*/            } 
 /*          } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    } 
   goto end;*/    nrerror("Too many iterations in brent"); 
     return ps;    *xmin=x; 
 }    return fx; 
   } 
 /**************** Product of 2 matrices ******************/  
   /****************** mnbrak ***********************/
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times              double (*func)(double)) 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  { 
   /* in, b, out are matrice of pointers which should have been initialized    double ulim,u,r,q, dum;
      before: only the contents of out is modified. The function returns    double fu; 
      a pointer to pointers identical to out */   
   long i, j, k;    *fa=(*func)(*ax); 
   for(i=nrl; i<= nrh; i++)    *fb=(*func)(*bx); 
     for(k=ncolol; k<=ncoloh; k++)    if (*fb > *fa) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      SHFT(dum,*ax,*bx,dum) 
         out[i][k] +=in[i][j]*b[j][k];        SHFT(dum,*fb,*fa,dum) 
         } 
   return out;    *cx=(*bx)+GOLD*(*bx-*ax); 
 }    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 /************* Higher Matrix Product ***************/      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      if ((*bx-u)*(u-*cx) > 0.0) { 
      duration (i.e. until        fu=(*func)(u); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      } else if ((*cx-u)*(u-ulim) > 0.0) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        fu=(*func)(u); 
      (typically every 2 years instead of every month which is too big).        if (fu < *fc) { 
      Model is determined by parameters x and covariates have to be          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
      included manually here.            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
      */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   int i, j, d, h, k;        fu=(*func)(u); 
   double **out, cov[NCOVMAX];      } else { 
   double **newm;        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   /* Hstepm could be zero and should return the unit matrix */      } 
   for (i=1;i<=nlstate+ndeath;i++)      SHFT(*ax,*bx,*cx,u) 
     for (j=1;j<=nlstate+ndeath;j++){        SHFT(*fa,*fb,*fc,fu) 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        } 
       po[i][j][0]=(i==j ? 1.0 : 0.0);  } 
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************** linmin ************************/
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  int ncom; 
       newm=savm;  double *pcom,*xicom;
       /* Covariates have to be included here again */  double (*nrfunc)(double []); 
       cov[1]=1.;   
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  { 
       for (k=1; k<=cptcovage;k++)    double brent(double ax, double bx, double cx, 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                 double (*f)(double), double tol, double *xmin); 
       for (k=1; k<=cptcovprod;k++)    double f1dim(double x); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
     int j; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double xx,xmin,bx,ax; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double fx,fb,fa;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    ncom=n; 
       savm=oldm;    pcom=vector(1,n); 
       oldm=newm;    xicom=vector(1,n); 
     }    nrfunc=func; 
     for(i=1; i<=nlstate+ndeath; i++)    for (j=1;j<=n;j++) { 
       for(j=1;j<=nlstate+ndeath;j++) {      pcom[j]=p[j]; 
         po[i][j][h]=newm[i][j];      xicom[j]=xi[j]; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    } 
          */    ax=0.0; 
       }    xx=1.0; 
   } /* end h */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   return po;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 }  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /*************** log-likelihood *************/  #endif
 double func( double *x)    for (j=1;j<=n;j++) { 
 {      xi[j] *= xmin; 
   int i, ii, j, k, mi, d, kk;      p[j] += xi[j]; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    } 
   double **out;    free_vector(xicom,1,n); 
   double sw; /* Sum of weights */    free_vector(pcom,1,n); 
   double lli; /* Individual log likelihood */  } 
   long ipmx;  
   /*extern weight */  char *asc_diff_time(long time_sec, char ascdiff[])
   /* We are differentiating ll according to initial status */  {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    long sec_left, days, hours, minutes;
   /*for(i=1;i<imx;i++)    days = (time_sec) / (60*60*24);
     printf(" %d\n",s[4][i]);    sec_left = (time_sec) % (60*60*24);
   */    hours = (sec_left) / (60*60) ;
   cov[1]=1.;    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    sec_left = (sec_left) % (60);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    return ascdiff;
     for(mi=1; mi<= wav[i]-1; mi++){  }
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*************** powell ************************/
       for(d=0; d<dh[mi][i]; d++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         newm=savm;              double (*func)(double [])) 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  { 
         for (kk=1; kk<=cptcovage;kk++) {    void linmin(double p[], double xi[], int n, double *fret, 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];                double (*func)(double [])); 
         }    int i,ibig,j; 
            double del,t,*pt,*ptt,*xit;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double fp,fptt;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double *xits;
         savm=oldm;    int niterf, itmp;
         oldm=newm;  
            pt=vector(1,n); 
            ptt=vector(1,n); 
       } /* end mult */    xit=vector(1,n); 
          xits=vector(1,n); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    *fret=(*func)(p); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    for (j=1;j<=n;j++) pt[j]=p[j]; 
       ipmx +=1;    for (*iter=1;;++(*iter)) { 
       sw += weight[i];      fp=(*fret); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      ibig=0; 
     } /* end of wave */      del=0.0; 
   } /* end of individual */      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   return -l;      */
 }     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
 /*********** Maximum Likelihood Estimation ***************/        fprintf(ficrespow," %.12lf", p[i]);
       }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      printf("\n");
 {      fprintf(ficlog,"\n");
   int i,j, iter;      fprintf(ficrespow,"\n");fflush(ficrespow);
   double **xi,*delti;      if(*iter <=3){
   double fret;        tm = *localtime(&curr_time.tv_sec);
   xi=matrix(1,npar,1,npar);        strcpy(strcurr,asctime(&tm));
   for (i=1;i<=npar;i++)  /*       asctime_r(&tm,strcurr); */
     for (j=1;j<=npar;j++)        forecast_time=curr_time; 
       xi[i][j]=(i==j ? 1.0 : 0.0);        itmp = strlen(strcurr);
   printf("Powell\n");        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   powell(p,xi,npar,ftol,&iter,&fret,func);          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 }          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
 /**** Computes Hessian and covariance matrix ***/          strcpy(strfor,asctime(&tmf));
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          itmp = strlen(strfor);
 {          if(strfor[itmp-1]=='\n')
   double  **a,**y,*x,pd;          strfor[itmp-1]='\0';
   double **hess;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   int i, j,jk;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   int *indx;        }
       }
   double hessii(double p[], double delta, int theta, double delti[]);      for (i=1;i<=n;i++) { 
   double hessij(double p[], double delti[], int i, int j);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        fptt=(*fret); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
   hess=matrix(1,npar,1,npar);        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
   printf("\nCalculation of the hessian matrix. Wait...\n");        printf("%d",i);fflush(stdout);
   for (i=1;i<=npar;i++){        fprintf(ficlog,"%d",i);fflush(ficlog);
     printf("%d",i);fflush(stdout);        linmin(p,xit,n,fret,func); 
     hess[i][i]=hessii(p,ftolhess,i,delti);        if (fabs(fptt-(*fret)) > del) { 
     /*printf(" %f ",p[i]);*/          del=fabs(fptt-(*fret)); 
     /*printf(" %lf ",hess[i][i]);*/          ibig=i; 
   }        } 
    #ifdef DEBUG
   for (i=1;i<=npar;i++) {        printf("%d %.12e",i,(*fret));
     for (j=1;j<=npar;j++)  {        fprintf(ficlog,"%d %.12e",i,(*fret));
       if (j>i) {        for (j=1;j<=n;j++) {
         printf(".%d%d",i,j);fflush(stdout);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         hess[i][j]=hessij(p,delti,i,j);          printf(" x(%d)=%.12e",j,xit[j]);
         hess[j][i]=hess[i][j];              fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         /*printf(" %lf ",hess[i][j]);*/        }
       }        for(j=1;j<=n;j++) {
     }          printf(" p=%.12e",p[j]);
   }          fprintf(ficlog," p=%.12e",p[j]);
   printf("\n");        }
         printf("\n");
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        fprintf(ficlog,"\n");
    #endif
   a=matrix(1,npar,1,npar);      } 
   y=matrix(1,npar,1,npar);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   x=vector(1,npar);  #ifdef DEBUG
   indx=ivector(1,npar);        int k[2],l;
   for (i=1;i<=npar;i++)        k[0]=1;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        k[1]=-1;
   ludcmp(a,npar,indx,&pd);        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
   for (j=1;j<=npar;j++) {        for (j=1;j<=n;j++) {
     for (i=1;i<=npar;i++) x[i]=0;          printf(" %.12e",p[j]);
     x[j]=1;          fprintf(ficlog," %.12e",p[j]);
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){        printf("\n");
       matcov[i][j]=x[i];        fprintf(ficlog,"\n");
     }        for(l=0;l<=1;l++) {
   }          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   printf("\n#Hessian matrix#\n");            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (i=1;i<=npar;i++) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (j=1;j<=npar;j++) {          }
       printf("%.3e ",hess[i][j]);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     printf("\n");        }
   }  #endif
   
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)        free_vector(xit,1,n); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        free_vector(xits,1,n); 
   ludcmp(a,npar,indx,&pd);        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   /*  printf("\n#Hessian matrix recomputed#\n");        return; 
       } 
   for (j=1;j<=npar;j++) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (i=1;i<=npar;i++) x[i]=0;      for (j=1;j<=n;j++) { 
     x[j]=1;        ptt[j]=2.0*p[j]-pt[j]; 
     lubksb(a,npar,indx,x);        xit[j]=p[j]-pt[j]; 
     for (i=1;i<=npar;i++){        pt[j]=p[j]; 
       y[i][j]=x[i];      } 
       printf("%.3e ",y[i][j]);      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
     printf("\n");        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   }        if (t < 0.0) { 
   */          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
   free_matrix(a,1,npar,1,npar);            xi[j][ibig]=xi[j][n]; 
   free_matrix(y,1,npar,1,npar);            xi[j][n]=xit[j]; 
   free_vector(x,1,npar);          }
   free_ivector(indx,1,npar);  #ifdef DEBUG
   free_matrix(hess,1,npar,1,npar);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
 }            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
 /*************** hessian matrix ****************/          }
 double hessii( double x[], double delta, int theta, double delti[])          printf("\n");
 {          fprintf(ficlog,"\n");
   int i;  #endif
   int l=1, lmax=20;        }
   double k1,k2;      } 
   double p2[NPARMAX+1];    } 
   double res;  } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;  /**** Prevalence limit (stable prevalence)  ****************/
   int k=0,kmax=10;  
   double l1;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   fx=func(x);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for (i=1;i<=npar;i++) p2[i]=x[i];       matrix by transitions matrix until convergence is reached */
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);    int i, ii,j,k;
     delts=delt;    double min, max, maxmin, maxmax,sumnew=0.;
     for(k=1 ; k <kmax; k=k+1){    double **matprod2();
       delt = delta*(l1*k);    double **out, cov[NCOVMAX], **pmij();
       p2[theta]=x[theta] +delt;    double **newm;
       k1=func(p2)-fx;    double agefin, delaymax=50 ; /* Max number of years to converge */
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;    for (ii=1;ii<=nlstate+ndeath;ii++)
       /*res= (k1-2.0*fx+k2)/delt/delt; */      for (j=1;j<=nlstate+ndeath;j++){
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            }
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);     cov[1]=1.;
 #endif   
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         k=kmax;      newm=savm;
       }      /* Covariates have to be included here again */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */       cov[2]=agefin;
         k=kmax; l=lmax*10.;    
       }        for (k=1; k<=cptcovn;k++) {
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         delts=delt;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       }        }
     }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
   delti[theta]=delts;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   return res;  
          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 double hessij( double x[], double delti[], int thetai,int thetaj)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 {  
   int i;      savm=oldm;
   int l=1, l1, lmax=20;      oldm=newm;
   double k1,k2,k3,k4,res,fx;      maxmax=0.;
   double p2[NPARMAX+1];      for(j=1;j<=nlstate;j++){
   int k;        min=1.;
         max=0.;
   fx=func(x);        for(i=1; i<=nlstate; i++) {
   for (k=1; k<=2; k++) {          sumnew=0;
     for (i=1;i<=npar;i++) p2[i]=x[i];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     p2[thetai]=x[thetai]+delti[thetai]/k;          prlim[i][j]= newm[i][j]/(1-sumnew);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          max=FMAX(max,prlim[i][j]);
     k1=func(p2)-fx;          min=FMIN(min,prlim[i][j]);
          }
     p2[thetai]=x[thetai]+delti[thetai]/k;        maxmin=max-min;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        maxmax=FMAX(maxmax,maxmin);
     k2=func(p2)-fx;      }
        if(maxmax < ftolpl){
     p2[thetai]=x[thetai]-delti[thetai]/k;        return prlim;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k3=func(p2)-fx;    }
    }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*************** transition probabilities ***************/ 
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 #ifdef DEBUG  {
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double s1, s2;
 #endif    /*double t34;*/
   }    int i,j,j1, nc, ii, jj;
   return res;  
 }      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
 /************** Inverse of matrix **************/          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 void ludcmp(double **a, int n, int *indx, double *d)            /*s2 += param[i][j][nc]*cov[nc];*/
 {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int i,imax,j,k;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   double big,dum,sum,temp;          }
   double *vv;          ps[i][j]=s2;
    /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   vv=vector(1,n);        }
   *d=1.0;        for(j=i+1; j<=nlstate+ndeath;j++){
   for (i=1;i<=n;i++) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     big=0.0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (j=1;j<=n;j++)  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       if ((temp=fabs(a[i][j])) > big) big=temp;          }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          ps[i][j]=s2;
     vv[i]=1.0/big;        }
   }      }
   for (j=1;j<=n;j++) {      /*ps[3][2]=1;*/
     for (i=1;i<j;i++) {      
       sum=a[i][j];      for(i=1; i<= nlstate; i++){
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        s1=0;
       a[i][j]=sum;        for(j=1; j<i; j++)
     }          s1+=exp(ps[i][j]);
     big=0.0;        for(j=i+1; j<=nlstate+ndeath; j++)
     for (i=j;i<=n;i++) {          s1+=exp(ps[i][j]);
       sum=a[i][j];        ps[i][i]=1./(s1+1.);
       for (k=1;k<j;k++)        for(j=1; j<i; j++)
         sum -= a[i][k]*a[k][j];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       a[i][j]=sum;        for(j=i+1; j<=nlstate+ndeath; j++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
         big=dum;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         imax=i;      } /* end i */
       }      
     }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     if (j != imax) {        for(jj=1; jj<= nlstate+ndeath; jj++){
       for (k=1;k<=n;k++) {          ps[ii][jj]=0;
         dum=a[imax][k];          ps[ii][ii]=1;
         a[imax][k]=a[j][k];        }
         a[j][k]=dum;      }
       }      
       *d = -(*d);  
       vv[imax]=vv[j];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     indx[j]=imax;  /*         printf("ddd %lf ",ps[ii][jj]); */
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*       } */
     if (j != n) {  /*       printf("\n "); */
       dum=1.0/(a[j][j]);  /*        } */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*        printf("\n ");printf("%lf ",cov[2]); */
     }         /*
   }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   free_vector(vv,1,n);  /* Doesn't work */        goto end;*/
 ;      return ps;
 }  }
   
 void lubksb(double **a, int n, int *indx, double b[])  /**************** Product of 2 matrices ******************/
 {  
   int i,ii=0,ip,j;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   double sum;  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   for (i=1;i<=n;i++) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     ip=indx[i];    /* in, b, out are matrice of pointers which should have been initialized 
     sum=b[ip];       before: only the contents of out is modified. The function returns
     b[ip]=b[i];       a pointer to pointers identical to out */
     if (ii)    long i, j, k;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    for(i=nrl; i<= nrh; i++)
     else if (sum) ii=i;      for(k=ncolol; k<=ncoloh; k++)
     b[i]=sum;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   }          out[i][k] +=in[i][j]*b[j][k];
   for (i=n;i>=1;i--) {  
     sum=b[i];    return out;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  }
     b[i]=sum/a[i][i];  
   }  
 }  /************* Higher Matrix Product ***************/
   
 /************ Frequencies ********************/  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  {
 {  /* Some frequencies */    /* Computes the transition matrix starting at age 'age' over 
         'nhstepm*hstepm*stepm' months (i.e. until
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   double ***freq; /* Frequencies */       nhstepm*hstepm matrices. 
   double *pp;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double pos, k2, dateintsum=0,k2cpt=0;       (typically every 2 years instead of every month which is too big 
   FILE *ficresp;       for the memory).
   char fileresp[FILENAMELENGTH];       Model is determined by parameters x and covariates have to be 
         included manually here. 
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       */
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);    int i, j, d, h, k;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double **out, cov[NCOVMAX];
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double **newm;
     exit(0);  
   }    /* Hstepm could be zero and should return the unit matrix */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    for (i=1;i<=nlstate+ndeath;i++)
   j1=0;      for (j=1;j<=nlstate+ndeath;j++){
          oldm[i][j]=(i==j ? 1.0 : 0.0);
   j=cptcoveff;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(k1=1; k1<=j;k1++){    for(h=1; h <=nhstepm; h++){
     for(i1=1; i1<=ncodemax[k1];i1++){      for(d=1; d <=hstepm; d++){
       j1++;        newm=savm;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        /* Covariates have to be included here again */
         scanf("%d", i);*/        cov[1]=1.;
       for (i=-1; i<=nlstate+ndeath; i++)          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           for(m=agemin; m <= agemax+3; m++)        for (k=1; k<=cptcovage;k++)
             freq[i][jk][m]=0;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              for (k=1; k<=cptcovprod;k++)
       dateintsum=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       k2cpt=0;  
       for (i=1; i<=imx; i++) {  
         bool=1;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         if  (cptcovn>0) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           for (z1=1; z1<=cptcoveff; z1++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])                     pmij(pmmij,cov,ncovmodel,x,nlstate));
               bool=0;        savm=oldm;
         }        oldm=newm;
         if (bool==1) {      }
           for(m=firstpass; m<=lastpass; m++){      for(i=1; i<=nlstate+ndeath; i++)
             k2=anint[m][i]+(mint[m][i]/12.);        for(j=1;j<=nlstate+ndeath;j++) {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          po[i][j][h]=newm[i][j];
               if(agev[m][i]==0) agev[m][i]=agemax+1;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;           */
               if (m<lastpass) {        }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    } /* end h */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    return po;
               }  }
                
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;  /*************** log-likelihood *************/
                 k2cpt++;  double func( double *x)
               }  {
             }    int i, ii, j, k, mi, d, kk;
           }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
       }    double sw; /* Sum of weights */
            double lli; /* Individual log likelihood */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int s1, s2;
     double bbh, survp;
       if  (cptcovn>0) {    long ipmx;
         fprintf(ficresp, "\n#********** Variable ");    /*extern weight */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* We are differentiating ll according to initial status */
         fprintf(ficresp, "**********\n#");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       }    /*for(i=1;i<imx;i++) 
       for(i=1; i<=nlstate;i++)      printf(" %d\n",s[4][i]);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    */
       fprintf(ficresp, "\n");    cov[1]=1.;
        
       for(i=(int)agemin; i <= (int)agemax+3; i++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
         if(i==(int)agemax+3)  
           printf("Total");    if(mle==1){
         else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           printf("Age %d", i);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1, pos=0; m <=0 ; m++)            }
             pos += freq[jk][m][i];          for(d=0; d<dh[mi][i]; d++){
           if(pp[jk]>=1.e-10)            newm=savm;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           else            for (kk=1; kk<=cptcovage;kk++) {
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            savm=oldm;
             pp[jk] += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
         
         for(jk=1,pos=0; jk <=nlstate ; jk++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           pos += pp[jk];          /* But now since version 0.9 we anticipate for bias at large stepm.
         for(jk=1; jk <=nlstate ; jk++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           if(pos>=1.e-5)           * (in months) between two waves is not a multiple of stepm, we rounded to 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           * the nearest (and in case of equal distance, to the lowest) interval but now
           else           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           if( i <= (int) agemax){           * probability in order to take into account the bias as a fraction of the way
             if(pos>=1.e-5){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);           * -stepm/2 to stepm/2 .
               probs[i][jk][j1]= pp[jk]/pos;           * For stepm=1 the results are the same as for previous versions of Imach.
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/           * For stepm > 1 the results are less biased than in previous versions. 
             }           */
             else          s1=s[mw[mi][i]][i];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          s2=s[mw[mi+1][i]][i];
           }          bbh=(double)bh[mi][i]/(double)stepm; 
         }          /* bias bh is positive if real duration
                   * is higher than the multiple of stepm and negative otherwise.
         for(jk=-1; jk <=nlstate+ndeath; jk++)           */
           for(m=-1; m <=nlstate+ndeath; m++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          if( s2 > nlstate){ 
         if(i <= (int) agemax)            /* i.e. if s2 is a death state and if the date of death is known 
           fprintf(ficresp,"\n");               then the contribution to the likelihood is the probability to 
         printf("\n");               die between last step unit time and current  step unit time, 
       }               which is also equal to probability to die before dh 
     }               minus probability to die before dh-stepm . 
   }               In version up to 0.92 likelihood was computed
   dateintmean=dateintsum/k2cpt;          as if date of death was unknown. Death was treated as any other
            health state: the date of the interview describes the actual state
   fclose(ficresp);          and not the date of a change in health state. The former idea was
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          to consider that at each interview the state was recorded
   free_vector(pp,1,nlstate);          (healthy, disable or death) and IMaCh was corrected; but when we
            introduced the exact date of death then we should have modified
   /* End of Freq */          the contribution of an exact death to the likelihood. This new
 }          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
 /************ Prevalence ********************/          and month of death but the probability to survive from last
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          interview up to one month before death multiplied by the
 {  /* Some frequencies */          probability to die within a month. Thanks to Chris
            Jackson for correcting this bug.  Former versions increased
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          mortality artificially. The bad side is that we add another loop
   double ***freq; /* Frequencies */          which slows down the processing. The difference can be up to 10%
   double *pp;          lower mortality.
   double pos, k2;            */
             lli=log(out[s1][s2] - savm[s1][s2]);
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
            } else if  (s2==-2) {
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            for (j=1,survp=0. ; j<=nlstate; j++) 
   j1=0;              survp += out[s1][j];
              lli= survp;
   j=cptcoveff;          }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          
            else if  (s2==-4) {
   for(k1=1; k1<=j;k1++){            for (j=3,survp=0. ; j<=nlstate; j++) 
     for(i1=1; i1<=ncodemax[k1];i1++){              survp += out[s1][j];
       j1++;            lli= survp;
                }
       for (i=-1; i<=nlstate+ndeath; i++)            
         for (jk=-1; jk<=nlstate+ndeath; jk++)            else if  (s2==-5) {
           for(m=agemin; m <= agemax+3; m++)            for (j=1,survp=0. ; j<=2; j++) 
             freq[i][jk][m]=0;              survp += out[s1][j];
                  lli= survp;
       for (i=1; i<=imx; i++) {          }
         bool=1;  
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)          else{
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
               bool=0;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         }          } 
         if (bool==1) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for(m=firstpass; m<=lastpass; m++){          /*if(lli ==000.0)*/
             k2=anint[m][i]+(mint[m][i]/12.);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          ipmx +=1;
               if(agev[m][i]==0) agev[m][i]=agemax+1;          sw += weight[i];
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               if (m<lastpass) {        } /* end of wave */
                 if (calagedate>0)      } /* end of individual */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    }  else if(mle==2){
                 else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
               }          for (ii=1;ii<=nlstate+ndeath;ii++)
             }            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
       for(i=(int)agemin; i <= (int)agemax+3; i++){          for(d=0; d<=dh[mi][i]; d++){
         for(jk=1; jk <=nlstate ; jk++){            newm=savm;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             pp[jk] += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pos=0; m <=0 ; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pos += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
                    oldm=newm;
         for(jk=1; jk <=nlstate ; jk++){          } /* end mult */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        
             pp[jk] += freq[jk][m][i];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
                  bbh=(double)bh[mi][i]/(double)stepm; 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                  ipmx +=1;
         for(jk=1; jk <=nlstate ; jk++){              sw += weight[i];
           if( i <= (int) agemax){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if(pos>=1.e-5){        } /* end of wave */
               probs[i][jk][j1]= pp[jk]/pos;      } /* end of individual */
             }    }  else if(mle==3){  /* exponential inter-extrapolation */
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          for(d=0; d<dh[mi][i]; d++){
   free_vector(pp,1,nlstate);            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }  /* End of Freq */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************* Waves Concatenation ***************/            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            oldm=newm;
      Death is a valid wave (if date is known).          } /* end mult */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          s1=s[mw[mi][i]][i];
      and mw[mi+1][i]. dh depends on stepm.          s2=s[mw[mi+1][i]][i];
      */          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int i, mi, m;          ipmx +=1;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          sw += weight[i];
      double sum=0., jmean=0.;*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   int j, k=0,jk, ju, jl;      } /* end of individual */
   double sum=0.;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   jmin=1e+5;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   jmax=-1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   jmean=0.;        for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=imx; i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     mi=0;            for (j=1;j<=nlstate+ndeath;j++){
     m=firstpass;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     while(s[m][i] <= nlstate){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(s[m][i]>=1)            }
         mw[++mi][i]=m;          for(d=0; d<dh[mi][i]; d++){
       if(m >=lastpass)            newm=savm;
         break;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else            for (kk=1; kk<=cptcovage;kk++) {
         m++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }/* end while */            }
     if (s[m][i] > nlstate){          
       mi++;     /* Death is another wave */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       /* if(mi==0)  never been interviewed correctly before death */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          /* Only death is a correct wave */            savm=oldm;
       mw[mi][i]=m;            oldm=newm;
     }          } /* end mult */
         
     wav[i]=mi;          s1=s[mw[mi][i]][i];
     if(mi==0)          s2=s[mw[mi+1][i]][i];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          if( s2 > nlstate){ 
   }            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
   for(i=1; i<=imx; i++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(mi=1; mi<wav[i];mi++){          }
       if (stepm <=0)          ipmx +=1;
         dh[mi][i]=1;          sw += weight[i];
       else{          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (s[mw[mi+1][i]][i] > nlstate) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           if (agedc[i] < 2*AGESUP) {        } /* end of wave */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      } /* end of individual */
           if(j==0) j=1;  /* Survives at least one month after exam */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           k=k+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (j >= jmax) jmax=j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (j <= jmin) jmin=j;        for(mi=1; mi<= wav[i]-1; mi++){
           sum=sum+j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         else{            }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          for(d=0; d<dh[mi][i]; d++){
           k=k+1;            newm=savm;
           if (j >= jmax) jmax=j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           else if (j <= jmin)jmin=j;            for (kk=1; kk<=cptcovage;kk++) {
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           sum=sum+j;            }
         }          
         jk= j/stepm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         jl= j -jk*stepm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         ju= j -(jk+1)*stepm;            savm=oldm;
         if(jl <= -ju)            oldm=newm;
           dh[mi][i]=jk;          } /* end mult */
         else        
           dh[mi][i]=jk+1;          s1=s[mw[mi][i]][i];
         if(dh[mi][i]==0)          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=1; /* At least one step */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          ipmx +=1;
     }          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmean=sum/k;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } /* end of wave */
  }      } /* end of individual */
 /*********** Tricode ****************************/    } /* End of if */
 void tricode(int *Tvar, int **nbcode, int imx)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int Ndum[20],ij=1, k, j, i;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int cptcode=0;    return -l;
   cptcoveff=0;  }
    
   for (k=0; k<19; k++) Ndum[k]=0;  /*************** log-likelihood *************/
   for (k=1; k<=7; k++) ncodemax[k]=0;  double funcone( double *x)
   {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /* Same as likeli but slower because of a lot of printf and if */
     for (i=1; i<=imx; i++) {    int i, ii, j, k, mi, d, kk;
       ij=(int)(covar[Tvar[j]][i]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       Ndum[ij]++;    double **out;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double lli; /* Individual log likelihood */
       if (ij > cptcode) cptcode=ij;    double llt;
     }    int s1, s2;
     double bbh, survp;
     for (i=0; i<=cptcode; i++) {    /*extern weight */
       if(Ndum[i]!=0) ncodemax[j]++;    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     ij=1;    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     */
     for (i=1; i<=ncodemax[j]; i++) {    cov[1]=1.;
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
           nbcode[Tvar[j]][ij]=k;  
              for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           ij++;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }      for(mi=1; mi<= wav[i]-1; mi++){
         if (ij > ncodemax[j]) break;        for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
  for (k=0; k<19; k++) Ndum[k]=0;        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
  for (i=1; i<=ncovmodel-2; i++) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       ij=Tvar[i];          for (kk=1; kk<=cptcovage;kk++) {
       Ndum[ij]++;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  ij=1;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  for (i=1; i<=10; i++) {          savm=oldm;
    if((Ndum[i]!=0) && (i<=ncovcol)){          oldm=newm;
      Tvaraff[ij]=i;        } /* end mult */
      ij++;        
    }        s1=s[mw[mi][i]][i];
  }        s2=s[mw[mi+1][i]][i];
          bbh=(double)bh[mi][i]/(double)stepm; 
     cptcoveff=ij-1;        /* bias is positive if real duration
 }         * is higher than the multiple of stepm and negative otherwise.
          */
 /*********** Health Expectancies ****************/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 {        } else if(mle==2){
   /* Health expectancies */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        } else if(mle==3){  /* exponential inter-extrapolation */
   double age, agelim, hf;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double ***p3mat,***varhe;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double **dnewm,**doldm;          lli=log(out[s1][s2]); /* Original formula */
   double *xp;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double **gp, **gm;          lli=log(out[s1][s2]); /* Original formula */
   double ***gradg, ***trgradg;        } /* End of if */
   int theta;        ipmx +=1;
         sw += weight[i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   xp=vector(1,npar);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   dnewm=matrix(1,nlstate*2,1,npar);        if(globpr){
   doldm=matrix(1,nlstate*2,1,nlstate*2);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     %10.6f %10.6f %10.6f ", \
   fprintf(ficreseij,"# Health expectancies\n");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   fprintf(ficreseij,"# Age");                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   for(i=1; i<=nlstate;i++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     for(j=1; j<=nlstate;j++)            llt +=ll[k]*gipmx/gsw;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   fprintf(ficreseij,"\n");          }
           fprintf(ficresilk," %10.6f\n", -llt);
   if(estepm < stepm){        }
     printf ("Problem %d lower than %d\n",estepm, stepm);      } /* end of wave */
   }    } /* end of individual */
   else  hstepm=estepm;      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* We compute the life expectancy from trapezoids spaced every estepm months    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
    * This is mainly to measure the difference between two models: for example    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
    * if stepm=24 months pijx are given only every 2 years and by summing them    if(globpr==0){ /* First time we count the contributions and weights */
    * we are calculating an estimate of the Life Expectancy assuming a linear      gipmx=ipmx;
    * progression inbetween and thus overestimating or underestimating according      gsw=sw;
    * to the curvature of the survival function. If, for the same date, we    }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    return -l;
    * to compare the new estimate of Life expectancy with the same linear  }
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */  
   /*************** function likelione ***********/
   /* For example we decided to compute the life expectancy with the smallest unit */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  {
      nhstepm is the number of hstepm from age to agelim    /* This routine should help understanding what is done with 
      nstepm is the number of stepm from age to agelin.       the selection of individuals/waves and
      Look at hpijx to understand the reason of that which relies in memory size       to check the exact contribution to the likelihood.
      and note for a fixed period like estepm months */       Plotting could be done.
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the     */
      survival function given by stepm (the optimization length). Unfortunately it    int k;
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    if(*globpri !=0){ /* Just counts and sums, no printings */
      results. So we changed our mind and took the option of the best precision.      strcpy(fileresilk,"ilk"); 
   */      strcat(fileresilk,fileres);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
   agelim=AGESUP;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      }
     /* nhstepm age range expressed in number of stepm */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     /* if (stepm >= YEARM) hstepm=1;*/      for(k=1; k<=nlstate; k++) 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    }
     gp=matrix(0,nhstepm,1,nlstate*2);  
     gm=matrix(0,nhstepm,1,nlstate*2);    *fretone=(*funcone)(p);
     if(*globpri !=0){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      fclose(ficresilk);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        fflush(fichtm); 
      } 
     return;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  }
   
     /* Computing Variances of health expectancies */  
   /*********** Maximum Likelihood Estimation ***************/
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  {
       }    int i,j, iter;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double **xi;
      double fret;
       cptj=0;    double fretone; /* Only one call to likelihood */
       for(j=1; j<= nlstate; j++){    /*  char filerespow[FILENAMELENGTH];*/
         for(i=1; i<=nlstate; i++){    xi=matrix(1,npar,1,npar);
           cptj=cptj+1;    for (i=1;i<=npar;i++)
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      for (j=1;j<=npar;j++)
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        xi[i][j]=(i==j ? 1.0 : 0.0);
           }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         }    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
          if((ficrespow=fopen(filerespow,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", filerespow);
       for(i=1; i<=npar; i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
          for (i=1;i<=nlstate;i++)
       cptj=0;      for(j=1;j<=nlstate+ndeath;j++)
       for(j=1; j<= nlstate; j++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         for(i=1;i<=nlstate;i++){    fprintf(ficrespow,"\n");
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    powell(p,xi,npar,ftol,&iter,&fret,func);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    fclose(ficrespow);
         }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(j=1; j<= nlstate*2; j++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  }
         }  
      }  /**** Computes Hessian and covariance matrix ***/
      void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 /* End theta */  {
     double  **a,**y,*x,pd;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    double **hess;
     int i, j,jk;
      for(h=0; h<=nhstepm-1; h++)    int *indx;
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           trgradg[h][j][theta]=gradg[h][theta][j];    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
          void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
      for(i=1;i<=nlstate*2;i++)    double gompertz(double p[]);
       for(j=1;j<=nlstate*2;j++)    hess=matrix(1,npar,1,npar);
         varhe[i][j][(int)age] =0.;  
     printf("\nCalculation of the hessian matrix. Wait...\n");
      printf("%d|",(int)age);fflush(stdout);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      for(h=0;h<=nhstepm-1;h++){    for (i=1;i<=npar;i++){
       for(k=0;k<=nhstepm-1;k++){      printf("%d",i);fflush(stdout);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      fprintf(ficlog,"%d",i);fflush(ficlog);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);     
         for(i=1;i<=nlstate*2;i++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           for(j=1;j<=nlstate*2;j++)      
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      /*  printf(" %f ",p[i]);
       }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }    }
     /* Computing expectancies */    
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) {
       for(j=1; j<=nlstate;j++)      for (j=1;j<=npar;j++)  {
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        if (j>i) { 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          printf(".%d%d",i,j);fflush(stdout);
                    fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
         }          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
     fprintf(ficreseij,"%3.0f",age );        }
     cptj=0;      }
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++){    printf("\n");
         cptj++;    fprintf(ficlog,"\n");
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  
       }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficreseij,"\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
        
     free_matrix(gm,0,nhstepm,1,nlstate*2);    a=matrix(1,npar,1,npar);
     free_matrix(gp,0,nhstepm,1,nlstate*2);    y=matrix(1,npar,1,npar);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    x=vector(1,npar);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    indx=ivector(1,npar);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   printf("\n");    ludcmp(a,npar,indx,&pd);
   
   free_vector(xp,1,npar);    for (j=1;j<=npar;j++) {
   free_matrix(dnewm,1,nlstate*2,1,npar);      for (i=1;i<=npar;i++) x[i]=0;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      x[j]=1;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      lubksb(a,npar,indx,x);
 }      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
 /************ Variance ******************/      }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    }
 {  
   /* Variance of health expectancies */    printf("\n#Hessian matrix#\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficlog,"\n#Hessian matrix#\n");
   double **newm;    for (i=1;i<=npar;i++) { 
   double **dnewm,**doldm;      for (j=1;j<=npar;j++) { 
   int i, j, nhstepm, hstepm, h, nstepm ;        printf("%.3e ",hess[i][j]);
   int k, cptcode;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double *xp;      }
   double **gp, **gm;      printf("\n");
   double ***gradg, ***trgradg;      fprintf(ficlog,"\n");
   double ***p3mat;    }
   double age,agelim, hf;  
   int theta;    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   fprintf(ficresvij,"# Age");    ludcmp(a,npar,indx,&pd);
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    /*  printf("\n#Hessian matrix recomputed#\n");
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   xp=vector(1,npar);      x[j]=1;
   dnewm=matrix(1,nlstate,1,npar);      lubksb(a,npar,indx,x);
   doldm=matrix(1,nlstate,1,nlstate);      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
   if(estepm < stepm){        printf("%.3e ",y[i][j]);
     printf ("Problem %d lower than %d\n",estepm, stepm);        fprintf(ficlog,"%.3e ",y[i][j]);
   }      }
   else  hstepm=estepm;        printf("\n");
   /* For example we decided to compute the life expectancy with the smallest unit */      fprintf(ficlog,"\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    }
      nhstepm is the number of hstepm from age to agelim    */
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    free_matrix(a,1,npar,1,npar);
      and note for a fixed period like k years */    free_matrix(y,1,npar,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    free_vector(x,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    free_ivector(indx,1,npar);
      means that if the survival funtion is printed only each two years of age and if    free_matrix(hess,1,npar,1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  
   */  }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
   agelim = AGESUP;  /*************** hessian matrix ****************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int i;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int l=1, lmax=20;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double k1,k2;
     gp=matrix(0,nhstepm,1,nlstate);    double p2[NPARMAX+1];
     gm=matrix(0,nhstepm,1,nlstate);    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     for(theta=1; theta <=npar; theta++){    double fx;
       for(i=1; i<=npar; i++){ /* Computes gradient */    int k=0,kmax=10;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double l1;
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fx=func(x);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
       if (popbased==1) {      l1=pow(10,l);
         for(i=1; i<=nlstate;i++)      delts=delt;
           prlim[i][i]=probs[(int)age][i][ij];      for(k=1 ; k <kmax; k=k+1){
       }        delt = delta*(l1*k);
          p2[theta]=x[theta] +delt;
       for(j=1; j<= nlstate; j++){        k1=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){        p2[theta]=x[theta]-delt;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        k2=func(p2)-fx;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        /*res= (k1-2.0*fx+k2)/delt/delt; */
         }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
      #ifdef DEBUG
       for(i=1; i<=npar; i++) /* Computes gradient */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #endif
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       if (popbased==1) {          k=kmax;
         for(i=1; i<=nlstate;i++)        }
           prlim[i][i]=probs[(int)age][i][ij];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       }          k=kmax; l=lmax*10.;
         }
       for(j=1; j<= nlstate; j++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         for(h=0; h<=nhstepm; h++){          delts=delt;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      }
         }    }
       }    delti[theta]=delts;
     return res; 
       for(j=1; j<= nlstate; j++)    
         for(h=0; h<=nhstepm; h++){  }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     } /* End theta */  {
     int i;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     for(h=0; h<=nhstepm; h++)    double p2[NPARMAX+1];
       for(j=1; j<=nlstate;j++)    int k;
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    fx=func(x);
     for (k=1; k<=2; k++) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (i=1;i<=npar;i++) p2[i]=x[i];
     for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1;j<=nlstate;j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         vareij[i][j][(int)age] =0.;      k1=func(p2)-fx;
     
     for(h=0;h<=nhstepm;h++){      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(k=0;k<=nhstepm;k++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      k2=func(p2)-fx;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    
         for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
           for(j=1;j<=nlstate;j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      k3=func(p2)-fx;
       }    
     }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     fprintf(ficresvij,"%.0f ",age );      k4=func(p2)-fx;
     for(i=1; i<=nlstate;i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(j=1; j<=nlstate;j++){  #ifdef DEBUG
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficresvij,"\n");  #endif
     free_matrix(gp,0,nhstepm,1,nlstate);    }
     free_matrix(gm,0,nhstepm,1,nlstate);    return res;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /************** Inverse of matrix **************/
   } /* End age */  void ludcmp(double **a, int n, int *indx, double *d) 
    { 
   free_vector(xp,1,npar);    int i,imax,j,k; 
   free_matrix(doldm,1,nlstate,1,npar);    double big,dum,sum,temp; 
   free_matrix(dnewm,1,nlstate,1,nlstate);    double *vv; 
    
 }    vv=vector(1,n); 
     *d=1.0; 
 /************ Variance of prevlim ******************/    for (i=1;i<=n;i++) { 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      big=0.0; 
 {      for (j=1;j<=n;j++) 
   /* Variance of prevalence limit */        if ((temp=fabs(a[i][j])) > big) big=temp; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double **newm;      vv[i]=1.0/big; 
   double **dnewm,**doldm;    } 
   int i, j, nhstepm, hstepm;    for (j=1;j<=n;j++) { 
   int k, cptcode;      for (i=1;i<j;i++) { 
   double *xp;        sum=a[i][j]; 
   double *gp, *gm;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   double **gradg, **trgradg;        a[i][j]=sum; 
   double age,agelim;      } 
   int theta;      big=0.0; 
          for (i=j;i<=n;i++) { 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        sum=a[i][j]; 
   fprintf(ficresvpl,"# Age");        for (k=1;k<j;k++) 
   for(i=1; i<=nlstate;i++)          sum -= a[i][k]*a[k][j]; 
       fprintf(ficresvpl," %1d-%1d",i,i);        a[i][j]=sum; 
   fprintf(ficresvpl,"\n");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
   xp=vector(1,npar);          imax=i; 
   dnewm=matrix(1,nlstate,1,npar);        } 
   doldm=matrix(1,nlstate,1,nlstate);      } 
        if (j != imax) { 
   hstepm=1*YEARM; /* Every year of age */        for (k=1;k<=n;k++) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          dum=a[imax][k]; 
   agelim = AGESUP;          a[imax][k]=a[j][k]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          a[j][k]=dum; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        } 
     if (stepm >= YEARM) hstepm=1;        *d = -(*d); 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        vv[imax]=vv[j]; 
     gradg=matrix(1,npar,1,nlstate);      } 
     gp=vector(1,nlstate);      indx[j]=imax; 
     gm=vector(1,nlstate);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
     for(theta=1; theta <=npar; theta++){        dum=1.0/(a[j][j]); 
       for(i=1; i<=npar; i++){ /* Computes gradient */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } 
       }    } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_vector(vv,1,n);  /* Doesn't work */
       for(i=1;i<=nlstate;i++)  ;
         gp[i] = prlim[i][i];  } 
      
       for(i=1; i<=npar; i++) /* Computes gradient */  void lubksb(double **a, int n, int *indx, double b[]) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i,ii=0,ip,j; 
       for(i=1;i<=nlstate;i++)    double sum; 
         gm[i] = prlim[i][i];   
     for (i=1;i<=n;i++) { 
       for(i=1;i<=nlstate;i++)      ip=indx[i]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      sum=b[ip]; 
     } /* End theta */      b[ip]=b[i]; 
       if (ii) 
     trgradg =matrix(1,nlstate,1,npar);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
     for(j=1; j<=nlstate;j++)      b[i]=sum; 
       for(theta=1; theta <=npar; theta++)    } 
         trgradg[j][theta]=gradg[theta][j];    for (i=n;i>=1;i--) { 
       sum=b[i]; 
     for(i=1;i<=nlstate;i++)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       varpl[i][(int)age] =0.;      b[i]=sum/a[i][i]; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    } 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  } 
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     fprintf(ficresvpl,"%.0f ",age );  {  /* Some frequencies */
     for(i=1; i<=nlstate;i++)    
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     fprintf(ficresvpl,"\n");    int first;
     free_vector(gp,1,nlstate);    double ***freq; /* Frequencies */
     free_vector(gm,1,nlstate);    double *pp, **prop;
     free_matrix(gradg,1,npar,1,nlstate);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     free_matrix(trgradg,1,nlstate,1,npar);    FILE *ficresp;
   } /* End age */    char fileresp[FILENAMELENGTH];
     
   free_vector(xp,1,npar);    pp=vector(1,nlstate);
   free_matrix(doldm,1,nlstate,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   free_matrix(dnewm,1,nlstate,1,nlstate);    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
 }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
 /************ Variance of one-step probabilities  ******************/      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      exit(0);
 {    }
   int i, j,  i1, k1, l1;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   int k2, l2, j1,  z1;    j1=0;
   int k=0,l, cptcode;    
   int first=1;    j=cptcoveff;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double **dnewm,**doldm;  
   double *xp;    first=1;
   double *gp, *gm;  
   double **gradg, **trgradg;    for(k1=1; k1<=j;k1++){
   double **mu;      for(i1=1; i1<=ncodemax[k1];i1++){
   double age,agelim, cov[NCOVMAX];        j1++;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   int theta;          scanf("%d", i);*/
   char fileresprob[FILENAMELENGTH];        for (i=-5; i<=nlstate+ndeath; i++)  
   char fileresprobcov[FILENAMELENGTH];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   char fileresprobcor[FILENAMELENGTH];            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
   double ***varpij;  
       for (i=1; i<=nlstate; i++)  
   strcpy(fileresprob,"prob");        for(m=iagemin; m <= iagemax+3; m++)
   strcat(fileresprob,fileres);          prop[i][m]=0;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        
     printf("Problem with resultfile: %s\n", fileresprob);        dateintsum=0;
   }        k2cpt=0;
   strcpy(fileresprobcov,"probcov");        for (i=1; i<=imx; i++) {
   strcat(fileresprobcov,fileres);          bool=1;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          if  (cptcovn>0) {
     printf("Problem with resultfile: %s\n", fileresprobcov);            for (z1=1; z1<=cptcoveff; z1++) 
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   strcpy(fileresprobcor,"probcor");                bool=0;
   strcat(fileresprobcor,fileres);          }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          if (bool==1){
     printf("Problem with resultfile: %s\n", fileresprobcor);            for(m=firstpass; m<=lastpass; m++){
   }              k2=anint[m][i]+(mint[m][i]/12.);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");                if (m<lastpass) {
   fprintf(ficresprob,"# Age");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   fprintf(ficresprobcov,"# Age");                }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");                
   fprintf(ficresprobcov,"# Age");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
                   k2cpt++;
   for(i=1; i<=nlstate;i++)                }
     for(j=1; j<=(nlstate+ndeath);j++){                /*}*/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);            }
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        }
     }           
   fprintf(ficresprob,"\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   fprintf(ficresprobcov,"\n");  fprintf(ficresp, "#Local time at start: %s", strstart);
   fprintf(ficresprobcor,"\n");        if  (cptcovn>0) {
   xp=vector(1,npar);          fprintf(ficresp, "\n#********** Variable "); 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          fprintf(ficresp, "**********\n#");
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        }
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        for(i=1; i<=nlstate;i++) 
   first=1;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        fprintf(ficresp, "\n");
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        
     exit(0);        for(i=iagemin; i <= iagemax+3; i++){
   }          if(i==iagemax+3){
   else{            fprintf(ficlog,"Total");
     fprintf(ficgp,"\n# Routine varprob");          }else{
   }            if(first==1){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {              first=0;
     printf("Problem with html file: %s\n", optionfilehtm);              printf("See log file for details...\n");
     exit(0);            }
   }            fprintf(ficlog,"Age %d", i);
   else{          }
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");          for(jk=1; jk <=nlstate ; jk++){
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");              pp[jk] += freq[jk][m][i]; 
           }
   }          for(jk=1; jk <=nlstate ; jk++){
   cov[1]=1;            for(m=-1, pos=0; m <=0 ; m++)
   j=cptcoveff;              pos += freq[jk][m][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            if(pp[jk]>=1.e-10){
   j1=0;              if(first==1){
   for(k1=1; k1<=1;k1++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for(i1=1; i1<=ncodemax[k1];i1++){              }
     j1++;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
     if  (cptcovn>0) {              if(first==1)
       fprintf(ficresprob, "\n#********** Variable ");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresprobcov, "\n#********** Variable ");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficgp, "\n#********** Variable ");            }
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");          }
       fprintf(ficresprobcor, "\n#********** Variable ");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficresprob, "**********\n#");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              pp[jk] += freq[jk][m][i];
       fprintf(ficresprobcov, "**********\n#");          }       
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       fprintf(ficgp, "**********\n#");            pos += pp[jk];
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            posprop += prop[jk][i];
       fprintf(ficgp, "**********\n#");          }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(jk=1; jk <=nlstate ; jk++){
       fprintf(fichtm, "**********\n#");            if(pos>=1.e-5){
     }              if(first==1)
                    printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for (age=bage; age<=fage; age ++){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         cov[2]=age;            }else{
         for (k=1; k<=cptcovn;k++) {              if(first==1)
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            }
         for (k=1; k<=cptcovprod;k++)            if( i <= iagemax){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              if(pos>=1.e-5){
                        fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));                /*probs[i][jk][j1]= pp[jk]/pos;*/
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         gp=vector(1,(nlstate)*(nlstate+ndeath));              }
         gm=vector(1,(nlstate)*(nlstate+ndeath));              else
                    fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         for(theta=1; theta <=npar; theta++){            }
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          
                    for(jk=-1; jk <=nlstate+ndeath; jk++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            for(m=-1; m <=nlstate+ndeath; m++)
                        if(freq[jk][m][i] !=0 ) {
           k=0;              if(first==1)
           for(i=1; i<= (nlstate); i++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             for(j=1; j<=(nlstate+ndeath);j++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               k=k+1;              }
               gp[k]=pmmij[i][j];          if(i <= iagemax)
             }            fprintf(ficresp,"\n");
           }          if(first==1)
                      printf("Others in log...\n");
           for(i=1; i<=npar; i++)          fprintf(ficlog,"\n");
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
          }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    }
           k=0;    dateintmean=dateintsum/k2cpt; 
           for(i=1; i<=(nlstate); i++){   
             for(j=1; j<=(nlstate+ndeath);j++){    fclose(ficresp);
               k=k+1;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
               gm[k]=pmmij[i][j];    free_vector(pp,1,nlstate);
             }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           }    /* End of Freq */
        }
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    /************ Prevalence ********************/
         }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           for(theta=1; theta <=npar; theta++)       in each health status at the date of interview (if between dateprev1 and dateprev2).
             trgradg[j][theta]=gradg[theta][j];       We still use firstpass and lastpass as another selection.
            */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
            double ***freq; /* Frequencies */
         pmij(pmmij,cov,ncovmodel,x,nlstate);    double *pp, **prop;
            double pos,posprop; 
         k=0;    double  y2; /* in fractional years */
         for(i=1; i<=(nlstate); i++){    int iagemin, iagemax;
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;    iagemin= (int) agemin;
             mu[k][(int) age]=pmmij[i][j];    iagemax= (int) agemax;
           }    /*pp=vector(1,nlstate);*/
         }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    j1=0;
             varpij[i][j][(int)age] = doldm[i][j];    
     j=cptcoveff;
         /*printf("\n%d ",(int)age);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    for(k1=1; k1<=j;k1++){
      }*/      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
         fprintf(ficresprob,"\n%d ",(int)age);        
         fprintf(ficresprobcov,"\n%d ",(int)age);        for (i=1; i<=nlstate; i++)  
         fprintf(ficresprobcor,"\n%d ",(int)age);          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)       
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        for (i=1; i<=imx; i++) { /* Each individual */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          bool=1;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          if  (cptcovn>0) {
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            for (z1=1; z1<=cptcoveff; z1++) 
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         i=0;                bool=0;
         for (k=1; k<=(nlstate);k++){          } 
           for (l=1; l<=(nlstate+ndeath);l++){          if (bool==1) { 
             i=i++;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
             for (j=1; j<=i;j++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         }/* end of loop for state */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       } /* end of loop for age */                  prop[s[m][i]][iagemax+3] += weight[i]; 
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/                } 
       for (k1=1; k1<=(nlstate);k1++){              }
         for (l1=1; l1<=(nlstate+ndeath);l1++){            } /* end selection of waves */
           if(l1==k1) continue;          }
           i=(k1-1)*(nlstate+ndeath)+l1;        }
           for (k2=1; k2<=(nlstate);k2++){        for(i=iagemin; i <= iagemax+3; i++){  
             for (l2=1; l2<=(nlstate+ndeath);l2++){          
               if(l2==k2) continue;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
               j=(k2-1)*(nlstate+ndeath)+l2;            posprop += prop[jk][i]; 
               if(j<=i) continue;          } 
               for (age=bage; age<=fage; age ++){  
                 if ((int)age %5==0){          for(jk=1; jk <=nlstate ; jk++){     
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            if( i <=  iagemax){ 
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              if(posprop>=1.e-5){ 
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;                probs[i][jk][j1]= prop[jk][i]/posprop;
                   mu1=mu[i][(int) age]/stepm*YEARM ;              } 
                   mu2=mu[j][(int) age]/stepm*YEARM;            } 
                   /* Computing eigen value of matrix of covariance */          }/* end jk */ 
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));        }/* end i */ 
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      } /* end i1 */
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    } /* end k1 */
                   /* Eigen vectors */    
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   v21=sqrt(1.-v11*v11);    /*free_vector(pp,1,nlstate);*/
                   v12=-v21;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                   v22=v11;  }  /* End of prevalence */
                   /*printf(fignu*/  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  /************* Waves Concatenation ***************/
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */  
                   if(first==1){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                     first=0;  {
                     fprintf(ficgp,"\nset parametric;set nolabel");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);       Death is a valid wave (if date is known).
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);       and mw[mi+1][i]. dh depends on stepm.
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);       */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    int i, mi, m;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \       double sum=0., jmean=0.;*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    int first;
                   }else{    int j, k=0,jk, ju, jl;
                     first=0;    double sum=0.;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    first=0;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    jmin=1e+5;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    jmax=-1;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    jmean=0.;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    for(i=1; i<=imx; i++){
                   }/* if first */      mi=0;
                 } /* age mod 5 */      m=firstpass;
               } /* end loop age */      while(s[m][i] <= nlstate){
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
               first=1;          mw[++mi][i]=m;
             } /*l12 */        if(m >=lastpass)
           } /* k12 */          break;
         } /*l1 */        else
       }/* k1 */          m++;
     } /* loop covariates */      }/* end while */
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      if (s[m][i] > nlstate){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        mi++;     /* Death is another wave */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        /* if(mi==0)  never been interviewed correctly before death */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);           /* Only death is a correct wave */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        mw[mi][i]=m;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      }
   }  
   free_vector(xp,1,npar);      wav[i]=mi;
   fclose(ficresprob);      if(mi==0){
   fclose(ficresprobcov);        nbwarn++;
   fclose(ficresprobcor);        if(first==0){
   fclose(ficgp);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   fclose(fichtm);          first=1;
 }        }
         if(first==1){
           fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 /******************* Printing html file ***********/        }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      } /* end mi==0 */
                   int lastpass, int stepm, int weightopt, char model[],\    } /* End individuals */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\    for(i=1; i<=imx; i++){
                   double jprev1, double mprev1,double anprev1, \      for(mi=1; mi<wav[i];mi++){
                   double jprev2, double mprev2,double anprev2){        if (stepm <=0)
   int jj1, k1, i1, cpt;          dh[mi][i]=1;
   /*char optionfilehtm[FILENAMELENGTH];*/        else{
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     printf("Problem with %s \n",optionfilehtm), exit(0);            if (agedc[i] < 2*AGESUP) {
   }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n              else if(j<0){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n                nberr++;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n                j=1; /* Temporary Dangerous patch */
  - Life expectancies by age and initial health status (estepm=%2d months):                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
    <a href=\"e%s\">e%s</a> <br>\n</li>", \                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n              k=k+1;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n              if (j >= jmax){
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                jmax=j;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n                ijmax=i;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n              }
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              if (j <= jmin){
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n                jmin=j;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                ijmin=i;
               }
  if(popforecast==1) fprintf(fichtm,"\n              sum=sum+j;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         <br>",fileres,fileres,fileres,fileres);            }
  else          }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          else{
 fprintf(fichtm," <li>Graphs</li><p>");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            k=k+1;
             if (j >= jmax) {
  jj1=0;              jmax=j;
  for(k1=1; k1<=m;k1++){              ijmax=i;
    for(i1=1; i1<=ncodemax[k1];i1++){            }
      jj1++;            else if (j <= jmin){
      if (cptcovn > 0) {              jmin=j;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              ijmin=i;
        for (cpt=1; cpt<=cptcoveff;cpt++)            }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      }            if(j<0){
      /* Pij */              nberr++;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      /* Quasi-incidences */            }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>            sum=sum+j;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }
        /* Stable prevalence in each health state */          jk= j/stepm;
        for(cpt=1; cpt<nlstate;cpt++){          jl= j -jk*stepm;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          ju= j -(jk+1)*stepm;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
        }            if(jl==0){
     for(cpt=1; cpt<=nlstate;cpt++) {              dh[mi][i]=jk;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              bh[mi][i]=0;
 interval) in state (%d): v%s%d%d.png <br>            }else{ /* We want a negative bias in order to only have interpolation ie
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                      * at the price of an extra matrix product in likelihood */
      }              dh[mi][i]=jk+1;
      for(cpt=1; cpt<=nlstate;cpt++) {              bh[mi][i]=ju;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>            }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }else{
      }            if(jl <= -ju){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              dh[mi][i]=jk;
 health expectancies in states (1) and (2): e%s%d.png<br>              bh[mi][i]=jl;       /* bias is positive if real duration
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                                   * is higher than the multiple of stepm and negative otherwise.
    }                                   */
  }            }
 fclose(fichtm);            else{
 }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
 /******************* Gnuplot file **************/            }
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              bh[mi][i]=ju; /* At least one step */
   int ng;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            }
     printf("Problem with file %s",optionfilegnuplot);          } /* end if mle */
   }        }
       } /* end wave */
 #ifdef windows    }
     fprintf(ficgp,"cd \"%s\" \n",pathc);    jmean=sum/k;
 #endif    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 m=pow(2,cptcoveff);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {  /*********** Tricode ****************************/
    for (k1=1; k1<= m ; k1 ++) {  void tricode(int *Tvar, int **nbcode, int imx)
   {
 #ifdef windows    
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    int cptcode=0;
 #endif    cptcoveff=0; 
 #ifdef unix   
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    for (k=0; k<maxncov; k++) Ndum[k]=0;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    for (k=1; k<=7; k++) ncodemax[k]=0;
 #endif  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 for (i=1; i<= nlstate ; i ++) {      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                                 modality*/ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 }        Ndum[ij]++; /*store the modality */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     for (i=1; i<= nlstate ; i ++) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                                         Tvar[j]. If V=sex and male is 0 and 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                                         female is 1, then  cptcode=1.*/
 }      }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {      for (i=0; i<=cptcode; i++) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      ij=1; 
 #ifdef unix      for (i=1; i<=ncodemax[j]; i++) {
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        for (k=0; k<= maxncov; k++) {
 #endif          if (Ndum[k] != 0) {
    }            nbcode[Tvar[j]][ij]=k; 
   }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   /*2 eme*/            
             ij++;
   for (k1=1; k1<= m ; k1 ++) {          }
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          if (ij > ncodemax[j]) break; 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        }  
          } 
     for (i=1; i<= nlstate+1 ; i ++) {    }  
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   for (i=1; i<=ncovmodel-2; i++) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 }       ij=Tvar[i];
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");     Ndum[ij]++;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);   }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {   ij=1;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   for (i=1; i<= maxncov; i++) {
         else fprintf(ficgp," \%%*lf (\%%*lf)");     if((Ndum[i]!=0) && (i<=ncovcol)){
 }         Tvaraff[ij]=i; /*For printing */
       fprintf(ficgp,"\" t\"\" w l 0,");       ij++;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);     }
       for (j=1; j<= nlstate+1 ; j ++) {   }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");   cptcoveff=ij-1; /*Number of simple covariates*/
 }    }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");  /*********** Health Expectancies ****************/
     }  
   }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
    
   /*3eme*/  {
     /* Health expectancies */
   for (k1=1; k1<= m ; k1 ++) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    double age, agelim, hf;
       k=2+nlstate*(2*cpt-2);    double ***p3mat,***varhe;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    double **dnewm,**doldm;
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    double *xp;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double **gp, **gm;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double ***gradg, ***trgradg;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    int theta;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
 */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       for (i=1; i< nlstate ; i ++) {    
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    fprintf(ficreseij,"# Local time at start: %s", strstart);
     fprintf(ficreseij,"# Health expectancies\n");
       }    fprintf(ficreseij,"# Age");
     }    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
          fprintf(ficreseij," %1d-%1d (SE)",i,j);
   /* CV preval stat */    fprintf(ficreseij,"\n");
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {    if(estepm < stepm){
       k=3;      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
       for (i=1; i< nlstate ; i ++)     * This is mainly to measure the difference between two models: for example
         fprintf(ficgp,"+$%d",k+i+1);     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           * progression in between and thus overestimating or underestimating according
       l=3+(nlstate+ndeath)*cpt;     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       for (i=1; i< nlstate ; i ++) {     * to compare the new estimate of Life expectancy with the same linear 
         l=3+(nlstate+ndeath)*cpt;     * hypothesis. A more precise result, taking into account a more precise
         fprintf(ficgp,"+$%d",l+i+1);     * curvature will be obtained if estepm is as small as stepm. */
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }         nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   /* proba elementaires */       Look at hpijx to understand the reason of that which relies in memory size
    for(i=1,jk=1; i <=nlstate; i++){       and note for a fixed period like estepm months */
     for(k=1; k <=(nlstate+ndeath); k++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       if (k != i) {       survival function given by stepm (the optimization length). Unfortunately it
         for(j=1; j <=ncovmodel; j++){       means that if the survival funtion is printed only each two years of age and if
               you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);       results. So we changed our mind and took the option of the best precision.
           jk++;    */
           fprintf(ficgp,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         }  
       }    agelim=AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    }      /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      for(jk=1; jk <=m; jk++) {      /* if (stepm >= YEARM) hstepm=1;*/
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        if (ng==2)      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        else      gp=matrix(0,nhstepm,1,nlstate*nlstate);
          fprintf(ficgp,"\nset title \"Probability\"\n");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
        i=1;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
        for(k2=1; k2<=nlstate; k2++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          k3=i;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
          for(k=1; k<=(nlstate+ndeath); k++) {   
            if (k != k2){  
              if(ng==2)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  
              else      /* Computing  Variances of health expectancies */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;       for(theta=1; theta <=npar; theta++){
              for(j=3; j <=ncovmodel; j++) {        for(i=1; i<=npar; i++){ 
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
                  ij++;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                }    
                else        cptj=0;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(j=1; j<= nlstate; j++){
              }          for(i=1; i<=nlstate; i++){
              fprintf(ficgp,")/(1");            cptj=cptj+1;
                          for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
              for(k1=1; k1 <=nlstate; k1++){                gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            }
                ij=1;          }
                for(j=3; j <=ncovmodel; j++){        }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       
                    ij++;        for(i=1; i<=npar; i++) 
                  }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                  else        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        
                }        cptj=0;
                fprintf(ficgp,")");        for(j=1; j<= nlstate; j++){
              }          for(i=1;i<=nlstate;i++){
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);            cptj=cptj+1;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
              i=i+ncovmodel;  
            }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
          }            }
        }          }
      }        }
    }        for(j=1; j<= nlstate*nlstate; j++)
    fclose(ficgp);          for(h=0; h<=nhstepm-1; h++){
 }  /* end gnuplot */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
        } 
 /*************** Moving average **************/     
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  /* End theta */
   
   int i, cpt, cptcod;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)       for(h=0; h<=nhstepm-1; h++)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        for(j=1; j<=nlstate*nlstate;j++)
           mobaverage[(int)agedeb][i][cptcod]=0.;          for(theta=1; theta <=npar; theta++)
                trgradg[h][j][theta]=gradg[h][theta][j];
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){       
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       for(i=1;i<=nlstate*nlstate;i++)
           for (cpt=0;cpt<=4;cpt++){        for(j=1;j<=nlstate*nlstate;j++)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          varhe[i][j][(int)age] =0.;
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;       printf("%d|",(int)age);fflush(stdout);
         }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       }       for(h=0;h<=nhstepm-1;h++){
     }        for(k=0;k<=nhstepm-1;k++){
              matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
             for(j=1;j<=nlstate*nlstate;j++)
 /************** Forecasting ******************/              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        }
        }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      /* Computing expectancies */
   int *popage;      for(i=1; i<=nlstate;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        for(j=1; j<=nlstate;j++)
   double *popeffectif,*popcount;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double ***p3mat;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   char fileresf[FILENAMELENGTH];            
   /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          }
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      fprintf(ficreseij,"%3.0f",age );
        cptj=0;
        for(i=1; i<=nlstate;i++)
   strcpy(fileresf,"f");        for(j=1; j<=nlstate;j++){
   strcat(fileresf,fileres);          cptj++;
   if((ficresf=fopen(fileresf,"w"))==NULL) {          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
     printf("Problem with forecast resultfile: %s\n", fileresf);        }
   }      fprintf(ficreseij,"\n");
   printf("Computing forecasting: result on file '%s' \n", fileresf);     
       free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   if (mobilav==1) {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    }
   }    printf("\n");
     fprintf(ficlog,"\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    free_vector(xp,1,npar);
      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   agelim=AGESUP;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   hstepm=1;  }
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);  /************ Variance ******************/
   anprojmean=yp;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   yp2=modf((yp1*12),&yp);  {
   mprojmean=yp;    /* Variance of health expectancies */
   yp1=modf((yp2*30.5),&yp);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   jprojmean=yp;    /* double **newm;*/
   if(jprojmean==0) jprojmean=1;    double **dnewm,**doldm;
   if(mprojmean==0) jprojmean=1;    double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    int k, cptcode;
      double *xp;
   for(cptcov=1;cptcov<=i2;cptcov++){    double **gp, **gm;  /* for var eij */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double ***gradg, ***trgradg; /*for var eij */
       k=k+1;    double **gradgp, **trgradgp; /* for var p point j */
       fprintf(ficresf,"\n#******");    double *gpp, *gmp; /* for var p point j */
       for(j=1;j<=cptcoveff;j++) {    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***p3mat;
       }    double age,agelim, hf;
       fprintf(ficresf,"******\n");    double ***mobaverage;
       fprintf(ficresf,"# StartingAge FinalAge");    int theta;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    char digit[4];
          char digitp[25];
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    char fileresprobmorprev[FILENAMELENGTH];
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      if(popbased==1){
       if(mobilav!=0)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        strcpy(digitp,"-populbased-mobilav-");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      else strcpy(digitp,"-populbased-nomobil-");
           nhstepm = nhstepm/hstepm;    }
              else 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      strcpy(digitp,"-stablbased-");
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if (mobilav!=0) {
              mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for (h=0; h<=nhstepm; h++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
             if (h==(int) (calagedate+YEARM*cpt)) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             }      }
             for(j=1; j<=nlstate+ndeath;j++) {    }
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  strcpy(fileresprobmorprev,"prmorprev"); 
                 if (mobilav==1)    sprintf(digit,"%-d",ij);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                 else {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                 }    strcat(fileresprobmorprev,fileres);
                    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
               }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                 fprintf(ficresf," %.3f", kk1);    }
                            printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               }   
             }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           }    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     }      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
                fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }  
     fprintf(ficresprobmorprev,"\n");
   fclose(ficresf);    fprintf(ficgp,"\n# Routine varevsij");
 }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 /************** Forecasting ******************/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    /*   } */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int *popage;   fprintf(ficresvij, "#Local time at start: %s", strstart);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   double *popeffectif,*popcount;    fprintf(ficresvij,"# Age");
   double ***p3mat,***tabpop,***tabpopprev;    for(i=1; i<=nlstate;i++)
   char filerespop[FILENAMELENGTH];      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresvij,"\n");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;    xp=vector(1,npar);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   strcpy(filerespop,"pop");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   strcat(filerespop,fileres);    gpp=vector(nlstate+1,nlstate+ndeath);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    gmp=vector(nlstate+1,nlstate+ndeath);
     printf("Problem with forecast resultfile: %s\n", filerespop);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    
   printf("Computing forecasting: result on file '%s' \n", filerespop);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    }
     else  hstepm=estepm;   
   if (mobilav==1) {    /* For example we decided to compute the life expectancy with the smallest unit */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     movingaverage(agedeb, fage, ageminpar, mobaverage);       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   stepsize=(int) (stepm+YEARM-1)/YEARM;       and note for a fixed period like k years */
   if (stepm<=12) stepsize=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   agelim=AGESUP;       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   hstepm=1;       results. So we changed our mind and took the option of the best precision.
   hstepm=hstepm/stepm;    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if (popforecast==1) {    agelim = AGESUP;
     if((ficpop=fopen(popfile,"r"))==NULL) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       printf("Problem with population file : %s\n",popfile);exit(0);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     popage=ivector(0,AGESUP);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     popeffectif=vector(0,AGESUP);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     popcount=vector(0,AGESUP);      gp=matrix(0,nhstepm,1,nlstate);
          gm=matrix(0,nhstepm,1,nlstate);
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
          for(theta=1; theta <=npar; theta++){
     imx=i;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   for(cptcov=1;cptcov<=i2;cptcov++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;        if (popbased==1) {
       fprintf(ficrespop,"\n#******");          if(mobilav ==0){
       for(j=1;j<=cptcoveff;j++) {            for(i=1; i<=nlstate;i++)
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              prlim[i][i]=probs[(int)age][i][ij];
       }          }else{ /* mobilav */ 
       fprintf(ficrespop,"******\n");            for(i=1; i<=nlstate;i++)
       fprintf(ficrespop,"# Age");              prlim[i][i]=mobaverage[(int)age][i][ij];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          }
       if (popforecast==1)  fprintf(ficrespop," [Population]");        }
          
       for (cpt=0; cpt<=0;cpt++) {        for(j=1; j<= nlstate; j++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for(h=0; h<=nhstepm; h++){
                    for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }
           nhstepm = nhstepm/hstepm;        }
                  /* This for computing probability of death (h=1 means
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           computed over hstepm matrices product = hstepm*stepm months) 
           oldm=oldms;savm=savms;           as a weighted average of prlim.
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          */
                for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for (h=0; h<=nhstepm; h++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             if (h==(int) (calagedate+YEARM*cpt)) {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }    
             }        /* end probability of death */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
               for(i=1; i<=nlstate;i++) {                        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                 if (mobilav==1)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 else {   
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        if (popbased==1) {
                 }          if(mobilav ==0){
               }            for(i=1; i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)){              prlim[i][i]=probs[(int)age][i][ij];
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          }else{ /* mobilav */ 
                   /*fprintf(ficrespop," %.3f", kk1);            for(i=1; i<=nlstate;i++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              prlim[i][i]=mobaverage[(int)age][i][ij];
               }          }
             }        }
             for(i=1; i<=nlstate;i++){  
               kk1=0.;        for(j=1; j<= nlstate; j++){
                 for(j=1; j<=nlstate;j++){          for(h=0; h<=nhstepm; h++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                 }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          }
             }        }
         /* This for computing probability of death (h=1 means
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)           computed over hstepm matrices product = hstepm*stepm months) 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);           as a weighted average of prlim.
           }        */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
   /******/        /* end probability of death */
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        for(j=1; j<= nlstate; j++) /* vareij */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for(h=0; h<=nhstepm; h++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }
           nhstepm = nhstepm/hstepm;  
                  for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){      } /* End theta */
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
             }  
             for(j=1; j<=nlstate+ndeath;j++) {      for(h=0; h<=nhstepm; h++) /* veij */
               kk1=0.;kk2=0;        for(j=1; j<=nlstate;j++)
               for(i=1; i<=nlstate;i++) {                        for(theta=1; theta <=npar; theta++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                trgradg[h][j][theta]=gradg[h][theta][j];
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
             }        for(theta=1; theta <=npar; theta++)
           }          trgradgp[j][theta]=gradgp[theta][j];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }  
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    }      for(i=1;i<=nlstate;i++)
   }        for(j=1;j<=nlstate;j++)
            vareij[i][j][(int)age] =0.;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
       for(h=0;h<=nhstepm;h++){
   if (popforecast==1) {        for(k=0;k<=nhstepm;k++){
     free_ivector(popage,0,AGESUP);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     free_vector(popeffectif,0,AGESUP);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     free_vector(popcount,0,AGESUP);          for(i=1;i<=nlstate;i++)
   }            for(j=1;j<=nlstate;j++)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   fclose(ficrespop);      }
 }    
       /* pptj */
 /***********************************************/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 /**************** Main Program *****************/      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 /***********************************************/      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
 int main(int argc, char *argv[])          varppt[j][i]=doldmp[j][i];
 {      /* end ppptj */
       /*  x centered again */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   double agedeb, agefin,hf;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;   
       if (popbased==1) {
   double fret;        if(mobilav ==0){
   double **xi,tmp,delta;          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
   double dum; /* Dummy variable */        }else{ /* mobilav */ 
   double ***p3mat;          for(i=1; i<=nlstate;i++)
   int *indx;            prlim[i][i]=mobaverage[(int)age][i][ij];
   char line[MAXLINE], linepar[MAXLINE];        }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      }
   int firstobs=1, lastobs=10;               
   int sdeb, sfin; /* Status at beginning and end */      /* This for computing probability of death (h=1 means
   int c,  h , cpt,l;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   int ju,jl, mi;         as a weighted average of prlim.
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   int mobilav=0,popforecast=0;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   int hstepm, nhstepm;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      }    
       /* end probability of death */
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   double **prlim;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double *severity;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   double ***param; /* Matrix of parameters */        for(i=1; i<=nlstate;i++){
   double  *p;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   double **matcov; /* Matrix of covariance */        }
   double ***delti3; /* Scale */      } 
   double *delti; /* Scale */      fprintf(ficresprobmorprev,"\n");
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */      fprintf(ficresvij,"%.0f ",age );
   double *epj, vepp;      for(i=1; i<=nlstate;i++)
   double kk1, kk2;        for(j=1; j<=nlstate;j++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
       fprintf(ficresvij,"\n");
   char *alph[]={"a","a","b","c","d","e"}, str[4];      free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   char z[1]="c", occ;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 #include <sys/time.h>      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #include <time.h>    } /* End age */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
   /* long total_usecs;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   struct timeval start_time, end_time;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   getcwd(pathcd, size);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   printf("\n%s",version);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   if(argc <=1){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     printf("\nEnter the parameter file name: ");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     scanf("%s",pathtot);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   else{    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     strcpy(pathtot,argv[1]);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  */
   /*cygwin_split_path(pathtot,path,optionfile);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   /* cutv(path,optionfile,pathtot,'\\');*/  
     free_vector(xp,1,npar);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    free_matrix(doldm,1,nlstate,1,nlstate);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    free_matrix(dnewm,1,nlstate,1,npar);
   chdir(path);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   replace(pathc,path);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 /*-------- arguments in the command line --------*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
   strcpy(fileres,"r");    fflush(ficgp);
   strcat(fileres, optionfilefiname);    fflush(fichtm); 
   strcat(fileres,".txt");    /* Other files have txt extension */  }  /* end varevsij */
   
   /*---------arguments file --------*/  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  {
     printf("Problem with optionfile %s\n",optionfile);    /* Variance of prevalence limit */
     goto end;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   }    double **newm;
     double **dnewm,**doldm;
   strcpy(filereso,"o");    int i, j, nhstepm, hstepm;
   strcat(filereso,fileres);    int k, cptcode;
   if((ficparo=fopen(filereso,"w"))==NULL) {    double *xp;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    double *gp, *gm;
   }    double **gradg, **trgradg;
     double age,agelim;
   /* Reads comments: lines beginning with '#' */    int theta;
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     ungetc(c,ficpar);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficresvpl,"# Age");
     puts(line);    for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);        fprintf(ficresvpl," %1d-%1d",i,i);
   }    fprintf(ficresvpl,"\n");
   ungetc(c,ficpar);  
     xp=vector(1,npar);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    dnewm=matrix(1,nlstate,1,npar);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    doldm=matrix(1,nlstate,1,nlstate);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    
 while((c=getc(ficpar))=='#' && c!= EOF){    hstepm=1*YEARM; /* Every year of age */
     ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     fgets(line, MAXLINE, ficpar);    agelim = AGESUP;
     puts(line);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fputs(line,ficparo);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   }      if (stepm >= YEARM) hstepm=1;
   ungetc(c,ficpar);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
        gradg=matrix(1,npar,1,nlstate);
          gp=vector(1,nlstate);
   covar=matrix(0,NCOVMAX,1,n);      gm=vector(1,nlstate);
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
   ncovmodel=2+cptcovn;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        }
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* Read guess parameters */        for(i=1;i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */          gp[i] = prlim[i][i];
   while((c=getc(ficpar))=='#' && c!= EOF){      
     ungetc(c,ficpar);        for(i=1; i<=npar; i++) /* Computes gradient */
     fgets(line, MAXLINE, ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     puts(line);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fputs(line,ficparo);        for(i=1;i<=nlstate;i++)
   }          gm[i] = prlim[i][i];
   ungetc(c,ficpar);  
          for(i=1;i<=nlstate;i++)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     for(i=1; i <=nlstate; i++)      } /* End theta */
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);      trgradg =matrix(1,nlstate,1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);      for(j=1; j<=nlstate;j++)
       for(k=1; k<=ncovmodel;k++){        for(theta=1; theta <=npar; theta++)
         fscanf(ficpar," %lf",&param[i][j][k]);          trgradg[j][theta]=gradg[theta][j];
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);      for(i=1;i<=nlstate;i++)
       }        varpl[i][(int)age] =0.;
       fscanf(ficpar,"\n");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       printf("\n");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       fprintf(ficparo,"\n");      for(i=1;i<=nlstate;i++)
     }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   p=param[1][1];        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
   /* Reads comments: lines beginning with '#' */      free_vector(gp,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_vector(gm,1,nlstate);
     ungetc(c,ficpar);      free_matrix(gradg,1,npar,1,nlstate);
     fgets(line, MAXLINE, ficpar);      free_matrix(trgradg,1,nlstate,1,npar);
     puts(line);    } /* End age */
     fputs(line,ficparo);  
   }    free_vector(xp,1,npar);
   ungetc(c,ficpar);    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  }
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){  /************ Variance of one-step probabilities  ******************/
       fscanf(ficpar,"%1d%1d",&i1,&j1);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       printf("%1d%1d",i,j);  {
       fprintf(ficparo,"%1d%1d",i1,j1);    int i, j=0,  i1, k1, l1, t, tj;
       for(k=1; k<=ncovmodel;k++){    int k2, l2, j1,  z1;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    int k=0,l, cptcode;
         printf(" %le",delti3[i][j][k]);    int first=1, first1;
         fprintf(ficparo," %le",delti3[i][j][k]);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       }    double **dnewm,**doldm;
       fscanf(ficpar,"\n");    double *xp;
       printf("\n");    double *gp, *gm;
       fprintf(ficparo,"\n");    double **gradg, **trgradg;
     }    double **mu;
   }    double age,agelim, cov[NCOVMAX];
   delti=delti3[1][1];    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      int theta;
   /* Reads comments: lines beginning with '#' */    char fileresprob[FILENAMELENGTH];
   while((c=getc(ficpar))=='#' && c!= EOF){    char fileresprobcov[FILENAMELENGTH];
     ungetc(c,ficpar);    char fileresprobcor[FILENAMELENGTH];
     fgets(line, MAXLINE, ficpar);  
     puts(line);    double ***varpij;
     fputs(line,ficparo);  
   }    strcpy(fileresprob,"prob"); 
   ungetc(c,ficpar);    strcat(fileresprob,fileres);
      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   matcov=matrix(1,npar,1,npar);      printf("Problem with resultfile: %s\n", fileresprob);
   for(i=1; i <=npar; i++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     fscanf(ficpar,"%s",&str);    }
     printf("%s",str);    strcpy(fileresprobcov,"probcov"); 
     fprintf(ficparo,"%s",str);    strcat(fileresprobcov,fileres);
     for(j=1; j <=i; j++){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       fscanf(ficpar," %le",&matcov[i][j]);      printf("Problem with resultfile: %s\n", fileresprobcov);
       printf(" %.5le",matcov[i][j]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficparo," %.5le",matcov[i][j]);    }
     }    strcpy(fileresprobcor,"probcor"); 
     fscanf(ficpar,"\n");    strcat(fileresprobcor,fileres);
     printf("\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     fprintf(ficparo,"\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   for(i=1; i <=npar; i++)    }
     for(j=i+1;j<=npar;j++)    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       matcov[i][j]=matcov[j][i];    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
        printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   printf("\n");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     /*-------- Rewriting paramater file ----------*/    fprintf(ficresprob, "#Local time at start: %s", strstart);
      strcpy(rfileres,"r");    /* "Rparameterfile */    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    fprintf(ficresprob,"# Age");
      strcat(rfileres,".");    /* */    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(ficresprobcov,"# Age");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficres,"#%s\n",version);    fprintf(ficresprobcov,"# Age");
      
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {    for(i=1; i<=nlstate;i++)
       printf("Problem with datafile: %s\n", datafile);goto end;      for(j=1; j<=(nlstate+ndeath);j++){
     }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
     n= lastobs;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     severity = vector(1,maxwav);      }  
     outcome=imatrix(1,maxwav+1,1,n);   /* fprintf(ficresprob,"\n");
     num=ivector(1,n);    fprintf(ficresprobcov,"\n");
     moisnais=vector(1,n);    fprintf(ficresprobcor,"\n");
     annais=vector(1,n);   */
     moisdc=vector(1,n);   xp=vector(1,npar);
     andc=vector(1,n);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     agedc=vector(1,n);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     cod=ivector(1,n);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     weight=vector(1,n);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    first=1;
     mint=matrix(1,maxwav,1,n);    fprintf(ficgp,"\n# Routine varprob");
     anint=matrix(1,maxwav,1,n);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     s=imatrix(1,maxwav+1,1,n);    fprintf(fichtm,"\n");
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     ncodemax=ivector(1,8);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     i=1;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     while (fgets(line, MAXLINE, fic) != NULL)    {  and drawn. It helps understanding how is the covariance between two incidences.\
       if ((i >= firstobs) && (i <=lastobs)) {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
            fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         for (j=maxwav;j>=1;j--){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
           strcpy(line,stra);  standard deviations wide on each axis. <br>\
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    cov[1]=1;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    j1=0;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        j1++;
         for (j=ncovcol;j>=1;j--){        if  (cptcovn>0) {
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprob, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         num[i]=atol(stra);          fprintf(ficresprob, "**********\n#\n");
                  fprintf(ficresprobcov, "\n#********** Variable "); 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          fprintf(ficresprobcov, "**********\n#\n");
           
         i=i+1;          fprintf(ficgp, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficgp, "**********\n#\n");
     /* printf("ii=%d", ij);          
        scanf("%d",i);*/          
   imx=i-1; /* Number of individuals */          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* for (i=1; i<=imx; i++){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          fprintf(ficresprobcor, "\n#********** Variable ");    
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }*/          fprintf(ficresprobcor, "**********\n#");    
    /*  for (i=1; i<=imx; i++){        }
      if (s[4][i]==9)  s[4][i]=-1;        
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        for (age=bage; age<=fage; age ++){ 
            cov[2]=age;
            for (k=1; k<=cptcovn;k++) {
   /* Calculation of the number of parameter from char model*/            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   Tvar=ivector(1,15);          }
   Tprod=ivector(1,15);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   Tvaraff=ivector(1,15);          for (k=1; k<=cptcovprod;k++)
   Tvard=imatrix(1,15,1,2);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   Tage=ivector(1,15);                
              gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   if (strlen(model) >1){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     j=0, j1=0, k1=1, k2=1;          gp=vector(1,(nlstate)*(nlstate+ndeath));
     j=nbocc(model,'+');          gm=vector(1,(nlstate)*(nlstate+ndeath));
     j1=nbocc(model,'*');      
     cptcovn=j+1;          for(theta=1; theta <=npar; theta++){
     cptcovprod=j1;            for(i=1; i<=npar; i++)
                  xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     strcpy(modelsav,model);            
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       printf("Error. Non available option model=%s ",model);            
       goto end;            k=0;
     }            for(i=1; i<= (nlstate); i++){
                  for(j=1; j<=(nlstate+ndeath);j++){
     for(i=(j+1); i>=1;i--){                k=k+1;
       cutv(stra,strb,modelsav,'+');                gp[k]=pmmij[i][j];
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);              }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            }
       /*scanf("%d",i);*/            
       if (strchr(strb,'*')) {            for(i=1; i<=npar; i++)
         cutv(strd,strc,strb,'*');              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         if (strcmp(strc,"age")==0) {      
           cptcovprod--;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           cutv(strb,stre,strd,'V');            k=0;
           Tvar[i]=atoi(stre);            for(i=1; i<=(nlstate); i++){
           cptcovage++;              for(j=1; j<=(nlstate+ndeath);j++){
             Tage[cptcovage]=i;                k=k+1;
             /*printf("stre=%s ", stre);*/                gm[k]=pmmij[i][j];
         }              }
         else if (strcmp(strd,"age")==0) {            }
           cptcovprod--;       
           cutv(strb,stre,strc,'V');            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           Tvar[i]=atoi(stre);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           cptcovage++;          }
           Tage[cptcovage]=i;  
         }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         else {            for(theta=1; theta <=npar; theta++)
           cutv(strb,stre,strc,'V');              trgradg[j][theta]=gradg[theta][j];
           Tvar[i]=ncovcol+k1;          
           cutv(strb,strc,strd,'V');          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           Tprod[k1]=i;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           Tvard[k1][1]=atoi(strc);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           Tvard[k1][2]=atoi(stre);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           Tvar[cptcovn+k2]=Tvard[k1][1];          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          pmij(pmmij,cov,ncovmodel,x,nlstate);
           k1++;          
           k2=k2+2;          k=0;
         }          for(i=1; i<=(nlstate); i++){
       }            for(j=1; j<=(nlstate+ndeath);j++){
       else {              k=k+1;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/              mu[k][(int) age]=pmmij[i][j];
        /*  scanf("%d",i);*/            }
       cutv(strd,strc,strb,'V');          }
       Tvar[i]=atoi(strc);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       strcpy(modelsav,stra);                varpij[i][j][(int)age] = doldm[i][j];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/          /*printf("\n%d ",(int)age);
     }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            }*/
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/          fprintf(ficresprob,"\n%d ",(int)age);
     fclose(fic);          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       for(i=1;i<=n;i++) weight[i]=1.0;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     /*-calculation of age at interview from date of interview and age at death -*/            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     agev=matrix(1,maxwav,1,imx);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
     for (i=1; i<=imx; i++) {          i=0;
       for(m=2; (m<= maxwav); m++) {          for (k=1; k<=(nlstate);k++){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            for (l=1; l<=(nlstate+ndeath);l++){ 
          anint[m][i]=9999;              i=i++;
          s[m][i]=-1;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
        }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;              for (j=1; j<=i;j++){
       }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
     for (i=1; i<=imx; i++)  {            }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          }/* end of loop for state */
       for(m=1; (m<= maxwav); m++){        } /* end of loop for age */
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {        /* Confidence intervalle of pij  */
             if(agedc[i]>0)        /*
               if(moisdc[i]!=99 && andc[i]!=9999)          fprintf(ficgp,"\nset noparametric;unset label");
                 agev[m][i]=agedc[i];          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
            else {          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
               if (andc[i]!=9999){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
               agev[m][i]=-1;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
               }        */
             }  
           }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           else if(s[m][i] !=9){ /* Should no more exist */        first1=1;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        for (k2=1; k2<=(nlstate);k2++){
             if(mint[m][i]==99 || anint[m][i]==9999)          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
               agev[m][i]=1;            if(l2==k2) continue;
             else if(agev[m][i] <agemin){            j=(k2-1)*(nlstate+ndeath)+l2;
               agemin=agev[m][i];            for (k1=1; k1<=(nlstate);k1++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
             }                if(l1==k1) continue;
             else if(agev[m][i] >agemax){                i=(k1-1)*(nlstate+ndeath)+l1;
               agemax=agev[m][i];                if(i<=j) continue;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                for (age=bage; age<=fage; age ++){ 
             }                  if ((int)age %5==0){
             /*agev[m][i]=anint[m][i]-annais[i];*/                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
             /*   agev[m][i] = age[i]+2*m;*/                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           else { /* =9 */                    mu1=mu[i][(int) age]/stepm*YEARM ;
             agev[m][i]=1;                    mu2=mu[j][(int) age]/stepm*YEARM;
             s[m][i]=-1;                    c12=cv12/sqrt(v1*v2);
           }                    /* Computing eigen value of matrix of covariance */
         }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         else /*= 0 Unknown */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           agev[m][i]=1;                    /* Eigen vectors */
       }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                        /*v21=sqrt(1.-v11*v11); *//* error */
     }                    v21=(lc1-v1)/cv12*v11;
     for (i=1; i<=imx; i++)  {                    v12=-v21;
       for(m=1; (m<= maxwav); m++){                    v22=v11;
         if (s[m][i] > (nlstate+ndeath)) {                    tnalp=v21/v11;
           printf("Error: Wrong value in nlstate or ndeath\n");                      if(first1==1){
           goto end;                      first1=0;
         }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       }                    }
     }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     free_vector(severity,1,maxwav);                    if(first==1){
     free_imatrix(outcome,1,maxwav+1,1,n);                      first=0;
     free_vector(moisnais,1,n);                      fprintf(ficgp,"\nset parametric;unset label");
     free_vector(annais,1,n);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     /* free_matrix(mint,1,maxwav,1,n);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
        free_matrix(anint,1,maxwav,1,n);*/                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     free_vector(moisdc,1,n);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     free_vector(andc,1,n);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                  subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     wav=ivector(1,imx);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                          fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     /* Concatenates waves */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       Tcode=ivector(1,100);                    }else{
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                      first=0;
       ncodemax[1]=1;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                            fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    codtab=imatrix(1,100,1,10);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    h=0;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
    m=pow(2,cptcoveff);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }/* if first */
    for(k=1;k<=cptcoveff; k++){                  } /* age mod 5 */
      for(i=1; i <=(m/pow(2,k));i++){                } /* end loop age */
        for(j=1; j <= ncodemax[k]; j++){                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                first=1;
            h++;              } /*l12 */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            } /* k12 */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          } /*l1 */
          }        }/* k1 */
        }      } /* loop covariates */
      }    }
    }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       codtab[1][2]=1;codtab[2][2]=2; */    free_vector(xp,1,npar);
    /* for(i=1; i <=m ;i++){    fclose(ficresprob);
       for(k=1; k <=cptcovn; k++){    fclose(ficresprobcov);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    fclose(ficresprobcor);
       }    fflush(ficgp);
       printf("\n");    fflush(fichtmcov);
       }  }
       scanf("%d",i);*/  
      
    /* Calculates basic frequencies. Computes observed prevalence at single age  /******************* Printing html file ***********/
        and prints on file fileres'p'. */  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                        int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                        int popforecast, int estepm ,\
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    double jprev1, double mprev1,double anprev1, \
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    double jprev2, double mprev2,double anprev2){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int jj1, k1, i1, cpt;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
           <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     /* For Powell, parameters are in a vector p[] starting at p[1]  </ul>");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     if(mle==1){     fprintf(fichtm,"\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
         fprintf(fichtm,"\
     /*--------- results files --------------*/   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
    jk=1;     <a href=\"%s\">%s</a> <br>\n</li>",
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)   m=cptcoveff;
          {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);   jj1=0;
            for(j=1; j <=ncovmodel; j++){   for(k1=1; k1<=m;k1++){
              printf("%f ",p[jk]);     for(i1=1; i1<=ncodemax[k1];i1++){
              fprintf(ficres,"%f ",p[jk]);       jj1++;
              jk++;       if (cptcovn > 0) {
            }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
            printf("\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(ficres,"\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
      }       }
    }       /* Pij */
  if(mle==1){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     /* Computing hessian and covariance matrix */  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     ftolhess=ftol; /* Usually correct */       /* Quasi-incidences */
     hesscov(matcov, p, npar, delti, ftolhess, func);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
  }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     printf("# Scales (for hessian or gradient estimation)\n");         /* Stable prevalence in each health state */
      for(i=1,jk=1; i <=nlstate; i++){         for(cpt=1; cpt<nlstate;cpt++){
       for(j=1; j <=nlstate+ndeath; j++){           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
         if (j!=i) {  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           fprintf(ficres,"%1d%1d",i,j);         }
           printf("%1d%1d",i,j);       for(cpt=1; cpt<=nlstate;cpt++) {
           for(k=1; k<=ncovmodel;k++){          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
             printf(" %.5e",delti[jk]);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
             fprintf(ficres," %.5e",delti[jk]);       }
             jk++;     } /* end i1 */
           }   }/* End k1 */
           printf("\n");   fprintf(fichtm,"</ul>");
           fprintf(ficres,"\n");  
         }  
       }   fprintf(fichtm,"\
      }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     k=1;  
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     for(i=1;i<=npar;i++){   fprintf(fichtm,"\
       /*  if (k>nlstate) k=1;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       i1=(i-1)/(ncovmodel*nlstate)+1;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/   fprintf(fichtm,"\
       fprintf(ficres,"%3d",i);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       printf("%3d",i);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       for(j=1; j<=i;j++){   fprintf(fichtm,"\
         fprintf(ficres," %.5e",matcov[i][j]);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         printf(" %.5e",matcov[i][j]);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       }   fprintf(fichtm,"\
       fprintf(ficres,"\n");   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
       printf("\n");           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       k++;   fprintf(fichtm,"\
     }   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
               subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  /*  if(popforecast==1) fprintf(fichtm,"\n */
       fgets(line, MAXLINE, ficpar);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       puts(line);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       fputs(line,ficparo);  /*      <br>",fileres,fileres,fileres,fileres); */
     }  /*  else  */
     ungetc(c,ficpar);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     estepm=0;   fflush(fichtm);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     if (estepm==0 || estepm < stepm) estepm=stepm;  
     if (fage <= 2) {   m=cptcoveff;
       bage = ageminpar;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       fage = agemaxpar;  
     }   jj1=0;
       for(k1=1; k1<=m;k1++){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");     for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       jj1++;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       if (cptcovn > 0) {
           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     while((c=getc(ficpar))=='#' && c!= EOF){         for (cpt=1; cpt<=cptcoveff;cpt++) 
     ungetc(c,ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     fgets(line, MAXLINE, ficpar);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     puts(line);       }
     fputs(line,ficparo);       for(cpt=1; cpt<=nlstate;cpt++) {
   }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   ungetc(c,ficpar);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);       }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  health expectancies in states (1) and (2): %s%d.png<br>\
        <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   while((c=getc(ficpar))=='#' && c!= EOF){     } /* end i1 */
     ungetc(c,ficpar);   }/* End k1 */
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"</ul>");
     puts(line);   fflush(fichtm);
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  /******************* Gnuplot file **************/
    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    char dirfileres[132],optfileres[132];
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   fscanf(ficpar,"pop_based=%d\n",&popbased);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   fprintf(ficparo,"pop_based=%d\n",popbased);    /*     printf("Problem with file %s",optionfilegnuplot); */
   fprintf(ficres,"pop_based=%d\n",popbased);    /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
    /*   } */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    /*#ifdef windows */
     fgets(line, MAXLINE, ficpar);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     puts(line);      /*#endif */
     fputs(line,ficparo);    m=pow(2,cptcoveff);
   }  
   ungetc(c,ficpar);    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);   /* 1eme*/
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    for (cpt=1; cpt<= nlstate ; cpt ++) {
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);     for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
 while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"set xlabel \"Age\" \n\
     ungetc(c,ficpar);  set ylabel \"Probability\" \n\
     fgets(line, MAXLINE, ficpar);  set ter png small\n\
     puts(line);  set size 0.65,0.65\n\
     fputs(line,ficparo);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   }  
   ungetc(c,ficpar);       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
 /*------------ gnuplot -------------*/       } 
   strcpy(optionfilegnuplot,optionfilefiname);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   strcat(optionfilegnuplot,".gp");       for (i=1; i<= nlstate ; i ++) {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Problem with file %s",optionfilegnuplot);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }  
   fclose(ficgp);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);     }
 /*--------- index.htm --------*/    }
     /*2 eme*/
   strcpy(optionfilehtm,optionfile);    
   strcat(optionfilehtm,".htm");    for (k1=1; k1<= m ; k1 ++) { 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     printf("Problem with %s \n",optionfilehtm), exit(0);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   }      
       for (i=1; i<= nlstate+1 ; i ++) {
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        k=2*i;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 \n        for (j=1; j<= nlstate+1 ; j ++) {
 Total number of observations=%d <br>\n          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          else fprintf(ficgp," \%%*lf (\%%*lf)");
 <hr  size=\"2\" color=\"#EC5E5E\">        }   
  <ul><li>Parameter files<br>\n        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fclose(fichtm);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
 /*------------ free_vector  -------------*/        fprintf(ficgp,"\" t\"\" w l 0,");
  chdir(path);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
  free_ivector(wav,1,imx);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          else fprintf(ficgp," \%%*lf (\%%*lf)");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          }   
  free_ivector(num,1,n);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
  free_vector(agedc,1,n);        else fprintf(ficgp,"\" t\"\" w l 0,");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      }
  fclose(ficparo);    }
  fclose(ficres);    
     /*3eme*/
     
   /*--------------- Prevalence limit --------------*/    for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<= nlstate ; cpt ++) {
   strcpy(filerespl,"pl");        k=2+nlstate*(2*cpt-2);
   strcat(filerespl,fileres);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        fprintf(ficgp,"set ter png small\n\
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  set size 0.65,0.65\n\
   }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   fprintf(ficrespl,"#Prevalence limit\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   fprintf(ficrespl,"#Age ");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   fprintf(ficrespl,"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   prlim=matrix(1,nlstate,1,nlstate);          
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=1; i< nlstate ; i ++) {
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        } 
   k=0;      }
   agebase=ageminpar;    }
   agelim=agemaxpar;    
   ftolpl=1.e-10;    /* CV preval stable (period) */
   i1=cptcoveff;    for (k1=1; k1<= m ; k1 ++) { 
   if (cptcovn < 1){i1=1;}      for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
         k=k+1;  set ter png small\nset size 0.65,0.65\n\
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  unset log y\n\
         fprintf(ficrespl,"\n#******");  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         for(j=1;j<=cptcoveff;j++)        
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (i=1; i< nlstate ; i ++)
         fprintf(ficrespl,"******\n");          fprintf(ficgp,"+$%d",k+i+1);
                fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         for (age=agebase; age<=agelim; age++){        
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        l=3+(nlstate+ndeath)*cpt;
           fprintf(ficrespl,"%.0f",age );        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
           for(i=1; i<=nlstate;i++)        for (i=1; i< nlstate ; i ++) {
           fprintf(ficrespl," %.5f", prlim[i][i]);          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficrespl,"\n");          fprintf(ficgp,"+$%d",l+i+1);
         }        }
       }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     }      } 
   fclose(ficrespl);    }  
     
   /*------------- h Pij x at various ages ------------*/    /* proba elementaires */
      for(i=1,jk=1; i <=nlstate; i++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      for(k=1; k <=(nlstate+ndeath); k++){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        if (k != i) {
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          for(j=1; j <=ncovmodel; j++){
   }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   printf("Computing pij: result on file '%s' \n", filerespij);            jk++; 
              fprintf(ficgp,"\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   /*if (stepm<=24) stepsize=2;*/        }
       }
   agelim=AGESUP;     }
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         for(jk=1; jk <=m; jk++) {
   k=0;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   for(cptcov=1;cptcov<=i1;cptcov++){         if (ng==2)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       k=k+1;         else
         fprintf(ficrespij,"\n#****** ");           fprintf(ficgp,"\nset title \"Probability\"\n");
         for(j=1;j<=cptcoveff;j++)         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         i=1;
         fprintf(ficrespij,"******\n");         for(k2=1; k2<=nlstate; k2++) {
                   k3=i;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */           for(k=1; k<=(nlstate+ndeath); k++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */             if (k != k2){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */               if(ng==2)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           oldm=oldms;savm=savms;               else
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                   fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           fprintf(ficrespij,"# Age");               ij=1;
           for(i=1; i<=nlstate;i++)               for(j=3; j <=ncovmodel; j++) {
             for(j=1; j<=nlstate+ndeath;j++)                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
               fprintf(ficrespij," %1d-%1d",i,j);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           fprintf(ficrespij,"\n");                   ij++;
            for (h=0; h<=nhstepm; h++){                 }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                 else
             for(i=1; i<=nlstate;i++)                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
               for(j=1; j<=nlstate+ndeath;j++)               }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);               fprintf(ficgp,")/(1");
             fprintf(ficrespij,"\n");               
              }               for(k1=1; k1 <=nlstate; k1++){   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           fprintf(ficrespij,"\n");                 ij=1;
         }                 for(j=3; j <=ncovmodel; j++){
     }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                   }
                    else
   fclose(ficrespij);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
   /*---------- Forecasting ------------------*/               }
   if((stepm == 1) && (strcmp(model,".")==0)){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);               i=i+ncovmodel;
   }             }
   else{           } /* end k */
     erreur=108;         } /* end k2 */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       } /* end jk */
   }     } /* end ng */
       fflush(ficgp); 
   }  /* end gnuplot */
   /*---------- Health expectancies and variances ------------*/  
   
   strcpy(filerest,"t");  /*************** Moving average **************/
   strcat(filerest,fileres);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    int i, cpt, cptcod;
   }    int modcovmax =1;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    int mobilavrange, mob;
     double age;
   
   strcpy(filerese,"e");    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   strcat(filerese,fileres);                             a covariate has 2 modalities */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
  strcpy(fileresv,"v");      for (age=bage; age<=fage; age++)
   strcat(fileresv,fileres);        for (i=1; i<=nlstate;i++)
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   }      /* We keep the original values on the extreme ages bage, fage and for 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   calagedate=-1;         we use a 5 terms etc. until the borders are no more concerned. 
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
   k=0;        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   for(cptcov=1;cptcov<=i1;cptcov++){          for (i=1; i<=nlstate;i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       k=k+1;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       fprintf(ficrest,"\n#****** ");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       for(j=1;j<=cptcoveff;j++)                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       fprintf(ficrest,"******\n");                }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       fprintf(ficreseij,"\n#****** ");            }
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }/* end age */
       fprintf(ficreseij,"******\n");      }/* end mob */
     }else return -1;
       fprintf(ficresvij,"\n#****** ");    return 0;
       for(j=1;j<=cptcoveff;j++)  }/* End movingaverage */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");  
   /************** Forecasting ******************/
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       oldm=oldms;savm=savms;    /* proj1, year, month, day of starting projection 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);         agemin, agemax range of age
         dateprev1 dateprev2 range of dates during which prevalence is computed
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       anproj2 year of en of projection (same day and month as proj1).
       oldm=oldms;savm=savms;    */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
        int *popage;
     double agec; /* generic age */
      double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    double *popeffectif,*popcount;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    double ***p3mat;
       fprintf(ficrest,"\n");    double ***mobaverage;
     char fileresf[FILENAMELENGTH];
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    agelim=AGESUP;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         if (popbased==1) {   
           for(i=1; i<=nlstate;i++)    strcpy(fileresf,"f"); 
             prlim[i][i]=probs[(int)age][i][k];    strcat(fileresf,fileres);
         }    if((ficresf=fopen(fileresf,"w"))==NULL) {
              printf("Problem with forecast resultfile: %s\n", fileresf);
         fprintf(ficrest," %4.0f",age);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    printf("Computing forecasting: result on file '%s' \n", fileresf);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           epj[nlstate+1] +=epj[j];  
         }    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for(i=1, vepp=0.;i <=nlstate;i++)      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           for(j=1;j <=nlstate;j++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             vepp += vareij[i][j][(int)age];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      }
         for(j=1;j <=nlstate;j++){    }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }    stepsize=(int) (stepm+YEARM-1)/YEARM;
         fprintf(ficrest,"\n");    if (stepm<=12) stepsize=1;
       }    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
 free_matrix(mint,1,maxwav,1,n);    else  hstepm=estepm;   
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);    hstepm=hstepm/stepm; 
   fclose(ficreseij);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   fclose(ficresvij);                                 fractional in yp1 */
   fclose(ficrest);    anprojmean=yp;
   fclose(ficpar);    yp2=modf((yp1*12),&yp);
   free_vector(epj,1,nlstate+1);    mprojmean=yp;
      yp1=modf((yp2*30.5),&yp);
   /*------- Variance limit prevalence------*/      jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
   strcpy(fileresvpl,"vpl");    if(mprojmean==0) jprojmean=1;
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    i1=cptcoveff;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    if (cptcovn < 1){i1=1;}
     exit(0);    
   }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       k=k+1;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       fprintf(ficresvpl,"\n#****** ");        k=k+1;
       for(j=1;j<=cptcoveff;j++)        fprintf(ficresf,"\n#******");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1;j<=cptcoveff;j++) {
       fprintf(ficresvpl,"******\n");          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
              }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        fprintf(ficresf,"******\n");
       oldm=oldms;savm=savms;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for(j=1; j<=nlstate+ndeath;j++){ 
     }          for(i=1; i<=nlstate;i++)              
  }            fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
   fclose(ficresvpl);        }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   /*---------- End : free ----------------*/          fprintf(ficresf,"\n");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
              nhstepm = nhstepm/hstepm; 
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            oldm=oldms;savm=savms;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            for (h=0; h<=nhstepm; h++){
                if (h*hstepm/YEARM*stepm ==yearp) {
   free_matrix(matcov,1,npar,1,npar);                fprintf(ficresf,"\n");
   free_vector(delti,1,npar);                for(j=1;j<=cptcoveff;j++) 
   free_matrix(agev,1,maxwav,1,imx);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
   fprintf(fichtm,"\n</body>");              for(j=1; j<=nlstate+ndeath;j++) {
   fclose(fichtm);                ppij=0.;
   fclose(ficgp);                for(i=1; i<=nlstate;i++) {
                    if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   if(erreur >0)                  else {
     printf("End of Imach with error or warning %d\n",erreur);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   else   printf("End of Imach\n");                  }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                  if (h*hstepm/YEARM*stepm== yearp) {
                      fprintf(ficresf," %.3f", p3mat[i][j][h]);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                  }
   /*printf("Total time was %d uSec.\n", total_usecs);*/                } /* end i */
   /*------ End -----------*/                if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
  end:              }/* end j */
 #ifdef windows            } /* end h */
   /* chdir(pathcd);*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #endif          } /* end agec */
  /*system("wgnuplot graph.plt");*/        } /* end yearp */
  /*system("../gp37mgw/wgnuplot graph.plt");*/      } /* end cptcod */
  /*system("cd ../gp37mgw");*/    } /* end  cptcov */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/         
  strcpy(plotcmd,GNUPLOTPROGRAM);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);    fclose(ficresf);
  system(plotcmd);  }
   
 #ifdef windows  /************** Forecasting *****not tested NB*************/
   while (z[0] != 'q') {  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     /* chdir(path); */    
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     scanf("%s",z);    int *popage;
     if (z[0] == 'c') system("./imach");    double calagedatem, agelim, kk1, kk2;
     else if (z[0] == 'e') system(optionfilehtm);    double *popeffectif,*popcount;
     else if (z[0] == 'g') system(plotcmd);    double ***p3mat,***tabpop,***tabpopprev;
     else if (z[0] == 'q') exit(0);    double ***mobaverage;
   }    char filerespop[FILENAMELENGTH];
 #endif  
 }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs)))    {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
           ;
         };
         line[j+1]=0;  /* Trims blanks at end of line */
         if(line[0]=='#'){
           fprintf(ficlog,"Comment line\n%s\n",line);
           printf("Comment line\n%s\n",line);
           continue;
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %d %s for individual %d\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n",lval, i,line,linei,j,maxwav);
             exit(1);
           }
           s[j][i]=lval;
   
           strcpy(line,stra);
           cutv(stra, strb,line,' ');
           if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
           }
           else  if(iout=sscanf(strb,".") != 0){
             month=99;
             year=9999;
           }else{
             printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);
             exit(1);
           }
           anint[j][i]= (double) year; 
           mint[j][i]= (double)month; 
           strcpy(line,stra);
         } /* ENd Waves */
           
         cutv(stra, strb,line,' '); 
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,".") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);
           exit(1);
         }
         andc[i]=(double) year; 
         moisdc[i]=(double) month; 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,".") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",strb, i,line,linei,j);
           exit(1);
         }
         annais[i]=(double)(year);
         moisnais[i]=(double)(month); 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
           exit(1);
         }
         weight[i]=(double)(lval); 
         strcpy(line,stra);
   
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, i,line,linei);
             exit(1);
           }
           if(lval <-1 || lval >1){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,i,line,linei,j);
             exit(1);
           }
           covar[j][i]=(double)(lval);
           strcpy(line,stra);
         } 
         lstra=strlen(stra);
   
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.1; p[NDIM]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     /*  strcpy(plotcmd,"\""); */
   #endif
     strcpy(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     /*  strcat(plotcmd,"\"");*/
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
   
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     strcat(plotcmd,"\"");
   #endif
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.47  
changed lines
  Added in v.1.110


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>