Diff for /imach/src/imach.c between versions 1.47 and 1.128

version 1.47, 2002/06/10 13:12:01 version 1.128, 2006/06/30 13:02:05
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.128  2006/06/30 13:02:05  brouard
      (Module): Clarifications on computing e.j
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.127  2006/04/28 18:11:50  brouard
   first survey ("cross") where individuals from different ages are    (Module): Yes the sum of survivors was wrong since
   interviewed on their health status or degree of disability (in the    imach-114 because nhstepm was no more computed in the age
   case of a health survey which is our main interest) -2- at least a    loop. Now we define nhstepma in the age loop.
   second wave of interviews ("longitudinal") which measure each change    (Module): In order to speed up (in case of numerous covariates) we
   (if any) in individual health status.  Health expectancies are    compute health expectancies (without variances) in a first step
   computed from the time spent in each health state according to a    and then all the health expectancies with variances or standard
   model. More health states you consider, more time is necessary to reach the    deviation (needs data from the Hessian matrices) which slows the
   Maximum Likelihood of the parameters involved in the model.  The    computation.
   simplest model is the multinomial logistic model where pij is the    In the future we should be able to stop the program is only health
   probability to be observed in state j at the second wave    expectancies and graph are needed without standard deviations.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.126  2006/04/28 17:23:28  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Yes the sum of survivors was wrong since
   complex model than "constant and age", you should modify the program    imach-114 because nhstepm was no more computed in the age
   where the markup *Covariates have to be included here again* invites    loop. Now we define nhstepma in the age loop.
   you to do it.  More covariates you add, slower the    Version 0.98h
   convergence.  
     Revision 1.125  2006/04/04 15:20:31  lievre
   The advantage of this computer programme, compared to a simple    Errors in calculation of health expectancies. Age was not initialized.
   multinomial logistic model, is clear when the delay between waves is not    Forecasting file added.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.124  2006/03/22 17:13:53  lievre
   account using an interpolation or extrapolation.      Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.123  2006/03/20 10:52:43  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Module): <title> changed, corresponds to .htm file
   states. This elementary transition (by month or quarter trimester,    name. <head> headers where missing.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Module): Weights can have a decimal point as for
   and the contribution of each individual to the likelihood is simply    English (a comma might work with a correct LC_NUMERIC environment,
   hPijx.    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Also this programme outputs the covariance matrix of the parameters but also    1.
   of the life expectancies. It also computes the prevalence limits.    Version 0.98g
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.122  2006/03/20 09:45:41  brouard
            Institut national d'études démographiques, Paris.    (Module): Weights can have a decimal point as for
   This software have been partly granted by Euro-REVES, a concerted action    English (a comma might work with a correct LC_NUMERIC environment,
   from the European Union.    otherwise the weight is truncated).
   It is copyrighted identically to a GNU software product, ie programme and    Modification of warning when the covariates values are not 0 or
   software can be distributed freely for non commercial use. Latest version    1.
   can be accessed at http://euroreves.ined.fr/imach .    Version 0.98g
   **********************************************************************/  
      Revision 1.121  2006/03/16 17:45:01  lievre
 #include <math.h>    * imach.c (Module): Comments concerning covariates added
 #include <stdio.h>  
 #include <stdlib.h>    * imach.c (Module): refinements in the computation of lli if
 #include <unistd.h>    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.120  2006/03/16 15:10:38  lievre
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): refinements in the computation of lli if
 #define FILENAMELENGTH 80    status=-2 in order to have more reliable computation if stepm is
 /*#define DEBUG*/    not 1 month. Version 0.98f
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.119  2006/03/15 17:42:26  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 #define NINTERVMAX 8    table of variances if popbased=1 .
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): Function pstamp added
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Version 0.98d
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.117  2006/03/14 17:16:22  brouard
 #define AGESUP 130    (Module): varevsij Comments added explaining the second
 #define AGEBASE 40    table of variances if popbased=1 .
 #ifdef windows    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define DIRSEPARATOR '\\'    (Module): Function pstamp added
 #else    (Module): Version 0.98d
 #define DIRSEPARATOR '/'  
 #endif    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";    varian-covariance of ej. is needed (Saito).
 int erreur; /* Error number */  
 int nvar;    Revision 1.115  2006/02/27 12:17:45  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): One freematrix added in mlikeli! 0.98c
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.114  2006/02/26 12:57:58  brouard
 int ndeath=1; /* Number of dead states */    (Module): Some improvements in processing parameter
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    filename with strsep.
 int popbased=0;  
     Revision 1.113  2006/02/24 14:20:24  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Memory leaks checks with valgrind and:
 int maxwav; /* Maxim number of waves */    datafile was not closed, some imatrix were not freed and on matrix
 int jmin, jmax; /* min, max spacing between 2 waves */    allocation too.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.112  2006/01/30 09:55:26  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.111  2006/01/25 20:38:18  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Lots of cleaning and bugs added (Gompertz)
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Comments can be added in data file. Missing date values
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    can be a simple dot '.'.
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.110  2006/01/25 00:51:50  brouard
 char filerese[FILENAMELENGTH];    (Module): Lots of cleaning and bugs added (Gompertz)
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.109  2006/01/24 19:37:15  brouard
 FILE  *ficresvpl;    (Module): Comments (lines starting with a #) are allowed in data.
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.108  2006/01/19 18:05:42  lievre
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Gnuplot problem appeared...
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    To be fixed
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.106  2006/01/19 13:24:36  brouard
 char popfile[FILENAMELENGTH];    Some cleaning and links added in html output
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.104  2005/09/30 16:11:43  lievre
 #define FTOL 1.0e-10    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 #define NRANSI    that the person is alive, then we can code his/her status as -2
 #define ITMAX 200    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 #define TOL 2.0e-4    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.103  2005/09/30 15:54:49  lievre
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): sump fixed, loop imx fixed, and simplifications.
   
 #define GOLD 1.618034    Revision 1.102  2004/09/15 17:31:30  brouard
 #define GLIMIT 100.0    Add the possibility to read data file including tab characters.
 #define TINY 1.0e-20  
     Revision 1.101  2004/09/15 10:38:38  brouard
 static double maxarg1,maxarg2;    Fix on curr_time
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.100  2004/07/12 18:29:06  brouard
      Add version for Mac OS X. Just define UNIX in Makefile
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.98  2004/05/16 15:05:56  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 int imx;    state at each age, but using a Gompertz model: log u =a + b*age .
 int stepm;    This is the basic analysis of mortality and should be done before any
 /* Stepm, step in month: minimum step interpolation*/    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 int estepm;    from other sources like vital statistic data.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     The same imach parameter file can be used but the option for mle should be -3.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Agnès, who wrote this part of the code, tried to keep most of the
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    former routines in order to include the new code within the former code.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 double *weight;  
 int **s; /* Status */    Current limitations:
 double *agedc, **covar, idx;    A) Even if you enter covariates, i.e. with the
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 /**************** split *************************/    suppressed.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.96  2003/07/15 15:38:55  brouard
    char *s;                             /* pointer */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
    int  l1, l2;                         /* length counters */    rewritten within the same printf. Workaround: many printfs.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.95  2003/07/08 07:54:34  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    * imach.c (Repository):
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    (Repository): Using imachwizard code to output a more meaningful covariance
    if ( s == NULL ) {                   /* no directory, so use current */    matrix (cov(a12,c31) instead of numbers.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.93  2003/06/25 16:33:55  brouard
       extern char       *getcwd( );    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): Version 0.96b
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.92  2003/06/25 16:30:45  brouard
       }    (Module): On windows (cygwin) function asctime_r doesn't
       strcpy( name, path );             /* we've got it */    exist so I changed back to asctime which exists.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.91  2003/06/25 15:30:29  brouard
       l2 = strlen( s );                 /* length of filename */    * imach.c (Repository): Duplicated warning errors corrected.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Repository): Elapsed time after each iteration is now output. It
       strcpy( name, s );                /* save file name */    helps to forecast when convergence will be reached. Elapsed time
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    is stamped in powell.  We created a new html file for the graphs
       dirc[l1-l2] = 0;                  /* add zero */    concerning matrix of covariance. It has extension -cov.htm.
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.90  2003/06/24 12:34:15  brouard
 #ifdef windows    (Module): Some bugs corrected for windows. Also, when
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    mle=-1 a template is output in file "or"mypar.txt with the design
 #else    of the covariance matrix to be input.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.89  2003/06/24 12:30:52  brouard
    s = strrchr( name, '.' );            /* find last / */    (Module): Some bugs corrected for windows. Also, when
    s++;    mle=-1 a template is output in file "or"mypar.txt with the design
    strcpy(ext,s);                       /* save extension */    of the covariance matrix to be input.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.88  2003/06/23 17:54:56  brouard
    strncpy( finame, name, l1-l2);    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.87  2003/06/18 12:26:01  brouard
 }    Version 0.96
   
     Revision 1.86  2003/06/17 20:04:08  brouard
 /******************************************/    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 void replace(char *s, char*t)  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
   int i;    * imach.c (Repository): Check when date of death was earlier that
   int lg=20;    current date of interview. It may happen when the death was just
   i=0;    prior to the death. In this case, dh was negative and likelihood
   lg=strlen(t);    was wrong (infinity). We still send an "Error" but patch by
   for(i=0; i<= lg; i++) {    assuming that the date of death was just one stepm after the
     (s[i] = t[i]);    interview.
     if (t[i]== '\\') s[i]='/';    (Repository): Because some people have very long ID (first column)
   }    we changed int to long in num[] and we added a new lvector for
 }    memory allocation. But we also truncated to 8 characters (left
     truncation)
 int nbocc(char *s, char occ)    (Repository): No more line truncation errors.
 {  
   int i,j=0;    Revision 1.84  2003/06/13 21:44:43  brouard
   int lg=20;    * imach.c (Repository): Replace "freqsummary" at a correct
   i=0;    place. It differs from routine "prevalence" which may be called
   lg=strlen(s);    many times. Probs is memory consuming and must be used with
   for(i=0; i<= lg; i++) {    parcimony.
   if  (s[i] == occ ) j++;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   }  
   return j;    Revision 1.83  2003/06/10 13:39:11  lievre
 }    *** empty log message ***
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.82  2003/06/05 15:57:20  brouard
 {    Add log in  imach.c and  fullversion number is now printed.
   int i,lg,j,p=0;  
   i=0;  */
   for(j=0; j<=strlen(t)-1; j++) {  /*
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;     Interpolated Markov Chain
   }  
     Short summary of the programme:
   lg=strlen(t);    
   for(j=0; j<p; j++) {    This program computes Healthy Life Expectancies from
     (u[j] = t[j]);    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   }    first survey ("cross") where individuals from different ages are
      u[p]='\0';    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
    for(j=0; j<= lg; j++) {    second wave of interviews ("longitudinal") which measure each change
     if (j>=(p+1))(v[j-p-1] = t[j]);    (if any) in individual health status.  Health expectancies are
   }    computed from the time spent in each health state according to a
 }    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 /********************** nrerror ********************/    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 void nrerror(char error_text[])    conditional to be observed in state i at the first wave. Therefore
 {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   fprintf(stderr,"ERREUR ...\n");    'age' is age and 'sex' is a covariate. If you want to have a more
   fprintf(stderr,"%s\n",error_text);    complex model than "constant and age", you should modify the program
   exit(1);    where the markup *Covariates have to be included here again* invites
 }    you to do it.  More covariates you add, slower the
 /*********************** vector *******************/    convergence.
 double *vector(int nl, int nh)  
 {    The advantage of this computer programme, compared to a simple
   double *v;    multinomial logistic model, is clear when the delay between waves is not
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    identical for each individual. Also, if a individual missed an
   if (!v) nrerror("allocation failure in vector");    intermediate interview, the information is lost, but taken into
   return v-nl+NR_END;    account using an interpolation or extrapolation.  
 }  
     hPijx is the probability to be observed in state i at age x+h
 /************************ free vector ******************/    conditional to the observed state i at age x. The delay 'h' can be
 void free_vector(double*v, int nl, int nh)    split into an exact number (nh*stepm) of unobserved intermediate
 {    states. This elementary transition (by month, quarter,
   free((FREE_ARG)(v+nl-NR_END));    semester or year) is modelled as a multinomial logistic.  The hPx
 }    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 /************************ivector *******************************/    hPijx.
 int *ivector(long nl,long nh)  
 {    Also this programme outputs the covariance matrix of the parameters but also
   int *v;    of the life expectancies. It also computes the period (stable) prevalence. 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    
   if (!v) nrerror("allocation failure in ivector");    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   return v-nl+NR_END;             Institut national d'études démographiques, Paris.
 }    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 /******************free ivector **************************/    It is copyrighted identically to a GNU software product, ie programme and
 void free_ivector(int *v, long nl, long nh)    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   free((FREE_ARG)(v+nl-NR_END));  
 }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /******************* imatrix *******************************/    
 int **imatrix(long nrl, long nrh, long ncl, long nch)    **********************************************************************/
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /*
 {    main
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    read parameterfile
   int **m;    read datafile
      concatwav
   /* allocate pointers to rows */    freqsummary
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    if (mle >= 1)
   if (!m) nrerror("allocation failure 1 in matrix()");      mlikeli
   m += NR_END;    print results files
   m -= nrl;    if mle==1 
         computes hessian
      read end of parameter file: agemin, agemax, bage, fage, estepm
   /* allocate rows and set pointers to them */        begin-prev-date,...
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    open gnuplot file
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    open html file
   m[nrl] += NR_END;    period (stable) prevalence
   m[nrl] -= ncl;     for age prevalim()
      h Pij x
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    variance of p varprob
      forecasting if prevfcast==1 prevforecast call prevalence()
   /* return pointer to array of pointers to rows */    health expectancies
   return m;    Variance-covariance of DFLE
 }    prevalence()
      movingaverage()
 /****************** free_imatrix *************************/    varevsij() 
 void free_imatrix(m,nrl,nrh,ncl,nch)    if popbased==1 varevsij(,popbased)
       int **m;    total life expectancies
       long nch,ncl,nrh,nrl;    Variance of period (stable) prevalence
      /* free an int matrix allocated by imatrix() */   end
 {  */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  
 }  
    
 /******************* matrix *******************************/  #include <math.h>
 double **matrix(long nrl, long nrh, long ncl, long nch)  #include <stdio.h>
 {  #include <stdlib.h>
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #include <string.h>
   double **m;  #include <unistd.h>
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <limits.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <sys/types.h>
   m += NR_END;  #include <sys/stat.h>
   m -= nrl;  #include <errno.h>
   extern int errno;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* #include <sys/time.h> */
   m[nrl] += NR_END;  #include <time.h>
   m[nrl] -= ncl;  #include "timeval.h"
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /* #include <libintl.h> */
   return m;  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define FILENAMELENGTH 132
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define NCOVMAX 8 /* Maximum number of covariates */
   m += NR_END;  #define MAXN 20000
   m -= nrl;  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define AGEBASE 40
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   m[nrl] += NR_END;  #ifdef UNIX
   m[nrl] -= ncl;  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define ODIRSEPARATOR '\\'
   #else
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define DIRSEPARATOR '\\'
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define CHARSEPARATOR "\\"
   m[nrl][ncl] += NR_END;  #define ODIRSEPARATOR '/'
   m[nrl][ncl] -= nll;  #endif
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  /* $Id$ */
    /* $State$ */
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
     for (j=ncl+1; j<=nch; j++)  char fullversion[]="$Revision$ $Date$"; 
       m[i][j]=m[i][j-1]+nlay;  char strstart[80];
   }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   return m;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /*************************free ma3x ************************/  int npar=NPARMAX;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int popbased=0;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /***************** f1dim *************************/  int jmin, jmax; /* min, max spacing between 2 waves */
 extern int ncom;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 extern double *pcom,*xicom;  int gipmx, gsw; /* Global variables on the number of contributions 
 extern double (*nrfunc)(double []);                     to the likelihood and the sum of weights (done by funcone)*/
    int mle, weightopt;
 double f1dim(double x)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int j;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double f;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double *xt;  double jmean; /* Mean space between 2 waves */
    double **oldm, **newm, **savm; /* Working pointers to matrices */
   xt=vector(1,ncom);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   f=(*nrfunc)(xt);  FILE *ficlog, *ficrespow;
   free_vector(xt,1,ncom);  int globpr; /* Global variable for printing or not */
   return f;  double fretone; /* Only one call to likelihood */
 }  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 /*****************brent *************************/  char filerespow[FILENAMELENGTH];
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   int iter;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   double a,b,d,etemp;  FILE *ficresprobmorprev;
   double fu,fv,fw,fx;  FILE *fichtm, *fichtmcov; /* Html File */
   double ftemp;  FILE *ficreseij;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char filerese[FILENAMELENGTH];
   double e=0.0;  FILE *ficresstdeij;
    char fileresstde[FILENAMELENGTH];
   a=(ax < cx ? ax : cx);  FILE *ficrescveij;
   b=(ax > cx ? ax : cx);  char filerescve[FILENAMELENGTH];
   x=w=v=bx;  FILE  *ficresvij;
   fw=fv=fx=(*f)(x);  char fileresv[FILENAMELENGTH];
   for (iter=1;iter<=ITMAX;iter++) {  FILE  *ficresvpl;
     xm=0.5*(a+b);  char fileresvpl[FILENAMELENGTH];
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char title[MAXLINE];
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     printf(".");fflush(stdout);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 #ifdef DEBUG  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char command[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int  outcmd=0;
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       *xmin=x;  
       return fx;  char filelog[FILENAMELENGTH]; /* Log file */
     }  char filerest[FILENAMELENGTH];
     ftemp=fu;  char fileregp[FILENAMELENGTH];
     if (fabs(e) > tol1) {  char popfile[FILENAMELENGTH];
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       if (q > 0.0) p = -p;  struct timezone tzp;
       q=fabs(q);  extern int gettimeofday();
       etemp=e;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       e=d;  long time_value;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  extern long time();
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char strcurr[80], strfor[80];
       else {  
         d=p/q;  char *endptr;
         u=x+d;  long lval;
         if (u-a < tol2 || b-u < tol2)  double dval;
           d=SIGN(tol1,xm-x);  
       }  #define NR_END 1
     } else {  #define FREE_ARG char*
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define FTOL 1.0e-10
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define NRANSI 
     fu=(*f)(u);  #define ITMAX 200 
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  #define TOL 2.0e-4 
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  #define CGOLD 0.3819660 
         } else {  #define ZEPS 1.0e-10 
           if (u < x) a=u; else b=u;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
           if (fu <= fw || w == x) {  
             v=w;  #define GOLD 1.618034 
             w=u;  #define GLIMIT 100.0 
             fv=fw;  #define TINY 1.0e-20 
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  static double maxarg1,maxarg2;
             v=u;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
             fv=fu;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
           }    
         }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   }  #define rint(a) floor(a+0.5)
   nrerror("Too many iterations in brent");  
   *xmin=x;  static double sqrarg;
   return fx;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
 /****************** mnbrak ***********************/  
   int imx; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int stepm=1;
             double (*func)(double))  /* Stepm, step in month: minimum step interpolation*/
 {  
   double ulim,u,r,q, dum;  int estepm;
   double fu;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
    
   *fa=(*func)(*ax);  int m,nb;
   *fb=(*func)(*bx);  long *num;
   if (*fb > *fa) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     SHFT(dum,*ax,*bx,dum)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       SHFT(dum,*fb,*fa,dum)  double **pmmij, ***probs;
       }  double *ageexmed,*agecens;
   *cx=(*bx)+GOLD*(*bx-*ax);  double dateintmean=0;
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  double *weight;
     r=(*bx-*ax)*(*fb-*fc);  int **s; /* Status */
     q=(*bx-*cx)*(*fb-*fa);  double *agedc, **covar, idx;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  double *lsurv, *lpop, *tpop;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       fu=(*func)(u);  double ftolhess; /* Tolerance for computing hessian */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /**************** split *************************/
       if (fu < *fc) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  {
           SHFT(*fb,*fc,fu,(*func)(u))    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
           }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    */ 
       u=ulim;    char  *ss;                            /* pointer */
       fu=(*func)(u);    int   l1, l2;                         /* length counters */
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);    l1 = strlen(path );                   /* length of path */
       fu=(*func)(u);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     SHFT(*ax,*bx,*cx,u)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       SHFT(*fa,*fb,*fc,fu)      strcpy( name, path );               /* we got the fullname name because no directory */
       }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 /*************** linmin ************************/      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 int ncom;        return( GLOCK_ERROR_GETCWD );
 double *pcom,*xicom;      }
 double (*nrfunc)(double []);      /* got dirc from getcwd*/
        printf(" DIRC = %s \n",dirc);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   double brent(double ax, double bx, double cx,      l2 = strlen( ss );                  /* length of filename */
                double (*f)(double), double tol, double *xmin);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double f1dim(double x);      strcpy( name, ss );         /* save file name */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      strncpy( dirc, path, l1 - l2 );     /* now the directory */
               double *fc, double (*func)(double));      dirc[l1-l2] = 0;                    /* add zero */
   int j;      printf(" DIRC2 = %s \n",dirc);
   double xx,xmin,bx,ax;    }
   double fx,fb,fa;    /* We add a separator at the end of dirc if not exists */
      l1 = strlen( dirc );                  /* length of directory */
   ncom=n;    if( dirc[l1-1] != DIRSEPARATOR ){
   pcom=vector(1,n);      dirc[l1] =  DIRSEPARATOR;
   xicom=vector(1,n);      dirc[l1+1] = 0; 
   nrfunc=func;      printf(" DIRC3 = %s \n",dirc);
   for (j=1;j<=n;j++) {    }
     pcom[j]=p[j];    ss = strrchr( name, '.' );            /* find last / */
     xicom[j]=xi[j];    if (ss >0){
   }      ss++;
   ax=0.0;      strcpy(ext,ss);                     /* save extension */
   xx=1.0;      l1= strlen( name);
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      l2= strlen(ss)+1;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      strncpy( finame, name, l1-l2);
 #ifdef DEBUG      finame[l1-l2]= 0;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    }
 #endif  
   for (j=1;j<=n;j++) {    return( 0 );                          /* we're done */
     xi[j] *= xmin;  }
     p[j] += xi[j];  
   }  
   free_vector(xicom,1,n);  /******************************************/
   free_vector(pcom,1,n);  
 }  void replace_back_to_slash(char *s, char*t)
   {
 /*************** powell ************************/    int i;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    int lg=0;
             double (*func)(double []))    i=0;
 {    lg=strlen(t);
   void linmin(double p[], double xi[], int n, double *fret,    for(i=0; i<= lg; i++) {
               double (*func)(double []));      (s[i] = t[i]);
   int i,ibig,j;      if (t[i]== '\\') s[i]='/';
   double del,t,*pt,*ptt,*xit;    }
   double fp,fptt;  }
   double *xits;  
   pt=vector(1,n);  int nbocc(char *s, char occ)
   ptt=vector(1,n);  {
   xit=vector(1,n);    int i,j=0;
   xits=vector(1,n);    int lg=20;
   *fret=(*func)(p);    i=0;
   for (j=1;j<=n;j++) pt[j]=p[j];    lg=strlen(s);
   for (*iter=1;;++(*iter)) {    for(i=0; i<= lg; i++) {
     fp=(*fret);    if  (s[i] == occ ) j++;
     ibig=0;    }
     del=0.0;    return j;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  }
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  void cutv(char *u,char *v, char*t, char occ)
     printf("\n");  {
     for (i=1;i<=n;i++) {    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       fptt=(*fret);       gives u="abcedf" and v="ghi2j" */
 #ifdef DEBUG    int i,lg,j,p=0;
       printf("fret=%lf \n",*fret);    i=0;
 #endif    for(j=0; j<=strlen(t)-1; j++) {
       printf("%d",i);fflush(stdout);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       linmin(p,xit,n,fret,func);    }
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));    lg=strlen(t);
         ibig=i;    for(j=0; j<p; j++) {
       }      (u[j] = t[j]);
 #ifdef DEBUG    }
       printf("%d %.12e",i,(*fret));       u[p]='\0';
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);     for(j=0; j<= lg; j++) {
         printf(" x(%d)=%.12e",j,xit[j]);      if (j>=(p+1))(v[j-p-1] = t[j]);
       }    }
       for(j=1;j<=n;j++)  }
         printf(" p=%.12e",p[j]);  
       printf("\n");  /********************** nrerror ********************/
 #endif  
     }  void nrerror(char error_text[])
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  {
 #ifdef DEBUG    fprintf(stderr,"ERREUR ...\n");
       int k[2],l;    fprintf(stderr,"%s\n",error_text);
       k[0]=1;    exit(EXIT_FAILURE);
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  /*********************** vector *******************/
       for (j=1;j<=n;j++)  double *vector(int nl, int nh)
         printf(" %.12e",p[j]);  {
       printf("\n");    double *v;
       for(l=0;l<=1;l++) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in vector");
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    return v-nl+NR_END;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /************************ free vector ******************/
       }  void free_vector(double*v, int nl, int nh)
 #endif  {
     free((FREE_ARG)(v+nl-NR_END));
   }
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /************************ivector *******************************/
       free_vector(ptt,1,n);  int *ivector(long nl,long nh)
       free_vector(pt,1,n);  {
       return;    int *v;
     }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    if (!v) nrerror("allocation failure in ivector");
     for (j=1;j<=n;j++) {    return v-nl+NR_END;
       ptt[j]=2.0*p[j]-pt[j];  }
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /******************free ivector **************************/
     }  void free_ivector(int *v, long nl, long nh)
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    free((FREE_ARG)(v+nl-NR_END));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /************************lvector *******************************/
         for (j=1;j<=n;j++) {  long *lvector(long nl,long nh)
           xi[j][ibig]=xi[j][n];  {
           xi[j][n]=xit[j];    long *v;
         }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 #ifdef DEBUG    if (!v) nrerror("allocation failure in ivector");
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    return v-nl+NR_END;
         for(j=1;j<=n;j++)  }
           printf(" %.12e",xit[j]);  
         printf("\n");  /******************free lvector **************************/
 #endif  void free_lvector(long *v, long nl, long nh)
       }  {
     }    free((FREE_ARG)(v+nl-NR_END));
   }  }
 }  
   /******************* imatrix *******************************/
 /**** Prevalence limit ****************/  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  { 
 {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    int **m; 
      matrix by transitions matrix until convergence is reached */    
     /* allocate pointers to rows */ 
   int i, ii,j,k;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   double min, max, maxmin, maxmax,sumnew=0.;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double **matprod2();    m += NR_END; 
   double **out, cov[NCOVMAX], **pmij();    m -= nrl; 
   double **newm;    
   double agefin, delaymax=50 ; /* Max number of years to converge */    
     /* allocate rows and set pointers to them */ 
   for (ii=1;ii<=nlstate+ndeath;ii++)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     for (j=1;j<=nlstate+ndeath;j++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m[nrl] += NR_END; 
     }    m[nrl] -= ncl; 
     
    cov[1]=1.;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* return pointer to array of pointers to rows */ 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    return m; 
     newm=savm;  } 
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /****************** free_imatrix *************************/
    void free_imatrix(m,nrl,nrh,ncl,nch)
       for (k=1; k<=cptcovn;k++) {        int **m;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        long nch,ncl,nrh,nrl; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/       /* free an int matrix allocated by imatrix() */ 
       }  { 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       for (k=1; k<=cptcovprod;k++)    free((FREE_ARG) (m+nrl-NR_END)); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  } 
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /******************* matrix *******************************/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  double **matrix(long nrl, long nrh, long ncl, long nch)
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
     savm=oldm;  
     oldm=newm;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     maxmax=0.;    if (!m) nrerror("allocation failure 1 in matrix()");
     for(j=1;j<=nlstate;j++){    m += NR_END;
       min=1.;    m -= nrl;
       max=0.;  
       for(i=1; i<=nlstate; i++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         sumnew=0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m[nrl] += NR_END;
         prlim[i][j]= newm[i][j]/(1-sumnew);    m[nrl] -= ncl;
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }    return m;
       maxmin=max-min;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       maxmax=FMAX(maxmax,maxmin);     */
     }  }
     if(maxmax < ftolpl){  
       return prlim;  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   }  {
 }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /*************** transition probabilities ***************/  }
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /******************* ma3x *******************************/
 {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double s1, s2;  {
   /*double t34;*/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   int i,j,j1, nc, ii, jj;    double ***m;
   
     for(i=1; i<= nlstate; i++){    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(j=1; j<i;j++){    if (!m) nrerror("allocation failure 1 in matrix()");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m += NR_END;
         /*s2 += param[i][j][nc]*cov[nc];*/    m -= nrl;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ps[i][j]=s2;    m[nrl] += NR_END;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    m[nrl] -= ncl;
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       }    m[nrl][ncl] += NR_END;
       ps[i][j]=s2;    m[nrl][ncl] -= nll;
     }    for (j=ncl+1; j<=nch; j++) 
   }      m[nrl][j]=m[nrl][j-1]+nlay;
     /*ps[3][2]=1;*/    
     for (i=nrl+1; i<=nrh; i++) {
   for(i=1; i<= nlstate; i++){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
      s1=0;      for (j=ncl+1; j<=nch; j++) 
     for(j=1; j<i; j++)        m[i][j]=m[i][j-1]+nlay;
       s1+=exp(ps[i][j]);    }
     for(j=i+1; j<=nlstate+ndeath; j++)    return m; 
       s1+=exp(ps[i][j]);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     ps[i][i]=1./(s1+1.);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for(j=1; j<i; j++)    */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*************************free ma3x ************************/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   } /* end i */  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for(jj=1; jj<= nlstate+ndeath; jj++){    free((FREE_ARG)(m+nrl-NR_END));
       ps[ii][jj]=0;  }
       ps[ii][ii]=1;  
     }  /*************** function subdirf ***********/
   }  char *subdirf(char fileres[])
   {
     /* Caution optionfilefiname is hidden */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    strcpy(tmpout,optionfilefiname);
     for(jj=1; jj<= nlstate+ndeath; jj++){    strcat(tmpout,"/"); /* Add to the right */
      printf("%lf ",ps[ii][jj]);    strcat(tmpout,fileres);
    }    return tmpout;
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /*************** function subdirf2 ***********/
 /*  char *subdirf2(char fileres[], char *preop)
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  {
   goto end;*/    
     return ps;    /* Caution optionfilefiname is hidden */
 }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 /**************** Product of 2 matrices ******************/    strcat(tmpout,preop);
     strcat(tmpout,fileres);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    return tmpout;
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /*************** function subdirf3 ***********/
   /* in, b, out are matrice of pointers which should have been initialized  char *subdirf3(char fileres[], char *preop, char *preop2)
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    
   long i, j, k;    /* Caution optionfilefiname is hidden */
   for(i=nrl; i<= nrh; i++)    strcpy(tmpout,optionfilefiname);
     for(k=ncolol; k<=ncoloh; k++)    strcat(tmpout,"/");
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    strcat(tmpout,preop);
         out[i][k] +=in[i][j]*b[j][k];    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
   return out;    return tmpout;
 }  }
   
   /***************** f1dim *************************/
 /************* Higher Matrix Product ***************/  extern int ncom; 
   extern double *pcom,*xicom;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  extern double (*nrfunc)(double []); 
 {   
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  double f1dim(double x) 
      duration (i.e. until  { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    int j; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    double f;
      (typically every 2 years instead of every month which is too big).    double *xt; 
      Model is determined by parameters x and covariates have to be   
      included manually here.    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
      */    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
   int i, j, d, h, k;    return f; 
   double **out, cov[NCOVMAX];  } 
   double **newm;  
   /*****************brent *************************/
   /* Hstepm could be zero and should return the unit matrix */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   for (i=1;i<=nlstate+ndeath;i++)  { 
     for (j=1;j<=nlstate+ndeath;j++){    int iter; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double a,b,d,etemp;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double fu,fv,fw,fx;
     }    double ftemp;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for(h=1; h <=nhstepm; h++){    double e=0.0; 
     for(d=1; d <=hstepm; d++){   
       newm=savm;    a=(ax < cx ? ax : cx); 
       /* Covariates have to be included here again */    b=(ax > cx ? ax : cx); 
       cov[1]=1.;    x=w=v=bx; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    fw=fv=fx=(*f)(x); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    for (iter=1;iter<=ITMAX;iter++) { 
       for (k=1; k<=cptcovage;k++)      xm=0.5*(a+b); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for (k=1; k<=cptcovprod;k++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
       savm=oldm;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       oldm=newm;        *xmin=x; 
     }        return fx; 
     for(i=1; i<=nlstate+ndeath; i++)      } 
       for(j=1;j<=nlstate+ndeath;j++) {      ftemp=fu;
         po[i][j][h]=newm[i][j];      if (fabs(e) > tol1) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        r=(x-w)*(fx-fv); 
          */        q=(x-v)*(fx-fw); 
       }        p=(x-v)*q-(x-w)*r; 
   } /* end h */        q=2.0*(q-r); 
   return po;        if (q > 0.0) p = -p; 
 }        q=fabs(q); 
         etemp=e; 
         e=d; 
 /*************** log-likelihood *************/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 double func( double *x)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {        else { 
   int i, ii, j, k, mi, d, kk;          d=p/q; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          u=x+d; 
   double **out;          if (u-a < tol2 || b-u < tol2) 
   double sw; /* Sum of weights */            d=SIGN(tol1,xm-x); 
   double lli; /* Individual log likelihood */        } 
   long ipmx;      } else { 
   /*extern weight */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /* We are differentiating ll according to initial status */      } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   /*for(i=1;i<imx;i++)      fu=(*f)(u); 
     printf(" %d\n",s[4][i]);      if (fu <= fx) { 
   */        if (u >= x) a=x; else b=x; 
   cov[1]=1.;        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
   for(k=1; k<=nlstate; k++) ll[k]=0.;          } else { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            if (u < x) a=u; else b=u; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            if (fu <= fw || w == x) { 
     for(mi=1; mi<= wav[i]-1; mi++){              v=w; 
       for (ii=1;ii<=nlstate+ndeath;ii++)              w=u; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);              fv=fw; 
       for(d=0; d<dh[mi][i]; d++){              fw=fu; 
         newm=savm;            } else if (fu <= fv || v == x || v == w) { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              v=u; 
         for (kk=1; kk<=cptcovage;kk++) {              fv=fu; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            } 
         }          } 
            } 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    nrerror("Too many iterations in brent"); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    *xmin=x; 
         savm=oldm;    return fx; 
         oldm=newm;  } 
          
          /****************** mnbrak ***********************/
       } /* end mult */  
        void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);              double (*func)(double)) 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  { 
       ipmx +=1;    double ulim,u,r,q, dum;
       sw += weight[i];    double fu; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;   
     } /* end of wave */    *fa=(*func)(*ax); 
   } /* end of individual */    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      SHFT(dum,*ax,*bx,dum) 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        SHFT(dum,*fb,*fa,dum) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        } 
   return -l;    *cx=(*bx)+GOLD*(*bx-*ax); 
 }    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 /*********** Maximum Likelihood Estimation ***************/      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   int i,j, iter;      if ((*bx-u)*(u-*cx) > 0.0) { 
   double **xi,*delti;        fu=(*func)(u); 
   double fret;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   xi=matrix(1,npar,1,npar);        fu=(*func)(u); 
   for (i=1;i<=npar;i++)        if (fu < *fc) { 
     for (j=1;j<=npar;j++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       xi[i][j]=(i==j ? 1.0 : 0.0);            SHFT(*fb,*fc,fu,(*func)(u)) 
   printf("Powell\n");            } 
   powell(p,xi,npar,ftol,&iter,&fret,func);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        fu=(*func)(u); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 }        fu=(*func)(u); 
       } 
 /**** Computes Hessian and covariance matrix ***/      SHFT(*ax,*bx,*cx,u) 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        SHFT(*fa,*fb,*fc,fu) 
 {        } 
   double  **a,**y,*x,pd;  } 
   double **hess;  
   int i, j,jk;  /*************** linmin ************************/
   int *indx;  
   int ncom; 
   double hessii(double p[], double delta, int theta, double delti[]);  double *pcom,*xicom;
   double hessij(double p[], double delti[], int i, int j);  double (*nrfunc)(double []); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;   
   void ludcmp(double **a, int npar, int *indx, double *d) ;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   hess=matrix(1,npar,1,npar);    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
   printf("\nCalculation of the hessian matrix. Wait...\n");    double f1dim(double x); 
   for (i=1;i<=npar;i++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     printf("%d",i);fflush(stdout);                double *fc, double (*func)(double)); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    int j; 
     /*printf(" %f ",p[i]);*/    double xx,xmin,bx,ax; 
     /*printf(" %lf ",hess[i][i]);*/    double fx,fb,fa;
   }   
      ncom=n; 
   for (i=1;i<=npar;i++) {    pcom=vector(1,n); 
     for (j=1;j<=npar;j++)  {    xicom=vector(1,n); 
       if (j>i) {    nrfunc=func; 
         printf(".%d%d",i,j);fflush(stdout);    for (j=1;j<=n;j++) { 
         hess[i][j]=hessij(p,delti,i,j);      pcom[j]=p[j]; 
         hess[j][i]=hess[i][j];          xicom[j]=xi[j]; 
         /*printf(" %lf ",hess[i][j]);*/    } 
       }    ax=0.0; 
     }    xx=1.0; 
   }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   printf("\n");    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   a=matrix(1,npar,1,npar);  #endif
   y=matrix(1,npar,1,npar);    for (j=1;j<=n;j++) { 
   x=vector(1,npar);      xi[j] *= xmin; 
   indx=ivector(1,npar);      p[j] += xi[j]; 
   for (i=1;i<=npar;i++)    } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    free_vector(xicom,1,n); 
   ludcmp(a,npar,indx,&pd);    free_vector(pcom,1,n); 
   } 
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  char *asc_diff_time(long time_sec, char ascdiff[])
     x[j]=1;  {
     lubksb(a,npar,indx,x);    long sec_left, days, hours, minutes;
     for (i=1;i<=npar;i++){    days = (time_sec) / (60*60*24);
       matcov[i][j]=x[i];    sec_left = (time_sec) % (60*60*24);
     }    hours = (sec_left) / (60*60) ;
   }    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
   printf("\n#Hessian matrix#\n");    sec_left = (sec_left) % (60);
   for (i=1;i<=npar;i++) {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     for (j=1;j<=npar;j++) {    return ascdiff;
       printf("%.3e ",hess[i][j]);  }
     }  
     printf("\n");  /*************** powell ************************/
   }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   /* Recompute Inverse */  { 
   for (i=1;i<=npar;i++)    void linmin(double p[], double xi[], int n, double *fret, 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];                double (*func)(double [])); 
   ludcmp(a,npar,indx,&pd);    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
   /*  printf("\n#Hessian matrix recomputed#\n");    double fp,fptt;
     double *xits;
   for (j=1;j<=npar;j++) {    int niterf, itmp;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    pt=vector(1,n); 
     lubksb(a,npar,indx,x);    ptt=vector(1,n); 
     for (i=1;i<=npar;i++){    xit=vector(1,n); 
       y[i][j]=x[i];    xits=vector(1,n); 
       printf("%.3e ",y[i][j]);    *fret=(*func)(p); 
     }    for (j=1;j<=n;j++) pt[j]=p[j]; 
     printf("\n");    for (*iter=1;;++(*iter)) { 
   }      fp=(*fret); 
   */      ibig=0; 
       del=0.0; 
   free_matrix(a,1,npar,1,npar);      last_time=curr_time;
   free_matrix(y,1,npar,1,npar);      (void) gettimeofday(&curr_time,&tzp);
   free_vector(x,1,npar);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   free_ivector(indx,1,npar);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   free_matrix(hess,1,npar,1,npar);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
      for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
 /*************** hessian matrix ****************/      }
 double hessii( double x[], double delta, int theta, double delti[])      printf("\n");
 {      fprintf(ficlog,"\n");
   int i;      fprintf(ficrespow,"\n");fflush(ficrespow);
   int l=1, lmax=20;      if(*iter <=3){
   double k1,k2;        tm = *localtime(&curr_time.tv_sec);
   double p2[NPARMAX+1];        strcpy(strcurr,asctime(&tm));
   double res;  /*       asctime_r(&tm,strcurr); */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        forecast_time=curr_time; 
   double fx;        itmp = strlen(strcurr);
   int k=0,kmax=10;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   double l1;          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   fx=func(x);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++) p2[i]=x[i];        for(niterf=10;niterf<=30;niterf+=10){
   for(l=0 ; l <=lmax; l++){          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     l1=pow(10,l);          tmf = *localtime(&forecast_time.tv_sec);
     delts=delt;  /*      asctime_r(&tmf,strfor); */
     for(k=1 ; k <kmax; k=k+1){          strcpy(strfor,asctime(&tmf));
       delt = delta*(l1*k);          itmp = strlen(strfor);
       p2[theta]=x[theta] +delt;          if(strfor[itmp-1]=='\n')
       k1=func(p2)-fx;          strfor[itmp-1]='\0';
       p2[theta]=x[theta]-delt;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       k2=func(p2)-fx;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       /*res= (k1-2.0*fx+k2)/delt/delt; */        }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      }
            for (i=1;i<=n;i++) { 
 #ifdef DEBUG        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        fptt=(*fret); 
 #endif  #ifdef DEBUG
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        printf("fret=%lf \n",*fret);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        fprintf(ficlog,"fret=%lf \n",*fret);
         k=kmax;  #endif
       }        printf("%d",i);fflush(stdout);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        fprintf(ficlog,"%d",i);fflush(ficlog);
         k=kmax; l=lmax*10.;        linmin(p,xit,n,fret,func); 
       }        if (fabs(fptt-(*fret)) > del) { 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          del=fabs(fptt-(*fret)); 
         delts=delt;          ibig=i; 
       }        } 
     }  #ifdef DEBUG
   }        printf("%d %.12e",i,(*fret));
   delti[theta]=delts;        fprintf(ficlog,"%d %.12e",i,(*fret));
   return res;        for (j=1;j<=n;j++) {
            xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 double hessij( double x[], double delti[], int thetai,int thetaj)        }
 {        for(j=1;j<=n;j++) {
   int i;          printf(" p=%.12e",p[j]);
   int l=1, l1, lmax=20;          fprintf(ficlog," p=%.12e",p[j]);
   double k1,k2,k3,k4,res,fx;        }
   double p2[NPARMAX+1];        printf("\n");
   int k;        fprintf(ficlog,"\n");
   #endif
   fx=func(x);      } 
   for (k=1; k<=2; k++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (i=1;i<=npar;i++) p2[i]=x[i];  #ifdef DEBUG
     p2[thetai]=x[thetai]+delti[thetai]/k;        int k[2],l;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        k[0]=1;
     k1=func(p2)-fx;        k[1]=-1;
          printf("Max: %.12e",(*func)(p));
     p2[thetai]=x[thetai]+delti[thetai]/k;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for (j=1;j<=n;j++) {
     k2=func(p2)-fx;          printf(" %.12e",p[j]);
            fprintf(ficlog," %.12e",p[j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        printf("\n");
     k3=func(p2)-fx;        fprintf(ficlog,"\n");
          for(l=0;l<=1;l++) {
     p2[thetai]=x[thetai]-delti[thetai]/k;          for (j=1;j<=n;j++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     k4=func(p2)-fx;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 #ifdef DEBUG          }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 #endif          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }        }
   return res;  #endif
 }  
   
 /************** Inverse of matrix **************/        free_vector(xit,1,n); 
 void ludcmp(double **a, int n, int *indx, double *d)        free_vector(xits,1,n); 
 {        free_vector(ptt,1,n); 
   int i,imax,j,k;        free_vector(pt,1,n); 
   double big,dum,sum,temp;        return; 
   double *vv;      } 
        if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   vv=vector(1,n);      for (j=1;j<=n;j++) { 
   *d=1.0;        ptt[j]=2.0*p[j]-pt[j]; 
   for (i=1;i<=n;i++) {        xit[j]=p[j]-pt[j]; 
     big=0.0;        pt[j]=p[j]; 
     for (j=1;j<=n;j++)      } 
       if ((temp=fabs(a[i][j])) > big) big=temp;      fptt=(*func)(ptt); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      if (fptt < fp) { 
     vv[i]=1.0/big;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   }        if (t < 0.0) { 
   for (j=1;j<=n;j++) {          linmin(p,xit,n,fret,func); 
     for (i=1;i<j;i++) {          for (j=1;j<=n;j++) { 
       sum=a[i][j];            xi[j][ibig]=xi[j][n]; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            xi[j][n]=xit[j]; 
       a[i][j]=sum;          }
     }  #ifdef DEBUG
     big=0.0;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (i=j;i<=n;i++) {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       sum=a[i][j];          for(j=1;j<=n;j++){
       for (k=1;k<j;k++)            printf(" %.12e",xit[j]);
         sum -= a[i][k]*a[k][j];            fprintf(ficlog," %.12e",xit[j]);
       a[i][j]=sum;          }
       if ( (dum=vv[i]*fabs(sum)) >= big) {          printf("\n");
         big=dum;          fprintf(ficlog,"\n");
         imax=i;  #endif
       }        }
     }      } 
     if (j != imax) {    } 
       for (k=1;k<=n;k++) {  } 
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  /**** Prevalence limit (stable or period prevalence)  ****************/
         a[j][k]=dum;  
       }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       *d = -(*d);  {
       vv[imax]=vv[j];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;    int i, ii,j,k;
     if (j != n) {    double min, max, maxmin, maxmax,sumnew=0.;
       dum=1.0/(a[j][j]);    double **matprod2();
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double **out, cov[NCOVMAX], **pmij();
     }    double **newm;
   }    double agefin, delaymax=50 ; /* Max number of years to converge */
   free_vector(vv,1,n);  /* Doesn't work */  
 ;    for (ii=1;ii<=nlstate+ndeath;ii++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void lubksb(double **a, int n, int *indx, double b[])      }
 {  
   int i,ii=0,ip,j;     cov[1]=1.;
   double sum;   
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=n;i++) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     ip=indx[i];      newm=savm;
     sum=b[ip];      /* Covariates have to be included here again */
     b[ip]=b[i];       cov[2]=agefin;
     if (ii)    
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovn;k++) {
     else if (sum) ii=i;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     b[i]=sum;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   }        }
   for (i=n;i>=1;i--) {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     sum=b[i];        for (k=1; k<=cptcovprod;k++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     b[i]=sum/a[i][i];  
   }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 /************ Frequencies ********************/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */      savm=oldm;
        oldm=newm;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      maxmax=0.;
   double ***freq; /* Frequencies */      for(j=1;j<=nlstate;j++){
   double *pp;        min=1.;
   double pos, k2, dateintsum=0,k2cpt=0;        max=0.;
   FILE *ficresp;        for(i=1; i<=nlstate; i++) {
   char fileresp[FILENAMELENGTH];          sumnew=0;
            for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   pp=vector(1,nlstate);          prlim[i][j]= newm[i][j]/(1-sumnew);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          max=FMAX(max,prlim[i][j]);
   strcpy(fileresp,"p");          min=FMIN(min,prlim[i][j]);
   strcat(fileresp,fileres);        }
   if((ficresp=fopen(fileresp,"w"))==NULL) {        maxmin=max-min;
     printf("Problem with prevalence resultfile: %s\n", fileresp);        maxmax=FMAX(maxmax,maxmin);
     exit(0);      }
   }      if(maxmax < ftolpl){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        return prlim;
   j1=0;      }
      }
   j=cptcoveff;  }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    /*************** transition probabilities ***************/ 
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       j1++;  {
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    double s1, s2;
         scanf("%d", i);*/    /*double t34;*/
       for (i=-1; i<=nlstate+ndeath; i++)      int i,j,j1, nc, ii, jj;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)      for(i=1; i<= nlstate; i++){
             freq[i][jk][m]=0;        for(j=1; j<i;j++){
                for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       dateintsum=0;            /*s2 += param[i][j][nc]*cov[nc];*/
       k2cpt=0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for (i=1; i<=imx; i++) {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         bool=1;          }
         if  (cptcovn>0) {          ps[i][j]=s2;
           for (z1=1; z1<=cptcoveff; z1++)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        }
               bool=0;        for(j=i+1; j<=nlstate+ndeath;j++){
         }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         if (bool==1) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           for(m=firstpass; m<=lastpass; m++){  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
             k2=anint[m][i]+(mint[m][i]/12.);          }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          ps[i][j]=s2;
               if(agev[m][i]==0) agev[m][i]=agemax+1;        }
               if(agev[m][i]==1) agev[m][i]=agemax+2;      }
               if (m<lastpass) {      /*ps[3][2]=1;*/
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      for(i=1; i<= nlstate; i++){
               }        s1=0;
                      for(j=1; j<i; j++)
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          s1+=exp(ps[i][j]);
                 dateintsum=dateintsum+k2;        for(j=i+1; j<=nlstate+ndeath; j++)
                 k2cpt++;          s1+=exp(ps[i][j]);
               }        ps[i][i]=1./(s1+1.);
             }        for(j=1; j<i; j++)
           }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         }        for(j=i+1; j<=nlstate+ndeath; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
                /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      } /* end i */
       
       if  (cptcovn>0) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         fprintf(ficresp, "\n#********** Variable ");        for(jj=1; jj<= nlstate+ndeath; jj++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          ps[ii][jj]=0;
         fprintf(ficresp, "**********\n#");          ps[ii][ii]=1;
       }        }
       for(i=1; i<=nlstate;i++)      }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      
       fprintf(ficresp, "\n");  
        /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for(i=(int)agemin; i <= (int)agemax+3; i++){  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         if(i==(int)agemax+3)  /*         printf("ddd %lf ",ps[ii][jj]); */
           printf("Total");  /*       } */
         else  /*       printf("\n "); */
           printf("Age %d", i);  /*        } */
         for(jk=1; jk <=nlstate ; jk++){  /*        printf("\n ");printf("%lf ",cov[2]); */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)         /*
             pp[jk] += freq[jk][m][i];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         }        goto end;*/
         for(jk=1; jk <=nlstate ; jk++){      return ps;
           for(m=-1, pos=0; m <=0 ; m++)  }
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)  /**************** Product of 2 matrices ******************/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           else  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  {
         }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         for(jk=1; jk <=nlstate ; jk++){    /* in, b, out are matrice of pointers which should have been initialized 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)       before: only the contents of out is modified. The function returns
             pp[jk] += freq[jk][m][i];       a pointer to pointers identical to out */
         }    long i, j, k;
     for(i=nrl; i<= nrh; i++)
         for(jk=1,pos=0; jk <=nlstate ; jk++)      for(k=ncolol; k<=ncoloh; k++)
           pos += pp[jk];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         for(jk=1; jk <=nlstate ; jk++){          out[i][k] +=in[i][j]*b[j][k];
           if(pos>=1.e-5)  
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    return out;
           else  }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  /************* Higher Matrix Product ***************/
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  {
             }    /* Computes the transition matrix starting at age 'age' over 
             else       'nhstepm*hstepm*stepm' months (i.e. until
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           }       nhstepm*hstepm matrices. 
         }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
               (typically every 2 years instead of every month which is too big 
         for(jk=-1; jk <=nlstate+ndeath; jk++)       for the memory).
           for(m=-1; m <=nlstate+ndeath; m++)       Model is determined by parameters x and covariates have to be 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);       included manually here. 
         if(i <= (int) agemax)  
           fprintf(ficresp,"\n");       */
         printf("\n");  
       }    int i, j, d, h, k;
     }    double **out, cov[NCOVMAX];
   }    double **newm;
   dateintmean=dateintsum/k2cpt;  
      /* Hstepm could be zero and should return the unit matrix */
   fclose(ficresp);    for (i=1;i<=nlstate+ndeath;i++)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for (j=1;j<=nlstate+ndeath;j++){
   free_vector(pp,1,nlstate);        oldm[i][j]=(i==j ? 1.0 : 0.0);
          po[i][j][0]=(i==j ? 1.0 : 0.0);
   /* End of Freq */      }
 }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
 /************ Prevalence ********************/      for(d=1; d <=hstepm; d++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        newm=savm;
 {  /* Some frequencies */        /* Covariates have to be included here again */
          cov[1]=1.;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double *pp;        for (k=1; k<=cptcovage;k++)
   double pos, k2;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   pp=vector(1,nlstate);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   j1=0;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   j=cptcoveff;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        savm=oldm;
          oldm=newm;
   for(k1=1; k1<=j;k1++){      }
     for(i1=1; i1<=ncodemax[k1];i1++){      for(i=1; i<=nlstate+ndeath; i++)
       j1++;        for(j=1;j<=nlstate+ndeath;j++) {
                po[i][j][h]=newm[i][j];
       for (i=-1; i<=nlstate+ndeath; i++)            /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         for (jk=-1; jk<=nlstate+ndeath; jk++)          }
           for(m=agemin; m <= agemax+3; m++)      /*printf("h=%d ",h);*/
             freq[i][jk][m]=0;    } /* end h */
        /*     printf("\n H=%d \n",h); */
       for (i=1; i<=imx; i++) {    return po;
         bool=1;  }
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*************** log-likelihood *************/
               bool=0;  double func( double *x)
         }  {
         if (bool==1) {    int i, ii, j, k, mi, d, kk;
           for(m=firstpass; m<=lastpass; m++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             k2=anint[m][i]+(mint[m][i]/12.);    double **out;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    double sw; /* Sum of weights */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double lli; /* Individual log likelihood */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    int s1, s2;
               if (m<lastpass) {    double bbh, survp;
                 if (calagedate>0)    long ipmx;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    /*extern weight */
                 else    /* We are differentiating ll according to initial status */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    /*for(i=1;i<imx;i++) 
               }      printf(" %d\n",s[4][i]);
             }    */
           }    cov[1]=1.;
         }  
       }    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         for(jk=1; jk <=nlstate ; jk++){    if(mle==1){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=-1, pos=0; m <=0 ; m++)            for (j=1;j<=nlstate+ndeath;j++){
             pos += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                    }
         for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            newm=savm;
             pp[jk] += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            }
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                             1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if( i <= (int) agemax){            savm=oldm;
             if(pos>=1.e-5){            oldm=newm;
               probs[i][jk][j1]= pp[jk]/pos;          } /* end mult */
             }        
           }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         }          /* But now since version 0.9 we anticipate for bias at large stepm.
                   * If stepm is larger than one month (smallest stepm) and if the exact delay 
       }           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
   }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   free_vector(pp,1,nlstate);           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
 }  /* End of Freq */           * For stepm > 1 the results are less biased than in previous versions. 
            */
 /************* Waves Concatenation ***************/          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          bbh=(double)bh[mi][i]/(double)stepm; 
 {          /* bias bh is positive if real duration
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.           * is higher than the multiple of stepm and negative otherwise.
      Death is a valid wave (if date is known).           */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          if( s2 > nlstate){ 
      and mw[mi+1][i]. dh depends on stepm.            /* i.e. if s2 is a death state and if the date of death is known 
      */               then the contribution to the likelihood is the probability to 
                die between last step unit time and current  step unit time, 
   int i, mi, m;               which is also equal to probability to die before dh 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;               minus probability to die before dh-stepm . 
      double sum=0., jmean=0.;*/               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
   int j, k=0,jk, ju, jl;          health state: the date of the interview describes the actual state
   double sum=0.;          and not the date of a change in health state. The former idea was
   jmin=1e+5;          to consider that at each interview the state was recorded
   jmax=-1;          (healthy, disable or death) and IMaCh was corrected; but when we
   jmean=0.;          introduced the exact date of death then we should have modified
   for(i=1; i<=imx; i++){          the contribution of an exact death to the likelihood. This new
     mi=0;          contribution is smaller and very dependent of the step unit
     m=firstpass;          stepm. It is no more the probability to die between last interview
     while(s[m][i] <= nlstate){          and month of death but the probability to survive from last
       if(s[m][i]>=1)          interview up to one month before death multiplied by the
         mw[++mi][i]=m;          probability to die within a month. Thanks to Chris
       if(m >=lastpass)          Jackson for correcting this bug.  Former versions increased
         break;          mortality artificially. The bad side is that we add another loop
       else          which slows down the processing. The difference can be up to 10%
         m++;          lower mortality.
     }/* end while */            */
     if (s[m][i] > nlstate){            lli=log(out[s1][s2] - savm[s1][s2]);
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */  
          /* Only death is a correct wave */          } else if  (s2==-2) {
       mw[mi][i]=m;            for (j=1,survp=0. ; j<=nlstate; j++) 
     }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             /*survp += out[s1][j]; */
     wav[i]=mi;            lli= log(survp);
     if(mi==0)          }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          
   }          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
   for(i=1; i<=imx; i++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(mi=1; mi<wav[i];mi++){            lli= log(survp); 
       if (stepm <=0)          } 
         dh[mi][i]=1;  
       else{          else if  (s2==-5) { 
         if (s[mw[mi+1][i]][i] > nlstate) {            for (j=1,survp=0. ; j<=2; j++)  
           if (agedc[i] < 2*AGESUP) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            lli= log(survp); 
           if(j==0) j=1;  /* Survives at least one month after exam */          } 
           k=k+1;          
           if (j >= jmax) jmax=j;          else{
           if (j <= jmin) jmin=j;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           sum=sum+j;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          } 
           }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
         else{          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          ipmx +=1;
           k=k+1;          sw += weight[i];
           if (j >= jmax) jmax=j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           else if (j <= jmin)jmin=j;        } /* end of wave */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      } /* end of individual */
           sum=sum+j;    }  else if(mle==2){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         jk= j/stepm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         jl= j -jk*stepm;        for(mi=1; mi<= wav[i]-1; mi++){
         ju= j -(jk+1)*stepm;          for (ii=1;ii<=nlstate+ndeath;ii++)
         if(jl <= -ju)            for (j=1;j<=nlstate+ndeath;j++){
           dh[mi][i]=jk;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=jk+1;            }
         if(dh[mi][i]==0)          for(d=0; d<=dh[mi][i]; d++){
           dh[mi][i]=1; /* At least one step */            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   jmean=sum/k;            }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*********** Tricode ****************************/            savm=oldm;
 void tricode(int *Tvar, int **nbcode, int imx)            oldm=newm;
 {          } /* end mult */
   int Ndum[20],ij=1, k, j, i;        
   int cptcode=0;          s1=s[mw[mi][i]][i];
   cptcoveff=0;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   for (k=0; k<19; k++) Ndum[k]=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for (k=1; k<=7; k++) ncodemax[k]=0;          ipmx +=1;
           sw += weight[i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1; i<=imx; i++) {        } /* end of wave */
       ij=(int)(covar[Tvar[j]][i]);      } /* end of individual */
       Ndum[ij]++;    }  else if(mle==3){  /* exponential inter-extrapolation */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if (ij > cptcode) cptcode=ij;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=0; i<=cptcode; i++) {            for (j=1;j<=nlstate+ndeath;j++){
       if(Ndum[i]!=0) ncodemax[j]++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     ij=1;            }
           for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     for (i=1; i<=ncodemax[j]; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for (k=0; k<=19; k++) {            for (kk=1; kk<=cptcovage;kk++) {
         if (Ndum[k] != 0) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           nbcode[Tvar[j]][ij]=k;            }
                      out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           ij++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         if (ij > ncodemax[j]) break;            oldm=newm;
       }            } /* end mult */
     }        
   }            s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
  for (k=0; k<19; k++) Ndum[k]=0;          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
  for (i=1; i<=ncovmodel-2; i++) {          ipmx +=1;
       ij=Tvar[i];          sw += weight[i];
       Ndum[ij]++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
       } /* end of individual */
  ij=1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
  for (i=1; i<=10; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    if((Ndum[i]!=0) && (i<=ncovcol)){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      Tvaraff[ij]=i;        for(mi=1; mi<= wav[i]-1; mi++){
      ij++;          for (ii=1;ii<=nlstate+ndeath;ii++)
    }            for (j=1;j<=nlstate+ndeath;j++){
  }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
     cptcoveff=ij-1;            }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /*********** Health Expectancies ****************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 {          
   /* Health expectancies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double age, agelim, hf;            savm=oldm;
   double ***p3mat,***varhe;            oldm=newm;
   double **dnewm,**doldm;          } /* end mult */
   double *xp;        
   double **gp, **gm;          s1=s[mw[mi][i]][i];
   double ***gradg, ***trgradg;          s2=s[mw[mi+1][i]][i];
   int theta;          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          }else{
   xp=vector(1,npar);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   dnewm=matrix(1,nlstate*2,1,npar);          }
   doldm=matrix(1,nlstate*2,1,nlstate*2);          ipmx +=1;
            sw += weight[i];
   fprintf(ficreseij,"# Health expectancies\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficreseij,"# Age");  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for(i=1; i<=nlstate;i++)        } /* end of wave */
     for(j=1; j<=nlstate;j++)      } /* end of individual */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficreseij,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if(estepm < stepm){        for(mi=1; mi<= wav[i]-1; mi++){
     printf ("Problem %d lower than %d\n",estepm, stepm);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   else  hstepm=estepm;                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* We compute the life expectancy from trapezoids spaced every estepm months              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    * This is mainly to measure the difference between two models: for example            }
    * if stepm=24 months pijx are given only every 2 years and by summing them          for(d=0; d<dh[mi][i]; d++){
    * we are calculating an estimate of the Life Expectancy assuming a linear            newm=savm;
    * progression inbetween and thus overestimating or underestimating according            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * to the curvature of the survival function. If, for the same date, we            for (kk=1; kk<=cptcovage;kk++) {
    * estimate the model with stepm=1 month, we can keep estepm to 24 months              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    * to compare the new estimate of Life expectancy with the same linear            }
    * hypothesis. A more precise result, taking into account a more precise          
    * curvature will be obtained if estepm is as small as stepm. */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* For example we decided to compute the life expectancy with the smallest unit */            savm=oldm;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            oldm=newm;
      nhstepm is the number of hstepm from age to agelim          } /* end mult */
      nstepm is the number of stepm from age to agelin.        
      Look at hpijx to understand the reason of that which relies in memory size          s1=s[mw[mi][i]][i];
      and note for a fixed period like estepm months */          s2=s[mw[mi+1][i]][i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      survival function given by stepm (the optimization length). Unfortunately it          ipmx +=1;
      means that if the survival funtion is printed only each two years of age and if          sw += weight[i];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      results. So we changed our mind and took the option of the best precision.          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   */        } /* end of wave */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      } /* end of individual */
     } /* End of if */
   agelim=AGESUP;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     /* nhstepm age range expressed in number of stepm */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    return -l;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  }
     /* if (stepm >= YEARM) hstepm=1;*/  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  /*************** log-likelihood *************/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  double funcone( double *x)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  {
     gp=matrix(0,nhstepm,1,nlstate*2);    /* Same as likeli but slower because of a lot of printf and if */
     gm=matrix(0,nhstepm,1,nlstate*2);    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double **out;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    double lli; /* Individual log likelihood */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      double llt;
      int s1, s2;
     double bbh, survp;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /*extern weight */
     /* We are differentiating ll according to initial status */
     /* Computing Variances of health expectancies */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
      for(theta=1; theta <=npar; theta++){      printf(" %d\n",s[4][i]);
       for(i=1; i<=npar; i++){    */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    cov[1]=1.;
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for(k=1; k<=nlstate; k++) ll[k]=0.;
    
       cptj=0;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<= nlstate; j++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(i=1; i<=nlstate; i++){      for(mi=1; mi<= wav[i]-1; mi++){
           cptj=cptj+1;        for (ii=1;ii<=nlstate+ndeath;ii++)
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          for (j=1;j<=nlstate+ndeath;j++){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }          }
       }        for(d=0; d<dh[mi][i]; d++){
                newm=savm;
                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(i=1; i<=npar; i++)          for (kk=1; kk<=cptcovage;kk++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       cptj=0;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<= nlstate; j++){          savm=oldm;
         for(i=1;i<=nlstate;i++){          oldm=newm;
           cptj=cptj+1;        } /* end mult */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        s1=s[mw[mi][i]][i];
           }        s2=s[mw[mi+1][i]][i];
         }        bbh=(double)bh[mi][i]/(double)stepm; 
       }        /* bias is positive if real duration
       for(j=1; j<= nlstate*2; j++)         * is higher than the multiple of stepm and negative otherwise.
         for(h=0; h<=nhstepm-1; h++){         */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         }          lli=log(out[s1][s2] - savm[s1][s2]);
      }        } else if  (s2==-2) {
              for (j=1,survp=0. ; j<=nlstate; j++) 
 /* End theta */            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      for(h=0; h<=nhstepm-1; h++)        } else if(mle==2){
       for(j=1; j<=nlstate*2;j++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for(theta=1; theta <=npar; theta++)        } else if(mle==3){  /* exponential inter-extrapolation */
           trgradg[h][j][theta]=gradg[h][theta][j];          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
              } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
      for(i=1;i<=nlstate*2;i++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       for(j=1;j<=nlstate*2;j++)          lli=log(out[s1][s2]); /* Original formula */
         varhe[i][j][(int)age] =0.;        } /* End of if */
         ipmx +=1;
      printf("%d|",(int)age);fflush(stdout);        sw += weight[i];
      for(h=0;h<=nhstepm-1;h++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(k=0;k<=nhstepm-1;k++){  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        if(globpr){
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         for(i=1;i<=nlstate*2;i++)   %11.6f %11.6f %11.6f ", \
           for(j=1;j<=nlstate*2;j++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     }            llt +=ll[k]*gipmx/gsw;
     /* Computing expectancies */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     for(i=1; i<=nlstate;i++)          }
       for(j=1; j<=nlstate;j++)          fprintf(ficresilk," %10.6f\n", -llt);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      } /* end of wave */
              } /* end of individual */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
     fprintf(ficreseij,"%3.0f",age );      gipmx=ipmx;
     cptj=0;      gsw=sw;
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++){    return -l;
         cptj++;  }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  
       }  
     fprintf(ficreseij,"\n");  /*************** function likelione ***********/
      void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     free_matrix(gm,0,nhstepm,1,nlstate*2);  {
     free_matrix(gp,0,nhstepm,1,nlstate*2);    /* This routine should help understanding what is done with 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);       the selection of individuals/waves and
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);       to check the exact contribution to the likelihood.
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       Plotting could be done.
   }     */
   printf("\n");    int k;
   
   free_vector(xp,1,npar);    if(*globpri !=0){ /* Just counts and sums, no printings */
   free_matrix(dnewm,1,nlstate*2,1,npar);      strcpy(fileresilk,"ilk"); 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      strcat(fileresilk,fileres);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 }        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 /************ Variance ******************/      }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 {      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   /* Variance of health expectancies */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(k=1; k<=nlstate; k++) 
   double **newm;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double **dnewm,**doldm;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int i, j, nhstepm, hstepm, h, nstepm ;    }
   int k, cptcode;  
   double *xp;    *fretone=(*funcone)(p);
   double **gp, **gm;    if(*globpri !=0){
   double ***gradg, ***trgradg;      fclose(ficresilk);
   double ***p3mat;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   double age,agelim, hf;      fflush(fichtm); 
   int theta;    } 
     return;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  }
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  /*********** Maximum Likelihood Estimation ***************/
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
   xp=vector(1,npar);    int i,j, iter;
   dnewm=matrix(1,nlstate,1,npar);    double **xi;
   doldm=matrix(1,nlstate,1,nlstate);    double fret;
      double fretone; /* Only one call to likelihood */
   if(estepm < stepm){    /*  char filerespow[FILENAMELENGTH];*/
     printf ("Problem %d lower than %d\n",estepm, stepm);    xi=matrix(1,npar,1,npar);
   }    for (i=1;i<=npar;i++)
   else  hstepm=estepm;        for (j=1;j<=npar;j++)
   /* For example we decided to compute the life expectancy with the smallest unit */        xi[i][j]=(i==j ? 1.0 : 0.0);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      nhstepm is the number of hstepm from age to agelim    strcpy(filerespow,"pow"); 
      nstepm is the number of stepm from age to agelin.    strcat(filerespow,fileres);
      Look at hpijx to understand the reason of that which relies in memory size    if((ficrespow=fopen(filerespow,"w"))==NULL) {
      and note for a fixed period like k years */      printf("Problem with resultfile: %s\n", filerespow);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      survival function given by stepm (the optimization length). Unfortunately it    }
      means that if the survival funtion is printed only each two years of age and if    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (i=1;i<=nlstate;i++)
      results. So we changed our mind and took the option of the best precision.      for(j=1;j<=nlstate+ndeath;j++)
   */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    fprintf(ficrespow,"\n");
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    powell(p,xi,npar,ftol,&iter,&fret,func);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    free_matrix(xi,1,npar,1,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fclose(ficrespow);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     gp=matrix(0,nhstepm,1,nlstate);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     gm=matrix(0,nhstepm,1,nlstate);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
     for(theta=1; theta <=npar; theta++){  }
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  /**** Computes Hessian and covariance matrix ***/
       }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double  **a,**y,*x,pd;
     double **hess;
       if (popbased==1) {    int i, j,jk;
         for(i=1; i<=nlstate;i++)    int *indx;
           prlim[i][i]=probs[(int)age][i][ij];  
       }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for(j=1; j<= nlstate; j++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
         for(h=0; h<=nhstepm; h++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double gompertz(double p[]);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    hess=matrix(1,npar,1,npar);
         }  
       }    printf("\nCalculation of the hessian matrix. Wait...\n");
        fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for(i=1; i<=npar; i++) /* Computes gradient */    for (i=1;i<=npar;i++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      printf("%d",i);fflush(stdout);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        fprintf(ficlog,"%d",i);fflush(ficlog);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     
         hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       if (popbased==1) {      
         for(i=1; i<=nlstate;i++)      /*  printf(" %f ",p[i]);
           prlim[i][i]=probs[(int)age][i][ij];          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       }    }
     
       for(j=1; j<= nlstate; j++){    for (i=1;i<=npar;i++) {
         for(h=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++)  {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        if (j>i) { 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          printf(".%d%d",i,j);fflush(stdout);
         }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       }          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
       for(j=1; j<= nlstate; j++)          hess[j][i]=hess[i][j];    
         for(h=0; h<=nhstepm; h++){          /*printf(" %lf ",hess[i][j]);*/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        }
         }      }
     } /* End theta */    }
     printf("\n");
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    fprintf(ficlog,"\n");
   
     for(h=0; h<=nhstepm; h++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         for(theta=1; theta <=npar; theta++)    
           trgradg[h][j][theta]=gradg[h][theta][j];    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    x=vector(1,npar);
     for(i=1;i<=nlstate;i++)    indx=ivector(1,npar);
       for(j=1;j<=nlstate;j++)    for (i=1;i<=npar;i++)
         vareij[i][j][(int)age] =0.;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){    for (j=1;j<=npar;j++) {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      for (i=1;i<=npar;i++) x[i]=0;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      x[j]=1;
         for(i=1;i<=nlstate;i++)      lubksb(a,npar,indx,x);
           for(j=1;j<=nlstate;j++)      for (i=1;i<=npar;i++){ 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        matcov[i][j]=x[i];
       }      }
     }    }
   
     fprintf(ficresvij,"%.0f ",age );    printf("\n#Hessian matrix#\n");
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
       for(j=1; j<=nlstate;j++){    for (i=1;i<=npar;i++) { 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      for (j=1;j<=npar;j++) { 
       }        printf("%.3e ",hess[i][j]);
     fprintf(ficresvij,"\n");        fprintf(ficlog,"%.3e ",hess[i][j]);
     free_matrix(gp,0,nhstepm,1,nlstate);      }
     free_matrix(gm,0,nhstepm,1,nlstate);      printf("\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      fprintf(ficlog,"\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    /* Recompute Inverse */
      for (i=1;i<=npar;i++)
   free_vector(xp,1,npar);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   free_matrix(doldm,1,nlstate,1,npar);    ludcmp(a,npar,indx,&pd);
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     /*  printf("\n#Hessian matrix recomputed#\n");
 }  
     for (j=1;j<=npar;j++) {
 /************ Variance of prevlim ******************/      for (i=1;i<=npar;i++) x[i]=0;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      x[j]=1;
 {      lubksb(a,npar,indx,x);
   /* Variance of prevalence limit */      for (i=1;i<=npar;i++){ 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        y[i][j]=x[i];
   double **newm;        printf("%.3e ",y[i][j]);
   double **dnewm,**doldm;        fprintf(ficlog,"%.3e ",y[i][j]);
   int i, j, nhstepm, hstepm;      }
   int k, cptcode;      printf("\n");
   double *xp;      fprintf(ficlog,"\n");
   double *gp, *gm;    }
   double **gradg, **trgradg;    */
   double age,agelim;  
   int theta;    free_matrix(a,1,npar,1,npar);
        free_matrix(y,1,npar,1,npar);
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    free_vector(x,1,npar);
   fprintf(ficresvpl,"# Age");    free_ivector(indx,1,npar);
   for(i=1; i<=nlstate;i++)    free_matrix(hess,1,npar,1,npar);
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");  
   }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  /*************** hessian matrix ****************/
   doldm=matrix(1,nlstate,1,nlstate);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    {
   hstepm=1*YEARM; /* Every year of age */    int i;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    int l=1, lmax=20;
   agelim = AGESUP;    double k1,k2;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double p2[NPARMAX+1];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double res;
     if (stepm >= YEARM) hstepm=1;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double fx;
     gradg=matrix(1,npar,1,nlstate);    int k=0,kmax=10;
     gp=vector(1,nlstate);    double l1;
     gm=vector(1,nlstate);  
     fx=func(x);
     for(theta=1; theta <=npar; theta++){    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1; i<=npar; i++){ /* Computes gradient */    for(l=0 ; l <=lmax; l++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      l1=pow(10,l);
       }      delts=delt;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(k=1 ; k <kmax; k=k+1){
       for(i=1;i<=nlstate;i++)        delt = delta*(l1*k);
         gp[i] = prlim[i][i];        p2[theta]=x[theta] +delt;
            k1=func(p2)-fx;
       for(i=1; i<=npar; i++) /* Computes gradient */        p2[theta]=x[theta]-delt;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        k2=func(p2)-fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /*res= (k1-2.0*fx+k2)/delt/delt; */
       for(i=1;i<=nlstate;i++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         gm[i] = prlim[i][i];        
   #ifdef DEBUG
       for(i=1;i<=nlstate;i++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     } /* End theta */  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     trgradg =matrix(1,nlstate,1,npar);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
     for(j=1; j<=nlstate;j++)        }
       for(theta=1; theta <=npar; theta++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         trgradg[j][theta]=gradg[theta][j];          k=kmax; l=lmax*10.;
         }
     for(i=1;i<=nlstate;i++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       varpl[i][(int)age] =0.;          delts=delt;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      }
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    delti[theta]=delts;
     return res; 
     fprintf(ficresvpl,"%.0f ",age );    
     for(i=1; i<=nlstate;i++)  }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     free_vector(gp,1,nlstate);  {
     free_vector(gm,1,nlstate);    int i;
     free_matrix(gradg,1,npar,1,nlstate);    int l=1, l1, lmax=20;
     free_matrix(trgradg,1,nlstate,1,npar);    double k1,k2,k3,k4,res,fx;
   } /* End age */    double p2[NPARMAX+1];
     int k;
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    fx=func(x);
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
 }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 /************ Variance of one-step probabilities  ******************/      k1=func(p2)-fx;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    
 {      p2[thetai]=x[thetai]+delti[thetai]/k;
   int i, j,  i1, k1, l1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int k2, l2, j1,  z1;      k2=func(p2)-fx;
   int k=0,l, cptcode;    
   int first=1;      p2[thetai]=x[thetai]-delti[thetai]/k;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double **dnewm,**doldm;      k3=func(p2)-fx;
   double *xp;    
   double *gp, *gm;      p2[thetai]=x[thetai]-delti[thetai]/k;
   double **gradg, **trgradg;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double **mu;      k4=func(p2)-fx;
   double age,agelim, cov[NCOVMAX];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  #ifdef DEBUG
   int theta;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   char fileresprob[FILENAMELENGTH];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   char fileresprobcov[FILENAMELENGTH];  #endif
   char fileresprobcor[FILENAMELENGTH];    }
     return res;
   double ***varpij;  }
   
   strcpy(fileresprob,"prob");  /************** Inverse of matrix **************/
   strcat(fileresprob,fileres);  void ludcmp(double **a, int n, int *indx, double *d) 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  { 
     printf("Problem with resultfile: %s\n", fileresprob);    int i,imax,j,k; 
   }    double big,dum,sum,temp; 
   strcpy(fileresprobcov,"probcov");    double *vv; 
   strcat(fileresprobcov,fileres);   
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    vv=vector(1,n); 
     printf("Problem with resultfile: %s\n", fileresprobcov);    *d=1.0; 
   }    for (i=1;i<=n;i++) { 
   strcpy(fileresprobcor,"probcor");      big=0.0; 
   strcat(fileresprobcor,fileres);      for (j=1;j<=n;j++) 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        if ((temp=fabs(a[i][j])) > big) big=temp; 
     printf("Problem with resultfile: %s\n", fileresprobcor);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   }      vv[i]=1.0/big; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    } 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    for (j=1;j<=n;j++) { 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      for (i=1;i<j;i++) { 
          sum=a[i][j]; 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   fprintf(ficresprob,"# Age");        a[i][j]=sum; 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      } 
   fprintf(ficresprobcov,"# Age");      big=0.0; 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      for (i=j;i<=n;i++) { 
   fprintf(ficresprobcov,"# Age");        sum=a[i][j]; 
         for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   for(i=1; i<=nlstate;i++)        a[i][j]=sum; 
     for(j=1; j<=(nlstate+ndeath);j++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          big=dum; 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          imax=i; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        } 
     }        } 
   fprintf(ficresprob,"\n");      if (j != imax) { 
   fprintf(ficresprobcov,"\n");        for (k=1;k<=n;k++) { 
   fprintf(ficresprobcor,"\n");          dum=a[imax][k]; 
   xp=vector(1,npar);          a[imax][k]=a[j][k]; 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          a[j][k]=dum; 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        } 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        *d = -(*d); 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        vv[imax]=vv[j]; 
   first=1;      } 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      indx[j]=imax; 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     exit(0);      if (j != n) { 
   }        dum=1.0/(a[j][j]); 
   else{        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fprintf(ficgp,"\n# Routine varprob");      } 
   }    } 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    free_vector(vv,1,n);  /* Doesn't work */
     printf("Problem with html file: %s\n", optionfilehtm);  ;
     exit(0);  } 
   }  
   else{  void lubksb(double **a, int n, int *indx, double b[]) 
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");  { 
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    int i,ii=0,ip,j; 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    double sum; 
    
   }    for (i=1;i<=n;i++) { 
   cov[1]=1;      ip=indx[i]; 
   j=cptcoveff;      sum=b[ip]; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      b[ip]=b[i]; 
   j1=0;      if (ii) 
   for(k1=1; k1<=1;k1++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     for(i1=1; i1<=ncodemax[k1];i1++){      else if (sum) ii=i; 
     j1++;      b[i]=sum; 
     } 
     if  (cptcovn>0) {    for (i=n;i>=1;i--) { 
       fprintf(ficresprob, "\n#********** Variable ");      sum=b[i]; 
       fprintf(ficresprobcov, "\n#********** Variable ");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       fprintf(ficgp, "\n#********** Variable ");      b[i]=sum/a[i][i]; 
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");    } 
       fprintf(ficresprobcor, "\n#********** Variable ");  } 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(ficresprob, "**********\n#");  void pstamp(FILE *fichier)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  {
       fprintf(ficresprobcov, "**********\n#");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  }
       fprintf(ficgp, "**********\n#");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /************ Frequencies ********************/
       fprintf(ficgp, "**********\n#");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  {  /* Some frequencies */
       fprintf(fichtm, "**********\n#");    
     }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
        int first;
       for (age=bage; age<=fage; age ++){    double ***freq; /* Frequencies */
         cov[2]=age;    double *pp, **prop;
         for (k=1; k<=cptcovn;k++) {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    char fileresp[FILENAMELENGTH];
         }    
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    pp=vector(1,nlstate);
         for (k=1; k<=cptcovprod;k++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcpy(fileresp,"p");
            strcat(fileresp,fileres);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    if((ficresp=fopen(fileresp,"w"))==NULL) {
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      printf("Problem with prevalence resultfile: %s\n", fileresp);
         gp=vector(1,(nlstate)*(nlstate+ndeath));      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         gm=vector(1,(nlstate)*(nlstate+ndeath));      exit(0);
        }
         for(theta=1; theta <=npar; theta++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           for(i=1; i<=npar; i++)    j1=0;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    
              j=cptcoveff;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
            
           k=0;    first=1;
           for(i=1; i<= (nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){    for(k1=1; k1<=j;k1++){
               k=k+1;      for(i1=1; i1<=ncodemax[k1];i1++){
               gp[k]=pmmij[i][j];        j1++;
             }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           }          scanf("%d", i);*/
                  for (i=-5; i<=nlstate+ndeath; i++)  
           for(i=1; i<=npar; i++)          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            for(m=iagemin; m <= iagemax+3; m++)
                  freq[i][jk][m]=0;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;      for (i=1; i<=nlstate; i++)  
           for(i=1; i<=(nlstate); i++){        for(m=iagemin; m <= iagemax+3; m++)
             for(j=1; j<=(nlstate+ndeath);j++){          prop[i][m]=0;
               k=k+1;        
               gm[k]=pmmij[i][j];        dateintsum=0;
             }        k2cpt=0;
           }        for (i=1; i<=imx; i++) {
                bool=1;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          if  (cptcovn>0) {
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              for (z1=1; z1<=cptcoveff; z1++) 
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          }
           for(theta=1; theta <=npar; theta++)          if (bool==1){
             trgradg[j][theta]=gradg[theta][j];            for(m=firstpass; m<=lastpass; m++){
                      k2=anint[m][i]+(mint[m][i]/12.);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                        if(agev[m][i]==1) agev[m][i]=iagemax+2;
         pmij(pmmij,cov,ncovmodel,x,nlstate);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                        if (m<lastpass) {
         k=0;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         for(i=1; i<=(nlstate); i++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           for(j=1; j<=(nlstate+ndeath);j++){                }
             k=k+1;                
             mu[k][(int) age]=pmmij[i][j];                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           }                  dateintsum=dateintsum+k2;
         }                  k2cpt++;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)                }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)                /*}*/
             varpij[i][j][(int)age] = doldm[i][j];            }
           }
         /*printf("\n%d ",(int)age);        }
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){         
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      }*/        pstamp(ficresp);
         if  (cptcovn>0) {
         fprintf(ficresprob,"\n%d ",(int)age);          fprintf(ficresp, "\n#********** Variable "); 
         fprintf(ficresprobcov,"\n%d ",(int)age);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficresprobcor,"\n%d ",(int)age);          fprintf(ficresp, "**********\n#");
         }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        for(i=1; i<=nlstate;i++) 
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        fprintf(ficresp, "\n");
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        for(i=iagemin; i <= iagemax+3; i++){
         }          if(i==iagemax+3){
         i=0;            fprintf(ficlog,"Total");
         for (k=1; k<=(nlstate);k++){          }else{
           for (l=1; l<=(nlstate+ndeath);l++){            if(first==1){
             i=i++;              first=0;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              printf("See log file for details...\n");
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            }
             for (j=1; j<=i;j++){            fprintf(ficlog,"Age %d", i);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          for(jk=1; jk <=nlstate ; jk++){
             }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           }              pp[jk] += freq[jk][m][i]; 
         }/* end of loop for state */          }
       } /* end of loop for age */          for(jk=1; jk <=nlstate ; jk++){
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            for(m=-1, pos=0; m <=0 ; m++)
       for (k1=1; k1<=(nlstate);k1++){              pos += freq[jk][m][i];
         for (l1=1; l1<=(nlstate+ndeath);l1++){            if(pp[jk]>=1.e-10){
           if(l1==k1) continue;              if(first==1){
           i=(k1-1)*(nlstate+ndeath)+l1;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for (k2=1; k2<=(nlstate);k2++){              }
             for (l2=1; l2<=(nlstate+ndeath);l2++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               if(l2==k2) continue;            }else{
               j=(k2-1)*(nlstate+ndeath)+l2;              if(first==1)
               if(j<=i) continue;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               for (age=bage; age<=fage; age ++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                 if ((int)age %5==0){            }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          for(jk=1; jk <=nlstate ; jk++){
                   mu1=mu[i][(int) age]/stepm*YEARM ;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   mu2=mu[j][(int) age]/stepm*YEARM;              pp[jk] += freq[jk][m][i];
                   /* Computing eigen value of matrix of covariance */          }       
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            pos += pp[jk];
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);            posprop += prop[jk][i];
                   /* Eigen vectors */          }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          for(jk=1; jk <=nlstate ; jk++){
                   v21=sqrt(1.-v11*v11);            if(pos>=1.e-5){
                   v12=-v21;              if(first==1)
                   v22=v11;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   /*printf(fignu*/              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            }else{
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */              if(first==1)
                   if(first==1){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                     first=0;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(ficgp,"\nset parametric;set nolabel");            }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);            if( i <= iagemax){
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              if(pos>=1.e-5){
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);              else
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          }
                   }else{          
                     first=0;          for(jk=-1; jk <=nlstate+ndeath; jk++)
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            for(m=-1; m <=nlstate+ndeath; m++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              if(freq[jk][m][i] !=0 ) {
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              if(first==1)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                   }/* if first */              }
                 } /* age mod 5 */          if(i <= iagemax)
               } /* end loop age */            fprintf(ficresp,"\n");
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);          if(first==1)
               first=1;            printf("Others in log...\n");
             } /*l12 */          fprintf(ficlog,"\n");
           } /* k12 */        }
         } /*l1 */      }
       }/* k1 */    }
     } /* loop covariates */    dateintmean=dateintsum/k2cpt; 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);   
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    fclose(ficresp);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    free_vector(pp,1,nlstate);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /* End of Freq */
   }  }
   free_vector(xp,1,npar);  
   fclose(ficresprob);  /************ Prevalence ********************/
   fclose(ficresprobcov);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   fclose(ficresprobcor);  {  
   fclose(ficgp);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fclose(fichtm);       in each health status at the date of interview (if between dateprev1 and dateprev2).
 }       We still use firstpass and lastpass as another selection.
     */
    
 /******************* Printing html file ***********/    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    double ***freq; /* Frequencies */
                   int lastpass, int stepm, int weightopt, char model[],\    double *pp, **prop;
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    double pos,posprop; 
                   int popforecast, int estepm ,\    double  y2; /* in fractional years */
                   double jprev1, double mprev1,double anprev1, \    int iagemin, iagemax;
                   double jprev2, double mprev2,double anprev2){  
   int jj1, k1, i1, cpt;    iagemin= (int) agemin;
   /*char optionfilehtm[FILENAMELENGTH];*/    iagemax= (int) agemax;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    /*pp=vector(1,nlstate);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    j=cptcoveff;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    
  - Life expectancies by age and initial health status (estepm=%2d months):    for(k1=1; k1<=j;k1++){
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      for(i1=1; i1<=ncodemax[k1];i1++){
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        j1++;
         
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n        for (i=1; i<=nlstate; i++)  
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          for(m=iagemin; m <= iagemax+3; m++)
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            prop[i][m]=0.0;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n       
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        for (i=1; i<=imx; i++) { /* Each individual */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          bool=1;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          if  (cptcovn>0) {
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  if(popforecast==1) fprintf(fichtm,"\n                bool=0;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          } 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          if (bool==1) { 
         <br>",fileres,fileres,fileres,fileres);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
  else              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 fprintf(fichtm," <li>Graphs</li><p>");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
  m=cptcoveff;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
  jj1=0;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
  for(k1=1; k1<=m;k1++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
    for(i1=1; i1<=ncodemax[k1];i1++){                } 
      jj1++;              }
      if (cptcovn > 0) {            } /* end selection of waves */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          }
        for (cpt=1; cpt<=cptcoveff;cpt++)        }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        for(i=iagemin; i <= iagemax+3; i++){  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          
      }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
      /* Pij */            posprop += prop[jk][i]; 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          } 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
      /* Quasi-incidences */          for(jk=1; jk <=nlstate ; jk++){     
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>            if( i <=  iagemax){ 
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              if(posprop>=1.e-5){ 
        /* Stable prevalence in each health state */                probs[i][jk][j1]= prop[jk][i]/posprop;
        for(cpt=1; cpt<nlstate;cpt++){              } else
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            } 
        }          }/* end jk */ 
     for(cpt=1; cpt<=nlstate;cpt++) {        }/* end i */ 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      } /* end i1 */
 interval) in state (%d): v%s%d%d.png <br>    } /* end k1 */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      
      }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      for(cpt=1; cpt<=nlstate;cpt++) {    /*free_vector(pp,1,nlstate);*/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  }  /* End of prevalence */
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  /************* Waves Concatenation ***************/
 health expectancies in states (1) and (2): e%s%d.png<br>  
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    }  {
  }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 fclose(fichtm);       Death is a valid wave (if date is known).
 }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 /******************* Gnuplot file **************/       and mw[mi+1][i]. dh depends on stepm.
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){       */
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    int i, mi, m;
   int ng;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {       double sum=0., jmean=0.;*/
     printf("Problem with file %s",optionfilegnuplot);    int first;
   }    int j, k=0,jk, ju, jl;
     double sum=0.;
 #ifdef windows    first=0;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    jmin=1e+5;
 #endif    jmax=-1;
 m=pow(2,cptcoveff);    jmean=0.;
      for(i=1; i<=imx; i++){
  /* 1eme*/      mi=0;
   for (cpt=1; cpt<= nlstate ; cpt ++) {      m=firstpass;
    for (k1=1; k1<= m ; k1 ++) {      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 #ifdef windows          mw[++mi][i]=m;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        if(m >=lastpass)
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          break;
 #endif        else
 #ifdef unix          m++;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      }/* end while */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      if (s[m][i] > nlstate){
 #endif        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
 for (i=1; i<= nlstate ; i ++) {           /* Only death is a correct wave */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        mw[mi][i]=m;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      wav[i]=mi;
     for (i=1; i<= nlstate ; i ++) {      if(mi==0){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        nbwarn++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if(first==0){
 }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          first=1;
      for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        if(first==1){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 }          }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      } /* end mi==0 */
 #ifdef unix    } /* End individuals */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  
 #endif    for(i=1; i<=imx; i++){
    }      for(mi=1; mi<wav[i];mi++){
   }        if (stepm <=0)
   /*2 eme*/          dh[mi][i]=1;
         else{
   for (k1=1; k1<= m ; k1 ++) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);            if (agedc[i] < 2*AGESUP) {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                  if(j==0) j=1;  /* Survives at least one month after exam */
     for (i=1; i<= nlstate+1 ; i ++) {              else if(j<0){
       k=2*i;                nberr++;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (j=1; j<= nlstate+1 ; j ++) {                j=1; /* Temporary Dangerous patch */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              k=k+1;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              if (j >= jmax){
       for (j=1; j<= nlstate+1 ; j ++) {                jmax=j;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                ijmax=i;
         else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }                if (j <= jmin){
       fprintf(ficgp,"\" t\"\" w l 0,");                jmin=j;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                ijmin=i;
       for (j=1; j<= nlstate+1 ; j ++) {              }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              sum=sum+j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 }                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            }
       else fprintf(ficgp,"\" t\"\" w l 0,");          }
     }          else{
   }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   /*3eme*/  
             k=k+1;
   for (k1=1; k1<= m ; k1 ++) {            if (j >= jmax) {
     for (cpt=1; cpt<= nlstate ; cpt ++) {              jmax=j;
       k=2+nlstate*(2*cpt-2);              ijmax=i;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            }
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            else if (j <= jmin){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              jmin=j;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              ijmin=i;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            if(j<0){
               nberr++;
 */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (i=1; i< nlstate ; i ++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            }
             sum=sum+j;
       }          }
     }          jk= j/stepm;
   }          jl= j -jk*stepm;
            ju= j -(jk+1)*stepm;
   /* CV preval stat */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     for (k1=1; k1<= m ; k1 ++) {            if(jl==0){
     for (cpt=1; cpt<nlstate ; cpt ++) {              dh[mi][i]=jk;
       k=3;              bh[mi][i]=0;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            }else{ /* We want a negative bias in order to only have interpolation ie
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
       for (i=1; i< nlstate ; i ++)              bh[mi][i]=ju;
         fprintf(ficgp,"+$%d",k+i+1);            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          }else{
                  if(jl <= -ju){
       l=3+(nlstate+ndeath)*cpt;              dh[mi][i]=jk;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              bh[mi][i]=jl;       /* bias is positive if real duration
       for (i=1; i< nlstate ; i ++) {                                   * is higher than the multiple of stepm and negative otherwise.
         l=3+(nlstate+ndeath)*cpt;                                   */
         fprintf(ficgp,"+$%d",l+i+1);            }
       }            else{
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                dh[mi][i]=jk+1;
     }              bh[mi][i]=ju;
   }              }
              if(dh[mi][i]==0){
   /* proba elementaires */              dh[mi][i]=1; /* At least one step */
    for(i=1,jk=1; i <=nlstate; i++){              bh[mi][i]=ju; /* At least one step */
     for(k=1; k <=(nlstate+ndeath); k++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       if (k != i) {            }
         for(j=1; j <=ncovmodel; j++){          } /* end if mle */
                }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      } /* end wave */
           jk++;    }
           fprintf(ficgp,"\n");    jmean=sum/k;
         }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }   }
    }  
   /*********** Tricode ****************************/
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  void tricode(int *Tvar, int **nbcode, int imx)
      for(jk=1; jk <=m; jk++) {  {
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    
        if (ng==2)    int Ndum[20],ij=1, k, j, i, maxncov=19;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    int cptcode=0;
        else    cptcoveff=0; 
          fprintf(ficgp,"\nset title \"Probability\"\n");   
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    for (k=0; k<maxncov; k++) Ndum[k]=0;
        i=1;    for (k=1; k<=7; k++) ncodemax[k]=0;
        for(k2=1; k2<=nlstate; k2++) {  
          k3=i;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
          for(k=1; k<=(nlstate+ndeath); k++) {      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
            if (k != k2){                                 modality*/ 
              if(ng==2)        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        Ndum[ij]++; /*store the modality */
              else        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
              ij=1;                                         Tvar[j]. If V=sex and male is 0 and 
              for(j=3; j <=ncovmodel; j++) {                                         female is 1, then  cptcode=1.*/
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;      for (i=0; i<=cptcode; i++) {
                }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
                else      }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
              }      ij=1; 
              fprintf(ficgp,")/(1");      for (i=1; i<=ncodemax[j]; i++) {
                      for (k=0; k<= maxncov; k++) {
              for(k1=1; k1 <=nlstate; k1++){            if (Ndum[k] != 0) {
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            nbcode[Tvar[j]][ij]=k; 
                ij=1;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                for(j=3; j <=ncovmodel; j++){            
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            ij++;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }
                    ij++;          if (ij > ncodemax[j]) break; 
                  }        }  
                  else      } 
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    }  
                }  
                fprintf(ficgp,")");   for (k=0; k< maxncov; k++) Ndum[k]=0;
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);   for (i=1; i<=ncovmodel-2; i++) { 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
              i=i+ncovmodel;     ij=Tvar[i];
            }     Ndum[ij]++;
          }   }
        }  
      }   ij=1;
    }   for (i=1; i<= maxncov; i++) {
    fclose(ficgp);     if((Ndum[i]!=0) && (i<=ncovcol)){
 }  /* end gnuplot */       Tvaraff[ij]=i; /*For printing */
        ij++;
      }
 /*************** Moving average **************/   }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){   
    cptcoveff=ij-1; /*Number of simple covariates*/
   int i, cpt, cptcod;  }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)  /*********** Health Expectancies ****************/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  {
       for (i=1; i<=nlstate;i++){    /* Health expectancies, no variances */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
           for (cpt=0;cpt<=4;cpt++){    int nhstepma, nstepma; /* Decreasing with age */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    double age, agelim, hf;
           }    double ***p3mat;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    double eip;
         }  
       }    pstamp(ficreseij);
     }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
        fprintf(ficreseij,"# Age");
 }    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
 /************** Forecasting ******************/      }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      fprintf(ficreseij," e%1d. ",i);
      }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficreseij,"\n");
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    
   double *popeffectif,*popcount;    if(estepm < stepm){
   double ***p3mat;      printf ("Problem %d lower than %d\n",estepm, stepm);
   char fileresf[FILENAMELENGTH];    }
     else  hstepm=estepm;   
  agelim=AGESUP;    /* We compute the life expectancy from trapezoids spaced every estepm months
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
   strcpy(fileresf,"f");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   strcat(fileresf,fileres);     * to compare the new estimate of Life expectancy with the same linear 
   if((ficresf=fopen(fileresf,"w"))==NULL) {     * hypothesis. A more precise result, taking into account a more precise
     printf("Problem with forecast resultfile: %s\n", fileresf);     * curvature will be obtained if estepm is as small as stepm. */
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   if (mobilav==1) {       Look at hpijx to understand the reason of that which relies in memory size
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       and note for a fixed period like estepm months */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   stepsize=(int) (stepm+YEARM-1)/YEARM;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if (stepm<=12) stepsize=1;       results. So we changed our mind and took the option of the best precision.
      */
   agelim=AGESUP;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
   hstepm=1;    agelim=AGESUP;
   hstepm=hstepm/stepm;    /* If stepm=6 months */
   yp1=modf(dateintmean,&yp);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   anprojmean=yp;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   yp2=modf((yp1*12),&yp);      
   mprojmean=yp;  /* nhstepm age range expressed in number of stepm */
   yp1=modf((yp2*30.5),&yp);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   jprojmean=yp;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if(jprojmean==0) jprojmean=1;    /* if (stepm >= YEARM) hstepm=1;*/
   if(mprojmean==0) jprojmean=1;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
      for (age=bage; age<=fage; age ++){ 
   for(cptcov=1;cptcov<=i2;cptcov++){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       k=k+1;      /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficresf,"\n#******");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* If stepm=6 months */
       }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       fprintf(ficresf,"******\n");         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       fprintf(ficresf,"# StartingAge FinalAge");      
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
            
            hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      
         fprintf(ficresf,"\n");      printf("%d|",(int)age);fflush(stdout);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      /* Computing expectancies */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(i=1; i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;        for(j=1; j<=nlstate;j++)
                    for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           oldm=oldms;savm=savms;            
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
          
           for (h=0; h<=nhstepm; h++){          }
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      fprintf(ficreseij,"%3.0f",age );
             }      for(i=1; i<=nlstate;i++){
             for(j=1; j<=nlstate+ndeath;j++) {        eip=0;
               kk1=0.;kk2=0;        for(j=1; j<=nlstate;j++){
               for(i=1; i<=nlstate;i++) {                        eip +=eij[i][j][(int)age];
                 if (mobilav==1)          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        }
                 else {        fprintf(ficreseij,"%9.4f", eip );
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      }
                 }      fprintf(ficreseij,"\n");
                      
               }    }
               if (h==(int)(calagedate+12*cpt)){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 fprintf(ficresf," %.3f", kk1);    printf("\n");
                            fprintf(ficlog,"\n");
               }    
             }  }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
         }  
       }  {
     }    /* Covariances of health expectancies eij and of total life expectancies according
   }     to initial status i, ei. .
            */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
   fclose(ficresf);    double age, agelim, hf;
 }    double ***p3matp, ***p3matm, ***varhe;
 /************** Forecasting ******************/    double **dnewm,**doldm;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    double *xp, *xm;
      double **gp, **gm;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double ***gradg, ***trgradg;
   int *popage;    int theta;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    double eip, vip;
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    xm=vector(1,npar);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   agelim=AGESUP;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    
      pstamp(ficresstdeij);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
      fprintf(ficresstdeij,"# Age");
      for(i=1; i<=nlstate;i++){
   strcpy(filerespop,"pop");      for(j=1; j<=nlstate;j++)
   strcat(filerespop,fileres);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      fprintf(ficresstdeij," e%1d. ",i);
     printf("Problem with forecast resultfile: %s\n", filerespop);    }
   }    fprintf(ficresstdeij,"\n");
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
     pstamp(ficrescveij);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
   if (mobilav==1) {    for(i=1; i<=nlstate;i++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=1; j<=nlstate;j++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);        cptj= (j-1)*nlstate+i;
   }        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;            cptj2= (j2-1)*nlstate+i2;
   if (stepm<=12) stepsize=1;            if(cptj2 <= cptj)
                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   agelim=AGESUP;          }
        }
   hstepm=1;    fprintf(ficrescveij,"\n");
   hstepm=hstepm/stepm;    
      if(estepm < stepm){
   if (popforecast==1) {      printf ("Problem %d lower than %d\n",estepm, stepm);
     if((ficpop=fopen(popfile,"r"))==NULL) {    }
       printf("Problem with population file : %s\n",popfile);exit(0);    else  hstepm=estepm;   
     }    /* We compute the life expectancy from trapezoids spaced every estepm months
     popage=ivector(0,AGESUP);     * This is mainly to measure the difference between two models: for example
     popeffectif=vector(0,AGESUP);     * if stepm=24 months pijx are given only every 2 years and by summing them
     popcount=vector(0,AGESUP);     * we are calculating an estimate of the Life Expectancy assuming a linear 
         * progression in between and thus overestimating or underestimating according
     i=1;       * to the curvature of the survival function. If, for the same date, we 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         * to compare the new estimate of Life expectancy with the same linear 
     imx=i;     * hypothesis. A more precise result, taking into account a more precise
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];     * curvature will be obtained if estepm is as small as stepm. */
   }  
     /* For example we decided to compute the life expectancy with the smallest unit */
   for(cptcov=1;cptcov<=i2;cptcov++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       nhstepm is the number of hstepm from age to agelim 
       k=k+1;       nstepm is the number of stepm from age to agelin. 
       fprintf(ficrespop,"\n#******");       Look at hpijx to understand the reason of that which relies in memory size
       for(j=1;j<=cptcoveff;j++) {       and note for a fixed period like estepm months */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       }       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficrespop,"******\n");       means that if the survival funtion is printed only each two years of age and if
       fprintf(ficrespop,"# Age");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       results. So we changed our mind and took the option of the best precision.
       if (popforecast==1)  fprintf(ficrespop," [Population]");    */
          hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* If stepm=6 months */
            /* nhstepm age range expressed in number of stepm */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    agelim=AGESUP;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
           nhstepm = nhstepm/hstepm;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
              /* if (stepm >= YEARM) hstepm=1;*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for (h=0; h<=nhstepm; h++){    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
             }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    for (age=bage; age<=fage; age ++){ 
               for(i=1; i<=nlstate;i++) {                    nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                 if (mobilav==1)      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      /* if (stepm >= YEARM) hstepm=1;*/
                 else {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }      /* If stepm=6 months */
               }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
               if (h==(int)(calagedate+12*cpt)){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      
                   /*fprintf(ficrespop," %.3f", kk1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  
               }      /* Computing  Variances of health expectancies */
             }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
             for(i=1; i<=nlstate;i++){         decrease memory allocation */
               kk1=0.;      for(theta=1; theta <=npar; theta++){
                 for(j=1; j<=nlstate;j++){        for(i=1; i<=npar; i++){ 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                 }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        }
             }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        for(j=1; j<= nlstate; j++){
           }          for(i=1; i<=nlstate; i++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(h=0; h<=nhstepm-1; h++){
         }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
              }
   /******/          }
         }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {       
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(ij=1; ij<= nlstate*nlstate; ij++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for(h=0; h<=nhstepm-1; h++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           nhstepm = nhstepm/hstepm;          }
                }/* End theta */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
           oldm=oldms;savm=savms;      
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(h=0; h<=nhstepm-1; h++)
           for (h=0; h<=nhstepm; h++){        for(j=1; j<=nlstate*nlstate;j++)
             if (h==(int) (calagedate+YEARM*cpt)) {          for(theta=1; theta <=npar; theta++)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            trgradg[h][j][theta]=gradg[h][theta][j];
             }      
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;       for(ij=1;ij<=nlstate*nlstate;ij++)
               for(i=1; i<=nlstate;i++) {                      for(ji=1;ji<=nlstate*nlstate;ji++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              varhe[ij][ji][(int)age] =0.;
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);       printf("%d|",(int)age);fflush(stdout);
             }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           }       for(h=0;h<=nhstepm-1;h++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(k=0;k<=nhstepm-1;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
    }          for(ij=1;ij<=nlstate*nlstate;ij++)
   }            for(ji=1;ji<=nlstate*nlstate;ji++)
                varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
       }
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);      /* Computing expectancies */
     free_vector(popeffectif,0,AGESUP);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     free_vector(popcount,0,AGESUP);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   fclose(ficrespop);            
 }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
 /***********************************************/          }
 /**************** Main Program *****************/  
 /***********************************************/      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
 int main(int argc, char *argv[])        eip=0.;
 {        vip=0.;
         for(j=1; j<=nlstate;j++){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          eip += eij[i][j][(int)age];
   double agedeb, agefin,hf;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   double fret;        }
   double **xi,tmp,delta;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
   double dum; /* Dummy variable */      fprintf(ficresstdeij,"\n");
   double ***p3mat;  
   int *indx;      fprintf(ficrescveij,"%3.0f",age );
   char line[MAXLINE], linepar[MAXLINE];      for(i=1; i<=nlstate;i++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        for(j=1; j<=nlstate;j++){
   int firstobs=1, lastobs=10;          cptj= (j-1)*nlstate+i;
   int sdeb, sfin; /* Status at beginning and end */          for(i2=1; i2<=nlstate;i2++)
   int c,  h , cpt,l;            for(j2=1; j2<=nlstate;j2++){
   int ju,jl, mi;              cptj2= (j2-1)*nlstate+i2;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              if(cptj2 <= cptj)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   int mobilav=0,popforecast=0;            }
   int hstepm, nhstepm;        }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      fprintf(ficrescveij,"\n");
      
   double bage, fage, age, agelim, agebase;    }
   double ftolpl=FTOL;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   double **prlim;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   double *severity;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   double ***param; /* Matrix of parameters */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   double  *p;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **matcov; /* Matrix of covariance */    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***delti3; /* Scale */    printf("\n");
   double *delti; /* Scale */    fprintf(ficlog,"\n");
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */    free_vector(xm,1,npar);
   double *epj, vepp;    free_vector(xp,1,npar);
   double kk1, kk2;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   char z[1]="c", occ;  {
 #include <sys/time.h>    /* Variance of health expectancies */
 #include <time.h>    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    /* double **newm;*/
      double **dnewm,**doldm;
   /* long total_usecs;    double **dnewmp,**doldmp;
   struct timeval start_time, end_time;    int i, j, nhstepm, hstepm, h, nstepm ;
      int k, cptcode;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double *xp;
   getcwd(pathcd, size);    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   printf("\n%s",version);    double **gradgp, **trgradgp; /* for var p point j */
   if(argc <=1){    double *gpp, *gmp; /* for var p point j */
     printf("\nEnter the parameter file name: ");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     scanf("%s",pathtot);    double ***p3mat;
   }    double age,agelim, hf;
   else{    double ***mobaverage;
     strcpy(pathtot,argv[1]);    int theta;
   }    char digit[4];
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    char digitp[25];
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    char fileresprobmorprev[FILENAMELENGTH];
   /* cutv(path,optionfile,pathtot,'\\');*/  
     if(popbased==1){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      if(mobilav!=0)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        strcpy(digitp,"-populbased-mobilav-");
   chdir(path);      else strcpy(digitp,"-populbased-nomobil-");
   replace(pathc,path);    }
     else 
 /*-------- arguments in the command line --------*/      strcpy(digitp,"-stablbased-");
   
   strcpy(fileres,"r");    if (mobilav!=0) {
   strcat(fileres, optionfilefiname);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(fileres,".txt");    /* Other files have txt extension */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   /*---------arguments file --------*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    }
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;    strcpy(fileresprobmorprev,"prmorprev"); 
   }    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   strcpy(filereso,"o");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   strcat(filereso,fileres);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   if((ficparo=fopen(filereso,"w"))==NULL) {    strcat(fileresprobmorprev,fileres);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     ungetc(c,ficpar);   
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     puts(line);    pstamp(ficresprobmorprev);
     fputs(line,ficparo);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   ungetc(c,ficpar);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      for(i=1; i<=nlstate;i++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    }  
 while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobmorprev,"\n");
     ungetc(c,ficpar);    fprintf(ficgp,"\n# Routine varevsij");
     fgets(line, MAXLINE, ficpar);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     puts(line);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fputs(line,ficparo);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   }  /*   } */
   ungetc(c,ficpar);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
        fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   covar=matrix(0,NCOVMAX,1,n);    if(popbased==1)
   cptcovn=0;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   ncovmodel=2+cptcovn;    fprintf(ficresvij,"# Age");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
   /* Read guess parameters */        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   /* Reads comments: lines beginning with '#' */    fprintf(ficresvij,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    xp=vector(1,npar);
     fgets(line, MAXLINE, ficpar);    dnewm=matrix(1,nlstate,1,npar);
     puts(line);    doldm=matrix(1,nlstate,1,nlstate);
     fputs(line,ficparo);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);  
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    gpp=vector(nlstate+1,nlstate+ndeath);
     for(i=1; i <=nlstate; i++)    gmp=vector(nlstate+1,nlstate+ndeath);
     for(j=1; j <=nlstate+ndeath-1; j++){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);    
       fprintf(ficparo,"%1d%1d",i1,j1);    if(estepm < stepm){
       printf("%1d%1d",i,j);      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar," %lf",&param[i][j][k]);    else  hstepm=estepm;   
         printf(" %lf",param[i][j][k]);    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficparo," %lf",param[i][j][k]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
       fscanf(ficpar,"\n");       nstepm is the number of stepm from age to agelin. 
       printf("\n");       Look at function hpijx to understand why (it is linked to memory size questions) */
       fprintf(ficparo,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   p=param[1][1];    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /* Reads comments: lines beginning with '#' */    agelim = AGESUP;
   while((c=getc(ficpar))=='#' && c!= EOF){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     ungetc(c,ficpar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fgets(line, MAXLINE, ficpar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     puts(line);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   }      gp=matrix(0,nhstepm,1,nlstate);
   ungetc(c,ficpar);      gm=matrix(0,nhstepm,1,nlstate);
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      for(theta=1; theta <=npar; theta++){
   for(i=1; i <=nlstate; i++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     for(j=1; j <=nlstate+ndeath-1; j++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }
       printf("%1d%1d",i,j);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficparo,"%1d%1d",i1,j1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);        if (popbased==1) {
         printf(" %le",delti3[i][j][k]);          if(mobilav ==0){
         fprintf(ficparo," %le",delti3[i][j][k]);            for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=probs[(int)age][i][ij];
       fscanf(ficpar,"\n");          }else{ /* mobilav */ 
       printf("\n");            for(i=1; i<=nlstate;i++)
       fprintf(ficparo,"\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
     }          }
   }        }
   delti=delti3[1][1];    
          for(j=1; j<= nlstate; j++){
   /* Reads comments: lines beginning with '#' */          for(h=0; h<=nhstepm; h++){
   while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     ungetc(c,ficpar);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     fgets(line, MAXLINE, ficpar);          }
     puts(line);        }
     fputs(line,ficparo);        /* This for computing probability of death (h=1 means
   }           computed over hstepm matrices product = hstepm*stepm months) 
   ungetc(c,ficpar);           as a weighted average of prlim.
          */
   matcov=matrix(1,npar,1,npar);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   for(i=1; i <=npar; i++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     fscanf(ficpar,"%s",&str);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     printf("%s",str);        }    
     fprintf(ficparo,"%s",str);        /* end probability of death */
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       printf(" %.5le",matcov[i][j]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficparo," %.5le",matcov[i][j]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fscanf(ficpar,"\n");   
     printf("\n");        if (popbased==1) {
     fprintf(ficparo,"\n");          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
   for(i=1; i <=npar; i++)              prlim[i][i]=probs[(int)age][i][ij];
     for(j=i+1;j<=npar;j++)          }else{ /* mobilav */ 
       matcov[i][j]=matcov[j][i];            for(i=1; i<=nlstate;i++)
                  prlim[i][i]=mobaverage[(int)age][i][ij];
   printf("\n");          }
         }
   
     /*-------- Rewriting paramater file ----------*/        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
      strcpy(rfileres,"r");    /* "Rparameterfile */          for(h=0; h<=nhstepm; h++){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
      strcat(rfileres,".");    /* */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          }
     if((ficres =fopen(rfileres,"w"))==NULL) {        }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        /* This for computing probability of death (h=1 means
     }           computed over hstepm matrices product = hstepm*stepm months) 
     fprintf(ficres,"#%s\n",version);           as a weighted average of prlim.
            */
     /*-------- data file ----------*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     if((fic=fopen(datafile,"r"))==NULL)    {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       printf("Problem with datafile: %s\n", datafile);goto end;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     }        }    
         /* end probability of death */
     n= lastobs;  
     severity = vector(1,maxwav);        for(j=1; j<= nlstate; j++) /* vareij */
     outcome=imatrix(1,maxwav+1,1,n);          for(h=0; h<=nhstepm; h++){
     num=ivector(1,n);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     moisnais=vector(1,n);          }
     annais=vector(1,n);  
     moisdc=vector(1,n);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     andc=vector(1,n);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     agedc=vector(1,n);        }
     cod=ivector(1,n);  
     weight=vector(1,n);      } /* End theta */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);      for(h=0; h<=nhstepm; h++) /* veij */
     adl=imatrix(1,maxwav+1,1,n);            for(j=1; j<=nlstate;j++)
     tab=ivector(1,NCOVMAX);          for(theta=1; theta <=npar; theta++)
     ncodemax=ivector(1,8);            trgradg[h][j][theta]=gradg[h][theta][j];
   
     i=1;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     while (fgets(line, MAXLINE, fic) != NULL)    {        for(theta=1; theta <=npar; theta++)
       if ((i >= firstobs) && (i <=lastobs)) {          trgradgp[j][theta]=gradgp[theta][j];
            
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           strcpy(line,stra);      for(i=1;i<=nlstate;i++)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1;j<=nlstate;j++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          vareij[i][j][(int)age] =0.;
         }  
              for(h=0;h<=nhstepm;h++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(k=0;k<=nhstepm;k++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1;i<=nlstate;i++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         for (j=ncovcol;j>=1;j--){      }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
         }      /* pptj */
         num[i]=atol(stra);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
              matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
         i=i+1;      /* end ppptj */
       }      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     /* printf("ii=%d", ij);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
        scanf("%d",i);*/   
   imx=i-1; /* Number of individuals */      if (popbased==1) {
         if(mobilav ==0){
   /* for (i=1; i<=imx; i++){          for(i=1; i<=nlstate;i++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            prlim[i][i]=probs[(int)age][i][ij];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        }else{ /* mobilav */ 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for(i=1; i<=nlstate;i++)
     }*/            prlim[i][i]=mobaverage[(int)age][i][ij];
    /*  for (i=1; i<=imx; i++){        }
      if (s[4][i]==9)  s[4][i]=-1;      }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/               
        /* This for computing probability of death (h=1 means
           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   /* Calculation of the number of parameter from char model*/         as a weighted average of prlim.
   Tvar=ivector(1,15);      */
   Tprod=ivector(1,15);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   Tvaraff=ivector(1,15);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   Tvard=imatrix(1,15,1,2);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   Tage=ivector(1,15);            }    
          /* end probability of death */
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     j=nbocc(model,'+');      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     j1=nbocc(model,'*');        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     cptcovn=j+1;        for(i=1; i<=nlstate;i++){
     cptcovprod=j1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
            }
     strcpy(modelsav,model);      } 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      fprintf(ficresprobmorprev,"\n");
       printf("Error. Non available option model=%s ",model);  
       goto end;      fprintf(ficresvij,"%.0f ",age );
     }      for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++){
     for(i=(j+1); i>=1;i--){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       cutv(stra,strb,modelsav,'+');        }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      fprintf(ficresvij,"\n");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      free_matrix(gp,0,nhstepm,1,nlstate);
       /*scanf("%d",i);*/      free_matrix(gm,0,nhstepm,1,nlstate);
       if (strchr(strb,'*')) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         cutv(strd,strc,strb,'*');      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         if (strcmp(strc,"age")==0) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cptcovprod--;    } /* End age */
           cutv(strb,stre,strd,'V');    free_vector(gpp,nlstate+1,nlstate+ndeath);
           Tvar[i]=atoi(stre);    free_vector(gmp,nlstate+1,nlstate+ndeath);
           cptcovage++;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
             Tage[cptcovage]=i;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             /*printf("stre=%s ", stre);*/    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         else if (strcmp(strd,"age")==0) {    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           cptcovprod--;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           cutv(strb,stre,strc,'V');  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           Tvar[i]=atoi(stre);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           cptcovage++;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           Tage[cptcovage]=i;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         else {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           cutv(strb,stre,strc,'V');    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           Tvar[i]=ncovcol+k1;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           cutv(strb,strc,strd,'V');  */
           Tprod[k1]=i;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           Tvard[k1][1]=atoi(strc);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];    free_vector(xp,1,npar);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    free_matrix(doldm,1,nlstate,1,nlstate);
           for (k=1; k<=lastobs;k++)    free_matrix(dnewm,1,nlstate,1,npar);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           k1++;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           k2=k2+2;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }    fclose(ficresprobmorprev);
       else {    fflush(ficgp);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    fflush(fichtm); 
        /*  scanf("%d",i);*/  }  /* end varevsij */
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);  /************ Variance of prevlim ******************/
       }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       strcpy(modelsav,stra);    {
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    /* Variance of prevalence limit */
         scanf("%d",i);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     }    double **newm;
 }    double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    int k, cptcode;
   printf("cptcovprod=%d ", cptcovprod);    double *xp;
   scanf("%d ",i);*/    double *gp, *gm;
     fclose(fic);    double **gradg, **trgradg;
     double age,agelim;
     /*  if(mle==1){*/    int theta;
     if (weightopt != 1) { /* Maximisation without weights*/    
       for(i=1;i<=n;i++) weight[i]=1.0;    pstamp(ficresvpl);
     }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     /*-calculation of age at interview from date of interview and age at death -*/    fprintf(ficresvpl,"# Age");
     agev=matrix(1,maxwav,1,imx);    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     for (i=1; i<=imx; i++) {    fprintf(ficresvpl,"\n");
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    xp=vector(1,npar);
          anint[m][i]=9999;    dnewm=matrix(1,nlstate,1,npar);
          s[m][i]=-1;    doldm=matrix(1,nlstate,1,nlstate);
        }    
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    hstepm=1*YEARM; /* Every year of age */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     }    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for (i=1; i<=imx; i++)  {      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      if (stepm >= YEARM) hstepm=1;
       for(m=1; (m<= maxwav); m++){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         if(s[m][i] >0){      gradg=matrix(1,npar,1,nlstate);
           if (s[m][i] >= nlstate+1) {      gp=vector(1,nlstate);
             if(agedc[i]>0)      gm=vector(1,nlstate);
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];      for(theta=1; theta <=npar; theta++){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        for(i=1; i<=npar; i++){ /* Computes gradient */
            else {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               if (andc[i]!=9999){        }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               agev[m][i]=-1;        for(i=1;i<=nlstate;i++)
               }          gp[i] = prlim[i][i];
             }      
           }        for(i=1; i<=npar; i++) /* Computes gradient */
           else if(s[m][i] !=9){ /* Should no more exist */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             if(mint[m][i]==99 || anint[m][i]==9999)        for(i=1;i<=nlstate;i++)
               agev[m][i]=1;          gm[i] = prlim[i][i];
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];        for(i=1;i<=nlstate;i++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
             }      } /* End theta */
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];      trgradg =matrix(1,nlstate,1,npar);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }      for(j=1; j<=nlstate;j++)
             /*agev[m][i]=anint[m][i]-annais[i];*/        for(theta=1; theta <=npar; theta++)
             /*   agev[m][i] = age[i]+2*m;*/          trgradg[j][theta]=gradg[theta][j];
           }  
           else { /* =9 */      for(i=1;i<=nlstate;i++)
             agev[m][i]=1;        varpl[i][(int)age] =0.;
             s[m][i]=-1;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         }      for(i=1;i<=nlstate;i++)
         else /*= 0 Unknown */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           agev[m][i]=1;  
       }      fprintf(ficresvpl,"%.0f ",age );
          for(i=1; i<=nlstate;i++)
     }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     for (i=1; i<=imx; i++)  {      fprintf(ficresvpl,"\n");
       for(m=1; (m<= maxwav); m++){      free_vector(gp,1,nlstate);
         if (s[m][i] > (nlstate+ndeath)) {      free_vector(gm,1,nlstate);
           printf("Error: Wrong value in nlstate or ndeath\n");        free_matrix(gradg,1,npar,1,nlstate);
           goto end;      free_matrix(trgradg,1,nlstate,1,npar);
         }    } /* End age */
       }  
     }    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    free_matrix(dnewm,1,nlstate,1,nlstate);
   
     free_vector(severity,1,maxwav);  }
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);  /************ Variance of one-step probabilities  ******************/
     free_vector(annais,1,n);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     /* free_matrix(mint,1,maxwav,1,n);  {
        free_matrix(anint,1,maxwav,1,n);*/    int i, j=0,  i1, k1, l1, t, tj;
     free_vector(moisdc,1,n);    int k2, l2, j1,  z1;
     free_vector(andc,1,n);    int k=0,l, cptcode;
     int first=1, first1;
        double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     wav=ivector(1,imx);    double **dnewm,**doldm;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    double *xp;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    double *gp, *gm;
        double **gradg, **trgradg;
     /* Concatenates waves */    double **mu;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
       Tcode=ivector(1,100);    char fileresprob[FILENAMELENGTH];
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    char fileresprobcov[FILENAMELENGTH];
       ncodemax[1]=1;    char fileresprobcor[FILENAMELENGTH];
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
          double ***varpij;
    codtab=imatrix(1,100,1,10);  
    h=0;    strcpy(fileresprob,"prob"); 
    m=pow(2,cptcoveff);    strcat(fileresprob,fileres);
      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
    for(k=1;k<=cptcoveff; k++){      printf("Problem with resultfile: %s\n", fileresprob);
      for(i=1; i <=(m/pow(2,k));i++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
        for(j=1; j <= ncodemax[k]; j++){    }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    strcpy(fileresprobcov,"probcov"); 
            h++;    strcat(fileresprobcov,fileres);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      printf("Problem with resultfile: %s\n", fileresprobcov);
          }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        }    }
      }    strcpy(fileresprobcor,"probcor"); 
    }    strcat(fileresprobcor,fileres);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       codtab[1][2]=1;codtab[2][2]=2; */      printf("Problem with resultfile: %s\n", fileresprobcor);
    /* for(i=1; i <=m ;i++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       for(k=1; k <=cptcovn; k++){    }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       printf("\n");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       scanf("%d",i);*/    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
    /* Calculates basic frequencies. Computes observed prevalence at single age    pstamp(ficresprob);
        and prints on file fileres'p'. */    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
        pstamp(ficresprobcov);
        fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcov,"# Age");
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    pstamp(ficresprobcor);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcor,"# Age");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
        
     /* For Powell, parameters are in a vector p[] starting at p[1]    for(i=1; i<=nlstate;i++)
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      for(j=1; j<=(nlstate+ndeath);j++){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
     if(mle==1){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      }  
     }   /* fprintf(ficresprob,"\n");
        fprintf(ficresprobcov,"\n");
     /*--------- results files --------------*/    fprintf(ficresprobcor,"\n");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);   */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    jk=1;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
    for(i=1,jk=1; i <=nlstate; i++){    first=1;
      for(k=1; k <=(nlstate+ndeath); k++){    fprintf(ficgp,"\n# Routine varprob");
        if (k != i)    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
          {    fprintf(fichtm,"\n");
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
            for(j=1; j <=ncovmodel; j++){    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
              printf("%f ",p[jk]);    file %s<br>\n",optionfilehtmcov);
              fprintf(ficres,"%f ",p[jk]);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
              jk++;  and drawn. It helps understanding how is the covariance between two incidences.\
            }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
            printf("\n");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
            fprintf(ficres,"\n");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
          }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
      }  standard deviations wide on each axis. <br>\
    }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
  if(mle==1){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     /* Computing hessian and covariance matrix */  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);    cov[1]=1;
  }    tj=cptcoveff;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     printf("# Scales (for hessian or gradient estimation)\n");    j1=0;
      for(i=1,jk=1; i <=nlstate; i++){    for(t=1; t<=tj;t++){
       for(j=1; j <=nlstate+ndeath; j++){      for(i1=1; i1<=ncodemax[t];i1++){ 
         if (j!=i) {        j1++;
           fprintf(ficres,"%1d%1d",i,j);        if  (cptcovn>0) {
           printf("%1d%1d",i,j);          fprintf(ficresprob, "\n#********** Variable "); 
           for(k=1; k<=ncovmodel;k++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             printf(" %.5e",delti[jk]);          fprintf(ficresprob, "**********\n#\n");
             fprintf(ficres," %.5e",delti[jk]);          fprintf(ficresprobcov, "\n#********** Variable "); 
             jk++;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           }          fprintf(ficresprobcov, "**********\n#\n");
           printf("\n");          
           fprintf(ficres,"\n");          fprintf(ficgp, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficgp, "**********\n#\n");
      }          
              
     k=1;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     for(i=1;i<=npar;i++){          
       /*  if (k>nlstate) k=1;          fprintf(ficresprobcor, "\n#********** Variable ");    
       i1=(i-1)/(ncovmodel*nlstate)+1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          fprintf(ficresprobcor, "**********\n#");    
       printf("%s%d%d",alph[k],i1,tab[i]);*/        }
       fprintf(ficres,"%3d",i);        
       printf("%3d",i);        for (age=bage; age<=fage; age ++){ 
       for(j=1; j<=i;j++){          cov[2]=age;
         fprintf(ficres," %.5e",matcov[i][j]);          for (k=1; k<=cptcovn;k++) {
         printf(" %.5e",matcov[i][j]);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       }          }
       fprintf(ficres,"\n");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       printf("\n");          for (k=1; k<=cptcovprod;k++)
       k++;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }          
              gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     while((c=getc(ficpar))=='#' && c!= EOF){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       ungetc(c,ficpar);          gp=vector(1,(nlstate)*(nlstate+ndeath));
       fgets(line, MAXLINE, ficpar);          gm=vector(1,(nlstate)*(nlstate+ndeath));
       puts(line);      
       fputs(line,ficparo);          for(theta=1; theta <=npar; theta++){
     }            for(i=1; i<=npar; i++)
     ungetc(c,ficpar);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     estepm=0;            
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     if (estepm==0 || estepm < stepm) estepm=stepm;            
     if (fage <= 2) {            k=0;
       bage = ageminpar;            for(i=1; i<= (nlstate); i++){
       fage = agemaxpar;              for(j=1; j<=(nlstate+ndeath);j++){
     }                k=k+1;
                    gp[k]=pmmij[i][j];
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            
              for(i=1; i<=npar; i++)
     while((c=getc(ficpar))=='#' && c!= EOF){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     puts(line);            k=0;
     fputs(line,ficparo);            for(i=1; i<=(nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
   ungetc(c,ficpar);                k=k+1;
                  gm[k]=pmmij[i][j];
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);              }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       
                  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   while((c=getc(ficpar))=='#' && c!= EOF){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);  
     puts(line);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     fputs(line,ficparo);            for(theta=1; theta <=npar; theta++)
   }              trgradg[j][theta]=gradg[theta][j];
   ungetc(c,ficpar);          
            matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fscanf(ficpar,"pop_based=%d\n",&popbased);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);            pmij(pmmij,cov,ncovmodel,x,nlstate);
            
   while((c=getc(ficpar))=='#' && c!= EOF){          k=0;
     ungetc(c,ficpar);          for(i=1; i<=(nlstate); i++){
     fgets(line, MAXLINE, ficpar);            for(j=1; j<=(nlstate+ndeath);j++){
     puts(line);              k=k+1;
     fputs(line,ficparo);              mu[k][(int) age]=pmmij[i][j];
   }            }
   ungetc(c,ficpar);          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              varpij[i][j][(int)age] = doldm[i][j];
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 while((c=getc(ficpar))=='#' && c!= EOF){            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     ungetc(c,ficpar);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     fgets(line, MAXLINE, ficpar);            }*/
     puts(line);  
     fputs(line,ficparo);          fprintf(ficresprob,"\n%d ",(int)age);
   }          fprintf(ficresprobcov,"\n%d ",(int)age);
   ungetc(c,ficpar);          fprintf(ficresprobcor,"\n%d ",(int)age);
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
 /*------------ gnuplot -------------*/          i=0;
   strcpy(optionfilegnuplot,optionfilefiname);          for (k=1; k<=(nlstate);k++){
   strcat(optionfilegnuplot,".gp");            for (l=1; l<=(nlstate+ndeath);l++){ 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              i=i++;
     printf("Problem with file %s",optionfilegnuplot);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   fclose(ficgp);              for (j=1; j<=i;j++){
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 /*--------- index.htm --------*/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
   strcpy(optionfilehtm,optionfile);            }
   strcat(optionfilehtm,".htm");          }/* end of loop for state */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        } /* end of loop for age */
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }        /* Confidence intervalle of pij  */
         /*
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          fprintf(ficgp,"\nset noparametric;unset label");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 \n          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 Total number of observations=%d <br>\n          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 <hr  size=\"2\" color=\"#EC5E5E\">          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
  <ul><li>Parameter files<br>\n          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        */
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);  
   fclose(fichtm);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        for (k2=1; k2<=(nlstate);k2++){
            for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 /*------------ free_vector  -------------*/            if(l2==k2) continue;
  chdir(path);            j=(k2-1)*(nlstate+ndeath)+l2;
              for (k1=1; k1<=(nlstate);k1++){
  free_ivector(wav,1,imx);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                if(l1==k1) continue;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                  i=(k1-1)*(nlstate+ndeath)+l1;
  free_ivector(num,1,n);                if(i<=j) continue;
  free_vector(agedc,1,n);                for (age=bage; age<=fage; age ++){ 
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                  if ((int)age %5==0){
  fclose(ficparo);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
  fclose(ficres);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
   /*--------------- Prevalence limit --------------*/                    mu2=mu[j][(int) age]/stepm*YEARM;
                      c12=cv12/sqrt(v1*v2);
   strcpy(filerespl,"pl");                    /* Computing eigen value of matrix of covariance */
   strcat(filerespl,fileres);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                    /* Eigen vectors */
   }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                    /*v21=sqrt(1.-v11*v11); *//* error */
   fprintf(ficrespl,"#Prevalence limit\n");                    v21=(lc1-v1)/cv12*v11;
   fprintf(ficrespl,"#Age ");                    v12=-v21;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                    v22=v11;
   fprintf(ficrespl,"\n");                    tnalp=v21/v11;
                      if(first1==1){
   prlim=matrix(1,nlstate,1,nlstate);                      first1=0;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /*printf(fignu*/
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   k=0;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   agebase=ageminpar;                    if(first==1){
   agelim=agemaxpar;                      first=0;
   ftolpl=1.e-10;                      fprintf(ficgp,"\nset parametric;unset label");
   i1=cptcoveff;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   if (cptcovn < 1){i1=1;}                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   for(cptcov=1;cptcov<=i1;cptcov++){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
         k=k+1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficrespl,"\n#******");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         for(j=1;j<=cptcoveff;j++)                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficrespl,"******\n");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                              fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         for (age=agebase; age<=agelim; age++){                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           fprintf(ficrespl,"%.0f",age );                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           for(i=1; i<=nlstate;i++)                    }else{
           fprintf(ficrespl," %.5f", prlim[i][i]);                      first=0;
           fprintf(ficrespl,"\n");                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
         }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fclose(ficrespl);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   /*------------- h Pij x at various ages ------------*/                    }/* if first */
                    } /* age mod 5 */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                } /* end loop age */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                first=1;
   }              } /*l12 */
   printf("Computing pij: result on file '%s' \n", filerespij);            } /* k12 */
            } /*l1 */
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }/* k1 */
   /*if (stepm<=24) stepsize=2;*/      } /* loop covariates */
     }
   agelim=AGESUP;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   hstepm=stepsize*YEARM; /* Every year of age */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   k=0;    free_vector(xp,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    fclose(ficresprob);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fclose(ficresprobcov);
       k=k+1;    fclose(ficresprobcor);
         fprintf(ficrespij,"\n#****** ");    fflush(ficgp);
         for(j=1;j<=cptcoveff;j++)    fflush(fichtmcov);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }
         fprintf(ficrespij,"******\n");  
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  /******************* Printing html file ***********/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                    int lastpass, int stepm, int weightopt, char model[],\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           oldm=oldms;savm=savms;                    int popforecast, int estepm ,\
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      double jprev1, double mprev1,double anprev1, \
           fprintf(ficrespij,"# Age");                    double jprev2, double mprev2,double anprev2){
           for(i=1; i<=nlstate;i++)    int jj1, k1, i1, cpt;
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
           fprintf(ficrespij,"\n");     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
            for (h=0; h<=nhstepm; h++){  </ul>");
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
             for(i=1; i<=nlstate;i++)   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
               for(j=1; j<=nlstate+ndeath;j++)             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);     fprintf(fichtm,"\
             fprintf(ficrespij,"\n");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     fprintf(fichtm,"\
           fprintf(ficrespij,"\n");   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
         }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     }     fprintf(fichtm,"\
   }   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
   fclose(ficrespij);   - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   /*---------- Forecasting ------------------*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   m=cptcoveff;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   }  
   else{   jj1=0;
     erreur=108;   for(k1=1; k1<=m;k1++){
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);     for(i1=1; i1<=ncodemax[k1];i1++){
   }       jj1++;
         if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   /*---------- Health expectancies and variances ------------*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   strcpy(filerest,"t");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   strcat(filerest,fileres);       }
   if((ficrest=fopen(filerest,"w"))==NULL) {       /* Pij */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   strcpy(filerese,"e");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   strcat(filerese,fileres);         /* Period (stable) prevalence in each health state */
   if((ficreseij=fopen(filerese,"w"))==NULL) {         for(cpt=1; cpt<nlstate;cpt++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);         }
        for(cpt=1; cpt<=nlstate;cpt++) {
  strcpy(fileresv,"v");          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   strcat(fileresv,fileres);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {       }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);     } /* end i1 */
   }   }/* End k1 */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   fprintf(fichtm,"</ul>");
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
    fprintf(fichtm,"\
   k=0;  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   for(cptcov=1;cptcov<=i1;cptcov++){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficrest,"\n#****** ");           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm,"\
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficrest,"******\n");           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
       fprintf(ficreseij,"\n#****** ");   fprintf(fichtm,"\
       for(j=1;j<=cptcoveff;j++)   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       fprintf(ficreseij,"******\n");   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
       fprintf(ficresvij,"\n#****** ");     <a href=\"%s\">%s</a> <br>\n</li>",
       for(j=1;j<=cptcoveff;j++)             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
       fprintf(ficresvij,"******\n");   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       oldm=oldms;savm=savms;   fprintf(fichtm,"\
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);     - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
             estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   fprintf(fichtm,"\
       oldm=oldms;savm=savms;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
             subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /*  if(popforecast==1) fprintf(fichtm,"\n */
       fprintf(ficrest,"\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       epj=vector(1,nlstate+1);  /*      <br>",fileres,fileres,fileres,fileres); */
       for(age=bage; age <=fage ;age++){  /*  else  */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         if (popbased==1) {   fflush(fichtm);
           for(i=1; i<=nlstate;i++)   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
             prlim[i][i]=probs[(int)age][i][k];  
         }   m=cptcoveff;
           if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   jj1=0;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   for(k1=1; k1<=m;k1++){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];     for(i1=1; i1<=ncodemax[k1];i1++){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/       jj1++;
           }       if (cptcovn > 0) {
           epj[nlstate+1] +=epj[j];         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         }         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         for(i=1, vepp=0.;i <=nlstate;i++)         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           for(j=1;j <=nlstate;j++)       }
             vepp += vareij[i][j][(int)age];       for(cpt=1; cpt<=nlstate;cpt++) {
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         for(j=1;j <=nlstate;j++){  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         }       }
         fprintf(ficrest,"\n");       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       }  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
     }  true period expectancies (those weighted with period prevalences are also\
   }   drawn in addition to the population based expectancies computed using\
 free_matrix(mint,1,maxwav,1,n);   observed and cahotic prevalences: %s%d.png<br>\
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     free_vector(weight,1,n);     } /* end i1 */
   fclose(ficreseij);   }/* End k1 */
   fclose(ficresvij);   fprintf(fichtm,"</ul>");
   fclose(ficrest);   fflush(fichtm);
   fclose(ficpar);  }
   free_vector(epj,1,nlstate+1);  
    /******************* Gnuplot file **************/
   /*------- Variance limit prevalence------*/    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   strcpy(fileresvpl,"vpl");    char dirfileres[132],optfileres[132];
   strcat(fileresvpl,fileres);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    int ng;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     exit(0);  /*     printf("Problem with file %s",optionfilegnuplot); */
   }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  /*   } */
   
   k=0;    /*#ifdef windows */
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficgp,"cd \"%s\" \n",pathc);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /*#endif */
       k=k+1;    m=pow(2,cptcoveff);
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    strcpy(dirfileres,optionfilefiname);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(optfileres,"vpl");
       fprintf(ficresvpl,"******\n");   /* 1eme*/
          for (cpt=1; cpt<= nlstate ; cpt ++) {
       varpl=matrix(1,nlstate,(int) bage, (int) fage);     for (k1=1; k1<= m ; k1 ++) {
       oldm=oldms;savm=savms;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     }       fprintf(ficgp,"set xlabel \"Age\" \n\
  }  set ylabel \"Probability\" \n\
   set ter png small\n\
   fclose(ficresvpl);  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       }
         fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         for (i=1; i<= nlstate ; i ++) {
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);       } 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         for (i=1; i<= nlstate ; i ++) {
   free_matrix(matcov,1,npar,1,npar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_vector(delti,1,npar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_matrix(agev,1,maxwav,1,imx);       }  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
   fprintf(fichtm,"\n</body>");    }
   fclose(fichtm);    /*2 eme*/
   fclose(ficgp);    
      for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   if(erreur >0)      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     printf("End of Imach with error or warning %d\n",erreur);      
   else   printf("End of Imach\n");      for (i=1; i<= nlstate+1 ; i ++) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        k=2*i;
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        for (j=1; j<= nlstate+1 ; j ++) {
   /*printf("Total time was %d uSec.\n", total_usecs);*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   /*------ End -----------*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
  end:        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 #ifdef windows        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   /* chdir(pathcd);*/        for (j=1; j<= nlstate+1 ; j ++) {
 #endif          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  /*system("wgnuplot graph.plt");*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
  /*system("../gp37mgw/wgnuplot graph.plt");*/        }   
  /*system("cd ../gp37mgw");*/        fprintf(ficgp,"\" t\"\" w l 0,");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  strcpy(plotcmd,GNUPLOTPROGRAM);        for (j=1; j<= nlstate+1 ; j ++) {
  strcat(plotcmd," ");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  strcat(plotcmd,optionfilegnuplot);          else fprintf(ficgp," \%%*lf (\%%*lf)");
  system(plotcmd);        }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 #ifdef windows        else fprintf(ficgp,"\" t\"\" w l 0,");
   while (z[0] != 'q') {      }
     /* chdir(path); */    }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    
     scanf("%s",z);    /*3eme*/
     if (z[0] == 'c') system("./imach");    
     else if (z[0] == 'e') system(optionfilehtm);    for (k1=1; k1<= m ; k1 ++) { 
     else if (z[0] == 'g') system(plotcmd);      for (cpt=1; cpt<= nlstate ; cpt ++) {
     else if (z[0] == 'q') exit(0);        /*       k=2+nlstate*(2*cpt-2); */
   }        k=2+(nlstate+1)*(cpt-1);
 #endif        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 }        fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.47  
changed lines
  Added in v.1.128


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>