Diff for /imach/src/imach.c between versions 1.47 and 1.173

version 1.47, 2002/06/10 13:12:01 version 1.173, 2015/01/03 12:06:26
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.173  2015/01/03 12:06:26  brouard
      Summary: trying to detect cross-compilation
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.172  2014/12/27 12:07:47  brouard
   first survey ("cross") where individuals from different ages are    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.171  2014/12/23 13:26:59  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: Back from Visual C
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Still problem with utsname.h on Windows
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.170  2014/12/23 11:17:12  brouard
   simplest model is the multinomial logistic model where pij is the    Summary: Cleaning some \%% back to %%
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.169  2014/12/22 23:08:31  brouard
   complex model than "constant and age", you should modify the program    Summary: 0.98p
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   convergence.  
     Revision 1.168  2014/12/22 15:17:42  brouard
   The advantage of this computer programme, compared to a simple    Summary: update
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.167  2014/12/22 13:50:56  brouard
   intermediate interview, the information is lost, but taken into    Summary: Testing uname and compiler version and if compiled 32 or 64
   account using an interpolation or extrapolation.    
     Testing on Linux 64
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.166  2014/12/22 11:40:47  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    *** empty log message ***
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.165  2014/12/16 11:20:36  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    Summary: After compiling on Visual C
   and the contribution of each individual to the likelihood is simply  
   hPijx.    * imach.c (Module): Merging 1.61 to 1.162
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.164  2014/12/16 10:52:11  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    * imach.c (Module): Merging 1.61 to 1.162
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.163  2014/12/16 10:30:11  brouard
   from the European Union.    * imach.c (Module): Merging 1.61 to 1.162
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.162  2014/09/25 11:43:39  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Summary: temporary backup 0.99!
   **********************************************************************/  
      Revision 1.1  2014/09/16 11:06:58  brouard
 #include <math.h>    Summary: With some code (wrong) for nlopt
 #include <stdio.h>  
 #include <stdlib.h>    Author:
 #include <unistd.h>  
     Revision 1.161  2014/09/15 20:41:41  brouard
 #define MAXLINE 256    Summary: Problem with macro SQR on Intel compiler
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.160  2014/09/02 09:24:05  brouard
 #define FILENAMELENGTH 80    *** empty log message ***
 /*#define DEBUG*/  
 #define windows    Revision 1.159  2014/09/01 10:34:10  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Summary: WIN32
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Author: Brouard
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.158  2014/08/27 17:11:51  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    *** empty log message ***
   
 #define NINTERVMAX 8    Revision 1.157  2014/08/27 16:26:55  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Summary: Preparing windows Visual studio version
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Author: Brouard
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    In order to compile on Visual studio, time.h is now correct and time_t
 #define YEARM 12. /* Number of months per year */    and tm struct should be used. difftime should be used but sometimes I
 #define AGESUP 130    just make the differences in raw time format (time(&now).
 #define AGEBASE 40    Trying to suppress #ifdef LINUX
 #ifdef windows    Add xdg-open for __linux in order to open default browser.
 #define DIRSEPARATOR '\\'  
 #else    Revision 1.156  2014/08/25 20:10:10  brouard
 #define DIRSEPARATOR '/'    *** empty log message ***
 #endif  
     Revision 1.155  2014/08/25 18:32:34  brouard
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";    Summary: New compile, minor changes
 int erreur; /* Error number */    Author: Brouard
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.154  2014/06/20 17:32:08  brouard
 int npar=NPARMAX;    Summary: Outputs now all graphs of convergence to period prevalence
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.153  2014/06/20 16:45:46  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Summary: If 3 live state, convergence to period prevalence on same graph
 int popbased=0;    Author: Brouard
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.152  2014/06/18 17:54:09  brouard
 int maxwav; /* Maxim number of waves */    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.151  2014/06/18 16:43:30  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    *** empty log message ***
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.150  2014/06/18 16:42:35  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Author: brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.149  2014/06/18 15:51:14  brouard
 FILE *fichtm; /* Html File */    Summary: Some fixes in parameter files errors
 FILE *ficreseij;    Author: Nicolas Brouard
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.148  2014/06/17 17:38:48  brouard
 char fileresv[FILENAMELENGTH];    Summary: Nothing new
 FILE  *ficresvpl;    Author: Brouard
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Just a new packaging for OS/X version 0.98nS
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
     Revision 1.146  2014/06/16 10:20:28  brouard
 char filerest[FILENAMELENGTH];    Summary: Merge
 char fileregp[FILENAMELENGTH];    Author: Brouard
 char popfile[FILENAMELENGTH];  
     Merge, before building revised version.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.145  2014/06/10 21:23:15  brouard
 #define NR_END 1    Summary: Debugging with valgrind
 #define FREE_ARG char*    Author: Nicolas Brouard
 #define FTOL 1.0e-10  
     Lot of changes in order to output the results with some covariates
 #define NRANSI    After the Edimburgh REVES conference 2014, it seems mandatory to
 #define ITMAX 200    improve the code.
     No more memory valgrind error but a lot has to be done in order to
 #define TOL 2.0e-4    continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
 #define CGOLD 0.3819660    optimal. nbcode should be improved. Documentation has been added in
 #define ZEPS 1.0e-10    the source code.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.143  2014/01/26 09:45:38  brouard
 #define GOLD 1.618034    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.142  2014/01/26 03:57:36  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define rint(a) floor(a+0.5)  
     Revision 1.141  2014/01/26 02:42:01  brouard
 static double sqrarg;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
 int imx;  
 int stepm;    Revision 1.139  2010/06/14 07:50:17  brouard
 /* Stepm, step in month: minimum step interpolation*/    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.137  2010/04/29 18:11:38  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Checking covariates for more complex models
 double **pmmij, ***probs, ***mobaverage;    than V1+V2. A lot of change to be done. Unstable.
 double dateintmean=0;  
     Revision 1.136  2010/04/26 20:30:53  brouard
 double *weight;    (Module): merging some libgsl code. Fixing computation
 int **s; /* Status */    of likelione (using inter/intrapolation if mle = 0) in order to
 double *agedc, **covar, idx;    get same likelihood as if mle=1.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Some cleaning of code and comments added.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.135  2009/10/29 15:33:14  brouard
 double ftolhess; /* Tolerance for computing hessian */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
 /**************** split *************************/    Revision 1.134  2009/10/29 13:18:53  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 {  
    char *s;                             /* pointer */    Revision 1.133  2009/07/06 10:21:25  brouard
    int  l1, l2;                         /* length counters */    just nforces
   
    l1 = strlen( path );                 /* length of path */    Revision 1.132  2009/07/06 08:22:05  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Many tings
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.131  2009/06/20 16:22:47  brouard
 #if     defined(__bsd__)                /* get current working directory */    Some dimensions resccaled
       extern char       *getwd( );  
     Revision 1.130  2009/05/26 06:44:34  brouard
       if ( getwd( dirc ) == NULL ) {    (Module): Max Covariate is now set to 20 instead of 8. A
 #else    lot of cleaning with variables initialized to 0. Trying to make
       extern char       *getcwd( );    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.129  2007/08/31 13:49:27  lievre
 #endif    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.128  2006/06/30 13:02:05  brouard
       strcpy( name, path );             /* we've got it */    (Module): Clarifications on computing e.j
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.127  2006/04/28 18:11:50  brouard
       l2 = strlen( s );                 /* length of filename */    (Module): Yes the sum of survivors was wrong since
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    imach-114 because nhstepm was no more computed in the age
       strcpy( name, s );                /* save file name */    loop. Now we define nhstepma in the age loop.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): In order to speed up (in case of numerous covariates) we
       dirc[l1-l2] = 0;                  /* add zero */    compute health expectancies (without variances) in a first step
    }    and then all the health expectancies with variances or standard
    l1 = strlen( dirc );                 /* length of directory */    deviation (needs data from the Hessian matrices) which slows the
 #ifdef windows    computation.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    In the future we should be able to stop the program is only health
 #else    expectancies and graph are needed without standard deviations.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.126  2006/04/28 17:23:28  brouard
    s = strrchr( name, '.' );            /* find last / */    (Module): Yes the sum of survivors was wrong since
    s++;    imach-114 because nhstepm was no more computed in the age
    strcpy(ext,s);                       /* save extension */    loop. Now we define nhstepma in the age loop.
    l1= strlen( name);    Version 0.98h
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.125  2006/04/04 15:20:31  lievre
    finame[l1-l2]= 0;    Errors in calculation of health expectancies. Age was not initialized.
    return( 0 );                         /* we're done */    Forecasting file added.
 }  
     Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
 /******************************************/    The log-likelihood is printed in the log file
   
 void replace(char *s, char*t)    Revision 1.123  2006/03/20 10:52:43  brouard
 {    * imach.c (Module): <title> changed, corresponds to .htm file
   int i;    name. <head> headers where missing.
   int lg=20;  
   i=0;    * imach.c (Module): Weights can have a decimal point as for
   lg=strlen(t);    English (a comma might work with a correct LC_NUMERIC environment,
   for(i=0; i<= lg; i++) {    otherwise the weight is truncated).
     (s[i] = t[i]);    Modification of warning when the covariates values are not 0 or
     if (t[i]== '\\') s[i]='/';    1.
   }    Version 0.98g
 }  
     Revision 1.122  2006/03/20 09:45:41  brouard
 int nbocc(char *s, char occ)    (Module): Weights can have a decimal point as for
 {    English (a comma might work with a correct LC_NUMERIC environment,
   int i,j=0;    otherwise the weight is truncated).
   int lg=20;    Modification of warning when the covariates values are not 0 or
   i=0;    1.
   lg=strlen(s);    Version 0.98g
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.121  2006/03/16 17:45:01  lievre
   }    * imach.c (Module): Comments concerning covariates added
   return j;  
 }    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 void cutv(char *u,char *v, char*t, char occ)    not 1 month. Version 0.98f
 {  
   int i,lg,j,p=0;    Revision 1.120  2006/03/16 15:10:38  lievre
   i=0;    (Module): refinements in the computation of lli if
   for(j=0; j<=strlen(t)-1; j++) {    status=-2 in order to have more reliable computation if stepm is
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    not 1 month. Version 0.98f
   }  
     Revision 1.119  2006/03/15 17:42:26  brouard
   lg=strlen(t);    (Module): Bug if status = -2, the loglikelihood was
   for(j=0; j<p; j++) {    computed as likelihood omitting the logarithm. Version O.98e
     (u[j] = t[j]);  
   }    Revision 1.118  2006/03/14 18:20:07  brouard
      u[p]='\0';    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
    for(j=0; j<= lg; j++) {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     if (j>=(p+1))(v[j-p-1] = t[j]);    (Module): Function pstamp added
   }    (Module): Version 0.98d
 }  
     Revision 1.117  2006/03/14 17:16:22  brouard
 /********************** nrerror ********************/    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 void nrerror(char error_text[])    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 {    (Module): Function pstamp added
   fprintf(stderr,"ERREUR ...\n");    (Module): Version 0.98d
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.116  2006/03/06 10:29:27  brouard
 }    (Module): Variance-covariance wrong links and
 /*********************** vector *******************/    varian-covariance of ej. is needed (Saito).
 double *vector(int nl, int nh)  
 {    Revision 1.115  2006/02/27 12:17:45  brouard
   double *v;    (Module): One freematrix added in mlikeli! 0.98c
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.114  2006/02/26 12:57:58  brouard
   return v-nl+NR_END;    (Module): Some improvements in processing parameter
 }    filename with strsep.
   
 /************************ free vector ******************/    Revision 1.113  2006/02/24 14:20:24  brouard
 void free_vector(double*v, int nl, int nh)    (Module): Memory leaks checks with valgrind and:
 {    datafile was not closed, some imatrix were not freed and on matrix
   free((FREE_ARG)(v+nl-NR_END));    allocation too.
 }  
     Revision 1.112  2006/01/30 09:55:26  brouard
 /************************ivector *******************************/    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 int *ivector(long nl,long nh)  
 {    Revision 1.111  2006/01/25 20:38:18  brouard
   int *v;    (Module): Lots of cleaning and bugs added (Gompertz)
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    (Module): Comments can be added in data file. Missing date values
   if (!v) nrerror("allocation failure in ivector");    can be a simple dot '.'.
   return v-nl+NR_END;  
 }    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.109  2006/01/24 19:37:15  brouard
 {    (Module): Comments (lines starting with a #) are allowed in data.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 /******************* imatrix *******************************/    To be fixed
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.107  2006/01/19 16:20:37  brouard
 {    Test existence of gnuplot in imach path
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.106  2006/01/19 13:24:36  brouard
      Some cleaning and links added in html output
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.105  2006/01/05 20:23:19  lievre
   if (!m) nrerror("allocation failure 1 in matrix()");    *** empty log message ***
   m += NR_END;  
   m -= nrl;    Revision 1.104  2005/09/30 16:11:43  lievre
      (Module): sump fixed, loop imx fixed, and simplifications.
      (Module): If the status is missing at the last wave but we know
   /* allocate rows and set pointers to them */    that the person is alive, then we can code his/her status as -2
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (instead of missing=-1 in earlier versions) and his/her
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    contributions to the likelihood is 1 - Prob of dying from last
   m[nrl] += NR_END;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   m[nrl] -= ncl;    the healthy state at last known wave). Version is 0.98
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.103  2005/09/30 15:54:49  lievre
      (Module): sump fixed, loop imx fixed, and simplifications.
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.102  2004/09/15 17:31:30  brouard
 }    Add the possibility to read data file including tab characters.
   
 /****************** free_imatrix *************************/    Revision 1.101  2004/09/15 10:38:38  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    Fix on curr_time
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.100  2004/07/12 18:29:06  brouard
      /* free an int matrix allocated by imatrix() */    Add version for Mac OS X. Just define UNIX in Makefile
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.99  2004/06/05 08:57:40  brouard
   free((FREE_ARG) (m+nrl-NR_END));    *** empty log message ***
 }  
     Revision 1.98  2004/05/16 15:05:56  brouard
 /******************* matrix *******************************/    New version 0.97 . First attempt to estimate force of mortality
 double **matrix(long nrl, long nrh, long ncl, long nch)    directly from the data i.e. without the need of knowing the health
 {    state at each age, but using a Gompertz model: log u =a + b*age .
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    This is the basic analysis of mortality and should be done before any
   double **m;    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    from other sources like vital statistic data.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    The same imach parameter file can be used but the option for mle should be -3.
   m -= nrl;  
     Agnès, who wrote this part of the code, tried to keep most of the
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    former routines in order to include the new code within the former code.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    The output is very simple: only an estimate of the intercept and of
   m[nrl] -= ncl;    the slope with 95% confident intervals.
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Current limitations:
   return m;    A) Even if you enter covariates, i.e. with the
 }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Revision 1.97  2004/02/20 13:25:42  lievre
 {    Version 0.96d. Population forecasting command line is (temporarily)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    suppressed.
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 /******************* ma3x *******************************/    rewritten within the same printf. Workaround: many printfs.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    Revision 1.95  2003/07/08 07:54:34  brouard
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    * imach.c (Repository):
   double ***m;    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.94  2003/06/27 13:00:02  brouard
   m += NR_END;    Just cleaning
   m -= nrl;  
     Revision 1.93  2003/06/25 16:33:55  brouard
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): On windows (cygwin) function asctime_r doesn't
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    exist so I changed back to asctime which exists.
   m[nrl] += NR_END;    (Module): Version 0.96b
   m[nrl] -= ncl;  
     Revision 1.92  2003/06/25 16:30:45  brouard
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    Revision 1.91  2003/06/25 15:30:29  brouard
   m[nrl][ncl] += NR_END;    * imach.c (Repository): Duplicated warning errors corrected.
   m[nrl][ncl] -= nll;    (Repository): Elapsed time after each iteration is now output. It
   for (j=ncl+1; j<=nch; j++)    helps to forecast when convergence will be reached. Elapsed time
     m[nrl][j]=m[nrl][j-1]+nlay;    is stamped in powell.  We created a new html file for the graphs
      concerning matrix of covariance. It has extension -cov.htm.
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Revision 1.90  2003/06/24 12:34:15  brouard
     for (j=ncl+1; j<=nch; j++)    (Module): Some bugs corrected for windows. Also, when
       m[i][j]=m[i][j-1]+nlay;    mle=-1 a template is output in file "or"mypar.txt with the design
   }    of the covariance matrix to be input.
   return m;  
 }    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 /*************************free ma3x ************************/    mle=-1 a template is output in file "or"mypar.txt with the design
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    of the covariance matrix to be input.
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Revision 1.88  2003/06/23 17:54:56  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.86  2003/06/17 20:04:08  brouard
 extern double *pcom,*xicom;    (Module): Change position of html and gnuplot routines and added
 extern double (*nrfunc)(double []);    routine fileappend.
    
 double f1dim(double x)    Revision 1.85  2003/06/17 13:12:43  brouard
 {    * imach.c (Repository): Check when date of death was earlier that
   int j;    current date of interview. It may happen when the death was just
   double f;    prior to the death. In this case, dh was negative and likelihood
   double *xt;    was wrong (infinity). We still send an "Error" but patch by
      assuming that the date of death was just one stepm after the
   xt=vector(1,ncom);    interview.
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    (Repository): Because some people have very long ID (first column)
   f=(*nrfunc)(xt);    we changed int to long in num[] and we added a new lvector for
   free_vector(xt,1,ncom);    memory allocation. But we also truncated to 8 characters (left
   return f;    truncation)
 }    (Repository): No more line truncation errors.
   
 /*****************brent *************************/    Revision 1.84  2003/06/13 21:44:43  brouard
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   int iter;    many times. Probs is memory consuming and must be used with
   double a,b,d,etemp;    parcimony.
   double fu,fv,fw,fx;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.83  2003/06/10 13:39:11  lievre
   double e=0.0;    *** empty log message ***
    
   a=(ax < cx ? ax : cx);    Revision 1.82  2003/06/05 15:57:20  brouard
   b=(ax > cx ? ax : cx);    Add log in  imach.c and  fullversion number is now printed.
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  */
   for (iter=1;iter<=ITMAX;iter++) {  /*
     xm=0.5*(a+b);     Interpolated Markov Chain
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    Short summary of the programme:
     printf(".");fflush(stdout);    
 #ifdef DEBUG    This program computes Healthy Life Expectancies from
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    first survey ("cross") where individuals from different ages are
 #endif    interviewed on their health status or degree of disability (in the
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    case of a health survey which is our main interest) -2- at least a
       *xmin=x;    second wave of interviews ("longitudinal") which measure each change
       return fx;    (if any) in individual health status.  Health expectancies are
     }    computed from the time spent in each health state according to a
     ftemp=fu;    model. More health states you consider, more time is necessary to reach the
     if (fabs(e) > tol1) {    Maximum Likelihood of the parameters involved in the model.  The
       r=(x-w)*(fx-fv);    simplest model is the multinomial logistic model where pij is the
       q=(x-v)*(fx-fw);    probability to be observed in state j at the second wave
       p=(x-v)*q-(x-w)*r;    conditional to be observed in state i at the first wave. Therefore
       q=2.0*(q-r);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       if (q > 0.0) p = -p;    'age' is age and 'sex' is a covariate. If you want to have a more
       q=fabs(q);    complex model than "constant and age", you should modify the program
       etemp=e;    where the markup *Covariates have to be included here again* invites
       e=d;    you to do it.  More covariates you add, slower the
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    convergence.
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    The advantage of this computer programme, compared to a simple
         d=p/q;    multinomial logistic model, is clear when the delay between waves is not
         u=x+d;    identical for each individual. Also, if a individual missed an
         if (u-a < tol2 || b-u < tol2)    intermediate interview, the information is lost, but taken into
           d=SIGN(tol1,xm-x);    account using an interpolation or extrapolation.  
       }  
     } else {    hPijx is the probability to be observed in state i at age x+h
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    conditional to the observed state i at age x. The delay 'h' can be
     }    split into an exact number (nh*stepm) of unobserved intermediate
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    states. This elementary transition (by month, quarter,
     fu=(*f)(u);    semester or year) is modelled as a multinomial logistic.  The hPx
     if (fu <= fx) {    matrix is simply the matrix product of nh*stepm elementary matrices
       if (u >= x) a=x; else b=x;    and the contribution of each individual to the likelihood is simply
       SHFT(v,w,x,u)    hPijx.
         SHFT(fv,fw,fx,fu)  
         } else {    Also this programme outputs the covariance matrix of the parameters but also
           if (u < x) a=u; else b=u;    of the life expectancies. It also computes the period (stable) prevalence. 
           if (fu <= fw || w == x) {    
             v=w;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
             w=u;             Institut national d'études démographiques, Paris.
             fv=fw;    This software have been partly granted by Euro-REVES, a concerted action
             fw=fu;    from the European Union.
           } else if (fu <= fv || v == x || v == w) {    It is copyrighted identically to a GNU software product, ie programme and
             v=u;    software can be distributed freely for non commercial use. Latest version
             fv=fu;    can be accessed at http://euroreves.ined.fr/imach .
           }  
         }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   nrerror("Too many iterations in brent");    
   *xmin=x;    **********************************************************************/
   return fx;  /*
 }    main
     read parameterfile
 /****************** mnbrak ***********************/    read datafile
     concatwav
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    freqsummary
             double (*func)(double))    if (mle >= 1)
 {      mlikeli
   double ulim,u,r,q, dum;    print results files
   double fu;    if mle==1 
         computes hessian
   *fa=(*func)(*ax);    read end of parameter file: agemin, agemax, bage, fage, estepm
   *fb=(*func)(*bx);        begin-prev-date,...
   if (*fb > *fa) {    open gnuplot file
     SHFT(dum,*ax,*bx,dum)    open html file
       SHFT(dum,*fb,*fa,dum)    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       }     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   *cx=(*bx)+GOLD*(*bx-*ax);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   *fc=(*func)(*cx);      freexexit2 possible for memory heap.
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);    h Pij x                         | pij_nom  ficrestpij
     q=(*bx-*cx)*(*fb-*fa);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       fu=(*func)(u);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     } else if ((*cx-u)*(u-ulim) > 0.0) {    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       fu=(*func)(u);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       if (fu < *fc) {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))    forecasting if prevfcast==1 prevforecast call prevalence()
           }    health expectancies
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    Variance-covariance of DFLE
       u=ulim;    prevalence()
       fu=(*func)(u);     movingaverage()
     } else {    varevsij() 
       u=(*cx)+GOLD*(*cx-*bx);    if popbased==1 varevsij(,popbased)
       fu=(*func)(u);    total life expectancies
     }    Variance of period (stable) prevalence
     SHFT(*ax,*bx,*cx,u)   end
       SHFT(*fa,*fb,*fc,fu)  */
       }  
 }  #define POWELL /* Instead of NLOPT */
   
 /*************** linmin ************************/  #include <math.h>
   #include <stdio.h>
 int ncom;  #include <stdlib.h>
 double *pcom,*xicom;  #include <string.h>
 double (*nrfunc)(double []);  
    #ifdef _WIN32
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #include <io.h>
 {  #include <windows.h>
   double brent(double ax, double bx, double cx,  #include <tchar.h>
                double (*f)(double), double tol, double *xmin);  #else
   double f1dim(double x);  #include <unistd.h>
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #endif
               double *fc, double (*func)(double));  
   int j;  #include <limits.h>
   double xx,xmin,bx,ax;  #include <sys/types.h>
   double fx,fb,fa;  
    #if defined(__GNUC__)
   ncom=n;  #include <sys/utsname.h> /* Doesn't work on Windows */
   pcom=vector(1,n);  #endif
   xicom=vector(1,n);  
   nrfunc=func;  #include <sys/stat.h>
   for (j=1;j<=n;j++) {  #include <errno.h>
     pcom[j]=p[j];  /* extern int errno; */
     xicom[j]=xi[j];  
   }  /* #ifdef LINUX */
   ax=0.0;  /* #include <time.h> */
   xx=1.0;  /* #include "timeval.h" */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* #else */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /* #include <sys/time.h> */
 #ifdef DEBUG  /* #endif */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  #include <time.h>
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  #ifdef GSL
     p[j] += xi[j];  #include <gsl/gsl_errno.h>
   }  #include <gsl/gsl_multimin.h>
   free_vector(xicom,1,n);  #endif
   free_vector(pcom,1,n);  
 }  
   #ifdef NLOPT
 /*************** powell ************************/  #include <nlopt.h>
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  typedef struct {
             double (*func)(double []))    double (* function)(double [] );
 {  } myfunc_data ;
   void linmin(double p[], double xi[], int n, double *fret,  #endif
               double (*func)(double []));  
   int i,ibig,j;  /* #include <libintl.h> */
   double del,t,*pt,*ptt,*xit;  /* #define _(String) gettext (String) */
   double fp,fptt;  
   double *xits;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   pt=vector(1,n);  
   ptt=vector(1,n);  #define GNUPLOTPROGRAM "gnuplot"
   xit=vector(1,n);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   xits=vector(1,n);  #define FILENAMELENGTH 132
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   for (*iter=1;;++(*iter)) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     fp=(*fret);  
     ibig=0;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     del=0.0;  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  #define NINTERVMAX 8
       printf(" %d %.12f",i, p[i]);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     printf("\n");  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     for (i=1;i<=n;i++) {  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       fptt=(*fret);  #define MAXN 20000
 #ifdef DEBUG  #define YEARM 12. /**< Number of months per year */
       printf("fret=%lf \n",*fret);  #define AGESUP 130
 #endif  #define AGEBASE 40
       printf("%d",i);fflush(stdout);  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
       linmin(p,xit,n,fret,func);  #ifdef _WIN32
       if (fabs(fptt-(*fret)) > del) {  #define DIRSEPARATOR '\\'
         del=fabs(fptt-(*fret));  #define CHARSEPARATOR "\\"
         ibig=i;  #define ODIRSEPARATOR '/'
       }  #else
 #ifdef DEBUG  #define DIRSEPARATOR '/'
       printf("%d %.12e",i,(*fret));  #define CHARSEPARATOR "/"
       for (j=1;j<=n;j++) {  #define ODIRSEPARATOR '\\'
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #endif
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  /* $Id$ */
       for(j=1;j<=n;j++)  /* $State$ */
         printf(" p=%.12e",p[j]);  
       printf("\n");  char version[]="Imach version 0.98p, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
 #endif  char fullversion[]="$Revision$ $Date$"; 
     }  char strstart[80];
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 #ifdef DEBUG  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       int k[2],l;  int nvar=0, nforce=0; /* Number of variables, number of forces */
       k[0]=1;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       k[1]=-1;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       printf("Max: %.12e",(*func)(p));  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       for (j=1;j<=n;j++)  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
         printf(" %.12e",p[j]);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       printf("\n");  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       for(l=0;l<=1;l++) {  int cptcoveff=0; /* Total number of covariates to vary for printing results */
         for (j=1;j<=n;j++) {  int cptcov=0; /* Working variable */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int npar=NPARMAX;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int nlstate=2; /* Number of live states */
         }  int ndeath=1; /* Number of dead states */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       }  int popbased=0;
 #endif  
   int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav=0; /* Maxim number of waves */
       free_vector(xit,1,n);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       free_vector(xits,1,n);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       free_vector(ptt,1,n);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       free_vector(pt,1,n);                     to the likelihood and the sum of weights (done by funcone)*/
       return;  int mle=1, weightopt=0;
     }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     for (j=1;j<=n;j++) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       ptt[j]=2.0*p[j]-pt[j];             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       xit[j]=p[j]-pt[j];  int countcallfunc=0;  /* Count the number of calls to func */
       pt[j]=p[j];  double jmean=1; /* Mean space between 2 waves */
     }  double **matprod2(); /* test */
     fptt=(*func)(ptt);  double **oldm, **newm, **savm; /* Working pointers to matrices */
     if (fptt < fp) {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /*FILE *fic ; */ /* Used in readdata only */
       if (t < 0.0) {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         linmin(p,xit,n,fret,func);  FILE *ficlog, *ficrespow;
         for (j=1;j<=n;j++) {  int globpr=0; /* Global variable for printing or not */
           xi[j][ibig]=xi[j][n];  double fretone; /* Only one call to likelihood */
           xi[j][n]=xit[j];  long ipmx=0; /* Number of contributions */
         }  double sw; /* Sum of weights */
 #ifdef DEBUG  char filerespow[FILENAMELENGTH];
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
         for(j=1;j<=n;j++)  FILE *ficresilk;
           printf(" %.12e",xit[j]);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
         printf("\n");  FILE *ficresprobmorprev;
 #endif  FILE *fichtm, *fichtmcov; /* Html File */
       }  FILE *ficreseij;
     }  char filerese[FILENAMELENGTH];
   }  FILE *ficresstdeij;
 }  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
 /**** Prevalence limit ****************/  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  char fileresvpl[FILENAMELENGTH];
      matrix by transitions matrix until convergence is reached */  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   int i, ii,j,k;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   double min, max, maxmin, maxmax,sumnew=0.;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double **matprod2();  char command[FILENAMELENGTH];
   double **out, cov[NCOVMAX], **pmij();  int  outcmd=0;
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  char filelog[FILENAMELENGTH]; /* Log file */
     for (j=1;j<=nlstate+ndeath;j++){  char filerest[FILENAMELENGTH];
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  char fileregp[FILENAMELENGTH];
     }  char popfile[FILENAMELENGTH];
   
    cov[1]=1.;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /* struct timezone tzp; */
     newm=savm;  /* extern int gettimeofday(); */
     /* Covariates have to be included here again */  struct tm tml, *gmtime(), *localtime();
      cov[2]=agefin;  
    extern time_t time();
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  struct tm start_time, end_time, curr_time, last_time, forecast_time;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       }  struct tm tm;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  char strcurr[80], strfor[80];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   char *endptr;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  long lval;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  double dval;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #define NR_END 1
   #define FREE_ARG char*
     savm=oldm;  #define FTOL 1.0e-10
     oldm=newm;  
     maxmax=0.;  #define NRANSI 
     for(j=1;j<=nlstate;j++){  #define ITMAX 200 
       min=1.;  
       max=0.;  #define TOL 2.0e-4 
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  #define CGOLD 0.3819660 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #define ZEPS 1.0e-10 
         prlim[i][j]= newm[i][j]/(1-sumnew);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  #define GOLD 1.618034 
       }  #define GLIMIT 100.0 
       maxmin=max-min;  #define TINY 1.0e-20 
       maxmax=FMAX(maxmax,maxmin);  
     }  static double maxarg1,maxarg2;
     if(maxmax < ftolpl){  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       return prlim;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     }    
   }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 }  #define rint(a) floor(a+0.5)
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
 /*************** transition probabilities ***************/  /* #define mytinydouble 1.0e-16 */
   /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
 {  /* static double dsqrarg; */
   double s1, s2;  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   /*double t34;*/  static double sqrarg;
   int i,j,j1, nc, ii, jj;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     for(i=1; i<= nlstate; i++){  int agegomp= AGEGOMP;
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int imx; 
         /*s2 += param[i][j][nc]*cov[nc];*/  int stepm=1;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /* Stepm, step in month: minimum step interpolation*/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  int estepm;
       ps[i][j]=s2;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  int m,nb;
     for(j=i+1; j<=nlstate+ndeath;j++){  long *num;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  double **pmmij, ***probs;
       }  double *ageexmed,*agecens;
       ps[i][j]=s2;  double dateintmean=0;
     }  
   }  double *weight;
     /*ps[3][2]=1;*/  int **s; /* Status */
   double *agedc;
   for(i=1; i<= nlstate; i++){  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
      s1=0;                    * covar=matrix(0,NCOVMAX,1,n); 
     for(j=1; j<i; j++)                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       s1+=exp(ps[i][j]);  double  idx; 
     for(j=i+1; j<=nlstate+ndeath; j++)  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       s1+=exp(ps[i][j]);  int *Ndum; /** Freq of modality (tricode */
     ps[i][i]=1./(s1+1.);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     for(j=1; j<i; j++)  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  double *lsurv, *lpop, *tpop;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  double ftolhess; /**< Tolerance for computing hessian */
   } /* end i */  
   /**************** split *************************/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
       ps[ii][jj]=0;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       ps[ii][ii]=1;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     }    */ 
   }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    l1 = strlen(path );                   /* length of path */
     for(jj=1; jj<= nlstate+ndeath; jj++){    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      printf("%lf ",ps[ii][jj]);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
    }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     printf("\n ");      strcpy( name, path );               /* we got the fullname name because no directory */
     }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     printf("\n ");printf("%lf ",cov[2]);*/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /*      /* get current working directory */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      /*    extern  char* getcwd ( char *buf , int len);*/
   goto end;*/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     return ps;        return( GLOCK_ERROR_GETCWD );
 }      }
       /* got dirc from getcwd*/
 /**************** Product of 2 matrices ******************/      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip direcotry from path */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      strcpy( name, ss );         /* save file name */
   /* in, b, out are matrice of pointers which should have been initialized      strncpy( dirc, path, l1 - l2 );     /* now the directory */
      before: only the contents of out is modified. The function returns      dirc[l1-l2] = 0;                    /* add zero */
      a pointer to pointers identical to out */      printf(" DIRC2 = %s \n",dirc);
   long i, j, k;    }
   for(i=nrl; i<= nrh; i++)    /* We add a separator at the end of dirc if not exists */
     for(k=ncolol; k<=ncoloh; k++)    l1 = strlen( dirc );                  /* length of directory */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    if( dirc[l1-1] != DIRSEPARATOR ){
         out[i][k] +=in[i][j]*b[j][k];      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
   return out;      printf(" DIRC3 = %s \n",dirc);
 }    }
     ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
 /************* Higher Matrix Product ***************/      ss++;
       strcpy(ext,ss);                     /* save extension */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      l1= strlen( name);
 {      l2= strlen(ss)+1;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      strncpy( finame, name, l1-l2);
      duration (i.e. until      finame[l1-l2]= 0;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).    return( 0 );                          /* we're done */
      Model is determined by parameters x and covariates have to be  }
      included manually here.  
   
      */  /******************************************/
   
   int i, j, d, h, k;  void replace_back_to_slash(char *s, char*t)
   double **out, cov[NCOVMAX];  {
   double **newm;    int i;
     int lg=0;
   /* Hstepm could be zero and should return the unit matrix */    i=0;
   for (i=1;i<=nlstate+ndeath;i++)    lg=strlen(t);
     for (j=1;j<=nlstate+ndeath;j++){    for(i=0; i<= lg; i++) {
       oldm[i][j]=(i==j ? 1.0 : 0.0);      (s[i] = t[i]);
       po[i][j][0]=(i==j ? 1.0 : 0.0);      if (t[i]== '\\') s[i]='/';
     }    }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  }
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  char *trimbb(char *out, char *in)
       newm=savm;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       /* Covariates have to be included here again */    char *s;
       cov[1]=1.;    s=out;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    while (*in != '\0'){
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       for (k=1; k<=cptcovage;k++)        in++;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      }
       for (k=1; k<=cptcovprod;k++)      *out++ = *in++;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    }
     *out='\0';
     return s;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  char *cutl(char *blocc, char *alocc, char *in, char occ)
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  {
       savm=oldm;    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
       oldm=newm;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     }       gives blocc="abcdef2ghi" and alocc="j".
     for(i=1; i<=nlstate+ndeath; i++)       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       for(j=1;j<=nlstate+ndeath;j++) {    */
         po[i][j][h]=newm[i][j];    char *s, *t;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    t=in;s=in;
          */    while ((*in != occ) && (*in != '\0')){
       }      *alocc++ = *in++;
   } /* end h */    }
   return po;    if( *in == occ){
 }      *(alocc)='\0';
       s=++in;
     }
 /*************** log-likelihood *************/   
 double func( double *x)    if (s == t) {/* occ not found */
 {      *(alocc-(in-s))='\0';
   int i, ii, j, k, mi, d, kk;      in=s;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    }
   double **out;    while ( *in != '\0'){
   double sw; /* Sum of weights */      *blocc++ = *in++;
   double lli; /* Individual log likelihood */    }
   long ipmx;  
   /*extern weight */    *blocc='\0';
   /* We are differentiating ll according to initial status */    return t;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  }
   /*for(i=1;i<imx;i++)  char *cutv(char *blocc, char *alocc, char *in, char occ)
     printf(" %d\n",s[4][i]);  {
   */    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   cov[1]=1.;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
   for(k=1; k<=nlstate; k++) ll[k]=0.;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    char *s, *t;
     for(mi=1; mi<= wav[i]-1; mi++){    t=in;s=in;
       for (ii=1;ii<=nlstate+ndeath;ii++)    while (*in != '\0'){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      while( *in == occ){
       for(d=0; d<dh[mi][i]; d++){        *blocc++ = *in++;
         newm=savm;        s=in;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      }
         for (kk=1; kk<=cptcovage;kk++) {      *blocc++ = *in++;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    }
         }    if (s == t) /* occ not found */
              *(blocc-(in-s))='\0';
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    else
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      *(blocc-(in-s)-1)='\0';
         savm=oldm;    in=s;
         oldm=newm;    while ( *in != '\0'){
              *alocc++ = *in++;
            }
       } /* end mult */  
          *alocc='\0';
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    return s;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  }
       ipmx +=1;  
       sw += weight[i];  int nbocc(char *s, char occ)
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  {
     } /* end of wave */    int i,j=0;
   } /* end of individual */    int lg=20;
     i=0;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    lg=strlen(s);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    for(i=0; i<= lg; i++) {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    if  (s[i] == occ ) j++;
   return -l;    }
 }    return j;
   }
   
 /*********** Maximum Likelihood Estimation ***************/  /* void cutv(char *u,char *v, char*t, char occ) */
   /* { */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
 {  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   int i,j, iter;  /*      gives u="abcdef2ghi" and v="j" *\/ */
   double **xi,*delti;  /*   int i,lg,j,p=0; */
   double fret;  /*   i=0; */
   xi=matrix(1,npar,1,npar);  /*   lg=strlen(t); */
   for (i=1;i<=npar;i++)  /*   for(j=0; j<=lg-1; j++) { */
     for (j=1;j<=npar;j++)  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*   } */
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /*   } */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /*      u[p]='\0'; */
   
 }  /*    for(j=0; j<= lg; j++) { */
   /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 /**** Computes Hessian and covariance matrix ***/  /*   } */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /* } */
 {  
   double  **a,**y,*x,pd;  #ifdef _WIN32
   double **hess;  char * strsep(char **pp, const char *delim)
   int i, j,jk;  {
   int *indx;    char *p, *q;
            
   double hessii(double p[], double delta, int theta, double delti[]);    if ((p = *pp) == NULL)
   double hessij(double p[], double delti[], int i, int j);      return 0;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    if ((q = strpbrk (p, delim)) != NULL)
   void ludcmp(double **a, int npar, int *indx, double *d) ;    {
       *pp = q + 1;
   hess=matrix(1,npar,1,npar);      *q = '\0';
     }
   printf("\nCalculation of the hessian matrix. Wait...\n");    else
   for (i=1;i<=npar;i++){      *pp = 0;
     printf("%d",i);fflush(stdout);    return p;
     hess[i][i]=hessii(p,ftolhess,i,delti);  }
     /*printf(" %f ",p[i]);*/  #endif
     /*printf(" %lf ",hess[i][i]);*/  
   }  /********************** nrerror ********************/
    
   for (i=1;i<=npar;i++) {  void nrerror(char error_text[])
     for (j=1;j<=npar;j++)  {  {
       if (j>i) {    fprintf(stderr,"ERREUR ...\n");
         printf(".%d%d",i,j);fflush(stdout);    fprintf(stderr,"%s\n",error_text);
         hess[i][j]=hessij(p,delti,i,j);    exit(EXIT_FAILURE);
         hess[j][i]=hess[i][j];      }
         /*printf(" %lf ",hess[i][j]);*/  /*********************** vector *******************/
       }  double *vector(int nl, int nh)
     }  {
   }    double *v;
   printf("\n");    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    return v-nl+NR_END;
    }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  /************************ free vector ******************/
   x=vector(1,npar);  void free_vector(double*v, int nl, int nh)
   indx=ivector(1,npar);  {
   for (i=1;i<=npar;i++)    free((FREE_ARG)(v+nl-NR_END));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  }
   ludcmp(a,npar,indx,&pd);  
   /************************ivector *******************************/
   for (j=1;j<=npar;j++) {  int *ivector(long nl,long nh)
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    int *v;
     lubksb(a,npar,indx,x);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     for (i=1;i<=npar;i++){    if (!v) nrerror("allocation failure in ivector");
       matcov[i][j]=x[i];    return v-nl+NR_END;
     }  }
   }  
   /******************free ivector **************************/
   printf("\n#Hessian matrix#\n");  void free_ivector(int *v, long nl, long nh)
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++) {    free((FREE_ARG)(v+nl-NR_END));
       printf("%.3e ",hess[i][j]);  }
     }  
     printf("\n");  /************************lvector *******************************/
   }  long *lvector(long nl,long nh)
   {
   /* Recompute Inverse */    long *v;
   for (i=1;i<=npar;i++)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    if (!v) nrerror("allocation failure in ivector");
   ludcmp(a,npar,indx,&pd);    return v-nl+NR_END;
   }
   /*  printf("\n#Hessian matrix recomputed#\n");  
   /******************free lvector **************************/
   for (j=1;j<=npar;j++) {  void free_lvector(long *v, long nl, long nh)
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    free((FREE_ARG)(v+nl-NR_END));
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  /******************* imatrix *******************************/
       printf("%.3e ",y[i][j]);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     printf("\n");  { 
   }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   */    int **m; 
     
   free_matrix(a,1,npar,1,npar);    /* allocate pointers to rows */ 
   free_matrix(y,1,npar,1,npar);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   free_vector(x,1,npar);    if (!m) nrerror("allocation failure 1 in matrix()"); 
   free_ivector(indx,1,npar);    m += NR_END; 
   free_matrix(hess,1,npar,1,npar);    m -= nrl; 
     
     
 }    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 /*************** hessian matrix ****************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 double hessii( double x[], double delta, int theta, double delti[])    m[nrl] += NR_END; 
 {    m[nrl] -= ncl; 
   int i;    
   int l=1, lmax=20;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double k1,k2;    
   double p2[NPARMAX+1];    /* return pointer to array of pointers to rows */ 
   double res;    return m; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  } 
   double fx;  
   int k=0,kmax=10;  /****************** free_imatrix *************************/
   double l1;  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
   fx=func(x);        long nch,ncl,nrh,nrl; 
   for (i=1;i<=npar;i++) p2[i]=x[i];       /* free an int matrix allocated by imatrix() */ 
   for(l=0 ; l <=lmax; l++){  { 
     l1=pow(10,l);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     delts=delt;    free((FREE_ARG) (m+nrl-NR_END)); 
     for(k=1 ; k <kmax; k=k+1){  } 
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  /******************* matrix *******************************/
       k1=func(p2)-fx;  double **matrix(long nrl, long nrh, long ncl, long nch)
       p2[theta]=x[theta]-delt;  {
       k2=func(p2)-fx;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double **m;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
          m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    m += NR_END;
 #endif    m -= nrl;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         k=kmax;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    m[nrl] -= ncl;
         k=kmax; l=lmax*10.;  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    return m;
         delts=delt;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       }  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
     }  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   }     */
   delti[theta]=delts;  }
   return res;  
    /*************************free matrix ************************/
 }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 double hessij( double x[], double delti[], int thetai,int thetaj)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   int i;  }
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  /******************* ma3x *******************************/
   double p2[NPARMAX+1];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   int k;  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   fx=func(x);    double ***m;
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     p2[thetai]=x[thetai]+delti[thetai]/k;    if (!m) nrerror("allocation failure 1 in matrix()");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    m += NR_END;
     k1=func(p2)-fx;    m -= nrl;
    
     p2[thetai]=x[thetai]+delti[thetai]/k;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     k2=func(p2)-fx;    m[nrl] += NR_END;
      m[nrl] -= ncl;
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     k3=func(p2)-fx;  
      m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     p2[thetai]=x[thetai]-delti[thetai]/k;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    m[nrl][ncl] += NR_END;
     k4=func(p2)-fx;    m[nrl][ncl] -= nll;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for (j=ncl+1; j<=nch; j++) 
 #ifdef DEBUG      m[nrl][j]=m[nrl][j-1]+nlay;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    
 #endif    for (i=nrl+1; i<=nrh; i++) {
   }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   return res;      for (j=ncl+1; j<=nch; j++) 
 }        m[i][j]=m[i][j-1]+nlay;
     }
 /************** Inverse of matrix **************/    return m; 
 void ludcmp(double **a, int n, int *indx, double *d)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   int i,imax,j,k;    */
   double big,dum,sum,temp;  }
   double *vv;  
    /*************************free ma3x ************************/
   vv=vector(1,n);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   *d=1.0;  {
   for (i=1;i<=n;i++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     big=0.0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for (j=1;j<=n;j++)    free((FREE_ARG)(m+nrl-NR_END));
       if ((temp=fabs(a[i][j])) > big) big=temp;  }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  /*************** function subdirf ***********/
   }  char *subdirf(char fileres[])
   for (j=1;j<=n;j++) {  {
     for (i=1;i<j;i++) {    /* Caution optionfilefiname is hidden */
       sum=a[i][j];    strcpy(tmpout,optionfilefiname);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    strcat(tmpout,"/"); /* Add to the right */
       a[i][j]=sum;    strcat(tmpout,fileres);
     }    return tmpout;
     big=0.0;  }
     for (i=j;i<=n;i++) {  
       sum=a[i][j];  /*************** function subdirf2 ***********/
       for (k=1;k<j;k++)  char *subdirf2(char fileres[], char *preop)
         sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    
       if ( (dum=vv[i]*fabs(sum)) >= big) {    /* Caution optionfilefiname is hidden */
         big=dum;    strcpy(tmpout,optionfilefiname);
         imax=i;    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
     if (j != imax) {    return tmpout;
       for (k=1;k<=n;k++) {  }
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  /*************** function subdirf3 ***********/
         a[j][k]=dum;  char *subdirf3(char fileres[], char *preop, char *preop2)
       }  {
       *d = -(*d);    
       vv[imax]=vv[j];    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     indx[j]=imax;    strcat(tmpout,"/");
     if (a[j][j] == 0.0) a[j][j]=TINY;    strcat(tmpout,preop);
     if (j != n) {    strcat(tmpout,preop2);
       dum=1.0/(a[j][j]);    strcat(tmpout,fileres);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    return tmpout;
     }  }
   }  
   free_vector(vv,1,n);  /* Doesn't work */  char *asc_diff_time(long time_sec, char ascdiff[])
 ;  {
 }    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
 void lubksb(double **a, int n, int *indx, double b[])    sec_left = (time_sec) % (60*60*24);
 {    hours = (sec_left) / (60*60) ;
   int i,ii=0,ip,j;    sec_left = (sec_left) %(60*60);
   double sum;    minutes = (sec_left) /60;
      sec_left = (sec_left) % (60);
   for (i=1;i<=n;i++) {    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     ip=indx[i];    return ascdiff;
     sum=b[ip];  }
     b[ip]=b[i];  
     if (ii)  /***************** f1dim *************************/
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  extern int ncom; 
     else if (sum) ii=i;  extern double *pcom,*xicom;
     b[i]=sum;  extern double (*nrfunc)(double []); 
   }   
   for (i=n;i>=1;i--) {  double f1dim(double x) 
     sum=b[i];  { 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    int j; 
     b[i]=sum/a[i][i];    double f;
   }    double *xt; 
 }   
     xt=vector(1,ncom); 
 /************ Frequencies ********************/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    f=(*nrfunc)(xt); 
 {  /* Some frequencies */    free_vector(xt,1,ncom); 
      return f; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  } 
   double ***freq; /* Frequencies */  
   double *pp;  /*****************brent *************************/
   double pos, k2, dateintsum=0,k2cpt=0;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   FILE *ficresp;  { 
   char fileresp[FILENAMELENGTH];    int iter; 
      double a,b,d,etemp;
   pp=vector(1,nlstate);    double fu=0,fv,fw,fx;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ftemp=0.;
   strcpy(fileresp,"p");    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   strcat(fileresp,fileres);    double e=0.0; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {   
     printf("Problem with prevalence resultfile: %s\n", fileresp);    a=(ax < cx ? ax : cx); 
     exit(0);    b=(ax > cx ? ax : cx); 
   }    x=w=v=bx; 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    fw=fv=fx=(*f)(x); 
   j1=0;    for (iter=1;iter<=ITMAX;iter++) { 
        xm=0.5*(a+b); 
   j=cptcoveff;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
        printf(".");fflush(stdout);
   for(k1=1; k1<=j;k1++){      fprintf(ficlog,".");fflush(ficlog);
     for(i1=1; i1<=ncodemax[k1];i1++){  #ifdef DEBUGBRENT
       j1++;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         scanf("%d", i);*/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       for (i=-1; i<=nlstate+ndeath; i++)    #endif
         for (jk=-1; jk<=nlstate+ndeath; jk++)        if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
           for(m=agemin; m <= agemax+3; m++)        *xmin=x; 
             freq[i][jk][m]=0;        return fx; 
            } 
       dateintsum=0;      ftemp=fu;
       k2cpt=0;      if (fabs(e) > tol1) { 
       for (i=1; i<=imx; i++) {        r=(x-w)*(fx-fv); 
         bool=1;        q=(x-v)*(fx-fw); 
         if  (cptcovn>0) {        p=(x-v)*q-(x-w)*r; 
           for (z1=1; z1<=cptcoveff; z1++)        q=2.0*(q-r); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        if (q > 0.0) p = -p; 
               bool=0;        q=fabs(q); 
         }        etemp=e; 
         if (bool==1) {        e=d; 
           for(m=firstpass; m<=lastpass; m++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
             k2=anint[m][i]+(mint[m][i]/12.);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        else { 
               if(agev[m][i]==0) agev[m][i]=agemax+1;          d=p/q; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;          u=x+d; 
               if (m<lastpass) {          if (u-a < tol2 || b-u < tol2) 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            d=SIGN(tol1,xm-x); 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        } 
               }      } else { 
                      d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      } 
                 dateintsum=dateintsum+k2;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                 k2cpt++;      fu=(*f)(u); 
               }      if (fu <= fx) { 
             }        if (u >= x) a=x; else b=x; 
           }        SHFT(v,w,x,u) 
         }          SHFT(fv,fw,fx,fu) 
       }          } else { 
                    if (u < x) a=u; else b=u; 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            if (fu <= fw || w == x) { 
               v=w; 
       if  (cptcovn>0) {              w=u; 
         fprintf(ficresp, "\n#********** Variable ");              fv=fw; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              fw=fu; 
         fprintf(ficresp, "**********\n#");            } else if (fu <= fv || v == x || v == w) { 
       }              v=u; 
       for(i=1; i<=nlstate;i++)              fv=fu; 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            } 
       fprintf(ficresp, "\n");          } 
          } 
       for(i=(int)agemin; i <= (int)agemax+3; i++){    nrerror("Too many iterations in brent"); 
         if(i==(int)agemax+3)    *xmin=x; 
           printf("Total");    return fx; 
         else  } 
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){  /****************** mnbrak ***********************/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         }              double (*func)(double)) 
         for(jk=1; jk <=nlstate ; jk++){  { 
           for(m=-1, pos=0; m <=0 ; m++)    double ulim,u,r,q, dum;
             pos += freq[jk][m][i];    double fu; 
           if(pp[jk]>=1.e-10)   
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    *fa=(*func)(*ax); 
           else    *fb=(*func)(*bx); 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    if (*fb > *fa) { 
         }      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
         for(jk=1; jk <=nlstate ; jk++){        } 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    *cx=(*bx)+GOLD*(*bx-*ax); 
             pp[jk] += freq[jk][m][i];    *fc=(*func)(*cx); 
         }    while (*fb > *fc) { /* Declining fa, fb, fc */
       r=(*bx-*ax)*(*fb-*fc); 
         for(jk=1,pos=0; jk <=nlstate ; jk++)      q=(*bx-*cx)*(*fb-*fa); 
           pos += pp[jk];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         for(jk=1; jk <=nlstate ; jk++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
           if(pos>=1.e-5)      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
           else        fu=(*func)(u); 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  #ifdef DEBUG
           if( i <= (int) agemax){        /* f(x)=A(x-u)**2+f(u) */
             if(pos>=1.e-5){        double A, fparabu; 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
               probs[i][jk][j1]= pp[jk]/pos;        fparabu= *fa - A*(*ax-u)*(*ax-u);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
             }        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
             else  #endif 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
           }        fu=(*func)(u); 
         }        if (fu < *fc) { 
                  SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         for(jk=-1; jk <=nlstate+ndeath; jk++)            SHFT(*fb,*fc,fu,(*func)(u)) 
           for(m=-1; m <=nlstate+ndeath; m++)            } 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
         if(i <= (int) agemax)        u=ulim; 
           fprintf(ficresp,"\n");        fu=(*func)(u); 
         printf("\n");      } else { 
       }        u=(*cx)+GOLD*(*cx-*bx); 
     }        fu=(*func)(u); 
   }      } 
   dateintmean=dateintsum/k2cpt;      SHFT(*ax,*bx,*cx,u) 
          SHFT(*fa,*fb,*fc,fu) 
   fclose(ficresp);        } 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  } 
   free_vector(pp,1,nlstate);  
    /*************** linmin ************************/
   /* End of Freq */  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
 }  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   and replaces xi by the actual vector displacement that p was moved. Also returns as fret
 /************ Prevalence ********************/  the value of func at the returned location p . This is actually all accomplished by calling the
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  routines mnbrak and brent .*/
 {  /* Some frequencies */  int ncom; 
    double *pcom,*xicom;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  double (*nrfunc)(double []); 
   double ***freq; /* Frequencies */   
   double *pp;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double pos, k2;  { 
     double brent(double ax, double bx, double cx, 
   pp=vector(1,nlstate);                 double (*f)(double), double tol, double *xmin); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double f1dim(double x); 
      void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);                double *fc, double (*func)(double)); 
   j1=0;    int j; 
      double xx,xmin,bx,ax; 
   j=cptcoveff;    double fx,fb,fa;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}   
      ncom=n; 
   for(k1=1; k1<=j;k1++){    pcom=vector(1,n); 
     for(i1=1; i1<=ncodemax[k1];i1++){    xicom=vector(1,n); 
       j1++;    nrfunc=func; 
          for (j=1;j<=n;j++) { 
       for (i=-1; i<=nlstate+ndeath; i++)        pcom[j]=p[j]; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)        xicom[j]=xi[j]; 
           for(m=agemin; m <= agemax+3; m++)    } 
             freq[i][jk][m]=0;    ax=0.0; 
          xx=1.0; 
       for (i=1; i<=imx; i++) {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
         bool=1;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
         if  (cptcovn>0) {  #ifdef DEBUG
           for (z1=1; z1<=cptcoveff; z1++)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
               bool=0;  #endif
         }    for (j=1;j<=n;j++) { 
         if (bool==1) {      xi[j] *= xmin; 
           for(m=firstpass; m<=lastpass; m++){      p[j] += xi[j]; 
             k2=anint[m][i]+(mint[m][i]/12.);    } 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    free_vector(xicom,1,n); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;    free_vector(pcom,1,n); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;  } 
               if (m<lastpass) {  
                 if (calagedate>0)  
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  /*************** powell ************************/
                 else  /*
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  Minimization of a function func of n variables. Input consists of an initial starting point
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
               }  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
             }  such that failure to decrease by more than this amount on one iteration signals doneness. On
           }  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
         }  function value at p , and iter is the number of iterations taken. The routine linmin is used.
       }   */
       for(i=(int)agemin; i <= (int)agemax+3; i++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         for(jk=1; jk <=nlstate ; jk++){              double (*func)(double [])) 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  { 
             pp[jk] += freq[jk][m][i];    void linmin(double p[], double xi[], int n, double *fret, 
         }                double (*func)(double [])); 
         for(jk=1; jk <=nlstate ; jk++){    int i,ibig,j; 
           for(m=-1, pos=0; m <=0 ; m++)    double del,t,*pt,*ptt,*xit;
             pos += freq[jk][m][i];    double fp,fptt;
         }    double *xits;
            int niterf, itmp;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    pt=vector(1,n); 
             pp[jk] += freq[jk][m][i];    ptt=vector(1,n); 
         }    xit=vector(1,n); 
            xits=vector(1,n); 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    *fret=(*func)(p); 
            for (j=1;j<=n;j++) pt[j]=p[j]; 
         for(jk=1; jk <=nlstate ; jk++){          rcurr_time = time(NULL);  
           if( i <= (int) agemax){    for (*iter=1;;++(*iter)) { 
             if(pos>=1.e-5){      fp=(*fret); 
               probs[i][jk][j1]= pp[jk]/pos;      ibig=0; 
             }      del=0.0; 
           }      rlast_time=rcurr_time;
         }      /* (void) gettimeofday(&curr_time,&tzp); */
              rcurr_time = time(NULL);  
       }      curr_time = *localtime(&rcurr_time);
     }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
   }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       for (i=1;i<=n;i++) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        printf(" %d %.12f",i, p[i]);
   free_vector(pp,1,nlstate);        fprintf(ficlog," %d %.12lf",i, p[i]);
          fprintf(ficrespow," %.12lf", p[i]);
 }  /* End of Freq */      }
       printf("\n");
 /************* Waves Concatenation ***************/      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      if(*iter <=3){
 {        tml = *localtime(&rcurr_time);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        strcpy(strcurr,asctime(&tml));
      Death is a valid wave (if date is known).        rforecast_time=rcurr_time; 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        itmp = strlen(strcurr);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
      and mw[mi+1][i]. dh depends on stepm.          strcurr[itmp-1]='\0';
      */        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   int i, mi, m;        for(niterf=10;niterf<=30;niterf+=10){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
      double sum=0., jmean=0.;*/          forecast_time = *localtime(&rforecast_time);
           strcpy(strfor,asctime(&forecast_time));
   int j, k=0,jk, ju, jl;          itmp = strlen(strfor);
   double sum=0.;          if(strfor[itmp-1]=='\n')
   jmin=1e+5;          strfor[itmp-1]='\0';
   jmax=-1;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   jmean=0.;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   for(i=1; i<=imx; i++){        }
     mi=0;      }
     m=firstpass;      for (i=1;i<=n;i++) { 
     while(s[m][i] <= nlstate){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       if(s[m][i]>=1)        fptt=(*fret); 
         mw[++mi][i]=m;  #ifdef DEBUG
       if(m >=lastpass)            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         break;            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
       else  #endif
         m++;        printf("%d",i);fflush(stdout);
     }/* end while */        fprintf(ficlog,"%d",i);fflush(ficlog);
     if (s[m][i] > nlstate){        linmin(p,xit,n,fret,func); 
       mi++;     /* Death is another wave */        if (fabs(fptt-(*fret)) > del) { 
       /* if(mi==0)  never been interviewed correctly before death */          del=fabs(fptt-(*fret)); 
          /* Only death is a correct wave */          ibig=i; 
       mw[mi][i]=m;        } 
     }  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
     wav[i]=mi;        fprintf(ficlog,"%d %.12e",i,(*fret));
     if(mi==0)        for (j=1;j<=n;j++) {
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for(i=1; i<=imx; i++){        }
     for(mi=1; mi<wav[i];mi++){        for(j=1;j<=n;j++) {
       if (stepm <=0)          printf(" p(%d)=%.12e",j,p[j]);
         dh[mi][i]=1;          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
       else{        }
         if (s[mw[mi+1][i]][i] > nlstate) {        printf("\n");
           if (agedc[i] < 2*AGESUP) {        fprintf(ficlog,"\n");
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  #endif
           if(j==0) j=1;  /* Survives at least one month after exam */      } /* end i */
           k=k+1;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
           if (j >= jmax) jmax=j;  #ifdef DEBUG
           if (j <= jmin) jmin=j;        int k[2],l;
           sum=sum+j;        k[0]=1;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        k[1]=-1;
           }        printf("Max: %.12e",(*func)(p));
         }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         else{        for (j=1;j<=n;j++) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          printf(" %.12e",p[j]);
           k=k+1;          fprintf(ficlog," %.12e",p[j]);
           if (j >= jmax) jmax=j;        }
           else if (j <= jmin)jmin=j;        printf("\n");
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        fprintf(ficlog,"\n");
           sum=sum+j;        for(l=0;l<=1;l++) {
         }          for (j=1;j<=n;j++) {
         jk= j/stepm;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         jl= j -jk*stepm;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         ju= j -(jk+1)*stepm;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         if(jl <= -ju)          }
           dh[mi][i]=jk;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         else          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           dh[mi][i]=jk+1;        }
         if(dh[mi][i]==0)  #endif
           dh[mi][i]=1; /* At least one step */  
       }  
     }        free_vector(xit,1,n); 
   }        free_vector(xits,1,n); 
   jmean=sum/k;        free_vector(ptt,1,n); 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        free_vector(pt,1,n); 
  }        return; 
 /*********** Tricode ****************************/      } 
 void tricode(int *Tvar, int **nbcode, int imx)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 {      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
   int Ndum[20],ij=1, k, j, i;        ptt[j]=2.0*p[j]-pt[j]; 
   int cptcode=0;        xit[j]=p[j]-pt[j]; 
   cptcoveff=0;        pt[j]=p[j]; 
        } 
   for (k=0; k<19; k++) Ndum[k]=0;      fptt=(*func)(ptt); 
   for (k=1; k<=7; k++) ncodemax[k]=0;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
         /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
     for (i=1; i<=imx; i++) {        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
       ij=(int)(covar[Tvar[j]][i]);        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
       Ndum[ij]++;        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
       if (ij > cptcode) cptcode=ij;        /* Thus we compare delta(2h) with observed f1-f3 */
     }        /* or best gain on one ancient line 'del' with total  */
         /* gain f1-f2 = f1 - f2 - 'del' with del  */
     for (i=0; i<=cptcode; i++) {        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
       if(Ndum[i]!=0) ncodemax[j]++;  
     }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
     ij=1;        t= t- del*SQR(fp-fptt);
         printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
         fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
     for (i=1; i<=ncodemax[j]; i++) {  #ifdef DEBUG
       for (k=0; k<=19; k++) {        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         if (Ndum[k] != 0) {               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
           nbcode[Tvar[j]][ij]=k;        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                         (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
           ij++;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         }        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         if (ij > ncodemax[j]) break;  #endif
       }          if (t < 0.0) { /* Then we use it for last direction */
     }          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
   }            for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
  for (k=0; k<19; k++) Ndum[k]=0;            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
           }
  for (i=1; i<=ncovmodel-2; i++) {          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       ij=Tvar[i];          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       Ndum[ij]++;  
     }  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  ij=1;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  for (i=1; i<=10; i++) {          for(j=1;j<=n;j++){
    if((Ndum[i]!=0) && (i<=ncovcol)){            printf(" %.12e",xit[j]);
      Tvaraff[ij]=i;            fprintf(ficlog," %.12e",xit[j]);
      ij++;          }
    }          printf("\n");
  }          fprintf(ficlog,"\n");
    #endif
     cptcoveff=ij-1;        } /* end of t negative */
 }      } /* end if (fptt < fp)  */
     } 
 /*********** Health Expectancies ****************/  } 
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  /**** Prevalence limit (stable or period prevalence)  ****************/
   
 {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   /* Health expectancies */  {
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double age, agelim, hf;       matrix by transitions matrix until convergence is reached */
   double ***p3mat,***varhe;    
   double **dnewm,**doldm;    int i, ii,j,k;
   double *xp;    double min, max, maxmin, maxmax,sumnew=0.;
   double **gp, **gm;    /* double **matprod2(); */ /* test */
   double ***gradg, ***trgradg;    double **out, cov[NCOVMAX+1], **pmij();
   int theta;    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    
   xp=vector(1,npar);    for (ii=1;ii<=nlstate+ndeath;ii++)
   dnewm=matrix(1,nlstate*2,1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   doldm=matrix(1,nlstate*2,1,nlstate*2);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        }
   fprintf(ficreseij,"# Health expectancies\n");    
   fprintf(ficreseij,"# Age");    cov[1]=1.;
   for(i=1; i<=nlstate;i++)    
     for(j=1; j<=nlstate;j++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   fprintf(ficreseij,"\n");      newm=savm;
       /* Covariates have to be included here again */
   if(estepm < stepm){      cov[2]=agefin;
     printf ("Problem %d lower than %d\n",estepm, stepm);      
   }      for (k=1; k<=cptcovn;k++) {
   else  hstepm=estepm;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /* We compute the life expectancy from trapezoids spaced every estepm months        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
    * This is mainly to measure the difference between two models: for example      }
    * if stepm=24 months pijx are given only every 2 years and by summing them      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
    * we are calculating an estimate of the Life Expectancy assuming a linear      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
    * progression inbetween and thus overestimating or underestimating according      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
    * to the curvature of the survival function. If, for the same date, we      
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
    * to compare the new estimate of Life expectancy with the same linear      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
    * hypothesis. A more precise result, taking into account a more precise      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
    * curvature will be obtained if estepm is as small as stepm. */      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   /* For example we decided to compute the life expectancy with the smallest unit */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      
      nhstepm is the number of hstepm from age to agelim      savm=oldm;
      nstepm is the number of stepm from age to agelin.      oldm=newm;
      Look at hpijx to understand the reason of that which relies in memory size      maxmax=0.;
      and note for a fixed period like estepm months */      for(j=1;j<=nlstate;j++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        min=1.;
      survival function given by stepm (the optimization length). Unfortunately it        max=0.;
      means that if the survival funtion is printed only each two years of age and if        for(i=1; i<=nlstate; i++) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          sumnew=0;
      results. So we changed our mind and took the option of the best precision.          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   */          prlim[i][j]= newm[i][j]/(1-sumnew);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
           max=FMAX(max,prlim[i][j]);
   agelim=AGESUP;          min=FMIN(min,prlim[i][j]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     /* nhstepm age range expressed in number of stepm */        maxmin=max-min;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        maxmax=FMAX(maxmax,maxmin);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      } /* j loop */
     /* if (stepm >= YEARM) hstepm=1;*/      if(maxmax < ftolpl){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        return prlim;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    } /* age loop */
     gp=matrix(0,nhstepm,1,nlstate*2);    return prlim; /* should not reach here */
     gm=matrix(0,nhstepm,1,nlstate*2);  }
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  /*************** transition probabilities ***************/ 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
    {
     /* According to parameters values stored in x and the covariate's values stored in cov,
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */       computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
     /* Computing Variances of health expectancies */       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
        and, according on how parameters are entered, the position of the coefficient xij(nc) of the
      for(theta=1; theta <=npar; theta++){       ncth covariate in the global vector x is given by the formula:
       for(i=1; i<=npar; i++){       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
       }       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         Outputs ps[i][j] the probability to be observed in j being in j according to
       cptj=0;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
       for(j=1; j<= nlstate; j++){    */
         for(i=1; i<=nlstate; i++){    double s1, lnpijopii;
           cptj=cptj+1;    /*double t34;*/
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    int i,j, nc, ii, jj;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }      for(i=1; i<= nlstate; i++){
         }        for(j=1; j<i;j++){
       }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                  /*lnpijopii += param[i][j][nc]*cov[nc];*/
                  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
       for(i=1; i<=npar; i++)  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
        /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       cptj=0;        }
       for(j=1; j<= nlstate; j++){        for(j=i+1; j<=nlstate+ndeath;j++){
         for(i=1;i<=nlstate;i++){          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           cptj=cptj+1;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }          }
         }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       }        }
       for(j=1; j<= nlstate*2; j++)      }
         for(h=0; h<=nhstepm-1; h++){      
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for(i=1; i<= nlstate; i++){
         }        s1=0;
      }        for(j=1; j<i; j++){
              s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 /* End theta */          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        for(j=i+1; j<=nlstate+ndeath; j++){
           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
      for(h=0; h<=nhstepm-1; h++)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       for(j=1; j<=nlstate*2;j++)        }
         for(theta=1; theta <=npar; theta++)        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
           trgradg[h][j][theta]=gradg[h][theta][j];        ps[i][i]=1./(s1+1.);
              /* Computing other pijs */
         for(j=1; j<i; j++)
      for(i=1;i<=nlstate*2;i++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=1;j<=nlstate*2;j++)        for(j=i+1; j<=nlstate+ndeath; j++)
         varhe[i][j][(int)age] =0.;          ps[i][j]= exp(ps[i][j])*ps[i][i];
         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
      printf("%d|",(int)age);fflush(stdout);      } /* end i */
      for(h=0;h<=nhstepm-1;h++){      
       for(k=0;k<=nhstepm-1;k++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        for(jj=1; jj<= nlstate+ndeath; jj++){
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          ps[ii][jj]=0;
         for(i=1;i<=nlstate*2;i++)          ps[ii][ii]=1;
           for(j=1;j<=nlstate*2;j++)        }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      }
       }      
     }      
     /* Computing expectancies */      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     for(i=1; i<=nlstate;i++)      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       for(j=1; j<=nlstate;j++)      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      /*   } */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      /*   printf("\n "); */
                /* } */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      /* printf("\n ");printf("%lf ",cov[2]);*/
       /*
         }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
     fprintf(ficreseij,"%3.0f",age );      return ps;
     cptj=0;  }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  /**************** Product of 2 matrices ******************/
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
       }  {
     fprintf(ficreseij,"\n");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     free_matrix(gm,0,nhstepm,1,nlstate*2);    /* in, b, out are matrice of pointers which should have been initialized 
     free_matrix(gp,0,nhstepm,1,nlstate*2);       before: only the contents of out is modified. The function returns
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);       a pointer to pointers identical to out */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    int i, j, k;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=nrl; i<= nrh; i++)
   }      for(k=ncolol; k<=ncoloh; k++){
   printf("\n");        out[i][k]=0.;
         for(j=ncl; j<=nch; j++)
   free_vector(xp,1,npar);          out[i][k] +=in[i][j]*b[j][k];
   free_matrix(dnewm,1,nlstate*2,1,npar);      }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    return out;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  }
 }  
   
 /************ Variance ******************/  /************* Higher Matrix Product ***************/
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  
 {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   /* Variance of health expectancies */  {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    /* Computes the transition matrix starting at age 'age' over 
   double **newm;       'nhstepm*hstepm*stepm' months (i.e. until
   double **dnewm,**doldm;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   int i, j, nhstepm, hstepm, h, nstepm ;       nhstepm*hstepm matrices. 
   int k, cptcode;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double *xp;       (typically every 2 years instead of every month which is too big 
   double **gp, **gm;       for the memory).
   double ***gradg, ***trgradg;       Model is determined by parameters x and covariates have to be 
   double ***p3mat;       included manually here. 
   double age,agelim, hf;  
   int theta;       */
   
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    int i, j, d, h, k;
   fprintf(ficresvij,"# Age");    double **out, cov[NCOVMAX+1];
   for(i=1; i<=nlstate;i++)    double **newm;
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    /* Hstepm could be zero and should return the unit matrix */
   fprintf(ficresvij,"\n");    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
   xp=vector(1,npar);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   dnewm=matrix(1,nlstate,1,npar);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate,1,nlstate);      }
      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   if(estepm < stepm){    for(h=1; h <=nhstepm; h++){
     printf ("Problem %d lower than %d\n",estepm, stepm);      for(d=1; d <=hstepm; d++){
   }        newm=savm;
   else  hstepm=estepm;          /* Covariates have to be included here again */
   /* For example we decided to compute the life expectancy with the smallest unit */        cov[1]=1.;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
      nhstepm is the number of hstepm from age to agelim        for (k=1; k<=cptcovn;k++) 
      nstepm is the number of stepm from age to agelin.          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      Look at hpijx to understand the reason of that which relies in memory size        for (k=1; k<=cptcovage;k++)
      and note for a fixed period like k years */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
      survival function given by stepm (the optimization length). Unfortunately it          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   agelim = AGESUP;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        savm=oldm;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        oldm=newm;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate+ndeath; i++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        for(j=1;j<=nlstate+ndeath;j++) {
     gp=matrix(0,nhstepm,1,nlstate);          po[i][j][h]=newm[i][j];
     gm=matrix(0,nhstepm,1,nlstate);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
     for(theta=1; theta <=npar; theta++){      /*printf("h=%d ",h);*/
       for(i=1; i<=npar; i++){ /* Computes gradient */    } /* end h */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  /*     printf("\n H=%d \n",h); */
       }    return po;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   #ifdef NLOPT
       if (popbased==1) {    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
         for(i=1; i<=nlstate;i++)    double fret;
           prlim[i][i]=probs[(int)age][i][ij];    double *xt;
       }    int j;
      myfunc_data *d2 = (myfunc_data *) pd;
       for(j=1; j<= nlstate; j++){  /* xt = (p1-1); */
         for(h=0; h<=nhstepm; h++){    xt=vector(1,n); 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
       }    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
        printf("Function = %.12lf ",fret);
       for(i=1; i<=npar; i++) /* Computes gradient */    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    printf("\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     free_vector(xt,1,n);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    return fret;
    }
       if (popbased==1) {  #endif
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  /*************** log-likelihood *************/
       }  double func( double *x)
   {
       for(j=1; j<= nlstate; j++){    int i, ii, j, k, mi, d, kk;
         for(h=0; h<=nhstepm; h++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    double **out;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    double sw; /* Sum of weights */
         }    double lli; /* Individual log likelihood */
       }    int s1, s2;
     double bbh, survp;
       for(j=1; j<= nlstate; j++)    long ipmx;
         for(h=0; h<=nhstepm; h++){    /*extern weight */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /* We are differentiating ll according to initial status */
         }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     } /* End theta */    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    */
   
     for(h=0; h<=nhstepm; h++)    ++countcallfunc;
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)    cov[1]=1.;
           trgradg[h][j][theta]=gradg[h][theta][j];  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)    if(mle==1){
       for(j=1;j<=nlstate;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         vareij[i][j][(int)age] =0.;        /* Computes the values of the ncovmodel covariates of the model
            depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     for(h=0;h<=nhstepm;h++){           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       for(k=0;k<=nhstepm;k++){           to be observed in j being in i according to the model.
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);         */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
         for(i=1;i<=nlstate;i++)          cov[2+k]=covar[Tvar[k]][i];
           for(j=1;j<=nlstate;j++)        }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       }           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
     }           has been calculated etc */
         for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficresvij,"%.0f ",age );          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     fprintf(ficresvij,"\n");          for(d=0; d<dh[mi][i]; d++){
     free_matrix(gp,0,nhstepm,1,nlstate);            newm=savm;
     free_matrix(gm,0,nhstepm,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   } /* End age */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_vector(xp,1,npar);            savm=oldm;
   free_matrix(doldm,1,nlstate,1,npar);            oldm=newm;
   free_matrix(dnewm,1,nlstate,1,nlstate);          } /* end mult */
         
 }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
 /************ Variance of prevlim ******************/           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)           * (in months) between two waves is not a multiple of stepm, we rounded to 
 {           * the nearest (and in case of equal distance, to the lowest) interval but now
   /* Variance of prevalence limit */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   double **newm;           * probability in order to take into account the bias as a fraction of the way
   double **dnewm,**doldm;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   int i, j, nhstepm, hstepm;           * -stepm/2 to stepm/2 .
   int k, cptcode;           * For stepm=1 the results are the same as for previous versions of Imach.
   double *xp;           * For stepm > 1 the results are less biased than in previous versions. 
   double *gp, *gm;           */
   double **gradg, **trgradg;          s1=s[mw[mi][i]][i];
   double age,agelim;          s2=s[mw[mi+1][i]][i];
   int theta;          bbh=(double)bh[mi][i]/(double)stepm; 
              /* bias bh is positive if real duration
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");           * is higher than the multiple of stepm and negative otherwise.
   fprintf(ficresvpl,"# Age");           */
   for(i=1; i<=nlstate;i++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       fprintf(ficresvpl," %1d-%1d",i,i);          if( s2 > nlstate){ 
   fprintf(ficresvpl,"\n");            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
   xp=vector(1,npar);               die between last step unit time and current  step unit time, 
   dnewm=matrix(1,nlstate,1,npar);               which is also equal to probability to die before dh 
   doldm=matrix(1,nlstate,1,nlstate);               minus probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
   hstepm=1*YEARM; /* Every year of age */          as if date of death was unknown. Death was treated as any other
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          health state: the date of the interview describes the actual state
   agelim = AGESUP;          and not the date of a change in health state. The former idea was
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          to consider that at each interview the state was recorded
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          (healthy, disable or death) and IMaCh was corrected; but when we
     if (stepm >= YEARM) hstepm=1;          introduced the exact date of death then we should have modified
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          the contribution of an exact death to the likelihood. This new
     gradg=matrix(1,npar,1,nlstate);          contribution is smaller and very dependent of the step unit
     gp=vector(1,nlstate);          stepm. It is no more the probability to die between last interview
     gm=vector(1,nlstate);          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
     for(theta=1; theta <=npar; theta++){          probability to die within a month. Thanks to Chris
       for(i=1; i<=npar; i++){ /* Computes gradient */          Jackson for correcting this bug.  Former versions increased
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          mortality artificially. The bad side is that we add another loop
       }          which slows down the processing. The difference can be up to 10%
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          lower mortality.
       for(i=1;i<=nlstate;i++)            */
         gp[i] = prlim[i][i];            lli=log(out[s1][s2] - savm[s1][s2]);
      
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          } else if  (s2==-2) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for (j=1,survp=0. ; j<=nlstate; j++) 
       for(i=1;i<=nlstate;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         gm[i] = prlim[i][i];            /*survp += out[s1][j]; */
             lli= log(survp);
       for(i=1;i<=nlstate;i++)          }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          
     } /* End theta */          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
     trgradg =matrix(1,nlstate,1,npar);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
     for(j=1; j<=nlstate;j++)          } 
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
     for(i=1;i<=nlstate;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       varpl[i][(int)age] =0.;            lli= log(survp); 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          } 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          
     for(i=1;i<=nlstate;i++)          else{
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     fprintf(ficresvpl,"%.0f ",age );          } 
     for(i=1; i<=nlstate;i++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          /*if(lli ==000.0)*/
     fprintf(ficresvpl,"\n");          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     free_vector(gp,1,nlstate);          ipmx +=1;
     free_vector(gm,1,nlstate);          sw += weight[i];
     free_matrix(gradg,1,npar,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_matrix(trgradg,1,nlstate,1,npar);        } /* end of wave */
   } /* End age */      } /* end of individual */
     }  else if(mle==2){
   free_vector(xp,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_matrix(doldm,1,nlstate,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_matrix(dnewm,1,nlstate,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Variance of one-step probabilities  ******************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)            }
 {          for(d=0; d<=dh[mi][i]; d++){
   int i, j,  i1, k1, l1;            newm=savm;
   int k2, l2, j1,  z1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int k=0,l, cptcode;            for (kk=1; kk<=cptcovage;kk++) {
   int first=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;            }
   double **dnewm,**doldm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double *xp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *gp, *gm;            savm=oldm;
   double **gradg, **trgradg;            oldm=newm;
   double **mu;          } /* end mult */
   double age,agelim, cov[NCOVMAX];        
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          s1=s[mw[mi][i]][i];
   int theta;          s2=s[mw[mi+1][i]][i];
   char fileresprob[FILENAMELENGTH];          bbh=(double)bh[mi][i]/(double)stepm; 
   char fileresprobcov[FILENAMELENGTH];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   char fileresprobcor[FILENAMELENGTH];          ipmx +=1;
           sw += weight[i];
   double ***varpij;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   strcpy(fileresprob,"prob");      } /* end of individual */
   strcat(fileresprob,fileres);    }  else if(mle==3){  /* exponential inter-extrapolation */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     printf("Problem with resultfile: %s\n", fileresprob);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   strcpy(fileresprobcov,"probcov");          for (ii=1;ii<=nlstate+ndeath;ii++)
   strcat(fileresprobcov,fileres);            for (j=1;j<=nlstate+ndeath;j++){
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("Problem with resultfile: %s\n", fileresprobcov);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   strcpy(fileresprobcor,"probcor");          for(d=0; d<dh[mi][i]; d++){
   strcat(fileresprobcor,fileres);            newm=savm;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("Problem with resultfile: %s\n", fileresprobcor);            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            oldm=newm;
   fprintf(ficresprob,"# Age");          } /* end mult */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        
   fprintf(ficresprobcov,"# Age");          s1=s[mw[mi][i]][i];
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          s2=s[mw[mi+1][i]][i];
   fprintf(ficresprobcov,"# Age");          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
   for(i=1; i<=nlstate;i++)          sw += weight[i];
     for(j=1; j<=(nlstate+ndeath);j++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        } /* end of wave */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      } /* end of individual */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     }        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficresprob,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficresprobcov,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficresprobcor,"\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   xp=vector(1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            }
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          for(d=0; d<dh[mi][i]; d++){
   first=1;            newm=savm;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            for (kk=1; kk<=cptcovage;kk++) {
     exit(0);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
   else{          
     fprintf(ficgp,"\n# Routine varprob");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            savm=oldm;
     printf("Problem with html file: %s\n", optionfilehtm);            oldm=newm;
     exit(0);          } /* end mult */
   }        
   else{          s1=s[mw[mi][i]][i];
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");          s2=s[mw[mi+1][i]][i];
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          if( s2 > nlstate){ 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
   }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   cov[1]=1;          }
   j=cptcoveff;          ipmx +=1;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          sw += weight[i];
   j1=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(k1=1; k1<=1;k1++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(i1=1; i1<=ncodemax[k1];i1++){        } /* end of wave */
     j1++;      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     if  (cptcovn>0) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficresprob, "\n#********** Variable ");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficresprobcov, "\n#********** Variable ");        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficgp, "\n#********** Variable ");          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresprobcor, "\n#********** Variable ");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresprob, "**********\n#");            }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(d=0; d<dh[mi][i]; d++){
       fprintf(ficresprobcov, "**********\n#");            newm=savm;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficgp, "**********\n#");            for (kk=1; kk<=cptcovage;kk++) {
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficgp, "**********\n#");            }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          
       fprintf(fichtm, "**********\n#");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
       for (age=bage; age<=fage; age ++){            oldm=newm;
         cov[2]=age;          } /* end mult */
         for (k=1; k<=cptcovn;k++) {        
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for (k=1; k<=cptcovprod;k++)          ipmx +=1;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        } /* end of wave */
         gp=vector(1,(nlstate)*(nlstate+ndeath));      } /* end of individual */
         gm=vector(1,(nlstate)*(nlstate+ndeath));    } /* End of if */
        for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for(theta=1; theta <=npar; theta++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           for(i=1; i<=npar; i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    return -l;
            }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
            /*************** log-likelihood *************/
           k=0;  double funcone( double *x)
           for(i=1; i<= (nlstate); i++){  {
             for(j=1; j<=(nlstate+ndeath);j++){    /* Same as likeli but slower because of a lot of printf and if */
               k=k+1;    int i, ii, j, k, mi, d, kk;
               gp[k]=pmmij[i][j];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
             }    double **out;
           }    double lli; /* Individual log likelihood */
              double llt;
           for(i=1; i<=npar; i++)    int s1, s2;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    double bbh, survp;
        /*extern weight */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /* We are differentiating ll according to initial status */
           k=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for(i=1; i<=(nlstate); i++){    /*for(i=1;i<imx;i++) 
             for(j=1; j<=(nlstate+ndeath);j++){      printf(" %d\n",s[4][i]);
               k=k+1;    */
               gm[k]=pmmij[i][j];    cov[1]=1.;
             }  
           }    for(k=1; k<=nlstate; k++) ll[k]=0.;
        
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          for (j=1;j<=nlstate+ndeath;j++){
           for(theta=1; theta <=npar; theta++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             trgradg[j][theta]=gradg[theta][j];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        for(d=0; d<dh[mi][i]; d++){
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          newm=savm;
                  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         pmij(pmmij,cov,ncovmodel,x,nlstate);          for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         k=0;          }
         for(i=1; i<=(nlstate); i++){          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
           for(j=1; j<=(nlstate+ndeath);j++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             k=k+1;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             mu[k][(int) age]=pmmij[i][j];          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           }          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
         }          savm=oldm;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          oldm=newm;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        } /* end mult */
             varpij[i][j][(int)age] = doldm[i][j];        
         s1=s[mw[mi][i]][i];
         /*printf("\n%d ",(int)age);        s2=s[mw[mi+1][i]][i];
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        bbh=(double)bh[mi][i]/(double)stepm; 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        /* bias is positive if real duration
      }*/         * is higher than the multiple of stepm and negative otherwise.
          */
         fprintf(ficresprob,"\n%d ",(int)age);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         fprintf(ficresprobcov,"\n%d ",(int)age);          lli=log(out[s1][s2] - savm[s1][s2]);
         fprintf(ficresprobcor,"\n%d ",(int)age);        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          lli= log(survp);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        }else if (mle==1){
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        } else if(mle==2){
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         i=0;        } else if(mle==3){  /* exponential inter-extrapolation */
         for (k=1; k<=(nlstate);k++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for (l=1; l<=(nlstate+ndeath);l++){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
             i=i++;          lli=log(out[s1][s2]); /* Original formula */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        } else{  /* mle=0 back to 1 */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             for (j=1; j<=i;j++){          /*lli=log(out[s1][s2]); */ /* Original formula */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        } /* End of if */
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        ipmx +=1;
             }        sw += weight[i];
           }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }/* end of loop for state */        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       } /* end of loop for age */        if(globpr){
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for (k1=1; k1<=(nlstate);k1++){   %11.6f %11.6f %11.6f ", \
         for (l1=1; l1<=(nlstate+ndeath);l1++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           if(l1==k1) continue;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           i=(k1-1)*(nlstate+ndeath)+l1;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           for (k2=1; k2<=(nlstate);k2++){            llt +=ll[k]*gipmx/gsw;
             for (l2=1; l2<=(nlstate+ndeath);l2++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
               if(l2==k2) continue;          }
               j=(k2-1)*(nlstate+ndeath)+l2;          fprintf(ficresilk," %10.6f\n", -llt);
               if(j<=i) continue;        }
               for (age=bage; age<=fage; age ++){      } /* end of wave */
                 if ((int)age %5==0){    } /* end of individual */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   mu1=mu[i][(int) age]/stepm*YEARM ;    if(globpr==0){ /* First time we count the contributions and weights */
                   mu2=mu[j][(int) age]/stepm*YEARM;      gipmx=ipmx;
                   /* Computing eigen value of matrix of covariance */      gsw=sw;
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    }
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    return -l;
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);  }
                   /* Eigen vectors */  
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  
                   v21=sqrt(1.-v11*v11);  /*************** function likelione ***********/
                   v12=-v21;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
                   v22=v11;  {
                   /*printf(fignu*/    /* This routine should help understanding what is done with 
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */       the selection of individuals/waves and
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */       to check the exact contribution to the likelihood.
                   if(first==1){       Plotting could be done.
                     first=0;     */
                     fprintf(ficgp,"\nset parametric;set nolabel");    int k;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    if(*globpri !=0){ /* Just counts and sums, no printings */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);      strcpy(fileresilk,"ilk"); 
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);      strcat(fileresilk,fileres);
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);        printf("Problem with resultfile: %s\n", fileresilk);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
                   }else{      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                     first=0;      for(k=1; k<=nlstate; k++) 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    *fretone=(*funcone)(p);
                   }/* if first */    if(*globpri !=0){
                 } /* age mod 5 */      fclose(ficresilk);
               } /* end loop age */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);      fflush(fichtm); 
               first=1;    } 
             } /*l12 */    return;
           } /* k12 */  }
         } /*l1 */  
       }/* k1 */  
     } /* loop covariates */  /*********** Maximum Likelihood Estimation ***************/
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  {
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    int i,j, iter=0;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double **xi;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double fret;
   }    double fretone; /* Only one call to likelihood */
   free_vector(xp,1,npar);    /*  char filerespow[FILENAMELENGTH];*/
   fclose(ficresprob);  
   fclose(ficresprobcov);  #ifdef NLOPT
   fclose(ficresprobcor);    int creturn;
   fclose(ficgp);    nlopt_opt opt;
   fclose(fichtm);    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 }    double *lb;
     double minf; /* the minimum objective value, upon return */
     double * p1; /* Shifted parameters from 0 instead of 1 */
 /******************* Printing html file ***********/    myfunc_data dinst, *d = &dinst;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  #endif
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\    xi=matrix(1,npar,1,npar);
                   double jprev1, double mprev1,double anprev1, \    for (i=1;i<=npar;i++)
                   double jprev2, double mprev2,double anprev2){      for (j=1;j<=npar;j++)
   int jj1, k1, i1, cpt;        xi[i][j]=(i==j ? 1.0 : 0.0);
   /*char optionfilehtm[FILENAMELENGTH];*/    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    strcpy(filerespow,"pow"); 
     printf("Problem with %s \n",optionfilehtm), exit(0);    strcat(filerespow,fileres);
   }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    fprintf(ficrespow,"# Powell\n# iter -2*LL");
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    for (i=1;i<=nlstate;i++)
  - Life expectancies by age and initial health status (estepm=%2d months):      for(j=1;j<=nlstate+ndeath;j++)
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    fprintf(ficrespow,"\n");
   #ifdef POWELL
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    powell(p,xi,npar,ftol,&iter,&fret,func);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  #endif
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  #ifdef NLOPT
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  #ifdef NEWUOA
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  #else
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   #endif
  if(popforecast==1) fprintf(fichtm,"\n    lb=vector(0,npar-1);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    nlopt_set_lower_bounds(opt, lb);
         <br>",fileres,fileres,fileres,fileres);    nlopt_set_initial_step1(opt, 0.1);
  else    
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
 fprintf(fichtm," <li>Graphs</li><p>");    d->function = func;
     printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
  m=cptcoveff;    nlopt_set_min_objective(opt, myfunc, d);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    nlopt_set_xtol_rel(opt, ftol);
     if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
  jj1=0;      printf("nlopt failed! %d\n",creturn); 
  for(k1=1; k1<=m;k1++){    }
    for(i1=1; i1<=ncodemax[k1];i1++){    else {
      jj1++;      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
      if (cptcovn > 0) {      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      iter=1; /* not equal */
        for (cpt=1; cpt<=cptcoveff;cpt++)    }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    nlopt_destroy(opt);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  #endif
      }    free_matrix(xi,1,npar,1,npar);
      /* Pij */    fclose(ficrespow);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
      /* Quasi-incidences */    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  }
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){  /**** Computes Hessian and covariance matrix ***/
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  {
        }    double  **a,**y,*x,pd;
     for(cpt=1; cpt<=nlstate;cpt++) {    double **hess;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    int i, j;
 interval) in state (%d): v%s%d%d.png <br>    int *indx;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
      }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      for(cpt=1; cpt<=nlstate;cpt++) {    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    void lubksb(double **a, int npar, int *indx, double b[]) ;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    void ludcmp(double **a, int npar, int *indx, double *d) ;
      }    double gompertz(double p[]);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    hess=matrix(1,npar,1,npar);
 health expectancies in states (1) and (2): e%s%d.png<br>  
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    printf("\nCalculation of the hessian matrix. Wait...\n");
    }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
  }    for (i=1;i<=npar;i++){
 fclose(fichtm);      printf("%d",i);fflush(stdout);
 }      fprintf(ficlog,"%d",i);fflush(ficlog);
      
 /******************* Gnuplot file **************/       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      
       /*  printf(" %f ",p[i]);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   int ng;    }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    
     printf("Problem with file %s",optionfilegnuplot);    for (i=1;i<=npar;i++) {
   }      for (j=1;j<=npar;j++)  {
         if (j>i) { 
 #ifdef windows          printf(".%d%d",i,j);fflush(stdout);
     fprintf(ficgp,"cd \"%s\" \n",pathc);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 #endif          hess[i][j]=hessij(p,delti,i,j,func,npar);
 m=pow(2,cptcoveff);          
            hess[j][i]=hess[i][j];    
  /* 1eme*/          /*printf(" %lf ",hess[i][j]);*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {        }
    for (k1=1; k1<= m ; k1 ++) {      }
     }
 #ifdef windows    printf("\n");
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fprintf(ficlog,"\n");
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 #ifdef unix    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    a=matrix(1,npar,1,npar);
 #endif    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
 for (i=1; i<= nlstate ; i ++) {    indx=ivector(1,npar);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (i=1;i<=npar;i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 }    ludcmp(a,npar,indx,&pd);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {    for (j=1;j<=npar;j++) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for (i=1;i<=npar;i++) x[i]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      x[j]=1;
 }      lubksb(a,npar,indx,x);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      for (i=1;i<=npar;i++){ 
      for (i=1; i<= nlstate ; i ++) {        matcov[i][j]=x[i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    printf("\n#Hessian matrix#\n");
 #ifdef unix    fprintf(ficlog,"\n#Hessian matrix#\n");
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    for (i=1;i<=npar;i++) { 
 #endif      for (j=1;j<=npar;j++) { 
    }        printf("%.3e ",hess[i][j]);
   }        fprintf(ficlog,"%.3e ",hess[i][j]);
   /*2 eme*/      }
       printf("\n");
   for (k1=1; k1<= m ; k1 ++) {      fprintf(ficlog,"\n");
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  
        /* Recompute Inverse */
     for (i=1; i<= nlstate+1 ; i ++) {    for (i=1;i<=npar;i++)
       k=2*i;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    ludcmp(a,npar,indx,&pd);
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /*  printf("\n#Hessian matrix recomputed#\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      for (j=1;j<=npar;j++) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      for (i=1;i<=npar;i++) x[i]=0;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      x[j]=1;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      lubksb(a,npar,indx,x);
       for (j=1; j<= nlstate+1 ; j ++) {      for (i=1;i<=npar;i++){ 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        y[i][j]=x[i];
         else fprintf(ficgp," \%%*lf (\%%*lf)");        printf("%.3e ",y[i][j]);
 }          fprintf(ficlog,"%.3e ",y[i][j]);
       fprintf(ficgp,"\" t\"\" w l 0,");      }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      printf("\n");
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficlog,"\n");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    */
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    free_matrix(a,1,npar,1,npar);
       else fprintf(ficgp,"\" t\"\" w l 0,");    free_matrix(y,1,npar,1,npar);
     }    free_vector(x,1,npar);
   }    free_ivector(indx,1,npar);
      free_matrix(hess,1,npar,1,npar);
   /*3eme*/  
   
   for (k1=1; k1<= m ; k1 ++) {  }
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);  /*************** hessian matrix ****************/
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  {
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    int i;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    int l=1, lmax=20;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double k1,k2;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double p2[MAXPARM+1]; /* identical to x */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double res;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
 */    int k=0,kmax=10;
       for (i=1; i< nlstate ; i ++) {    double l1;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  
     fx=func(x);
       }    for (i=1;i<=npar;i++) p2[i]=x[i];
     }    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   }      l1=pow(10,l);
        delts=delt;
   /* CV preval stat */      for(k=1 ; k <kmax; k=k+1){
     for (k1=1; k1<= m ; k1 ++) {        delt = delta*(l1*k);
     for (cpt=1; cpt<nlstate ; cpt ++) {        p2[theta]=x[theta] +delt;
       k=3;        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        p2[theta]=x[theta]-delt;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
       for (i=1; i< nlstate ; i ++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         fprintf(ficgp,"+$%d",k+i+1);        
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  #ifdef DEBUGHESS
              printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       l=3+(nlstate+ndeath)*cpt;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  #endif
       for (i=1; i< nlstate ; i ++) {        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         l=3+(nlstate+ndeath)*cpt;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         fprintf(ficgp,"+$%d",l+i+1);          k=kmax;
       }        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     }          k=kmax; l=lmax*10;
   }          }
          else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   /* proba elementaires */          delts=delt;
    for(i=1,jk=1; i <=nlstate; i++){        }
     for(k=1; k <=(nlstate+ndeath); k++){      }
       if (k != i) {    }
         for(j=1; j <=ncovmodel; j++){    delti[theta]=delts;
            return res; 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    
           jk++;  }
           fprintf(ficgp,"\n");  
         }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       }  {
     }    int i;
    }    int l=1, lmax=20;
     double k1,k2,k3,k4,res,fx;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    double p2[MAXPARM+1];
      for(jk=1; jk <=m; jk++) {    int k;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  
        if (ng==2)    fx=func(x);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    for (k=1; k<=2; k++) {
        else      for (i=1;i<=npar;i++) p2[i]=x[i];
          fprintf(ficgp,"\nset title \"Probability\"\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        i=1;      k1=func(p2)-fx;
        for(k2=1; k2<=nlstate; k2++) {    
          k3=i;      p2[thetai]=x[thetai]+delti[thetai]/k;
          for(k=1; k<=(nlstate+ndeath); k++) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
            if (k != k2){      k2=func(p2)-fx;
              if(ng==2)    
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      p2[thetai]=x[thetai]-delti[thetai]/k;
              else      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      k3=func(p2)-fx;
              ij=1;    
              for(j=3; j <=ncovmodel; j++) {      p2[thetai]=x[thetai]-delti[thetai]/k;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      k4=func(p2)-fx;
                  ij++;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                }  #ifdef DEBUG
                else      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
              }  #endif
              fprintf(ficgp,")/(1");    }
                  return res;
              for(k1=1; k1 <=nlstate; k1++){    }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
                ij=1;  /************** Inverse of matrix **************/
                for(j=3; j <=ncovmodel; j++){  void ludcmp(double **a, int n, int *indx, double *d) 
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  { 
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    int i,imax,j,k; 
                    ij++;    double big,dum,sum,temp; 
                  }    double *vv; 
                  else   
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    vv=vector(1,n); 
                }    *d=1.0; 
                fprintf(ficgp,")");    for (i=1;i<=n;i++) { 
              }      big=0.0; 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);      for (j=1;j<=n;j++) 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        if ((temp=fabs(a[i][j])) > big) big=temp; 
              i=i+ncovmodel;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
            }      vv[i]=1.0/big; 
          }    } 
        }    for (j=1;j<=n;j++) { 
      }      for (i=1;i<j;i++) { 
    }        sum=a[i][j]; 
    fclose(ficgp);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 }  /* end gnuplot */        a[i][j]=sum; 
       } 
       big=0.0; 
 /*************** Moving average **************/      for (i=j;i<=n;i++) { 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   int i, cpt, cptcod;          sum -= a[i][k]*a[k][j]; 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        a[i][j]=sum; 
       for (i=1; i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          big=dum; 
           mobaverage[(int)agedeb][i][cptcod]=0.;          imax=i; 
            } 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      } 
       for (i=1; i<=nlstate;i++){      if (j != imax) { 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for (k=1;k<=n;k++) { 
           for (cpt=0;cpt<=4;cpt++){          dum=a[imax][k]; 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          a[imax][k]=a[j][k]; 
           }          a[j][k]=dum; 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        } 
         }        *d = -(*d); 
       }        vv[imax]=vv[j]; 
     }      } 
          indx[j]=imax; 
 }      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
         dum=1.0/(a[j][j]); 
 /************** Forecasting ******************/        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      } 
      } 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    free_vector(vv,1,n);  /* Doesn't work */
   int *popage;  ;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  } 
   double *popeffectif,*popcount;  
   double ***p3mat;  void lubksb(double **a, int n, int *indx, double b[]) 
   char fileresf[FILENAMELENGTH];  { 
     int i,ii=0,ip,j; 
  agelim=AGESUP;    double sum; 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;   
     for (i=1;i<=n;i++) { 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      ip=indx[i]; 
        sum=b[ip]; 
        b[ip]=b[i]; 
   strcpy(fileresf,"f");      if (ii) 
   strcat(fileresf,fileres);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   if((ficresf=fopen(fileresf,"w"))==NULL) {      else if (sum) ii=i; 
     printf("Problem with forecast resultfile: %s\n", fileresf);      b[i]=sum; 
   }    } 
   printf("Computing forecasting: result on file '%s' \n", fileresf);    for (i=n;i>=1;i--) { 
       sum=b[i]; 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
   if (mobilav==1) {    } 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  } 
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }  void pstamp(FILE *fichier)
   {
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   if (stepm<=12) stepsize=1;  }
    
   agelim=AGESUP;  /************ Frequencies ********************/
    void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   hstepm=1;  {  /* Some frequencies */
   hstepm=hstepm/stepm;    
   yp1=modf(dateintmean,&yp);    int i, m, jk, j1, bool, z1,j;
   anprojmean=yp;    int first;
   yp2=modf((yp1*12),&yp);    double ***freq; /* Frequencies */
   mprojmean=yp;    double *pp, **prop;
   yp1=modf((yp2*30.5),&yp);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   jprojmean=yp;    char fileresp[FILENAMELENGTH];
   if(jprojmean==0) jprojmean=1;    
   if(mprojmean==0) jprojmean=1;    pp=vector(1,nlstate);
      prop=matrix(1,nlstate,iagemin,iagemax+3);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    strcpy(fileresp,"p");
      strcat(fileresp,fileres);
   for(cptcov=1;cptcov<=i2;cptcov++){    if((ficresp=fopen(fileresp,"w"))==NULL) {
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
       k=k+1;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficresf,"\n#******");      exit(0);
       for(j=1;j<=cptcoveff;j++) {    }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       }    j1=0;
       fprintf(ficresf,"******\n");    
       fprintf(ficresf,"# StartingAge FinalAge");    j=cptcoveff;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        
          first=1;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
     /*    j1++; */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           nhstepm = nhstepm/hstepm;          scanf("%d", i);*/
                  for (i=-5; i<=nlstate+ndeath; i++)  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           oldm=oldms;savm=savms;            for(m=iagemin; m <= iagemax+3; m++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                freq[i][jk][m]=0;
                
           for (h=0; h<=nhstepm; h++){        for (i=1; i<=nlstate; i++)  
             if (h==(int) (calagedate+YEARM*cpt)) {          for(m=iagemin; m <= iagemax+3; m++)
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);            prop[i][m]=0;
             }        
             for(j=1; j<=nlstate+ndeath;j++) {        dateintsum=0;
               kk1=0.;kk2=0;        k2cpt=0;
               for(i=1; i<=nlstate;i++) {                      for (i=1; i<=imx; i++) {
                 if (mobilav==1)          bool=1;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                 else {            for (z1=1; z1<=cptcoveff; z1++)       
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
                 }                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
                                bool=0;
               }                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
               if (h==(int)(calagedate+12*cpt)){                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                 fprintf(ficresf," %.3f", kk1);                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
                                        /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
               }              } 
             }          }
           }   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (bool==1){
         }            for(m=firstpass; m<=lastpass; m++){
       }              k2=anint[m][i]+(mint[m][i]/12.);
     }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                        if(agev[m][i]==1) agev[m][i]=iagemax+2;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
   fclose(ficresf);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 /************** Forecasting ******************/                }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){                
                  if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                  dateintsum=dateintsum+k2;
   int *popage;                  k2cpt++;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                }
   double *popeffectif,*popcount;                /*}*/
   double ***p3mat,***tabpop,***tabpopprev;            }
   char filerespop[FILENAMELENGTH];          }
         } /* end i */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   agelim=AGESUP;        pstamp(ficresp);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        if  (cptcovn>0) {
            fprintf(ficresp, "\n#********** Variable "); 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresp, "**********\n#");
            fprintf(ficlog, "\n#********** Variable "); 
   strcpy(filerespop,"pop");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcat(filerespop,fileres);          fprintf(ficlog, "**********\n#");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", filerespop);        for(i=1; i<=nlstate;i++) 
   }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   printf("Computing forecasting: result on file '%s' \n", filerespop);        fprintf(ficresp, "\n");
         
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
   if (mobilav==1) {            fprintf(ficlog,"Total");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }else{
     movingaverage(agedeb, fage, ageminpar, mobaverage);            if(first==1){
   }              first=0;
               printf("See log file for details...\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;            }
   if (stepm<=12) stepsize=1;            fprintf(ficlog,"Age %d", i);
            }
   agelim=AGESUP;          for(jk=1; jk <=nlstate ; jk++){
              for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   hstepm=1;              pp[jk] += freq[jk][m][i]; 
   hstepm=hstepm/stepm;          }
            for(jk=1; jk <=nlstate ; jk++){
   if (popforecast==1) {            for(m=-1, pos=0; m <=0 ; m++)
     if((ficpop=fopen(popfile,"r"))==NULL) {              pos += freq[jk][m][i];
       printf("Problem with population file : %s\n",popfile);exit(0);            if(pp[jk]>=1.e-10){
     }              if(first==1){
     popage=ivector(0,AGESUP);                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     popeffectif=vector(0,AGESUP);              }
     popcount=vector(0,AGESUP);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }else{
     i=1;                if(first==1)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                  fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     imx=i;            }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          }
   }  
           for(jk=1; jk <=nlstate ; jk++){
   for(cptcov=1;cptcov<=i2;cptcov++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              pp[jk] += freq[jk][m][i];
       k=k+1;          }       
       fprintf(ficrespop,"\n#******");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       for(j=1;j<=cptcoveff;j++) {            pos += pp[jk];
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            posprop += prop[jk][i];
       }          }
       fprintf(ficrespop,"******\n");          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficrespop,"# Age");            if(pos>=1.e-5){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);              if(first==1)
       if (popforecast==1)  fprintf(ficrespop," [Population]");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for (cpt=0; cpt<=0;cpt++) {            }else{
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                if(first==1)
                        printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            }
           nhstepm = nhstepm/hstepm;            if( i <= iagemax){
                        if(pos>=1.e-5){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           oldm=oldms;savm=savms;                /*probs[i][jk][j1]= pp[jk]/pos;*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                      }
           for (h=0; h<=nhstepm; h++){              else
             if (h==(int) (calagedate+YEARM*cpt)) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            }
             }          }
             for(j=1; j<=nlstate+ndeath;j++) {          
               kk1=0.;kk2=0;          for(jk=-1; jk <=nlstate+ndeath; jk++)
               for(i=1; i<=nlstate;i++) {                          for(m=-1; m <=nlstate+ndeath; m++)
                 if (mobilav==1)              if(freq[jk][m][i] !=0 ) {
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              if(first==1)
                 else {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                 }              }
               }          if(i <= iagemax)
               if (h==(int)(calagedate+12*cpt)){            fprintf(ficresp,"\n");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          if(first==1)
                   /*fprintf(ficrespop," %.3f", kk1);            printf("Others in log...\n");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          fprintf(ficlog,"\n");
               }        }
             }        /*}*/
             for(i=1; i<=nlstate;i++){    }
               kk1=0.;    dateintmean=dateintsum/k2cpt; 
                 for(j=1; j<=nlstate;j++){   
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    fclose(ficresp);
                 }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    free_vector(pp,1,nlstate);
             }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }  /************ Prevalence ********************/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         }  {  
       }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
   /******/       We still use firstpass and lastpass as another selection.
     */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {   
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      int i, m, jk, j1, bool, z1,j;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double **prop;
           nhstepm = nhstepm/hstepm;    double posprop; 
              double  y2; /* in fractional years */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int iagemin, iagemax;
           oldm=oldms;savm=savms;    int first; /** to stop verbosity which is redirected to log file */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){    iagemin= (int) agemin;
             if (h==(int) (calagedate+YEARM*cpt)) {    iagemax= (int) agemax;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /*pp=vector(1,nlstate);*/
             }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             for(j=1; j<=nlstate+ndeath;j++) {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
               kk1=0.;kk2=0;    j1=0;
               for(i=1; i<=nlstate;i++) {                  
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        /*j=cptcoveff;*/
               }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    
             }    first=1;
           }    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*for(i1=1; i1<=ncodemax[k1];i1++){
         }        j1++;*/
       }        
    }        for (i=1; i<=nlstate; i++)  
   }          for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0.0;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       
         for (i=1; i<=imx; i++) { /* Each individual */
   if (popforecast==1) {          bool=1;
     free_ivector(popage,0,AGESUP);          if  (cptcovn>0) {
     free_vector(popeffectif,0,AGESUP);            for (z1=1; z1<=cptcoveff; z1++) 
     free_vector(popcount,0,AGESUP);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   }                bool=0;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          } 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if (bool==1) { 
   fclose(ficrespop);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 /***********************************************/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 /**************** Main Program *****************/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 /***********************************************/                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
 int main(int argc, char *argv[])                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                } 
   double agedeb, agefin,hf;              }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            } /* end selection of waves */
           }
   double fret;        }
   double **xi,tmp,delta;        for(i=iagemin; i <= iagemax+3; i++){  
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   double dum; /* Dummy variable */            posprop += prop[jk][i]; 
   double ***p3mat;          } 
   int *indx;          
   char line[MAXLINE], linepar[MAXLINE];          for(jk=1; jk <=nlstate ; jk++){     
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            if( i <=  iagemax){ 
   int firstobs=1, lastobs=10;              if(posprop>=1.e-5){ 
   int sdeb, sfin; /* Status at beginning and end */                probs[i][jk][j1]= prop[jk][i]/posprop;
   int c,  h , cpt,l;              } else{
   int ju,jl, mi;                if(first==1){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                  first=0;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   int mobilav=0,popforecast=0;                }
   int hstepm, nhstepm;              }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;            } 
           }/* end jk */ 
   double bage, fage, age, agelim, agebase;        }/* end i */ 
   double ftolpl=FTOL;      /*} *//* end i1 */
   double **prlim;    } /* end j1 */
   double *severity;    
   double ***param; /* Matrix of parameters */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   double  *p;    /*free_vector(pp,1,nlstate);*/
   double **matcov; /* Matrix of covariance */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   double ***delti3; /* Scale */  }  /* End of prevalence */
   double *delti; /* Scale */  
   double ***eij, ***vareij;  /************* Waves Concatenation ***************/
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   double kk1, kk2;  {
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   char *alph[]={"a","a","b","c","d","e"}, str[4];       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
        */
   char z[1]="c", occ;  
 #include <sys/time.h>    int i, mi, m;
 #include <time.h>    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];       double sum=0., jmean=0.;*/
      int first;
   /* long total_usecs;    int j, k=0,jk, ju, jl;
   struct timeval start_time, end_time;    double sum=0.;
      first=0;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    jmin=100000;
   getcwd(pathcd, size);    jmax=-1;
     jmean=0.;
   printf("\n%s",version);    for(i=1; i<=imx; i++){
   if(argc <=1){      mi=0;
     printf("\nEnter the parameter file name: ");      m=firstpass;
     scanf("%s",pathtot);      while(s[m][i] <= nlstate){
   }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   else{          mw[++mi][i]=m;
     strcpy(pathtot,argv[1]);        if(m >=lastpass)
   }          break;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        else
   /*cygwin_split_path(pathtot,path,optionfile);          m++;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      }/* end while */
   /* cutv(path,optionfile,pathtot,'\\');*/      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        /* if(mi==0)  never been interviewed correctly before death */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);           /* Only death is a correct wave */
   chdir(path);        mw[mi][i]=m;
   replace(pathc,path);      }
   
 /*-------- arguments in the command line --------*/      wav[i]=mi;
       if(mi==0){
   strcpy(fileres,"r");        nbwarn++;
   strcat(fileres, optionfilefiname);        if(first==0){
   strcat(fileres,".txt");    /* Other files have txt extension */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
   /*---------arguments file --------*/        }
         if(first==1){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     printf("Problem with optionfile %s\n",optionfile);        }
     goto end;      } /* end mi==0 */
   }    } /* End individuals */
   
   strcpy(filereso,"o");    for(i=1; i<=imx; i++){
   strcat(filereso,fileres);      for(mi=1; mi<wav[i];mi++){
   if((ficparo=fopen(filereso,"w"))==NULL) {        if (stepm <=0)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          dh[mi][i]=1;
   }        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   /* Reads comments: lines beginning with '#' */            if (agedc[i] < 2*AGESUP) {
   while((c=getc(ficpar))=='#' && c!= EOF){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     ungetc(c,ficpar);              if(j==0) j=1;  /* Survives at least one month after exam */
     fgets(line, MAXLINE, ficpar);              else if(j<0){
     puts(line);                nberr++;
     fputs(line,ficparo);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                j=1; /* Temporary Dangerous patch */
   ungetc(c,ficpar);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);              }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);              k=k+1;
 while((c=getc(ficpar))=='#' && c!= EOF){              if (j >= jmax){
     ungetc(c,ficpar);                jmax=j;
     fgets(line, MAXLINE, ficpar);                ijmax=i;
     puts(line);              }
     fputs(line,ficparo);              if (j <= jmin){
   }                jmin=j;
   ungetc(c,ficpar);                ijmin=i;
                }
                  sum=sum+j;
   covar=matrix(0,NCOVMAX,1,n);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   cptcovn=0;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;            }
           }
   ncovmodel=2+cptcovn;          else{
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */            k=k+1;
   while((c=getc(ficpar))=='#' && c!= EOF){            if (j >= jmax) {
     ungetc(c,ficpar);              jmax=j;
     fgets(line, MAXLINE, ficpar);              ijmax=i;
     puts(line);            }
     fputs(line,ficparo);            else if (j <= jmin){
   }              jmin=j;
   ungetc(c,ficpar);              ijmin=i;
              }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     for(i=1; i <=nlstate; i++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for(j=1; j <=nlstate+ndeath-1; j++){            if(j<0){
       fscanf(ficpar,"%1d%1d",&i1,&j1);              nberr++;
       fprintf(ficparo,"%1d%1d",i1,j1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       printf("%1d%1d",i,j);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(k=1; k<=ncovmodel;k++){            }
         fscanf(ficpar," %lf",&param[i][j][k]);            sum=sum+j;
         printf(" %lf",param[i][j][k]);          }
         fprintf(ficparo," %lf",param[i][j][k]);          jk= j/stepm;
       }          jl= j -jk*stepm;
       fscanf(ficpar,"\n");          ju= j -(jk+1)*stepm;
       printf("\n");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       fprintf(ficparo,"\n");            if(jl==0){
     }              dh[mi][i]=jk;
                bh[mi][i]=0;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
   p=param[1][1];              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   /* Reads comments: lines beginning with '#' */            }
   while((c=getc(ficpar))=='#' && c!= EOF){          }else{
     ungetc(c,ficpar);            if(jl <= -ju){
     fgets(line, MAXLINE, ficpar);              dh[mi][i]=jk;
     puts(line);              bh[mi][i]=jl;       /* bias is positive if real duration
     fputs(line,ficparo);                                   * is higher than the multiple of stepm and negative otherwise.
   }                                   */
   ungetc(c,ficpar);            }
             else{
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              dh[mi][i]=jk+1;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */              bh[mi][i]=ju;
   for(i=1; i <=nlstate; i++){            }
     for(j=1; j <=nlstate+ndeath-1; j++){            if(dh[mi][i]==0){
       fscanf(ficpar,"%1d%1d",&i1,&j1);              dh[mi][i]=1; /* At least one step */
       printf("%1d%1d",i,j);              bh[mi][i]=ju; /* At least one step */
       fprintf(ficparo,"%1d%1d",i1,j1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for(k=1; k<=ncovmodel;k++){            }
         fscanf(ficpar,"%le",&delti3[i][j][k]);          } /* end if mle */
         printf(" %le",delti3[i][j][k]);        }
         fprintf(ficparo," %le",delti3[i][j][k]);      } /* end wave */
       }    }
       fscanf(ficpar,"\n");    jmean=sum/k;
       printf("\n");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       fprintf(ficparo,"\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }   }
   }  
   delti=delti3[1][1];  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   /* Reads comments: lines beginning with '#' */  {
   while((c=getc(ficpar))=='#' && c!= EOF){    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     ungetc(c,ficpar);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     fgets(line, MAXLINE, ficpar);     * Boring subroutine which should only output nbcode[Tvar[j]][k]
     puts(line);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     fputs(line,ficparo);     * nbcode[Tvar[j]][1]= 
   }    */
   ungetc(c,ficpar);  
      int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   matcov=matrix(1,npar,1,npar);    int modmaxcovj=0; /* Modality max of covariates j */
   for(i=1; i <=npar; i++){    int cptcode=0; /* Modality max of covariates j */
     fscanf(ficpar,"%s",&str);    int modmincovj=0; /* Modality min of covariates j */
     printf("%s",str);  
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){    cptcoveff=0; 
       fscanf(ficpar," %le",&matcov[i][j]);   
       printf(" %.5le",matcov[i][j]);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
       fprintf(ficparo," %.5le",matcov[i][j]);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     }  
     fscanf(ficpar,"\n");    /* Loop on covariates without age and products */
     printf("\n");    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
     fprintf(ficparo,"\n");      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
   }                                 modality of this covariate Vj*/ 
   for(i=1; i <=npar; i++)        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
     for(j=i+1;j<=npar;j++)                                      * If product of Vn*Vm, still boolean *:
       matcov[i][j]=matcov[j][i];                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                          * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   printf("\n");        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                         modality of the nth covariate of individual i. */
         if (ij > modmaxcovj)
     /*-------- Rewriting paramater file ----------*/          modmaxcovj=ij; 
      strcpy(rfileres,"r");    /* "Rparameterfile */        else if (ij < modmincovj) 
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          modmincovj=ij; 
      strcat(rfileres,".");    /* */        if ((ij < -1) && (ij > NCOVMAX)){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
     if((ficres =fopen(rfileres,"w"))==NULL) {          exit(1);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        }else
     }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     fprintf(ficres,"#%s\n",version);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
            /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     /*-------- data file ----------*/        /* getting the maximum value of the modality of the covariate
     if((fic=fopen(datafile,"r"))==NULL)    {           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
       printf("Problem with datafile: %s\n", datafile);goto end;           female is 1, then modmaxcovj=1.*/
     }      }
       printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     n= lastobs;      cptcode=modmaxcovj;
     severity = vector(1,maxwav);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     outcome=imatrix(1,maxwav+1,1,n);     /*for (i=0; i<=cptcode; i++) {*/
     num=ivector(1,n);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     moisnais=vector(1,n);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
     annais=vector(1,n);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
     moisdc=vector(1,n);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
     andc=vector(1,n);        }
     agedc=vector(1,n);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
     cod=ivector(1,n);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     weight=vector(1,n);      } /* Ndum[-1] number of undefined modalities */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     anint=matrix(1,maxwav,1,n);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
     s=imatrix(1,maxwav+1,1,n);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     adl=imatrix(1,maxwav+1,1,n);             modmincovj=3; modmaxcovj = 7;
     tab=ivector(1,NCOVMAX);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
     ncodemax=ivector(1,8);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
          variables V1_1 and V1_2.
     i=1;         nbcode[Tvar[j]][ij]=k;
     while (fgets(line, MAXLINE, fic) != NULL)    {         nbcode[Tvar[j]][1]=0;
       if ((i >= firstobs) && (i <=lastobs)) {         nbcode[Tvar[j]][2]=1;
                 nbcode[Tvar[j]][3]=2;
         for (j=maxwav;j>=1;j--){      */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      ij=1; /* ij is similar to i but can jumps over null modalities */
           strcpy(line,stra);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          /*recode from 0 */
         }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
                    nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                                       k is a modality. If we have model=V1+V1*sex 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             ij++;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          if (ij > ncodemax[j]) break; 
         }  /* end of loop on */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      } /* end of loop on modality */ 
         for (j=ncovcol;j>=1;j--){    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
         }   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
         num[i]=atol(stra);    
            for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; 
         i=i+1;   } 
       }  
     }   ij=1;
     /* printf("ii=%d", ij);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
        scanf("%d",i);*/     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   imx=i-1; /* Number of individuals */     if((Ndum[i]!=0) && (i<=ncovcol)){
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   /* for (i=1; i<=imx; i++){       Tvaraff[ij]=i; /*For printing (unclear) */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;       ij++;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;     }else
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;         Tvaraff[ij]=0;
     }*/   }
    /*  for (i=1; i<=imx; i++){   ij--;
      if (s[4][i]==9)  s[4][i]=-1;   cptcoveff=ij; /*Number of total covariates*/
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  
    }
    
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);  /*********** Health Expectancies ****************/
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);        {
        /* Health expectancies, no variances */
   if (strlen(model) >1){    int i, j, nhstepm, hstepm, h, nstepm;
     j=0, j1=0, k1=1, k2=1;    int nhstepma, nstepma; /* Decreasing with age */
     j=nbocc(model,'+');    double age, agelim, hf;
     j1=nbocc(model,'*');    double ***p3mat;
     cptcovn=j+1;    double eip;
     cptcovprod=j1;  
        pstamp(ficreseij);
     strcpy(modelsav,model);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    fprintf(ficreseij,"# Age");
       printf("Error. Non available option model=%s ",model);    for(i=1; i<=nlstate;i++){
       goto end;      for(j=1; j<=nlstate;j++){
     }        fprintf(ficreseij," e%1d%1d ",i,j);
          }
     for(i=(j+1); i>=1;i--){      fprintf(ficreseij," e%1d. ",i);
       cutv(stra,strb,modelsav,'+');    }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    fprintf(ficreseij,"\n");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/    
       if (strchr(strb,'*')) {    if(estepm < stepm){
         cutv(strd,strc,strb,'*');      printf ("Problem %d lower than %d\n",estepm, stepm);
         if (strcmp(strc,"age")==0) {    }
           cptcovprod--;    else  hstepm=estepm;   
           cutv(strb,stre,strd,'V');    /* We compute the life expectancy from trapezoids spaced every estepm months
           Tvar[i]=atoi(stre);     * This is mainly to measure the difference between two models: for example
           cptcovage++;     * if stepm=24 months pijx are given only every 2 years and by summing them
             Tage[cptcovage]=i;     * we are calculating an estimate of the Life Expectancy assuming a linear 
             /*printf("stre=%s ", stre);*/     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we 
         else if (strcmp(strd,"age")==0) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           cptcovprod--;     * to compare the new estimate of Life expectancy with the same linear 
           cutv(strb,stre,strc,'V');     * hypothesis. A more precise result, taking into account a more precise
           Tvar[i]=atoi(stre);     * curvature will be obtained if estepm is as small as stepm. */
           cptcovage++;  
           Tage[cptcovage]=i;    /* For example we decided to compute the life expectancy with the smallest unit */
         }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         else {       nhstepm is the number of hstepm from age to agelim 
           cutv(strb,stre,strc,'V');       nstepm is the number of stepm from age to agelin. 
           Tvar[i]=ncovcol+k1;       Look at hpijx to understand the reason of that which relies in memory size
           cutv(strb,strc,strd,'V');       and note for a fixed period like estepm months */
           Tprod[k1]=i;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           Tvard[k1][1]=atoi(strc);       survival function given by stepm (the optimization length). Unfortunately it
           Tvard[k1][2]=atoi(stre);       means that if the survival funtion is printed only each two years of age and if
           Tvar[cptcovn+k2]=Tvard[k1][1];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       results. So we changed our mind and took the option of the best precision.
           for (k=1; k<=lastobs;k++)    */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           k1++;  
           k2=k2+2;    agelim=AGESUP;
         }    /* If stepm=6 months */
       }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       else {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      
        /*  scanf("%d",i);*/  /* nhstepm age range expressed in number of stepm */
       cutv(strd,strc,strb,'V');    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       Tvar[i]=atoi(strc);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       }    /* if (stepm >= YEARM) hstepm=1;*/
       strcpy(modelsav,stra);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         scanf("%d",i);*/  
     }    for (age=bage; age<=fage; age ++){ 
 }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      /* if (stepm >= YEARM) hstepm=1;*/
   printf("cptcovprod=%d ", cptcovprod);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   scanf("%d ",i);*/  
     fclose(fic);      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
     /*  if(mle==1){*/         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     if (weightopt != 1) { /* Maximisation without weights*/      
       for(i=1;i<=n;i++) weight[i]=1.0;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     }      
     /*-calculation of age at interview from date of interview and age at death -*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     agev=matrix(1,maxwav,1,imx);      
       printf("%d|",(int)age);fflush(stdout);
     for (i=1; i<=imx; i++) {      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(m=2; (m<= maxwav); m++) {      
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      /* Computing expectancies */
          anint[m][i]=9999;      for(i=1; i<=nlstate;i++)
          s[m][i]=-1;        for(j=1; j<=nlstate;j++)
        }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       }            
     }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
     for (i=1; i<=imx; i++)  {          }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){      fprintf(ficreseij,"%3.0f",age );
         if(s[m][i] >0){      for(i=1; i<=nlstate;i++){
           if (s[m][i] >= nlstate+1) {        eip=0;
             if(agedc[i]>0)        for(j=1; j<=nlstate;j++){
               if(moisdc[i]!=99 && andc[i]!=9999)          eip +=eij[i][j][(int)age];
                 agev[m][i]=agedc[i];          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        }
            else {        fprintf(ficreseij,"%9.4f", eip );
               if (andc[i]!=9999){      }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      fprintf(ficreseij,"\n");
               agev[m][i]=-1;      
               }    }
             }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }    printf("\n");
           else if(s[m][i] !=9){ /* Should no more exist */    fprintf(ficlog,"\n");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    
             if(mint[m][i]==99 || anint[m][i]==9999)  }
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  {
             }    /* Covariances of health expectancies eij and of total life expectancies according
             else if(agev[m][i] >agemax){     to initial status i, ei. .
               agemax=agev[m][i];    */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
             }    int nhstepma, nstepma; /* Decreasing with age */
             /*agev[m][i]=anint[m][i]-annais[i];*/    double age, agelim, hf;
             /*   agev[m][i] = age[i]+2*m;*/    double ***p3matp, ***p3matm, ***varhe;
           }    double **dnewm,**doldm;
           else { /* =9 */    double *xp, *xm;
             agev[m][i]=1;    double **gp, **gm;
             s[m][i]=-1;    double ***gradg, ***trgradg;
           }    int theta;
         }  
         else /*= 0 Unknown */    double eip, vip;
           agev[m][i]=1;  
       }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        xp=vector(1,npar);
     }    xm=vector(1,npar);
     for (i=1; i<=imx; i++)  {    dnewm=matrix(1,nlstate*nlstate,1,npar);
       for(m=1; (m<= maxwav); m++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         if (s[m][i] > (nlstate+ndeath)) {    
           printf("Error: Wrong value in nlstate or ndeath\n");      pstamp(ficresstdeij);
           goto end;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         }    fprintf(ficresstdeij,"# Age");
       }    for(i=1; i<=nlstate;i++){
     }      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      fprintf(ficresstdeij," e%1d. ",i);
     }
     free_vector(severity,1,maxwav);    fprintf(ficresstdeij,"\n");
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);    pstamp(ficrescveij);
     free_vector(annais,1,n);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     /* free_matrix(mint,1,maxwav,1,n);    fprintf(ficrescveij,"# Age");
        free_matrix(anint,1,maxwav,1,n);*/    for(i=1; i<=nlstate;i++)
     free_vector(moisdc,1,n);      for(j=1; j<=nlstate;j++){
     free_vector(andc,1,n);        cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
              for(j2=1; j2<=nlstate;j2++){
     wav=ivector(1,imx);            cptj2= (j2-1)*nlstate+i2;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            if(cptj2 <= cptj)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
              }
     /* Concatenates waves */      }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       Tcode=ivector(1,100);      printf ("Problem %d lower than %d\n",estepm, stepm);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    }
       ncodemax[1]=1;    else  hstepm=estepm;   
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    /* We compute the life expectancy from trapezoids spaced every estepm months
           * This is mainly to measure the difference between two models: for example
    codtab=imatrix(1,100,1,10);     * if stepm=24 months pijx are given only every 2 years and by summing them
    h=0;     * we are calculating an estimate of the Life Expectancy assuming a linear 
    m=pow(2,cptcoveff);     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
    for(k=1;k<=cptcoveff; k++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      for(i=1; i <=(m/pow(2,k));i++){     * to compare the new estimate of Life expectancy with the same linear 
        for(j=1; j <= ncodemax[k]; j++){     * hypothesis. A more precise result, taking into account a more precise
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){     * curvature will be obtained if estepm is as small as stepm. */
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    /* For example we decided to compute the life expectancy with the smallest unit */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
          }       nhstepm is the number of hstepm from age to agelim 
        }       nstepm is the number of stepm from age to agelin. 
      }       Look at hpijx to understand the reason of that which relies in memory size
    }       and note for a fixed period like estepm months */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       codtab[1][2]=1;codtab[2][2]=2; */       survival function given by stepm (the optimization length). Unfortunately it
    /* for(i=1; i <=m ;i++){       means that if the survival funtion is printed only each two years of age and if
       for(k=1; k <=cptcovn; k++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);       results. So we changed our mind and took the option of the best precision.
       }    */
       printf("\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }  
       scanf("%d",i);*/    /* If stepm=6 months */
        /* nhstepm age range expressed in number of stepm */
    /* Calculates basic frequencies. Computes observed prevalence at single age    agelim=AGESUP;
        and prints on file fileres'p'. */    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
          gp=matrix(0,nhstepm,1,nlstate*nlstate);
     /* For Powell, parameters are in a vector p[] starting at p[1]    gm=matrix(0,nhstepm,1,nlstate*nlstate);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     if(mle==1){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      /* if (stepm >= YEARM) hstepm=1;*/
     }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
      
     /*--------- results files --------------*/      /* If stepm=6 months */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
    jk=1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /* Computing  Variances of health expectancies */
    for(i=1,jk=1; i <=nlstate; i++){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
      for(k=1; k <=(nlstate+ndeath); k++){         decrease memory allocation */
        if (k != i)      for(theta=1; theta <=npar; theta++){
          {        for(i=1; i<=npar; i++){ 
            printf("%d%d ",i,k);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            fprintf(ficres,"%1d%1d ",i,k);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
            for(j=1; j <=ncovmodel; j++){        }
              printf("%f ",p[jk]);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
              fprintf(ficres,"%f ",p[jk]);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
              jk++;    
            }        for(j=1; j<= nlstate; j++){
            printf("\n");          for(i=1; i<=nlstate; i++){
            fprintf(ficres,"\n");            for(h=0; h<=nhstepm-1; h++){
          }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
      }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
    }            }
  if(mle==1){          }
     /* Computing hessian and covariance matrix */        }
     ftolhess=ftol; /* Usually correct */       
     hesscov(matcov, p, npar, delti, ftolhess, func);        for(ij=1; ij<= nlstate*nlstate; ij++)
  }          for(h=0; h<=nhstepm-1; h++){
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     printf("# Scales (for hessian or gradient estimation)\n");          }
      for(i=1,jk=1; i <=nlstate; i++){      }/* End theta */
       for(j=1; j <=nlstate+ndeath; j++){      
         if (j!=i) {      
           fprintf(ficres,"%1d%1d",i,j);      for(h=0; h<=nhstepm-1; h++)
           printf("%1d%1d",i,j);        for(j=1; j<=nlstate*nlstate;j++)
           for(k=1; k<=ncovmodel;k++){          for(theta=1; theta <=npar; theta++)
             printf(" %.5e",delti[jk]);            trgradg[h][j][theta]=gradg[h][theta][j];
             fprintf(ficres," %.5e",delti[jk]);      
             jk++;  
           }       for(ij=1;ij<=nlstate*nlstate;ij++)
           printf("\n");        for(ji=1;ji<=nlstate*nlstate;ji++)
           fprintf(ficres,"\n");          varhe[ij][ji][(int)age] =0.;
         }  
       }       printf("%d|",(int)age);fflush(stdout);
      }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           for(h=0;h<=nhstepm-1;h++){
     k=1;        for(k=0;k<=nhstepm-1;k++){
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     for(i=1;i<=npar;i++){          for(ij=1;ij<=nlstate*nlstate;ij++)
       /*  if (k>nlstate) k=1;            for(ji=1;ji<=nlstate*nlstate;ji++)
       i1=(i-1)/(ncovmodel*nlstate)+1;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        }
       printf("%s%d%d",alph[k],i1,tab[i]);*/      }
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);      /* Computing expectancies */
       for(j=1; j<=i;j++){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         fprintf(ficres," %.5e",matcov[i][j]);      for(i=1; i<=nlstate;i++)
         printf(" %.5e",matcov[i][j]);        for(j=1; j<=nlstate;j++)
       }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       fprintf(ficres,"\n");            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       printf("\n");            
       k++;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     }  
              }
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);      fprintf(ficresstdeij,"%3.0f",age );
       fgets(line, MAXLINE, ficpar);      for(i=1; i<=nlstate;i++){
       puts(line);        eip=0.;
       fputs(line,ficparo);        vip=0.;
     }        for(j=1; j<=nlstate;j++){
     ungetc(c,ficpar);          eip += eij[i][j][(int)age];
     estepm=0;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     if (estepm==0 || estepm < stepm) estepm=stepm;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     if (fage <= 2) {        }
       bage = ageminpar;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       fage = agemaxpar;      }
     }      fprintf(ficresstdeij,"\n");
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      fprintf(ficrescveij,"%3.0f",age );
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      for(i=1; i<=nlstate;i++)
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for(j=1; j<=nlstate;j++){
            cptj= (j-1)*nlstate+i;
     while((c=getc(ficpar))=='#' && c!= EOF){          for(i2=1; i2<=nlstate;i2++)
     ungetc(c,ficpar);            for(j2=1; j2<=nlstate;j2++){
     fgets(line, MAXLINE, ficpar);              cptj2= (j2-1)*nlstate+i2;
     puts(line);              if(cptj2 <= cptj)
     fputs(line,ficparo);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   }            }
   ungetc(c,ficpar);        }
        fprintf(ficrescveij,"\n");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);     
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
          free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     ungetc(c,ficpar);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     puts(line);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);    printf("\n");
   }    fprintf(ficlog,"\n");
   ungetc(c,ficpar);  
      free_vector(xm,1,npar);
     free_vector(xp,1,npar);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   fscanf(ficpar,"pop_based=%d\n",&popbased);  }
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);    /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);    /* Variance of health expectancies */
     fgets(line, MAXLINE, ficpar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     puts(line);    /* double **newm;*/
     fputs(line,ficparo);    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
   }    
   ungetc(c,ficpar);    int movingaverage();
     double **dnewm,**doldm;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    double **dnewmp,**doldmp;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    int i, j, nhstepm, hstepm, h, nstepm ;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
 while((c=getc(ficpar))=='#' && c!= EOF){    double ***gradg, ***trgradg; /*for var eij */
     ungetc(c,ficpar);    double **gradgp, **trgradgp; /* for var p point j */
     fgets(line, MAXLINE, ficpar);    double *gpp, *gmp; /* for var p point j */
     puts(line);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     fputs(line,ficparo);    double ***p3mat;
   }    double age,agelim, hf;
   ungetc(c,ficpar);    double ***mobaverage;
     int theta;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    char digit[4];
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    char digitp[25];
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
     char fileresprobmorprev[FILENAMELENGTH];
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
     if(popbased==1){
 /*------------ gnuplot -------------*/      if(mobilav!=0)
   strcpy(optionfilegnuplot,optionfilefiname);        strcpy(digitp,"-populbased-mobilav-");
   strcat(optionfilegnuplot,".gp");      else strcpy(digitp,"-populbased-nomobil-");
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    }
     printf("Problem with file %s",optionfilegnuplot);    else 
   }      strcpy(digitp,"-stablbased-");
   fclose(ficgp);  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    if (mobilav!=0) {
 /*--------- index.htm --------*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   strcpy(optionfilehtm,optionfile);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   strcat(optionfilehtm,".htm");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      }
     printf("Problem with %s \n",optionfilehtm), exit(0);    }
   }  
     strcpy(fileresprobmorprev,"prmorprev"); 
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    sprintf(digit,"%-d",ij);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 \n    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 Total number of observations=%d <br>\n    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    strcat(fileresprobmorprev,fileres);
 <hr  size=\"2\" color=\"#EC5E5E\">    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
  <ul><li>Parameter files<br>\n      printf("Problem with resultfile: %s\n", fileresprobmorprev);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);    }
   fclose(fichtm);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      pstamp(ficresprobmorprev);
 /*------------ free_vector  -------------*/    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
  chdir(path);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  free_ivector(wav,1,imx);      fprintf(ficresprobmorprev," p.%-d SE",j);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      for(i=1; i<=nlstate;i++)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
  free_ivector(num,1,n);    }  
  free_vector(agedc,1,n);    fprintf(ficresprobmorprev,"\n");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    fprintf(ficgp,"\n# Routine varevsij");
  fclose(ficparo);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
  fclose(ficres);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
   /*--------------- Prevalence limit --------------*/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
   strcpy(filerespl,"pl");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   strcat(filerespl,fileres);    if(popbased==1)
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    else
   }      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    fprintf(ficresvij,"# Age");
   fprintf(ficrespl,"#Prevalence limit\n");    for(i=1; i<=nlstate;i++)
   fprintf(ficrespl,"#Age ");      for(j=1; j<=nlstate;j++)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   fprintf(ficrespl,"\n");    fprintf(ficresvij,"\n");
    
   prlim=matrix(1,nlstate,1,nlstate);    xp=vector(1,npar);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    dnewm=matrix(1,nlstate,1,npar);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    doldm=matrix(1,nlstate,1,nlstate);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   agebase=ageminpar;    gpp=vector(nlstate+1,nlstate+ndeath);
   agelim=agemaxpar;    gmp=vector(nlstate+1,nlstate+ndeath);
   ftolpl=1.e-10;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   i1=cptcoveff;    
   if (cptcovn < 1){i1=1;}    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   for(cptcov=1;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    else  hstepm=estepm;   
         k=k+1;    /* For example we decided to compute the life expectancy with the smallest unit */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficrespl,"\n#******");       nhstepm is the number of hstepm from age to agelim 
         for(j=1;j<=cptcoveff;j++)       nstepm is the number of stepm from age to agelin. 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       Look at function hpijx to understand why (it is linked to memory size questions) */
         fprintf(ficrespl,"******\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               survival function given by stepm (the optimization length). Unfortunately it
         for (age=agebase; age<=agelim; age++){       means that if the survival funtion is printed every two years of age and if
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           fprintf(ficrespl,"%.0f",age );       results. So we changed our mind and took the option of the best precision.
           for(i=1; i<=nlstate;i++)    */
           fprintf(ficrespl," %.5f", prlim[i][i]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           fprintf(ficrespl,"\n");    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fclose(ficrespl);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   /*------------- h Pij x at various ages ------------*/      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   printf("Computing pij: result on file '%s' \n", filerespij);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /*if (stepm<=24) stepsize=2;*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
   agelim=AGESUP;        if (popbased==1) {
   hstepm=stepsize*YEARM; /* Every year of age */          if(mobilav ==0){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   k=0;          }else{ /* mobilav */ 
   for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              prlim[i][i]=mobaverage[(int)age][i][ij];
       k=k+1;          }
         fprintf(ficrespij,"\n#****** ");        }
         for(j=1;j<=cptcoveff;j++)    
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j<= nlstate; j++){
         fprintf(ficrespij,"******\n");          for(h=0; h<=nhstepm; h++){
                    for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* This for computing probability of death (h=1 means
           oldm=oldms;savm=savms;           computed over hstepm matrices product = hstepm*stepm months) 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             as a weighted average of prlim.
           fprintf(ficrespij,"# Age");        */
           for(i=1; i<=nlstate;i++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             for(j=1; j<=nlstate+ndeath;j++)          for(i=1,gpp[j]=0.; i<= nlstate; i++)
               fprintf(ficrespij," %1d-%1d",i,j);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           fprintf(ficrespij,"\n");        }    
            for (h=0; h<=nhstepm; h++){        /* end probability of death */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
               for(j=1; j<=nlstate+ndeath;j++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             fprintf(ficrespij,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
              }   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (popbased==1) {
           fprintf(ficrespij,"\n");          if(mobilav ==0){
         }            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   fclose(ficrespij);        }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   /*---------- Forecasting ------------------*/          for(h=0; h<=nhstepm; h++){
   if((stepm == 1) && (strcmp(model,".")==0)){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          }
   }        }
   else{        /* This for computing probability of death (h=1 means
     erreur=108;           computed over hstepm matrices product = hstepm*stepm months) 
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);           as a weighted average of prlim.
   }        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
   /*---------- Health expectancies and variances ------------*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   strcpy(filerest,"t");        /* end probability of death */
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {        for(j=1; j<= nlstate; j++) /* vareij */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          for(h=0; h<=nhstepm; h++){
   }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   strcpy(filerese,"e");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   strcat(filerese,fileres);        }
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      } /* End theta */
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
  strcpy(fileresv,"v");      for(h=0; h<=nhstepm; h++) /* veij */
   strcat(fileresv,fileres);        for(j=1; j<=nlstate;j++)
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          for(theta=1; theta <=npar; theta++)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            trgradg[h][j][theta]=gradg[h][theta][j];
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   calagedate=-1;        for(theta=1; theta <=npar; theta++)
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          trgradgp[j][theta]=gradgp[theta][j];
     
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i=1;i<=nlstate;i++)
       k=k+1;        for(j=1;j<=nlstate;j++)
       fprintf(ficrest,"\n#****** ");          vareij[i][j][(int)age] =0.;
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(h=0;h<=nhstepm;h++){
       fprintf(ficrest,"******\n");        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficreseij,"\n#****** ");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       for(j=1;j<=cptcoveff;j++)          for(i=1;i<=nlstate;i++)
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(j=1;j<=nlstate;j++)
       fprintf(ficreseij,"******\n");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       fprintf(ficresvij,"\n#****** ");      }
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* pptj */
       fprintf(ficresvij,"******\n");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       oldm=oldms;savm=savms;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            varppt[j][i]=doldmp[j][i];
        /* end ppptj */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      /*  x centered again */
       oldm=oldms;savm=savms;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       
       if (popbased==1) {
          if(mobilav ==0){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          for(i=1; i<=nlstate;i++)
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficrest,"\n");        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
       epj=vector(1,nlstate+1);            prlim[i][i]=mobaverage[(int)age][i][ij];
       for(age=bage; age <=fage ;age++){        }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      }
         if (popbased==1) {               
           for(i=1; i<=nlstate;i++)      /* This for computing probability of death (h=1 means
             prlim[i][i]=probs[(int)age][i][k];         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         }         as a weighted average of prlim.
              */
         fprintf(ficrest," %4.0f",age);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      }    
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      /* end probability of death */
           }  
           epj[nlstate+1] +=epj[j];      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1, vepp=0.;i <=nlstate;i++)        for(i=1; i<=nlstate;i++){
           for(j=1;j <=nlstate;j++)          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             vepp += vareij[i][j][(int)age];        }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      } 
         for(j=1;j <=nlstate;j++){      fprintf(ficresprobmorprev,"\n");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }      fprintf(ficresvij,"%.0f ",age );
         fprintf(ficrest,"\n");      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++){
     }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   }        }
 free_matrix(mint,1,maxwav,1,n);      fprintf(ficresvij,"\n");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      free_matrix(gp,0,nhstepm,1,nlstate);
     free_vector(weight,1,n);      free_matrix(gm,0,nhstepm,1,nlstate);
   fclose(ficreseij);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   fclose(ficresvij);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   fclose(ficrest);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficpar);    } /* End age */
   free_vector(epj,1,nlstate+1);    free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
   /*------- Variance limit prevalence------*/      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   strcpy(fileresvpl,"vpl");    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
   strcat(fileresvpl,fileres);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     exit(0);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
   k=0;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       k=k+1;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       fprintf(ficresvpl,"\n#****** ");  */
       for(j=1;j<=cptcoveff;j++)  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fprintf(ficresvpl,"******\n");  
          free_vector(xp,1,npar);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    free_matrix(doldm,1,nlstate,1,nlstate);
       oldm=oldms;savm=savms;    free_matrix(dnewm,1,nlstate,1,npar);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
  }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficresvpl);    fclose(ficresprobmorprev);
     fflush(ficgp);
   /*---------- End : free ----------------*/    fflush(fichtm); 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  }  /* end varevsij */
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /************ Variance of prevlim ******************/
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
    {
      /* Variance of prevalence limit */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    double **dnewm,**doldm;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    int i, j, nhstepm, hstepm;
      double *xp;
   free_matrix(matcov,1,npar,1,npar);    double *gp, *gm;
   free_vector(delti,1,npar);    double **gradg, **trgradg;
   free_matrix(agev,1,maxwav,1,imx);    double age,agelim;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    int theta;
     
   fprintf(fichtm,"\n</body>");    pstamp(ficresvpl);
   fclose(fichtm);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   fclose(ficgp);    fprintf(ficresvpl,"# Age");
      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   if(erreur >0)    fprintf(ficresvpl,"\n");
     printf("End of Imach with error or warning %d\n",erreur);  
   else   printf("End of Imach\n");    xp=vector(1,npar);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    
   /*printf("Total time was %d uSec.\n", total_usecs);*/    hstepm=1*YEARM; /* Every year of age */
   /*------ End -----------*/    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  end:      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 #ifdef windows      if (stepm >= YEARM) hstepm=1;
   /* chdir(pathcd);*/      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 #endif      gradg=matrix(1,npar,1,nlstate);
  /*system("wgnuplot graph.plt");*/      gp=vector(1,nlstate);
  /*system("../gp37mgw/wgnuplot graph.plt");*/      gm=vector(1,nlstate);
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      for(theta=1; theta <=npar; theta++){
  strcpy(plotcmd,GNUPLOTPROGRAM);        for(i=1; i<=npar; i++){ /* Computes gradient */
  strcat(plotcmd," ");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
  strcat(plotcmd,optionfilegnuplot);        }
  system(plotcmd);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
 #ifdef windows          gp[i] = prlim[i][i];
   while (z[0] != 'q') {      
     /* chdir(path); */        for(i=1; i<=npar; i++) /* Computes gradient */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     scanf("%s",z);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     if (z[0] == 'c') system("./imach");        for(i=1;i<=nlstate;i++)
     else if (z[0] == 'e') system(optionfilehtm);          gm[i] = prlim[i][i];
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);        for(i=1;i<=nlstate;i++)
   }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 #endif      } /* End theta */
 }  
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
      /* #include <gnu/libc-version.h> */ /* Only on gnu */
   #include <stdint.h>
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(". ");fprintf(ficlog,". ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86). ");fprintf(ficlog,"Windows (x64 and x86). ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix. ");fprintf(ficlog,"Unix. ");
   #elif __linux__
       // linux
      printf("linux. ");fprintf(ficlog,"linux. ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though...
      printf("Mac OS. ");fprintf(ficlog,"Mac OS. ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit.\n"); fprintf(ficlog," 32-bit.\n");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit.\n"); fprintf(ficlog," 64-bit.\n");/* 64-bit */
   #else
      printf(" wtf-bit.\n"); fprintf(ficlog," wtf-bit.\n");/* wtf */
   #endif
   
   /* struct utsname sysInfo;
   
      if (uname(&sysInfo) != -1) {
        printf(" %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog," %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
             */
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf("GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, "GNU C version %d.\n", __GNUC_VERSION__);
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64())
              printf("The process is running under WOW64.\n");
      else
              printf("The process is not running under WOW64.\n");
   
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
     /* printf("GNU libc version: %s\n", gnu_get_libc_version()); */
   
    }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.47  
changed lines
  Added in v.1.173


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>