Diff for /imach/src/imach.c between versions 1.47 and 1.211

version 1.47, 2002/06/10 13:12:01 version 1.211, 2015/11/21 12:41:11
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.211  2015/11/21 12:41:11  brouard
      Summary: 0.98r3 with some graph of projected cross-sectional
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Author: Nicolas Brouard
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.210  2015/11/18 17:41:20  brouard
   case of a health survey which is our main interest) -2- at least a    Summary: Start working on projected prevalences
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.209  2015/11/17 22:12:03  brouard
   computed from the time spent in each health state according to a    Summary: Adding ftolpl parameter
   model. More health states you consider, more time is necessary to reach the    Author: N Brouard
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    We had difficulties to get smoothed confidence intervals. It was due
   probability to be observed in state j at the second wave    to the period prevalence which wasn't computed accurately. The inner
   conditional to be observed in state i at the first wave. Therefore    parameter ftolpl is now an outer parameter of the .imach parameter
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    file after estepm. If ftolpl is small 1.e-4 and estepm too,
   'age' is age and 'sex' is a covariate. If you want to have a more    computation are long.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.208  2015/11/17 14:31:57  brouard
   you to do it.  More covariates you add, slower the    Summary: temporary
   convergence.  
     Revision 1.207  2015/10/27 17:36:57  brouard
   The advantage of this computer programme, compared to a simple    *** empty log message ***
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.206  2015/10/24 07:14:11  brouard
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.205  2015/10/23 15:50:53  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: 0.98r3 some clarification for graphs on likelihood contributions
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.204  2015/10/01 16:20:26  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: Some new graphs of contribution to likelihood
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.203  2015/09/30 17:45:14  brouard
   and the contribution of each individual to the likelihood is simply    Summary: looking at better estimation of the hessian
   hPijx.  
     Also a better criteria for convergence to the period prevalence And
   Also this programme outputs the covariance matrix of the parameters but also    therefore adding the number of years needed to converge. (The
   of the life expectancies. It also computes the prevalence limits.    prevalence in any alive state shold sum to one
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.202  2015/09/22 19:45:16  brouard
            Institut national d'études démographiques, Paris.    Summary: Adding some overall graph on contribution to likelihood. Might change
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.201  2015/09/15 17:34:58  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Summary: 0.98r0
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    - Some new graphs like suvival functions
   **********************************************************************/    - Some bugs fixed like model=1+age+V2.
    
 #include <math.h>    Revision 1.200  2015/09/09 16:53:55  brouard
 #include <stdio.h>    Summary: Big bug thanks to Flavia
 #include <stdlib.h>  
 #include <unistd.h>    Even model=1+age+V2. did not work anymore
   
 #define MAXLINE 256    Revision 1.199  2015/09/07 14:09:23  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Summary: 0.98q6 changing default small png format for graph to vectorized svg.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.198  2015/09/03 07:14:39  brouard
 /*#define DEBUG*/    Summary: 0.98q5 Flavia
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.197  2015/09/01 18:24:39  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    *** empty log message ***
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.196  2015/08/18 23:17:52  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Summary: 0.98q5
   
 #define NINTERVMAX 8    Revision 1.195  2015/08/18 16:28:39  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Summary: Adding a hack for testing purpose
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    After reading the title, ftol and model lines, if the comment line has
 #define MAXN 20000    a q, starting with #q, the answer at the end of the run is quit. It
 #define YEARM 12. /* Number of months per year */    permits to run test files in batch with ctest. The former workaround was
 #define AGESUP 130    $ echo q | imach foo.imach
 #define AGEBASE 40  
 #ifdef windows    Revision 1.194  2015/08/18 13:32:00  brouard
 #define DIRSEPARATOR '\\'    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
 #else  
 #define DIRSEPARATOR '/'    Revision 1.193  2015/08/04 07:17:42  brouard
 #endif    Summary: 0.98q4
   
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";    Revision 1.192  2015/07/16 16:49:02  brouard
 int erreur; /* Error number */    Summary: Fixing some outputs
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.191  2015/07/14 10:00:33  brouard
 int npar=NPARMAX;    Summary: Some fixes
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.190  2015/05/05 08:51:13  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Summary: Adding digits in output parameters (7 digits instead of 6)
 int popbased=0;  
     Fix 1+age+.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.189  2015/04/30 14:45:16  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    Summary: 0.98q2
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.188  2015/04/30 08:27:53  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    *** empty log message ***
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.187  2015/04/29 09:11:15  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    *** empty log message ***
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.186  2015/04/23 12:01:52  brouard
 FILE *fichtm; /* Html File */    Summary: V1*age is working now, version 0.98q1
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Some codes had been disabled in order to simplify and Vn*age was
 FILE  *ficresvij;    working in the optimization phase, ie, giving correct MLE parameters,
 char fileresv[FILENAMELENGTH];    but, as usual, outputs were not correct and program core dumped.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.185  2015/03/11 13:26:42  brouard
 char title[MAXLINE];    Summary: Inclusion of compile and links command line for Intel Compiler
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.184  2015/03/11 11:52:39  brouard
     Summary: Back from Windows 8. Intel Compiler
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
     Revision 1.183  2015/03/10 20:34:32  brouard
 char filerest[FILENAMELENGTH];    Summary: 0.98q0, trying with directest, mnbrak fixed
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    We use directest instead of original Powell test; probably no
     incidence on the results, but better justifications;
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    We fixed Numerical Recipes mnbrak routine which was wrong and gave
     wrong results.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.182  2015/02/12 08:19:57  brouard
 #define FTOL 1.0e-10    Summary: Trying to keep directest which seems simpler and more general
     Author: Nicolas Brouard
 #define NRANSI  
 #define ITMAX 200    Revision 1.181  2015/02/11 23:22:24  brouard
     Summary: Comments on Powell added
 #define TOL 2.0e-4  
     Author:
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.180  2015/02/11 17:33:45  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Summary: Finishing move from main to function (hpijx and prevalence_limit)
   
 #define GOLD 1.618034    Revision 1.179  2015/01/04 09:57:06  brouard
 #define GLIMIT 100.0    Summary: back to OS/X
 #define TINY 1.0e-20  
     Revision 1.178  2015/01/04 09:35:48  brouard
 static double maxarg1,maxarg2;    *** empty log message ***
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.177  2015/01/03 18:40:56  brouard
      Summary: Still testing ilc32 on OSX
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.176  2015/01/03 16:45:04  brouard
     *** empty log message ***
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.175  2015/01/03 16:33:42  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    *** empty log message ***
   
 int imx;    Revision 1.174  2015/01/03 16:15:49  brouard
 int stepm;    Summary: Still in cross-compilation
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.173  2015/01/03 12:06:26  brouard
 int estepm;    Summary: trying to detect cross-compilation
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.172  2014/12/27 12:07:47  brouard
 int m,nb;    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.171  2014/12/23 13:26:59  brouard
 double **pmmij, ***probs, ***mobaverage;    Summary: Back from Visual C
 double dateintmean=0;  
     Still problem with utsname.h on Windows
 double *weight;  
 int **s; /* Status */    Revision 1.170  2014/12/23 11:17:12  brouard
 double *agedc, **covar, idx;    Summary: Cleaning some \%% back to %%
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.169  2014/12/22 23:08:31  brouard
     Summary: 0.98p
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 {  
    char *s;                             /* pointer */    Revision 1.168  2014/12/22 15:17:42  brouard
    int  l1, l2;                         /* length counters */    Summary: update
   
    l1 = strlen( path );                 /* length of path */    Revision 1.167  2014/12/22 13:50:56  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Summary: Testing uname and compiler version and if compiled 32 or 64
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Testing on Linux 64
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.165  2014/12/16 11:20:36  brouard
       extern char       *getcwd( );    Summary: After compiling on Visual C
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    * imach.c (Module): Merging 1.61 to 1.162
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.164  2014/12/16 10:52:11  brouard
       }    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    * imach.c (Module): Merging 1.61 to 1.162
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.163  2014/12/16 10:30:11  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    * imach.c (Module): Merging 1.61 to 1.162
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.162  2014/09/25 11:43:39  brouard
       dirc[l1-l2] = 0;                  /* add zero */    Summary: temporary backup 0.99!
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.1  2014/09/16 11:06:58  brouard
 #ifdef windows    Summary: With some code (wrong) for nlopt
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Author:
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.161  2014/09/15 20:41:41  brouard
    s = strrchr( name, '.' );            /* find last / */    Summary: Problem with macro SQR on Intel compiler
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.160  2014/09/02 09:24:05  brouard
    l1= strlen( name);    *** empty log message ***
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.159  2014/09/01 10:34:10  brouard
    finame[l1-l2]= 0;    Summary: WIN32
    return( 0 );                         /* we're done */    Author: Brouard
 }  
     Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
 /******************************************/  
     Revision 1.157  2014/08/27 16:26:55  brouard
 void replace(char *s, char*t)    Summary: Preparing windows Visual studio version
 {    Author: Brouard
   int i;  
   int lg=20;    In order to compile on Visual studio, time.h is now correct and time_t
   i=0;    and tm struct should be used. difftime should be used but sometimes I
   lg=strlen(t);    just make the differences in raw time format (time(&now).
   for(i=0; i<= lg; i++) {    Trying to suppress #ifdef LINUX
     (s[i] = t[i]);    Add xdg-open for __linux in order to open default browser.
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.156  2014/08/25 20:10:10  brouard
 }    *** empty log message ***
   
 int nbocc(char *s, char occ)    Revision 1.155  2014/08/25 18:32:34  brouard
 {    Summary: New compile, minor changes
   int i,j=0;    Author: Brouard
   int lg=20;  
   i=0;    Revision 1.154  2014/06/20 17:32:08  brouard
   lg=strlen(s);    Summary: Outputs now all graphs of convergence to period prevalence
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.153  2014/06/20 16:45:46  brouard
   }    Summary: If 3 live state, convergence to period prevalence on same graph
   return j;    Author: Brouard
 }  
     Revision 1.152  2014/06/18 17:54:09  brouard
 void cutv(char *u,char *v, char*t, char occ)    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 {  
   int i,lg,j,p=0;    Revision 1.151  2014/06/18 16:43:30  brouard
   i=0;    *** empty log message ***
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.150  2014/06/18 16:42:35  brouard
   }    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.149  2014/06/18 15:51:14  brouard
     (u[j] = t[j]);    Summary: Some fixes in parameter files errors
   }    Author: Nicolas Brouard
      u[p]='\0';  
     Revision 1.148  2014/06/17 17:38:48  brouard
    for(j=0; j<= lg; j++) {    Summary: Nothing new
     if (j>=(p+1))(v[j-p-1] = t[j]);    Author: Brouard
   }  
 }    Just a new packaging for OS/X version 0.98nS
   
 /********************** nrerror ********************/    Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
 void nrerror(char error_text[])  
 {    Revision 1.146  2014/06/16 10:20:28  brouard
   fprintf(stderr,"ERREUR ...\n");    Summary: Merge
   fprintf(stderr,"%s\n",error_text);    Author: Brouard
   exit(1);  
 }    Merge, before building revised version.
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.145  2014/06/10 21:23:15  brouard
 {    Summary: Debugging with valgrind
   double *v;    Author: Nicolas Brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Lot of changes in order to output the results with some covariates
   return v-nl+NR_END;    After the Edimburgh REVES conference 2014, it seems mandatory to
 }    improve the code.
     No more memory valgrind error but a lot has to be done in order to
 /************************ free vector ******************/    continue the work of splitting the code into subroutines.
 void free_vector(double*v, int nl, int nh)    Also, decodemodel has been improved. Tricode is still not
 {    optimal. nbcode should be improved. Documentation has been added in
   free((FREE_ARG)(v+nl-NR_END));    the source code.
 }  
     Revision 1.143  2014/01/26 09:45:38  brouard
 /************************ivector *******************************/    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 int *ivector(long nl,long nh)  
 {    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   int *v;    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.142  2014/01/26 03:57:36  brouard
   return v-nl+NR_END;    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 }  
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.141  2014/01/26 02:42:01  brouard
 {    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.139  2010/06/14 07:50:17  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 {    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.138  2010/04/30 18:19:40  brouard
      *** empty log message ***
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.137  2010/04/29 18:11:38  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Checking covariates for more complex models
   m += NR_END;    than V1+V2. A lot of change to be done. Unstable.
   m -= nrl;  
      Revision 1.136  2010/04/26 20:30:53  brouard
      (Module): merging some libgsl code. Fixing computation
   /* allocate rows and set pointers to them */    of likelione (using inter/intrapolation if mle = 0) in order to
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    get same likelihood as if mle=1.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Some cleaning of code and comments added.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.135  2009/10/29 15:33:14  brouard
      (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.134  2009/10/29 13:18:53  brouard
   /* return pointer to array of pointers to rows */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   return m;  
 }    Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.132  2009/07/06 08:22:05  brouard
       int **m;    Many tings
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.131  2009/06/20 16:22:47  brouard
 {    Some dimensions resccaled
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Revision 1.130  2009/05/26 06:44:34  brouard
 }    (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
 /******************* matrix *******************************/    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.129  2007/08/31 13:49:27  lievre
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   double **m;  
     Revision 1.128  2006/06/30 13:02:05  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Module): Clarifications on computing e.j
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.127  2006/04/28 18:11:50  brouard
   m -= nrl;    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    loop. Now we define nhstepma in the age loop.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): In order to speed up (in case of numerous covariates) we
   m[nrl] += NR_END;    compute health expectancies (without variances) in a first step
   m[nrl] -= ncl;    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    computation.
   return m;    In the future we should be able to stop the program is only health
 }    expectancies and graph are needed without standard deviations.
   
 /*************************free matrix ************************/    Revision 1.126  2006/04/28 17:23:28  brouard
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    (Module): Yes the sum of survivors was wrong since
 {    imach-114 because nhstepm was no more computed in the age
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    loop. Now we define nhstepma in the age loop.
   free((FREE_ARG)(m+nrl-NR_END));    Version 0.98h
 }  
     Revision 1.125  2006/04/04 15:20:31  lievre
 /******************* ma3x *******************************/    Errors in calculation of health expectancies. Age was not initialized.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Forecasting file added.
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Revision 1.124  2006/03/22 17:13:53  lievre
   double ***m;    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.123  2006/03/20 10:52:43  brouard
   m += NR_END;    * imach.c (Module): <title> changed, corresponds to .htm file
   m -= nrl;    name. <head> headers where missing.
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    * imach.c (Module): Weights can have a decimal point as for
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    English (a comma might work with a correct LC_NUMERIC environment,
   m[nrl] += NR_END;    otherwise the weight is truncated).
   m[nrl] -= ncl;    Modification of warning when the covariates values are not 0 or
     1.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Version 0.98g
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Revision 1.122  2006/03/20 09:45:41  brouard
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    (Module): Weights can have a decimal point as for
   m[nrl][ncl] += NR_END;    English (a comma might work with a correct LC_NUMERIC environment,
   m[nrl][ncl] -= nll;    otherwise the weight is truncated).
   for (j=ncl+1; j<=nch; j++)    Modification of warning when the covariates values are not 0 or
     m[nrl][j]=m[nrl][j-1]+nlay;    1.
      Version 0.98g
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Revision 1.121  2006/03/16 17:45:01  lievre
     for (j=ncl+1; j<=nch; j++)    * imach.c (Module): Comments concerning covariates added
       m[i][j]=m[i][j-1]+nlay;  
   }    * imach.c (Module): refinements in the computation of lli if
   return m;    status=-2 in order to have more reliable computation if stepm is
 }    not 1 month. Version 0.98f
   
 /*************************free ma3x ************************/    Revision 1.120  2006/03/16 15:10:38  lievre
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    (Module): refinements in the computation of lli if
 {    status=-2 in order to have more reliable computation if stepm is
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    not 1 month. Version 0.98f
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.119  2006/03/15 17:42:26  brouard
 }    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.118  2006/03/14 18:20:07  brouard
 extern double *pcom,*xicom;    (Module): varevsij Comments added explaining the second
 extern double (*nrfunc)(double []);    table of variances if popbased=1 .
      (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 double f1dim(double x)    (Module): Function pstamp added
 {    (Module): Version 0.98d
   int j;  
   double f;    Revision 1.117  2006/03/14 17:16:22  brouard
   double *xt;    (Module): varevsij Comments added explaining the second
      table of variances if popbased=1 .
   xt=vector(1,ncom);    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    (Module): Function pstamp added
   f=(*nrfunc)(xt);    (Module): Version 0.98d
   free_vector(xt,1,ncom);  
   return f;    Revision 1.116  2006/03/06 10:29:27  brouard
 }    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Revision 1.115  2006/02/27 12:17:45  brouard
 {    (Module): One freematrix added in mlikeli! 0.98c
   int iter;  
   double a,b,d,etemp;    Revision 1.114  2006/02/26 12:57:58  brouard
   double fu,fv,fw,fx;    (Module): Some improvements in processing parameter
   double ftemp;    filename with strsep.
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;    Revision 1.113  2006/02/24 14:20:24  brouard
      (Module): Memory leaks checks with valgrind and:
   a=(ax < cx ? ax : cx);    datafile was not closed, some imatrix were not freed and on matrix
   b=(ax > cx ? ax : cx);    allocation too.
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);    Revision 1.112  2006/01/30 09:55:26  brouard
   for (iter=1;iter<=ITMAX;iter++) {    (Module): Back to gnuplot.exe instead of wgnuplot.exe
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Revision 1.111  2006/01/25 20:38:18  brouard
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    (Module): Lots of cleaning and bugs added (Gompertz)
     printf(".");fflush(stdout);    (Module): Comments can be added in data file. Missing date values
 #ifdef DEBUG    can be a simple dot '.'.
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    Revision 1.110  2006/01/25 00:51:50  brouard
 #endif    (Module): Lots of cleaning and bugs added (Gompertz)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;    Revision 1.109  2006/01/24 19:37:15  brouard
       return fx;    (Module): Comments (lines starting with a #) are allowed in data.
     }  
     ftemp=fu;    Revision 1.108  2006/01/19 18:05:42  lievre
     if (fabs(e) > tol1) {    Gnuplot problem appeared...
       r=(x-w)*(fx-fv);    To be fixed
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Revision 1.107  2006/01/19 16:20:37  brouard
       q=2.0*(q-r);    Test existence of gnuplot in imach path
       if (q > 0.0) p = -p;  
       q=fabs(q);    Revision 1.106  2006/01/19 13:24:36  brouard
       etemp=e;    Some cleaning and links added in html output
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    Revision 1.105  2006/01/05 20:23:19  lievre
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    *** empty log message ***
       else {  
         d=p/q;    Revision 1.104  2005/09/30 16:11:43  lievre
         u=x+d;    (Module): sump fixed, loop imx fixed, and simplifications.
         if (u-a < tol2 || b-u < tol2)    (Module): If the status is missing at the last wave but we know
           d=SIGN(tol1,xm-x);    that the person is alive, then we can code his/her status as -2
       }    (instead of missing=-1 in earlier versions) and his/her
     } else {    contributions to the likelihood is 1 - Prob of dying from last
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     }    the healthy state at last known wave). Version is 0.98
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    Revision 1.103  2005/09/30 15:54:49  lievre
     if (fu <= fx) {    (Module): sump fixed, loop imx fixed, and simplifications.
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)    Revision 1.102  2004/09/15 17:31:30  brouard
         SHFT(fv,fw,fx,fu)    Add the possibility to read data file including tab characters.
         } else {  
           if (u < x) a=u; else b=u;    Revision 1.101  2004/09/15 10:38:38  brouard
           if (fu <= fw || w == x) {    Fix on curr_time
             v=w;  
             w=u;    Revision 1.100  2004/07/12 18:29:06  brouard
             fv=fw;    Add version for Mac OS X. Just define UNIX in Makefile
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    Revision 1.99  2004/06/05 08:57:40  brouard
             v=u;    *** empty log message ***
             fv=fu;  
           }    Revision 1.98  2004/05/16 15:05:56  brouard
         }    New version 0.97 . First attempt to estimate force of mortality
   }    directly from the data i.e. without the need of knowing the health
   nrerror("Too many iterations in brent");    state at each age, but using a Gompertz model: log u =a + b*age .
   *xmin=x;    This is the basic analysis of mortality and should be done before any
   return fx;    other analysis, in order to test if the mortality estimated from the
 }    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 /****************** mnbrak ***********************/  
     The same imach parameter file can be used but the option for mle should be -3.
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))    Agnès, who wrote this part of the code, tried to keep most of the
 {    former routines in order to include the new code within the former code.
   double ulim,u,r,q, dum;  
   double fu;    The output is very simple: only an estimate of the intercept and of
      the slope with 95% confident intervals.
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);    Current limitations:
   if (*fb > *fa) {    A) Even if you enter covariates, i.e. with the
     SHFT(dum,*ax,*bx,dum)    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
       SHFT(dum,*fb,*fa,dum)    B) There is no computation of Life Expectancy nor Life Table.
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    Revision 1.97  2004/02/20 13:25:42  lievre
   *fc=(*func)(*cx);    Version 0.96d. Population forecasting command line is (temporarily)
   while (*fb > *fc) {    suppressed.
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    Revision 1.96  2003/07/15 15:38:55  brouard
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    rewritten within the same printf. Workaround: many printfs.
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    Revision 1.95  2003/07/08 07:54:34  brouard
       fu=(*func)(u);    * imach.c (Repository):
     } else if ((*cx-u)*(u-ulim) > 0.0) {    (Repository): Using imachwizard code to output a more meaningful covariance
       fu=(*func)(u);    matrix (cov(a12,c31) instead of numbers.
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    Revision 1.94  2003/06/27 13:00:02  brouard
           SHFT(*fb,*fc,fu,(*func)(u))    Just cleaning
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    Revision 1.93  2003/06/25 16:33:55  brouard
       u=ulim;    (Module): On windows (cygwin) function asctime_r doesn't
       fu=(*func)(u);    exist so I changed back to asctime which exists.
     } else {    (Module): Version 0.96b
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    Revision 1.92  2003/06/25 16:30:45  brouard
     }    (Module): On windows (cygwin) function asctime_r doesn't
     SHFT(*ax,*bx,*cx,u)    exist so I changed back to asctime which exists.
       SHFT(*fa,*fb,*fc,fu)  
       }    Revision 1.91  2003/06/25 15:30:29  brouard
 }    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 /*************** linmin ************************/    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 int ncom;    concerning matrix of covariance. It has extension -cov.htm.
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    Revision 1.90  2003/06/24 12:34:15  brouard
      (Module): Some bugs corrected for windows. Also, when
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    mle=-1 a template is output in file "or"mypar.txt with the design
 {    of the covariance matrix to be input.
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    Revision 1.89  2003/06/24 12:30:52  brouard
   double f1dim(double x);    (Module): Some bugs corrected for windows. Also, when
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    mle=-1 a template is output in file "or"mypar.txt with the design
               double *fc, double (*func)(double));    of the covariance matrix to be input.
   int j;  
   double xx,xmin,bx,ax;    Revision 1.88  2003/06/23 17:54:56  brouard
   double fx,fb,fa;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    
   ncom=n;    Revision 1.87  2003/06/18 12:26:01  brouard
   pcom=vector(1,n);    Version 0.96
   xicom=vector(1,n);  
   nrfunc=func;    Revision 1.86  2003/06/17 20:04:08  brouard
   for (j=1;j<=n;j++) {    (Module): Change position of html and gnuplot routines and added
     pcom[j]=p[j];    routine fileappend.
     xicom[j]=xi[j];  
   }    Revision 1.85  2003/06/17 13:12:43  brouard
   ax=0.0;    * imach.c (Repository): Check when date of death was earlier that
   xx=1.0;    current date of interview. It may happen when the death was just
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    prior to the death. In this case, dh was negative and likelihood
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    was wrong (infinity). We still send an "Error" but patch by
 #ifdef DEBUG    assuming that the date of death was just one stepm after the
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    interview.
 #endif    (Repository): Because some people have very long ID (first column)
   for (j=1;j<=n;j++) {    we changed int to long in num[] and we added a new lvector for
     xi[j] *= xmin;    memory allocation. But we also truncated to 8 characters (left
     p[j] += xi[j];    truncation)
   }    (Repository): No more line truncation errors.
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);    Revision 1.84  2003/06/13 21:44:43  brouard
 }    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 /*************** powell ************************/    many times. Probs is memory consuming and must be used with
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    parcimony.
             double (*func)(double []))    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 {  
   void linmin(double p[], double xi[], int n, double *fret,    Revision 1.83  2003/06/10 13:39:11  lievre
               double (*func)(double []));    *** empty log message ***
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;    Revision 1.82  2003/06/05 15:57:20  brouard
   double fp,fptt;    Add log in  imach.c and  fullversion number is now printed.
   double *xits;  
   pt=vector(1,n);  */
   ptt=vector(1,n);  /*
   xit=vector(1,n);     Interpolated Markov Chain
   xits=vector(1,n);  
   *fret=(*func)(p);    Short summary of the programme:
   for (j=1;j<=n;j++) pt[j]=p[j];    
   for (*iter=1;;++(*iter)) {    This program computes Healthy Life Expectancies from
     fp=(*fret);    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     ibig=0;    first survey ("cross") where individuals from different ages are
     del=0.0;    interviewed on their health status or degree of disability (in the
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    case of a health survey which is our main interest) -2- at least a
     for (i=1;i<=n;i++)    second wave of interviews ("longitudinal") which measure each change
       printf(" %d %.12f",i, p[i]);    (if any) in individual health status.  Health expectancies are
     printf("\n");    computed from the time spent in each health state according to a
     for (i=1;i<=n;i++) {    model. More health states you consider, more time is necessary to reach the
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    Maximum Likelihood of the parameters involved in the model.  The
       fptt=(*fret);    simplest model is the multinomial logistic model where pij is the
 #ifdef DEBUG    probability to be observed in state j at the second wave
       printf("fret=%lf \n",*fret);    conditional to be observed in state i at the first wave. Therefore
 #endif    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       printf("%d",i);fflush(stdout);    'age' is age and 'sex' is a covariate. If you want to have a more
       linmin(p,xit,n,fret,func);    complex model than "constant and age", you should modify the program
       if (fabs(fptt-(*fret)) > del) {    where the markup *Covariates have to be included here again* invites
         del=fabs(fptt-(*fret));    you to do it.  More covariates you add, slower the
         ibig=i;    convergence.
       }  
 #ifdef DEBUG    The advantage of this computer programme, compared to a simple
       printf("%d %.12e",i,(*fret));    multinomial logistic model, is clear when the delay between waves is not
       for (j=1;j<=n;j++) {    identical for each individual. Also, if a individual missed an
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    intermediate interview, the information is lost, but taken into
         printf(" x(%d)=%.12e",j,xit[j]);    account using an interpolation or extrapolation.  
       }  
       for(j=1;j<=n;j++)    hPijx is the probability to be observed in state i at age x+h
         printf(" p=%.12e",p[j]);    conditional to the observed state i at age x. The delay 'h' can be
       printf("\n");    split into an exact number (nh*stepm) of unobserved intermediate
 #endif    states. This elementary transition (by month, quarter,
     }    semester or year) is modelled as a multinomial logistic.  The hPx
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    matrix is simply the matrix product of nh*stepm elementary matrices
 #ifdef DEBUG    and the contribution of each individual to the likelihood is simply
       int k[2],l;    hPijx.
       k[0]=1;  
       k[1]=-1;    Also this programme outputs the covariance matrix of the parameters but also
       printf("Max: %.12e",(*func)(p));    of the life expectancies. It also computes the period (stable) prevalence. 
       for (j=1;j<=n;j++)    
         printf(" %.12e",p[j]);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       printf("\n");             Institut national d'études démographiques, Paris.
       for(l=0;l<=1;l++) {    This software have been partly granted by Euro-REVES, a concerted action
         for (j=1;j<=n;j++) {    from the European Union.
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    It is copyrighted identically to a GNU software product, ie programme and
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    software can be distributed freely for non commercial use. Latest version
         }    can be accessed at http://euroreves.ined.fr/imach .
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #endif    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
     **********************************************************************/
       free_vector(xit,1,n);  /*
       free_vector(xits,1,n);    main
       free_vector(ptt,1,n);    read parameterfile
       free_vector(pt,1,n);    read datafile
       return;    concatwav
     }    freqsummary
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    if (mle >= 1)
     for (j=1;j<=n;j++) {      mlikeli
       ptt[j]=2.0*p[j]-pt[j];    print results files
       xit[j]=p[j]-pt[j];    if mle==1 
       pt[j]=p[j];       computes hessian
     }    read end of parameter file: agemin, agemax, bage, fage, estepm
     fptt=(*func)(ptt);        begin-prev-date,...
     if (fptt < fp) {    open gnuplot file
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    open html file
       if (t < 0.0) {    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
         linmin(p,xit,n,fret,func);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
         for (j=1;j<=n;j++) {                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
           xi[j][ibig]=xi[j][n];      freexexit2 possible for memory heap.
           xi[j][n]=xit[j];  
         }    h Pij x                         | pij_nom  ficrestpij
 #ifdef DEBUG     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
         for(j=1;j<=n;j++)         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
           printf(" %.12e",xit[j]);  
         printf("\n");         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 #endif         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       }    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     }     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   }     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
 }  
     forecasting if prevfcast==1 prevforecast call prevalence()
 /**** Prevalence limit ****************/    health expectancies
     Variance-covariance of DFLE
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    prevalence()
 {     movingaverage()
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    varevsij() 
      matrix by transitions matrix until convergence is reached */    if popbased==1 varevsij(,popbased)
     total life expectancies
   int i, ii,j,k;    Variance of period (stable) prevalence
   double min, max, maxmin, maxmax,sumnew=0.;   end
   double **matprod2();  */
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /* #define DEBUG */
   double agefin, delaymax=50 ; /* Max number of years to converge */  /* #define DEBUGBRENT */
   /* #define DEBUGLINMIN */
   for (ii=1;ii<=nlstate+ndeath;ii++)  /* #define DEBUGHESS */
     for (j=1;j<=nlstate+ndeath;j++){  #define DEBUGHESSIJ
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan)*\/ */
     }  #define POWELL /* Instead of NLOPT */
   #define POWELLF1F3 /* Skip test */
    cov[1]=1.;  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
    /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #include <math.h>
     newm=savm;  #include <stdio.h>
     /* Covariates have to be included here again */  #include <stdlib.h>
      cov[2]=agefin;  #include <string.h>
    
       for (k=1; k<=cptcovn;k++) {  #ifdef _WIN32
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #include <io.h>
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #include <windows.h>
       }  #include <tchar.h>
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #else
       for (k=1; k<=cptcovprod;k++)  #include <unistd.h>
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #endif
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #include <limits.h>
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #include <sys/types.h>
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #if defined(__GNUC__)
   #include <sys/utsname.h> /* Doesn't work on Windows */
     savm=oldm;  #endif
     oldm=newm;  
     maxmax=0.;  #include <sys/stat.h>
     for(j=1;j<=nlstate;j++){  #include <errno.h>
       min=1.;  /* extern int errno; */
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /* #ifdef LINUX */
         sumnew=0;  /* #include <time.h> */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /* #include "timeval.h" */
         prlim[i][j]= newm[i][j]/(1-sumnew);  /* #else */
         max=FMAX(max,prlim[i][j]);  /* #include <sys/time.h> */
         min=FMIN(min,prlim[i][j]);  /* #endif */
       }  
       maxmin=max-min;  #include <time.h>
       maxmax=FMAX(maxmax,maxmin);  
     }  #ifdef GSL
     if(maxmax < ftolpl){  #include <gsl/gsl_errno.h>
       return prlim;  #include <gsl/gsl_multimin.h>
     }  #endif
   }  
 }  
   #ifdef NLOPT
 /*************** transition probabilities ***************/  #include <nlopt.h>
   typedef struct {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double (* function)(double [] );
 {  } myfunc_data ;
   double s1, s2;  #endif
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  #define GNUPLOTPROGRAM "gnuplot"
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  #define FILENAMELENGTH 132
       }  
       ps[i][j]=s2;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #define NINTERVMAX 8
       }  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       ps[i][j]=s2;  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     }  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   }  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
     /*ps[3][2]=1;*/  /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
   #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
   for(i=1; i<= nlstate; i++){  #define MAXN 20000
      s1=0;  #define YEARM 12. /**< Number of months per year */
     for(j=1; j<i; j++)  #define AGESUP 130
       s1+=exp(ps[i][j]);  #define AGEBASE 40
     for(j=i+1; j<=nlstate+ndeath; j++)  #define AGEOVERFLOW 1.e20
       s1+=exp(ps[i][j]);  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
     ps[i][i]=1./(s1+1.);  #ifdef _WIN32
     for(j=1; j<i; j++)  #define DIRSEPARATOR '\\'
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #define CHARSEPARATOR "\\"
     for(j=i+1; j<=nlstate+ndeath; j++)  #define ODIRSEPARATOR '/'
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #else
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #define DIRSEPARATOR '/'
   } /* end i */  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #endif
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  /* $Id$ */
       ps[ii][ii]=1;  /* $State$ */
     }  #include "version.h"
   }  char version[]=__IMACH_VERSION__;
   char copyright[]="October 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
   char fullversion[]="$Revision$ $Date$"; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  char strstart[80];
     for(jj=1; jj<= nlstate+ndeath; jj++){  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
      printf("%lf ",ps[ii][jj]);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    }  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
     printf("\n ");  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
     }  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
     printf("\n ");printf("%lf ",cov[2]);*/  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 /*  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   goto end;*/  int cptcovprodnoage=0; /**< Number of covariate products without age */   
     return ps;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 }  int cptcov=0; /* Working variable */
   int npar=NPARMAX;
 /**************** Product of 2 matrices ******************/  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  int *wav; /* Number of waves for this individuual 0 is possible */
   /* in, b, out are matrice of pointers which should have been initialized  int maxwav=0; /* Maxim number of waves */
      before: only the contents of out is modified. The function returns  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
      a pointer to pointers identical to out */  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   long i, j, k;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   for(i=nrl; i<= nrh; i++)                     to the likelihood and the sum of weights (done by funcone)*/
     for(k=ncolol; k<=ncoloh; k++)  int mle=1, weightopt=0;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         out[i][k] +=in[i][j]*b[j][k];  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   return out;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 }  int countcallfunc=0;  /* Count the number of calls to func */
   double jmean=1; /* Mean space between 2 waves */
   double **matprod2(); /* test */
 /************* Higher Matrix Product ***************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*FILE *fic ; */ /* Used in readdata only */
 {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  FILE *ficlog, *ficrespow;
      duration (i.e. until  int globpr=0; /* Global variable for printing or not */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  double fretone; /* Only one call to likelihood */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  long ipmx=0; /* Number of contributions */
      (typically every 2 years instead of every month which is too big).  double sw; /* Sum of weights */
      Model is determined by parameters x and covariates have to be  char filerespow[FILENAMELENGTH];
      included manually here.  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
      */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
   int i, j, d, h, k;  FILE *fichtm, *fichtmcov; /* Html File */
   double **out, cov[NCOVMAX];  FILE *ficreseij;
   double **newm;  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
   /* Hstepm could be zero and should return the unit matrix */  char fileresstde[FILENAMELENGTH];
   for (i=1;i<=nlstate+ndeath;i++)  FILE *ficrescveij;
     for (j=1;j<=nlstate+ndeath;j++){  char filerescve[FILENAMELENGTH];
       oldm[i][j]=(i==j ? 1.0 : 0.0);  FILE  *ficresvij;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  char fileresv[FILENAMELENGTH];
     }  FILE  *ficresvpl;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char fileresvpl[FILENAMELENGTH];
   for(h=1; h <=nhstepm; h++){  char title[MAXLINE];
     for(d=1; d <=hstepm; d++){  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       newm=savm;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       /* Covariates have to be included here again */  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       cov[1]=1.;  char command[FILENAMELENGTH];
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  int  outcmd=0;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
       for (k=1; k<=cptcovprod;k++)  char filelog[FILENAMELENGTH]; /* Log file */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       savm=oldm;  /* struct timezone tzp; */
       oldm=newm;  /* extern int gettimeofday(); */
     }  struct tm tml, *gmtime(), *localtime();
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  extern time_t time();
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  struct tm start_time, end_time, curr_time, last_time, forecast_time;
          */  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       }  struct tm tm;
   } /* end h */  
   return po;  char strcurr[80], strfor[80];
 }  
   char *endptr;
   long lval;
 /*************** log-likelihood *************/  double dval;
 double func( double *x)  
 {  #define NR_END 1
   int i, ii, j, k, mi, d, kk;  #define FREE_ARG char*
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  #define FTOL 1.0e-10
   double **out;  
   double sw; /* Sum of weights */  #define NRANSI 
   double lli; /* Individual log likelihood */  #define ITMAX 200 
   long ipmx;  
   /*extern weight */  #define TOL 2.0e-4 
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  #define CGOLD 0.3819660 
   /*for(i=1;i<imx;i++)  #define ZEPS 1.0e-10 
     printf(" %d\n",s[4][i]);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   */  
   cov[1]=1.;  #define GOLD 1.618034 
   #define GLIMIT 100.0 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  #define TINY 1.0e-20 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  static double maxarg1,maxarg2;
     for(mi=1; mi<= wav[i]-1; mi++){  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       for (ii=1;ii<=nlstate+ndeath;ii++)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    
       for(d=0; d<dh[mi][i]; d++){  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
         newm=savm;  #define rint(a) floor(a+0.5)
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
         for (kk=1; kk<=cptcovage;kk++) {  #define mytinydouble 1.0e-16
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
         }  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
          /* static double dsqrarg; */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  static double sqrarg;
         savm=oldm;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         oldm=newm;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
          int agegomp= AGEGOMP;
          
       } /* end mult */  int imx; 
        int stepm=1;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /* Stepm, step in month: minimum step interpolation*/
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;  int estepm;
       sw += weight[i];  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  int m,nb;
   } /* end of individual */  long *num;
   int firstpass=0, lastpass=4,*cod, *cens;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */                     covariate for which somebody answered excluding 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */                     undefined. Usually 2: 0 and 1. */
   return -l;  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
 }                               covariate for which somebody answered including 
                                undefined. Usually 3: -1, 0 and 1. */
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /*********** Maximum Likelihood Estimation ***************/  double **pmmij, ***probs;
   double *ageexmed,*agecens;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  double dateintmean=0;
 {  
   int i,j, iter;  double *weight;
   double **xi,*delti;  int **s; /* Status */
   double fret;  double *agedc;
   xi=matrix(1,npar,1,npar);  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   for (i=1;i<=npar;i++)                    * covar=matrix(0,NCOVMAX,1,n); 
     for (j=1;j<=npar;j++)                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
       xi[i][j]=(i==j ? 1.0 : 0.0);  double  idx; 
   printf("Powell\n");  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   powell(p,xi,npar,ftol,&iter,&fret,func);  int *Tage;
   int *Ndum; /** Freq of modality (tricode */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 }  
   double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
 /**** Computes Hessian and covariance matrix ***/  double ftolhess; /**< Tolerance for computing hessian */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {  /**************** split *************************/
   double  **a,**y,*x,pd;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double **hess;  {
   int i, j,jk;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   int *indx;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
   double hessii(double p[], double delta, int theta, double delti[]);    char  *ss;                            /* pointer */
   double hessij(double p[], double delti[], int i, int j);    int   l1=0, l2=0;                             /* length counters */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   hess=matrix(1,npar,1,npar);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
   printf("\nCalculation of the hessian matrix. Wait...\n");      strcpy( name, path );               /* we got the fullname name because no directory */
   for (i=1;i<=npar;i++){      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     printf("%d",i);fflush(stdout);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     hess[i][i]=hessii(p,ftolhess,i,delti);      /* get current working directory */
     /*printf(" %f ",p[i]);*/      /*    extern  char* getcwd ( char *buf , int len);*/
     /*printf(" %lf ",hess[i][i]);*/  #ifdef WIN32
   }      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
    #else
   for (i=1;i<=npar;i++) {          if (getcwd(dirc, FILENAME_MAX) == NULL) {
     for (j=1;j<=npar;j++)  {  #endif
       if (j>i) {        return( GLOCK_ERROR_GETCWD );
         printf(".%d%d",i,j);fflush(stdout);      }
         hess[i][j]=hessij(p,delti,i,j);      /* got dirc from getcwd*/
         hess[j][i]=hess[i][j];          printf(" DIRC = %s \n",dirc);
         /*printf(" %lf ",hess[i][j]);*/    } else {                              /* strip directory from path */
       }      ss++;                               /* after this, the filename */
     }      l2 = strlen( ss );                  /* length of filename */
   }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   printf("\n");      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      dirc[l1-l2] = '\0';                 /* add zero */
        printf(" DIRC2 = %s \n",dirc);
   a=matrix(1,npar,1,npar);    }
   y=matrix(1,npar,1,npar);    /* We add a separator at the end of dirc if not exists */
   x=vector(1,npar);    l1 = strlen( dirc );                  /* length of directory */
   indx=ivector(1,npar);    if( dirc[l1-1] != DIRSEPARATOR ){
   for (i=1;i<=npar;i++)      dirc[l1] =  DIRSEPARATOR;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      dirc[l1+1] = 0; 
   ludcmp(a,npar,indx,&pd);      printf(" DIRC3 = %s \n",dirc);
     }
   for (j=1;j<=npar;j++) {    ss = strrchr( name, '.' );            /* find last / */
     for (i=1;i<=npar;i++) x[i]=0;    if (ss >0){
     x[j]=1;      ss++;
     lubksb(a,npar,indx,x);      strcpy(ext,ss);                     /* save extension */
     for (i=1;i<=npar;i++){      l1= strlen( name);
       matcov[i][j]=x[i];      l2= strlen(ss)+1;
     }      strncpy( finame, name, l1-l2);
   }      finame[l1-l2]= 0;
     }
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {    return( 0 );                          /* we're done */
     for (j=1;j<=npar;j++) {  }
       printf("%.3e ",hess[i][j]);  
     }  
     printf("\n");  /******************************************/
   }  
   void replace_back_to_slash(char *s, char*t)
   /* Recompute Inverse */  {
   for (i=1;i<=npar;i++)    int i;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    int lg=0;
   ludcmp(a,npar,indx,&pd);    i=0;
     lg=strlen(t);
   /*  printf("\n#Hessian matrix recomputed#\n");    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
   for (j=1;j<=npar;j++) {      if (t[i]== '\\') s[i]='/';
     for (i=1;i<=npar;i++) x[i]=0;    }
     x[j]=1;  }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  char *trimbb(char *out, char *in)
       y[i][j]=x[i];  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       printf("%.3e ",y[i][j]);    char *s;
     }    s=out;
     printf("\n");    while (*in != '\0'){
   }      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   */        in++;
       }
   free_matrix(a,1,npar,1,npar);      *out++ = *in++;
   free_matrix(y,1,npar,1,npar);    }
   free_vector(x,1,npar);    *out='\0';
   free_ivector(indx,1,npar);    return s;
   free_matrix(hess,1,npar,1,npar);  }
   
   /* char *substrchaine(char *out, char *in, char *chain) */
 }  /* { */
   /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
 /*************** hessian matrix ****************/  /*   char *s, *t; */
 double hessii( double x[], double delta, int theta, double delti[])  /*   t=in;s=out; */
 {  /*   while ((*in != *chain) && (*in != '\0')){ */
   int i;  /*     *out++ = *in++; */
   int l=1, lmax=20;  /*   } */
   double k1,k2;  
   double p2[NPARMAX+1];  /*   /\* *in matches *chain *\/ */
   double res;  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   double fx;  /*   } */
   int k=0,kmax=10;  /*   in--; chain--; */
   double l1;  /*   while ( (*in != '\0')){ */
   /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   fx=func(x);  /*     *out++ = *in++; */
   for (i=1;i<=npar;i++) p2[i]=x[i];  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   for(l=0 ; l <=lmax; l++){  /*   } */
     l1=pow(10,l);  /*   *out='\0'; */
     delts=delt;  /*   out=s; */
     for(k=1 ; k <kmax; k=k+1){  /*   return out; */
       delt = delta*(l1*k);  /* } */
       p2[theta]=x[theta] +delt;  char *substrchaine(char *out, char *in, char *chain)
       k1=func(p2)-fx;  {
       p2[theta]=x[theta]-delt;    /* Substract chain 'chain' from 'in', return and output 'out' */
       k2=func(p2)-fx;    /* in="V1+V1*age+age*age+V2", chain="age*age" */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    char *strloc;
        
 #ifdef DEBUG    strcpy (out, in); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
 #endif    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    if(strloc != NULL){ 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
         k=kmax;      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
       }      /* strcpy (strloc, strloc +strlen(chain));*/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    }
         k=kmax; l=lmax*10.;    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
       }    return out;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  }
         delts=delt;  
       }  
     }  char *cutl(char *blocc, char *alocc, char *in, char occ)
   }  {
   delti[theta]=delts;    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
   return res;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         gives blocc="abcdef" and alocc="ghi2j".
 }       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     */
 double hessij( double x[], double delti[], int thetai,int thetaj)    char *s, *t;
 {    t=in;s=in;
   int i;    while ((*in != occ) && (*in != '\0')){
   int l=1, l1, lmax=20;      *alocc++ = *in++;
   double k1,k2,k3,k4,res,fx;    }
   double p2[NPARMAX+1];    if( *in == occ){
   int k;      *(alocc)='\0';
       s=++in;
   fx=func(x);    }
   for (k=1; k<=2; k++) {   
     for (i=1;i<=npar;i++) p2[i]=x[i];    if (s == t) {/* occ not found */
     p2[thetai]=x[thetai]+delti[thetai]/k;      *(alocc-(in-s))='\0';
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      in=s;
     k1=func(p2)-fx;    }
      while ( *in != '\0'){
     p2[thetai]=x[thetai]+delti[thetai]/k;      *blocc++ = *in++;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    }
     k2=func(p2)-fx;  
      *blocc='\0';
     p2[thetai]=x[thetai]-delti[thetai]/k;    return t;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  }
     k3=func(p2)-fx;  char *cutv(char *blocc, char *alocc, char *in, char occ)
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     k4=func(p2)-fx;       gives blocc="abcdef2ghi" and alocc="j".
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */       If occ is not found blocc is null and alocc is equal to in. Returns alocc
 #ifdef DEBUG    */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    char *s, *t;
 #endif    t=in;s=in;
   }    while (*in != '\0'){
   return res;      while( *in == occ){
 }        *blocc++ = *in++;
         s=in;
 /************** Inverse of matrix **************/      }
 void ludcmp(double **a, int n, int *indx, double *d)      *blocc++ = *in++;
 {    }
   int i,imax,j,k;    if (s == t) /* occ not found */
   double big,dum,sum,temp;      *(blocc-(in-s))='\0';
   double *vv;    else
        *(blocc-(in-s)-1)='\0';
   vv=vector(1,n);    in=s;
   *d=1.0;    while ( *in != '\0'){
   for (i=1;i<=n;i++) {      *alocc++ = *in++;
     big=0.0;    }
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;    *alocc='\0';
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    return s;
     vv[i]=1.0/big;  }
   }  
   for (j=1;j<=n;j++) {  int nbocc(char *s, char occ)
     for (i=1;i<j;i++) {  {
       sum=a[i][j];    int i,j=0;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    int lg=20;
       a[i][j]=sum;    i=0;
     }    lg=strlen(s);
     big=0.0;    for(i=0; i<= lg; i++) {
     for (i=j;i<=n;i++) {    if  (s[i] == occ ) j++;
       sum=a[i][j];    }
       for (k=1;k<j;k++)    return j;
         sum -= a[i][k]*a[k][j];  }
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /* void cutv(char *u,char *v, char*t, char occ) */
         big=dum;  /* { */
         imax=i;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
       }  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
     }  /*      gives u="abcdef2ghi" and v="j" *\/ */
     if (j != imax) {  /*   int i,lg,j,p=0; */
       for (k=1;k<=n;k++) {  /*   i=0; */
         dum=a[imax][k];  /*   lg=strlen(t); */
         a[imax][k]=a[j][k];  /*   for(j=0; j<=lg-1; j++) { */
         a[j][k]=dum;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       }  /*   } */
       *d = -(*d);  
       vv[imax]=vv[j];  /*   for(j=0; j<p; j++) { */
     }  /*     (u[j] = t[j]); */
     indx[j]=imax;  /*   } */
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*      u[p]='\0'; */
     if (j != n) {  
       dum=1.0/(a[j][j]);  /*    for(j=0; j<= lg; j++) { */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     }  /*   } */
   }  /* } */
   free_vector(vv,1,n);  /* Doesn't work */  
 ;  #ifdef _WIN32
 }  char * strsep(char **pp, const char *delim)
   {
 void lubksb(double **a, int n, int *indx, double b[])    char *p, *q;
 {           
   int i,ii=0,ip,j;    if ((p = *pp) == NULL)
   double sum;      return 0;
      if ((q = strpbrk (p, delim)) != NULL)
   for (i=1;i<=n;i++) {    {
     ip=indx[i];      *pp = q + 1;
     sum=b[ip];      *q = '\0';
     b[ip]=b[i];    }
     if (ii)    else
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      *pp = 0;
     else if (sum) ii=i;    return p;
     b[i]=sum;  }
   }  #endif
   for (i=n;i>=1;i--) {  
     sum=b[i];  /********************** nrerror ********************/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  void nrerror(char error_text[])
   }  {
 }    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 /************ Frequencies ********************/    exit(EXIT_FAILURE);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  }
 {  /* Some frequencies */  /*********************** vector *******************/
    double *vector(int nl, int nh)
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  {
   double ***freq; /* Frequencies */    double *v;
   double *pp;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double pos, k2, dateintsum=0,k2cpt=0;    if (!v) nrerror("allocation failure in vector");
   FILE *ficresp;    return v-nl+NR_END;
   char fileresp[FILENAMELENGTH];  }
    
   pp=vector(1,nlstate);  /************************ free vector ******************/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  void free_vector(double*v, int nl, int nh)
   strcpy(fileresp,"p");  {
   strcat(fileresp,fileres);    free((FREE_ARG)(v+nl-NR_END));
   if((ficresp=fopen(fileresp,"w"))==NULL) {  }
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  /************************ivector *******************************/
   }  int *ivector(long nl,long nh)
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  {
   j1=0;    int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   j=cptcoveff;    if (!v) nrerror("allocation failure in ivector");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    return v-nl+NR_END;
    }
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  /******************free ivector **************************/
       j1++;  void free_ivector(int *v, long nl, long nh)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  {
         scanf("%d", i);*/    free((FREE_ARG)(v+nl-NR_END));
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  /************************lvector *******************************/
             freq[i][jk][m]=0;  long *lvector(long nl,long nh)
        {
       dateintsum=0;    long *v;
       k2cpt=0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       for (i=1; i<=imx; i++) {    if (!v) nrerror("allocation failure in ivector");
         bool=1;    return v-nl+NR_END;
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /******************free lvector **************************/
               bool=0;  void free_lvector(long *v, long nl, long nh)
         }  {
         if (bool==1) {    free((FREE_ARG)(v+nl-NR_END));
           for(m=firstpass; m<=lastpass; m++){  }
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /******************* imatrix *******************************/
               if(agev[m][i]==0) agev[m][i]=agemax+1;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
               if(agev[m][i]==1) agev[m][i]=agemax+2;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
               if (m<lastpass) {  { 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    int **m; 
               }    
                  /* allocate pointers to rows */ 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
                 dateintsum=dateintsum+k2;    if (!m) nrerror("allocation failure 1 in matrix()"); 
                 k2cpt++;    m += NR_END; 
               }    m -= nrl; 
             }    
           }    
         }    /* allocate rows and set pointers to them */ 
       }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
            if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
       if  (cptcovn>0) {    
         fprintf(ficresp, "\n#********** Variable ");    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
         fprintf(ficresp, "**********\n#");    /* return pointer to array of pointers to rows */ 
       }    return m; 
       for(i=1; i<=nlstate;i++)  } 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");  /****************** free_imatrix *************************/
        void free_imatrix(m,nrl,nrh,ncl,nch)
       for(i=(int)agemin; i <= (int)agemax+3; i++){        int **m;
         if(i==(int)agemax+3)        long nch,ncl,nrh,nrl; 
           printf("Total");       /* free an int matrix allocated by imatrix() */ 
         else  { 
           printf("Age %d", i);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         for(jk=1; jk <=nlstate ; jk++){    free((FREE_ARG) (m+nrl-NR_END)); 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  } 
             pp[jk] += freq[jk][m][i];  
         }  /******************* matrix *******************************/
         for(jk=1; jk <=nlstate ; jk++){  double **matrix(long nrl, long nrh, long ncl, long nch)
           for(m=-1, pos=0; m <=0 ; m++)  {
             pos += freq[jk][m][i];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
           if(pp[jk]>=1.e-10)    double **m;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           else    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    if (!m) nrerror("allocation failure 1 in matrix()");
         }    m += NR_END;
     m -= nrl;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             pp[jk] += freq[jk][m][i];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         }    m[nrl] += NR_END;
     m[nrl] -= ncl;
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         for(jk=1; jk <=nlstate ; jk++){    return m;
           if(pos>=1.e-5)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
           else  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);     */
           if( i <= (int) agemax){  }
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  /*************************free matrix ************************/
               probs[i][jk][j1]= pp[jk]/pos;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  {
             }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             else    free((FREE_ARG)(m+nrl-NR_END));
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  }
           }  
         }  /******************* ma3x *******************************/
          double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         for(jk=-1; jk <=nlstate+ndeath; jk++)  {
           for(m=-1; m <=nlstate+ndeath; m++)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double ***m;
         if(i <= (int) agemax)  
           fprintf(ficresp,"\n");    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
     }    m -= nrl;
   }  
   dateintmean=dateintsum/k2cpt;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   fclose(ficresp);    m[nrl] += NR_END;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    m[nrl] -= ncl;
   free_vector(pp,1,nlstate);  
      for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   /* End of Freq */  
 }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 /************ Prevalence ********************/    m[nrl][ncl] += NR_END;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    m[nrl][ncl] -= nll;
 {  /* Some frequencies */    for (j=ncl+1; j<=nch; j++) 
        m[nrl][j]=m[nrl][j-1]+nlay;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    
   double ***freq; /* Frequencies */    for (i=nrl+1; i<=nrh; i++) {
   double *pp;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double pos, k2;      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
   pp=vector(1,nlstate);    }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    return m; 
      /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   j1=0;    */
    }
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /*************************free ma3x ************************/
    void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for(k1=1; k1<=j;k1++){  {
     for(i1=1; i1<=ncodemax[k1];i1++){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       j1++;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
          free((FREE_ARG)(m+nrl-NR_END));
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  /*************** function subdirf ***********/
             freq[i][jk][m]=0;  char *subdirf(char fileres[])
        {
       for (i=1; i<=imx; i++) {    /* Caution optionfilefiname is hidden */
         bool=1;    strcpy(tmpout,optionfilefiname);
         if  (cptcovn>0) {    strcat(tmpout,"/"); /* Add to the right */
           for (z1=1; z1<=cptcoveff; z1++)    strcat(tmpout,fileres);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    return tmpout;
               bool=0;  }
         }  
         if (bool==1) {  /*************** function subdirf2 ***********/
           for(m=firstpass; m<=lastpass; m++){  char *subdirf2(char fileres[], char *preop)
             k2=anint[m][i]+(mint[m][i]/12.);  {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    
               if(agev[m][i]==0) agev[m][i]=agemax+1;    /* Caution optionfilefiname is hidden */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    strcpy(tmpout,optionfilefiname);
               if (m<lastpass) {    strcat(tmpout,"/");
                 if (calagedate>0)    strcat(tmpout,preop);
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    strcat(tmpout,fileres);
                 else    return tmpout;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  }
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  
               }  /*************** function subdirf3 ***********/
             }  char *subdirf3(char fileres[], char *preop, char *preop2)
           }  {
         }    
       }    /* Caution optionfilefiname is hidden */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    strcpy(tmpout,optionfilefiname);
         for(jk=1; jk <=nlstate ; jk++){    strcat(tmpout,"/");
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    strcat(tmpout,preop);
             pp[jk] += freq[jk][m][i];    strcat(tmpout,preop2);
         }    strcat(tmpout,fileres);
         for(jk=1; jk <=nlstate ; jk++){    return tmpout;
           for(m=-1, pos=0; m <=0 ; m++)  }
             pos += freq[jk][m][i];  
         }  char *asc_diff_time(long time_sec, char ascdiff[])
          {
         for(jk=1; jk <=nlstate ; jk++){    long sec_left, days, hours, minutes;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    days = (time_sec) / (60*60*24);
             pp[jk] += freq[jk][m][i];    sec_left = (time_sec) % (60*60*24);
         }    hours = (sec_left) / (60*60) ;
            sec_left = (sec_left) %(60*60);
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    minutes = (sec_left) /60;
            sec_left = (sec_left) % (60);
         for(jk=1; jk <=nlstate ; jk++){        sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
           if( i <= (int) agemax){    return ascdiff;
             if(pos>=1.e-5){  }
               probs[i][jk][j1]= pp[jk]/pos;  
             }  /***************** f1dim *************************/
           }  extern int ncom; 
         }  extern double *pcom,*xicom;
          extern double (*nrfunc)(double []); 
       }   
     }  double f1dim(double x) 
   }  { 
     int j; 
      double f;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    double *xt; 
   free_vector(pp,1,nlstate);   
      xt=vector(1,ncom); 
 }  /* End of Freq */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
 /************* Waves Concatenation ***************/    free_vector(xt,1,ncom); 
     return f; 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  } 
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  /*****************brent *************************/
      Death is a valid wave (if date is known).  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  {
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
      and mw[mi+1][i]. dh depends on stepm.     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
      */     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
      * the minimum is returned as xmin, and the minimum function value is returned as brent , the
   int i, mi, m;     * returned function value. 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    */
      double sum=0., jmean=0.;*/    int iter; 
     double a,b,d,etemp;
   int j, k=0,jk, ju, jl;    double fu=0,fv,fw,fx;
   double sum=0.;    double ftemp=0.;
   jmin=1e+5;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   jmax=-1;    double e=0.0; 
   jmean=0.;   
   for(i=1; i<=imx; i++){    a=(ax < cx ? ax : cx); 
     mi=0;    b=(ax > cx ? ax : cx); 
     m=firstpass;    x=w=v=bx; 
     while(s[m][i] <= nlstate){    fw=fv=fx=(*f)(x); 
       if(s[m][i]>=1)    for (iter=1;iter<=ITMAX;iter++) { 
         mw[++mi][i]=m;      xm=0.5*(a+b); 
       if(m >=lastpass)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         break;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       else      printf(".");fflush(stdout);
         m++;      fprintf(ficlog,".");fflush(ficlog);
     }/* end while */  #ifdef DEBUGBRENT
     if (s[m][i] > nlstate){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       mi++;     /* Death is another wave */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /* if(mi==0)  never been interviewed correctly before death */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
          /* Only death is a correct wave */  #endif
       mw[mi][i]=m;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     }        *xmin=x; 
         return fx; 
     wav[i]=mi;      } 
     if(mi==0)      ftemp=fu;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      if (fabs(e) > tol1) { 
   }        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
   for(i=1; i<=imx; i++){        p=(x-v)*q-(x-w)*r; 
     for(mi=1; mi<wav[i];mi++){        q=2.0*(q-r); 
       if (stepm <=0)        if (q > 0.0) p = -p; 
         dh[mi][i]=1;        q=fabs(q); 
       else{        etemp=e; 
         if (s[mw[mi+1][i]][i] > nlstate) {        e=d; 
           if (agedc[i] < 2*AGESUP) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           if(j==0) j=1;  /* Survives at least one month after exam */        else { 
           k=k+1;          d=p/q; 
           if (j >= jmax) jmax=j;          u=x+d; 
           if (j <= jmin) jmin=j;          if (u-a < tol2 || b-u < tol2) 
           sum=sum+j;            d=SIGN(tol1,xm-x); 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        } 
           }      } else { 
         }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else{      } 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
           k=k+1;      fu=(*f)(u); 
           if (j >= jmax) jmax=j;      if (fu <= fx) { 
           else if (j <= jmin)jmin=j;        if (u >= x) a=x; else b=x; 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        SHFT(v,w,x,u) 
           sum=sum+j;        SHFT(fv,fw,fx,fu) 
         }      } else { 
         jk= j/stepm;        if (u < x) a=u; else b=u; 
         jl= j -jk*stepm;        if (fu <= fw || w == x) { 
         ju= j -(jk+1)*stepm;          v=w; 
         if(jl <= -ju)          w=u; 
           dh[mi][i]=jk;          fv=fw; 
         else          fw=fu; 
           dh[mi][i]=jk+1;        } else if (fu <= fv || v == x || v == w) { 
         if(dh[mi][i]==0)          v=u; 
           dh[mi][i]=1; /* At least one step */          fv=fu; 
       }        } 
     }      } 
   }    } 
   jmean=sum/k;    nrerror("Too many iterations in brent"); 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    *xmin=x; 
  }    return fx; 
 /*********** Tricode ****************************/  } 
 void tricode(int *Tvar, int **nbcode, int imx)  
 {  /****************** mnbrak ***********************/
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   cptcoveff=0;              double (*func)(double)) 
    { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
   for (k=0; k<19; k++) Ndum[k]=0;  the downhill direction (defined by the function as evaluated at the initial points) and returns
   for (k=1; k<=7; k++) ncodemax[k]=0;  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
   values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {     */
     for (i=1; i<=imx; i++) {    double ulim,u,r,q, dum;
       ij=(int)(covar[Tvar[j]][i]);    double fu; 
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double scale=10.;
       if (ij > cptcode) cptcode=ij;    int iterscale=0;
     }  
     *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
     for (i=0; i<=cptcode; i++) {    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  
     ij=1;    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
     /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
     /*   *bx = *ax - (*ax - *bx)/scale; */
     for (i=1; i<=ncodemax[j]; i++) {    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
       for (k=0; k<=19; k++) {    /* } */
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;    if (*fb > *fa) { 
                SHFT(dum,*ax,*bx,dum) 
           ij++;      SHFT(dum,*fb,*fa,dum) 
         }    } 
         if (ij > ncodemax[j]) break;    *cx=(*bx)+GOLD*(*bx-*ax); 
       }      *fc=(*func)(*cx); 
     }  #ifdef DEBUG
   }      printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
     fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
  for (k=0; k<19; k++) Ndum[k]=0;  #endif
     while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
  for (i=1; i<=ncovmodel-2; i++) {      r=(*bx-*ax)*(*fb-*fc); 
       ij=Tvar[i];      q=(*bx-*cx)*(*fb-*fa); 
       Ndum[ij]++;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
       ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
  ij=1;      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
  for (i=1; i<=10; i++) {        fu=(*func)(u); 
    if((Ndum[i]!=0) && (i<=ncovcol)){  #ifdef DEBUG
      Tvaraff[ij]=i;        /* f(x)=A(x-u)**2+f(u) */
      ij++;        double A, fparabu; 
    }        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
  }        fparabu= *fa - A*(*ax-u)*(*ax-u);
          printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
     cptcoveff=ij-1;        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 }        /* And thus,it can be that fu > *fc even if fparabu < *fc */
         /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
 /*********** Health Expectancies ****************/          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
         /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  #endif 
   #ifdef MNBRAKORIGINAL
 {  #else
   /* Health expectancies */  /*       if (fu > *fc) { */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  /* #ifdef DEBUG */
   double age, agelim, hf;  /*       printf("mnbrak4  fu > fc \n"); */
   double ***p3mat,***varhe;  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
   double **dnewm,**doldm;  /* #endif */
   double *xp;  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
   double **gp, **gm;  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
   double ***gradg, ***trgradg;  /*      dum=u; /\* Shifting c and u *\/ */
   int theta;  /*      u = *cx; */
   /*      *cx = dum; */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  /*      dum = fu; */
   xp=vector(1,npar);  /*      fu = *fc; */
   dnewm=matrix(1,nlstate*2,1,npar);  /*      *fc =dum; */
   doldm=matrix(1,nlstate*2,1,nlstate*2);  /*       } else { /\* end *\/ */
    /* #ifdef DEBUG */
   fprintf(ficreseij,"# Health expectancies\n");  /*       printf("mnbrak3  fu < fc \n"); */
   fprintf(ficreseij,"# Age");  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
   for(i=1; i<=nlstate;i++)  /* #endif */
     for(j=1; j<=nlstate;j++)  /*      dum=u; /\* Shifting c and u *\/ */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  /*      u = *cx; */
   fprintf(ficreseij,"\n");  /*      *cx = dum; */
   /*      dum = fu; */
   if(estepm < stepm){  /*      fu = *fc; */
     printf ("Problem %d lower than %d\n",estepm, stepm);  /*      *fc =dum; */
   }  /*       } */
   else  hstepm=estepm;    #ifdef DEBUG
   /* We compute the life expectancy from trapezoids spaced every estepm months        printf("mnbrak34  fu < or >= fc \n");
    * This is mainly to measure the difference between two models: for example        fprintf(ficlog, "mnbrak34 fu < fc\n");
    * if stepm=24 months pijx are given only every 2 years and by summing them  #endif
    * we are calculating an estimate of the Life Expectancy assuming a linear        dum=u; /* Shifting c and u */
    * progression inbetween and thus overestimating or underestimating according        u = *cx;
    * to the curvature of the survival function. If, for the same date, we        *cx = dum;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        dum = fu;
    * to compare the new estimate of Life expectancy with the same linear        fu = *fc;
    * hypothesis. A more precise result, taking into account a more precise        *fc =dum;
    * curvature will be obtained if estepm is as small as stepm. */  #endif
       } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
   /* For example we decided to compute the life expectancy with the smallest unit */  #ifdef DEBUG
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        printf("mnbrak2  u after c but before ulim\n");
      nhstepm is the number of hstepm from age to agelim        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
      nstepm is the number of stepm from age to agelin.  #endif
      Look at hpijx to understand the reason of that which relies in memory size        fu=(*func)(u); 
      and note for a fixed period like estepm months */        if (fu < *fc) { 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  #ifdef DEBUG
      survival function given by stepm (the optimization length). Unfortunately it        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
      means that if the survival funtion is printed only each two years of age and if        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  #endif
      results. So we changed our mind and took the option of the best precision.          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   */          SHFT(*fb,*fc,fu,(*func)(u)) 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
   agelim=AGESUP;  #ifdef DEBUG
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
     /* nhstepm age range expressed in number of stepm */        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  #endif
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        u=ulim; 
     /* if (stepm >= YEARM) hstepm=1;*/        fu=(*func)(u); 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      } else { /* u could be left to b (if r > q parabola has a maximum) */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #ifdef DEBUG
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
     gp=matrix(0,nhstepm,1,nlstate*2);        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
     gm=matrix(0,nhstepm,1,nlstate*2);  #endif
         u=(*cx)+GOLD*(*cx-*bx); 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        fu=(*func)(u); 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      } /* end tests */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        SHFT(*ax,*bx,*cx,u) 
        SHFT(*fa,*fb,*fc,fu) 
   #ifdef DEBUG
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
         fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
     /* Computing Variances of health expectancies */  #endif
     } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
      for(theta=1; theta <=npar; theta++){  } 
       for(i=1; i<=npar; i++){  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  /*************** linmin ************************/
       }  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    resets p to where the function func(p) takes on a minimum along the direction xi from p ,
    and replaces xi by the actual vector displacement that p was moved. Also returns as fret
       cptj=0;  the value of func at the returned location p . This is actually all accomplished by calling the
       for(j=1; j<= nlstate; j++){  routines mnbrak and brent .*/
         for(i=1; i<=nlstate; i++){  int ncom; 
           cptj=cptj+1;  double *pcom,*xicom;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  double (*nrfunc)(double []); 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;   
           }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         }  { 
       }    double brent(double ax, double bx, double cx, 
                       double (*f)(double), double tol, double *xmin); 
          double f1dim(double x); 
       for(i=1; i<=npar; i++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                double *fc, double (*func)(double)); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int j; 
          double xx,xmin,bx,ax; 
       cptj=0;    double fx,fb,fa;
       for(j=1; j<= nlstate; j++){  
         for(i=1;i<=nlstate;i++){  #ifdef LINMINORIGINAL
           cptj=cptj+1;  #else
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    double scale=10., axs, xxs; /* Scale added for infinity */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  #endif
           }    
         }    ncom=n; 
       }    pcom=vector(1,n); 
       for(j=1; j<= nlstate*2; j++)    xicom=vector(1,n); 
         for(h=0; h<=nhstepm-1; h++){    nrfunc=func; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for (j=1;j<=n;j++) { 
         }      pcom[j]=p[j]; 
      }      xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
        } 
 /* End theta */  
   #ifdef LINMINORIGINAL
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    xx=1.;
   #else
      for(h=0; h<=nhstepm-1; h++)    axs=0.0;
       for(j=1; j<=nlstate*2;j++)    xxs=1.;
         for(theta=1; theta <=npar; theta++)    do{
           trgradg[h][j][theta]=gradg[h][theta][j];      xx= xxs;
        #endif
       ax=0.;
      for(i=1;i<=nlstate*2;i++)      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
       for(j=1;j<=nlstate*2;j++)      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
         varhe[i][j][(int)age] =0.;      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
       /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
      printf("%d|",(int)age);fflush(stdout);      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
      for(h=0;h<=nhstepm-1;h++){      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
       for(k=0;k<=nhstepm-1;k++){      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  #ifdef LINMINORIGINAL
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  #else
         for(i=1;i<=nlstate*2;i++)      if (fx != fx){
           for(j=1;j<=nlstate*2;j++)          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          printf("|");
       }          fprintf(ficlog,"|");
     }  #ifdef DEBUGLINMIN
     /* Computing expectancies */          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
     for(i=1; i<=nlstate;i++)  #endif
       for(j=1; j<=nlstate;j++)      }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    }while(fx != fx);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  #endif
              
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  #ifdef DEBUGLINMIN
     printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
         }    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   #endif
     fprintf(ficreseij,"%3.0f",age );    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
     cptj=0;    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
     for(i=1; i<=nlstate;i++)    /* fmin = f(p[j] + xmin * xi[j]) */
       for(j=1; j<=nlstate;j++){    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
         cptj++;    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  #ifdef DEBUG
       }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficreseij,"\n");    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      #endif
     free_matrix(gm,0,nhstepm,1,nlstate*2);  #ifdef DEBUGLINMIN
     free_matrix(gp,0,nhstepm,1,nlstate*2);    printf("linmin end ");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    fprintf(ficlog,"linmin end ");
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  #endif
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (j=1;j<=n;j++) { 
   }  #ifdef LINMINORIGINAL
   printf("\n");      xi[j] *= xmin; 
   #else
   free_vector(xp,1,npar);  #ifdef DEBUGLINMIN
   free_matrix(dnewm,1,nlstate*2,1,npar);      if(xxs <1.0)
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        printf(" before xi[%d]=%12.8f", j,xi[j]);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  #endif
 }      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
   #ifdef DEBUGLINMIN
 /************ Variance ******************/      if(xxs <1.0)
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
 {  #endif
   /* Variance of health expectancies */  #endif
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      p[j] += xi[j]; /* Parameters values are updated accordingly */
   double **newm;    } 
   double **dnewm,**doldm;  #ifdef DEBUGLINMIN
   int i, j, nhstepm, hstepm, h, nstepm ;    printf("\n");
   int k, cptcode;    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
   double *xp;    fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
   double **gp, **gm;    for (j=1;j<=n;j++) { 
   double ***gradg, ***trgradg;      printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
   double ***p3mat;      fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
   double age,agelim, hf;      if(j % ncovmodel == 0){
   int theta;        printf("\n");
         fprintf(ficlog,"\n");
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      }
   fprintf(ficresvij,"# Age");    }
   for(i=1; i<=nlstate;i++)  #else
     for(j=1; j<=nlstate;j++)  #endif
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    free_vector(xicom,1,n); 
   fprintf(ficresvij,"\n");    free_vector(pcom,1,n); 
   } 
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  /*************** powell ************************/
    /*
   if(estepm < stepm){  Minimization of a function func of n variables. Input consists of an initial starting point
     printf ("Problem %d lower than %d\n",estepm, stepm);  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   }  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   else  hstepm=estepm;    such that failure to decrease by more than this amount on one iteration signals doneness. On
   /* For example we decided to compute the life expectancy with the smallest unit */  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  function value at p , and iter is the number of iterations taken. The routine linmin is used.
      nhstepm is the number of hstepm from age to agelim   */
      nstepm is the number of stepm from age to agelin.  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
      Look at hpijx to understand the reason of that which relies in memory size              double (*func)(double [])) 
      and note for a fixed period like k years */  { 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    void linmin(double p[], double xi[], int n, double *fret, 
      survival function given by stepm (the optimization length). Unfortunately it                double (*func)(double [])); 
      means that if the survival funtion is printed only each two years of age and if    int i,ibig,j; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double del,t,*pt,*ptt,*xit;
      results. So we changed our mind and took the option of the best precision.    double directest;
   */    double fp,fptt;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double *xits;
   agelim = AGESUP;    int niterf, itmp;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    pt=vector(1,n); 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    ptt=vector(1,n); 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    xit=vector(1,n); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    xits=vector(1,n); 
     gp=matrix(0,nhstepm,1,nlstate);    *fret=(*func)(p); 
     gm=matrix(0,nhstepm,1,nlstate);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     rcurr_time = time(NULL);  
     for(theta=1; theta <=npar; theta++){    for (*iter=1;;++(*iter)) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */      fp=(*fret); /* From former iteration or initial value */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      ibig=0; 
       }      del=0.0; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        rlast_time=rcurr_time;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /* (void) gettimeofday(&curr_time,&tzp); */
       rcurr_time = time(NULL);  
       if (popbased==1) {      curr_time = *localtime(&rcurr_time);
         for(i=1; i<=nlstate;i++)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
           prlim[i][i]=probs[(int)age][i][ij];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
       }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
        for (i=1;i<=n;i++) {
       for(j=1; j<= nlstate; j++){        printf(" %d %.12f",i, p[i]);
         for(h=0; h<=nhstepm; h++){        fprintf(ficlog," %d %.12lf",i, p[i]);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        fprintf(ficrespow," %.12lf", p[i]);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      }
         }      printf("\n");
       }      fprintf(ficlog,"\n");
          fprintf(ficrespow,"\n");fflush(ficrespow);
       for(i=1; i<=npar; i++) /* Computes gradient */      if(*iter <=3){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        tml = *localtime(&rcurr_time);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          strcpy(strcurr,asctime(&tml));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        rforecast_time=rcurr_time; 
          itmp = strlen(strcurr);
       if (popbased==1) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         for(i=1; i<=nlstate;i++)          strcurr[itmp-1]='\0';
           prlim[i][i]=probs[(int)age][i][ij];        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         for(niterf=10;niterf<=30;niterf+=10){
       for(j=1; j<= nlstate; j++){          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
         for(h=0; h<=nhstepm; h++){          forecast_time = *localtime(&rforecast_time);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          strcpy(strfor,asctime(&forecast_time));
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          itmp = strlen(strfor);
         }          if(strfor[itmp-1]=='\n')
       }          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       for(j=1; j<= nlstate; j++)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         for(h=0; h<=nhstepm; h++){        }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      }
         }      for (i=1;i<=n;i++) { /* For each direction i */
     } /* End theta */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
         fptt=(*fret); 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  #ifdef DEBUG
         printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
     for(h=0; h<=nhstepm; h++)        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
       for(j=1; j<=nlstate;j++)  #endif
         for(theta=1; theta <=npar; theta++)        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
           trgradg[h][j][theta]=gradg[h][theta][j];        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
     for(i=1;i<=nlstate;i++)        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
       for(j=1;j<=nlstate;j++)          /* because that direction will be replaced unless the gain del is small */
         vareij[i][j][(int)age] =0.;          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
           /* Unless the n directions are conjugate some gain in the determinant may be obtained */
     for(h=0;h<=nhstepm;h++){          /* with the new direction. */
       for(k=0;k<=nhstepm;k++){          del=fabs(fptt-(*fret)); 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          ibig=i; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        } 
         for(i=1;i<=nlstate;i++)  #ifdef DEBUG
           for(j=1;j<=nlstate;j++)        printf("%d %.12e",i,(*fret));
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        fprintf(ficlog,"%d %.12e",i,(*fret));
       }        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
     fprintf(ficresvij,"%.0f ",age );          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++){        for(j=1;j<=n;j++) {
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          printf(" p(%d)=%.12e",j,p[j]);
       }          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
     fprintf(ficresvij,"\n");        }
     free_matrix(gp,0,nhstepm,1,nlstate);        printf("\n");
     free_matrix(gm,0,nhstepm,1,nlstate);        fprintf(ficlog,"\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  #endif
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      } /* end loop on each direction i */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
   } /* End age */      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
        /* New value of last point Pn is not computed, P(n-1) */
   free_vector(xp,1,npar);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
   free_matrix(doldm,1,nlstate,1,npar);        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
   free_matrix(dnewm,1,nlstate,1,nlstate);        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
         /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
 }        /* decreased of more than 3.84  */
         /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
 /************ Variance of prevlim ******************/        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        /* By adding 10 parameters more the gain should be 18.31 */
 {  
   /* Variance of prevalence limit */        /* Starting the program with initial values given by a former maximization will simply change */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        /* the scales of the directions and the directions, because the are reset to canonical directions */
   double **newm;        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
   double **dnewm,**doldm;        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
   int i, j, nhstepm, hstepm;  #ifdef DEBUG
   int k, cptcode;        int k[2],l;
   double *xp;        k[0]=1;
   double *gp, *gm;        k[1]=-1;
   double **gradg, **trgradg;        printf("Max: %.12e",(*func)(p));
   double age,agelim;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   int theta;        for (j=1;j<=n;j++) {
              printf(" %.12e",p[j]);
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          fprintf(ficlog," %.12e",p[j]);
   fprintf(ficresvpl,"# Age");        }
   for(i=1; i<=nlstate;i++)        printf("\n");
       fprintf(ficresvpl," %1d-%1d",i,i);        fprintf(ficlog,"\n");
   fprintf(ficresvpl,"\n");        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
   xp=vector(1,npar);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   dnewm=matrix(1,nlstate,1,npar);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   doldm=matrix(1,nlstate,1,nlstate);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
   hstepm=1*YEARM; /* Every year of age */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #endif
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        free_vector(xit,1,n); 
     gradg=matrix(1,npar,1,nlstate);        free_vector(xits,1,n); 
     gp=vector(1,nlstate);        free_vector(ptt,1,n); 
     gm=vector(1,nlstate);        free_vector(pt,1,n); 
         return; 
     for(theta=1; theta <=npar; theta++){      } /* enough precision */ 
       for(i=1; i<=npar; i++){ /* Computes gradient */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
       }        ptt[j]=2.0*p[j]-pt[j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        xit[j]=p[j]-pt[j]; 
       for(i=1;i<=nlstate;i++)        pt[j]=p[j]; 
         gp[i] = prlim[i][i];      } 
          fptt=(*func)(ptt); /* f_3 */
       for(i=1; i<=npar; i++) /* Computes gradient */  #ifdef POWELLF1F3
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #else
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
       for(i=1;i<=nlstate;i++)  #endif
         gm[i] = prlim[i][i];        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
         /* From x1 (P0) distance of x2 is at h and x3 is 2h */
       for(i=1;i<=nlstate;i++)        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
     } /* End theta */        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
     trgradg =matrix(1,nlstate,1,npar);        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   #ifdef NRCORIGINAL
     for(j=1; j<=nlstate;j++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
       for(theta=1; theta <=npar; theta++)  #else
         trgradg[j][theta]=gradg[theta][j];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
         t= t- del*SQR(fp-fptt);
     for(i=1;i<=nlstate;i++)  #endif
       varpl[i][(int)age] =0.;        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  #ifdef DEBUG
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
     for(i=1;i<=nlstate;i++)        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     fprintf(ficresvpl,"%.0f ",age );        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     for(i=1; i<=nlstate;i++)               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     fprintf(ficresvpl,"\n");        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     free_vector(gp,1,nlstate);  #endif
     free_vector(gm,1,nlstate);  #ifdef POWELLORIGINAL
     free_matrix(gradg,1,npar,1,nlstate);        if (t < 0.0) { /* Then we use it for new direction */
     free_matrix(trgradg,1,nlstate,1,npar);  #else
   } /* End age */        if (directest*t < 0.0) { /* Contradiction between both tests */
           printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
   free_vector(xp,1,npar);          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   free_matrix(doldm,1,nlstate,1,npar);          fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
   free_matrix(dnewm,1,nlstate,1,nlstate);          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
         } 
 }        if (directest < 0.0) { /* Then we use it for new direction */
   #endif
 /************ Variance of one-step probabilities  ******************/  #ifdef DEBUGLINMIN
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          printf("Before linmin in direction P%d-P0\n",n);
 {          for (j=1;j<=n;j++) { 
   int i, j,  i1, k1, l1;            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   int k2, l2, j1,  z1;            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   int k=0,l, cptcode;            if(j % ncovmodel == 0){
   int first=1;              printf("\n");
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;              fprintf(ficlog,"\n");
   double **dnewm,**doldm;            }
   double *xp;          }
   double *gp, *gm;  #endif
   double **gradg, **trgradg;          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
   double **mu;  #ifdef DEBUGLINMIN
   double age,agelim, cov[NCOVMAX];          for (j=1;j<=n;j++) { 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   int theta;            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   char fileresprob[FILENAMELENGTH];            if(j % ncovmodel == 0){
   char fileresprobcov[FILENAMELENGTH];              printf("\n");
   char fileresprobcor[FILENAMELENGTH];              fprintf(ficlog,"\n");
             }
   double ***varpij;          }
   #endif
   strcpy(fileresprob,"prob");          for (j=1;j<=n;j++) { 
   strcat(fileresprob,fileres);            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
     printf("Problem with resultfile: %s\n", fileresprob);          }
   }          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   strcpy(fileresprobcov,"probcov");          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  #ifdef DEBUG
     printf("Problem with resultfile: %s\n", fileresprobcov);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   strcpy(fileresprobcor,"probcor");          for(j=1;j<=n;j++){
   strcat(fileresprobcor,fileres);            printf(" %.12e",xit[j]);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {            fprintf(ficlog," %.12e",xit[j]);
     printf("Problem with resultfile: %s\n", fileresprobcor);          }
   }          printf("\n");
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          fprintf(ficlog,"\n");
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  #endif
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        } /* end of t or directest negative */
    #ifdef POWELLF1F3
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  #else
   fprintf(ficresprob,"# Age");      } /* end if (fptt < fp)  */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  #endif
   fprintf(ficresprobcov,"# Age");    } /* loop iteration */ 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  } 
   fprintf(ficresprobcov,"# Age");  
   /**** Prevalence limit (stable or period prevalence)  ****************/
   
   for(i=1; i<=nlstate;i++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)
     for(j=1; j<=(nlstate+ndeath);j++){  {
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       fprintf(ficresprobcov," p%1d-%1d ",i,j);       matrix by transitions matrix until convergence is reached with precision ftolpl */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
     }      /* Wx is row vector: population in state 1, population in state 2, population dead */
   fprintf(ficresprob,"\n");    /* or prevalence in state 1, prevalence in state 2, 0 */
   fprintf(ficresprobcov,"\n");    /* newm is the matrix after multiplications, its rows are identical at a factor */
   fprintf(ficresprobcor,"\n");    /* Initial matrix pimij */
   xp=vector(1,npar);    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    /*  0,                   0                  , 1} */
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    /*
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);     * and after some iteration: */
   first=1;    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    /*  0,                   0                  , 1} */
     exit(0);    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
   }    /* {0.51571254859325999, 0.4842874514067399, */
   else{    /*  0.51326036147820708, 0.48673963852179264} */
     fprintf(ficgp,"\n# Routine varprob");    /* If we start from prlim again, prlim tends to a constant matrix */
   }  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    int i, ii,j,k;
     printf("Problem with html file: %s\n", optionfilehtm);    double *min, *max, *meandiff, maxmax,sumnew=0.;
     exit(0);    /* double **matprod2(); */ /* test */
   }    double **out, cov[NCOVMAX+1], **pmij();
   else{    double **newm;
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    int ncvloop=0;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    
     min=vector(1,nlstate);
   }    max=vector(1,nlstate);
   cov[1]=1;    meandiff=vector(1,nlstate);
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for (ii=1;ii<=nlstate+ndeath;ii++)
   j1=0;      for (j=1;j<=nlstate+ndeath;j++){
   for(k1=1; k1<=1;k1++){        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i1=1; i1<=ncodemax[k1];i1++){      }
     j1++;    
     cov[1]=1.;
     if  (cptcovn>0) {    
       fprintf(ficresprob, "\n#********** Variable ");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       fprintf(ficresprobcov, "\n#********** Variable ");    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
       fprintf(ficgp, "\n#********** Variable ");    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");      ncvloop++;
       fprintf(ficresprobcor, "\n#********** Variable ");      newm=savm;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      /* Covariates have to be included here again */
       fprintf(ficresprob, "**********\n#");      cov[2]=agefin;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if(nagesqr==1)
       fprintf(ficresprobcov, "**********\n#");        cov[3]= agefin*agefin;;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (k=1; k<=cptcovn;k++) {
       fprintf(ficgp, "**********\n#");        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
       fprintf(ficgp, "**********\n#");        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }
       fprintf(fichtm, "**********\n#");      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     }      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
          for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
       for (age=bage; age<=fage; age ++){      for (k=1; k<=cptcovprod;k++) /* Useless */
         cov[2]=age;        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
         for (k=1; k<=cptcovn;k++) {        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      
         }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         for (k=1; k<=cptcovprod;k++)      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
              /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      
         gp=vector(1,(nlstate)*(nlstate+ndeath));      savm=oldm;
         gm=vector(1,(nlstate)*(nlstate+ndeath));      oldm=newm;
      
         for(theta=1; theta <=npar; theta++){      for(j=1; j<=nlstate; j++){
           for(i=1; i<=npar; i++)        max[j]=0.;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        min[j]=1.;
                }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(i=1;i<=nlstate;i++){
                  sumnew=0;
           k=0;        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           for(i=1; i<= (nlstate); i++){        for(j=1; j<=nlstate; j++){ 
             for(j=1; j<=(nlstate+ndeath);j++){          prlim[i][j]= newm[i][j]/(1-sumnew);
               k=k+1;          max[j]=FMAX(max[j],prlim[i][j]);
               gp[k]=pmmij[i][j];          min[j]=FMIN(min[j],prlim[i][j]);
             }        }
           }      }
            
           for(i=1; i<=npar; i++)      maxmax=0.;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(j=1; j<=nlstate; j++){
            meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        maxmax=FMAX(maxmax,meandiff[j]);
           k=0;        /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
           for(i=1; i<=(nlstate); i++){      } /* j loop */
             for(j=1; j<=(nlstate+ndeath);j++){      *ncvyear= (int)age- (int)agefin;
               k=k+1;      /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
               gm[k]=pmmij[i][j];      if(maxmax < ftolpl){
             }        /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
           }        free_vector(min,1,nlstate);
              free_vector(max,1,nlstate);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        free_vector(meandiff,1,nlstate);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          return prlim;
         }      }
     } /* age loop */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      /* After some age loop it doesn't converge */
           for(theta=1; theta <=npar; theta++)    printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
             trgradg[j][theta]=gradg[theta][j];  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
            /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    free_vector(min,1,nlstate);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    free_vector(max,1,nlstate);
            free_vector(meandiff,1,nlstate);
         pmij(pmmij,cov,ncovmodel,x,nlstate);    
            return prlim; /* should not reach here */
         k=0;  }
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){  /*************** transition probabilities ***************/ 
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           }  {
         }    /* According to parameters values stored in x and the covariate's values stored in cov,
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)       computes the probability to be observed in state j being in state i by appying the
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)       model to the ncovmodel covariates (including constant and age).
             varpij[i][j][(int)age] = doldm[i][j];       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
        and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         /*printf("\n%d ",(int)age);       ncth covariate in the global vector x is given by the formula:
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
      }*/       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
        sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         fprintf(ficresprob,"\n%d ",(int)age);       Outputs ps[i][j] the probability to be observed in j being in j according to
         fprintf(ficresprobcov,"\n%d ",(int)age);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         fprintf(ficresprobcor,"\n%d ",(int)age);    */
     double s1, lnpijopii;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    /*double t34;*/
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    int i,j, nc, ii, jj;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      for(i=1; i<= nlstate; i++){
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        for(j=1; j<i;j++){
         }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         i=0;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
         for (k=1; k<=(nlstate);k++){            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           for (l=1; l<=(nlstate+ndeath);l++){  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             i=i++;          }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             for (j=1; j<=i;j++){        }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        for(j=i+1; j<=nlstate+ndeath;j++){
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             }            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
           }            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
         }/* end of loop for state */  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
       } /* end of loop for age */          }
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       for (k1=1; k1<=(nlstate);k1++){        }
         for (l1=1; l1<=(nlstate+ndeath);l1++){      }
           if(l1==k1) continue;      
           i=(k1-1)*(nlstate+ndeath)+l1;      for(i=1; i<= nlstate; i++){
           for (k2=1; k2<=(nlstate);k2++){        s1=0;
             for (l2=1; l2<=(nlstate+ndeath);l2++){        for(j=1; j<i; j++){
               if(l2==k2) continue;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
               j=(k2-1)*(nlstate+ndeath)+l2;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
               if(j<=i) continue;        }
               for (age=bage; age<=fage; age ++){        for(j=i+1; j<=nlstate+ndeath; j++){
                 if ((int)age %5==0){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                   mu1=mu[i][(int) age]/stepm*YEARM ;        ps[i][i]=1./(s1+1.);
                   mu2=mu[j][(int) age]/stepm*YEARM;        /* Computing other pijs */
                   /* Computing eigen value of matrix of covariance */        for(j=1; j<i; j++)
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));          ps[i][j]= exp(ps[i][j])*ps[i][i];
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));        for(j=i+1; j<=nlstate+ndeath; j++)
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);          ps[i][j]= exp(ps[i][j])*ps[i][i];
                   /* Eigen vectors */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));      } /* end i */
                   v21=sqrt(1.-v11*v11);      
                   v12=-v21;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   v22=v11;        for(jj=1; jj<= nlstate+ndeath; jj++){
                   /*printf(fignu*/          ps[ii][jj]=0;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          ps[ii][ii]=1;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */        }
                   if(first==1){      }
                     first=0;      
                     fprintf(ficgp,"\nset parametric;set nolabel");      
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);      /*   } */
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);      /*   printf("\n "); */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      /* } */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      /* printf("\n ");printf("%lf ",cov[2]);*/
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      /*
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        for(i=1; i<= npar; i++) printf("%f ",x[i]);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);        goto end;*/
                   }else{      return ps;
                     first=0;  }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  /**************** Product of 2 matrices ******************/
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  {
                   }/* if first */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                 } /* age mod 5 */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
               } /* end loop age */    /* in, b, out are matrice of pointers which should have been initialized 
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);       before: only the contents of out is modified. The function returns
               first=1;       a pointer to pointers identical to out */
             } /*l12 */    int i, j, k;
           } /* k12 */    for(i=nrl; i<= nrh; i++)
         } /*l1 */      for(k=ncolol; k<=ncoloh; k++){
       }/* k1 */        out[i][k]=0.;
     } /* loop covariates */        for(j=ncl; j<=nch; j++)
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          out[i][k] +=in[i][j]*b[j][k];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    return out;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }  /************* Higher Matrix Product ***************/
   free_vector(xp,1,npar);  
   fclose(ficresprob);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   fclose(ficresprobcov);  {
   fclose(ficresprobcor);    /* Computes the transition matrix starting at age 'age' over 
   fclose(ficgp);       'nhstepm*hstepm*stepm' months (i.e. until
   fclose(fichtm);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 }       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
 /******************* Printing html file ***********/       for the memory).
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \       Model is determined by parameters x and covariates have to be 
                   int lastpass, int stepm, int weightopt, char model[],\       included manually here. 
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\       */
                   double jprev1, double mprev1,double anprev1, \  
                   double jprev2, double mprev2,double anprev2){    int i, j, d, h, k;
   int jj1, k1, i1, cpt;    double **out, cov[NCOVMAX+1];
   /*char optionfilehtm[FILENAMELENGTH];*/    double **newm;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    double agexact;
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n      for (j=1;j<=nlstate+ndeath;j++){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n        oldm[i][j]=(i==j ? 1.0 : 0.0);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        po[i][j][0]=(i==j ? 1.0 : 0.0);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      }
  - Life expectancies by age and initial health status (estepm=%2d months):    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    for(h=1; h <=nhstepm; h++){
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      for(d=1; d <=hstepm; d++){
         newm=savm;
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n        /* Covariates have to be included here again */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        cov[1]=1.;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n        cov[2]=agexact;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        if(nagesqr==1)
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          cov[3]= agexact*agexact;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n        for (k=1; k<=cptcovn;k++) 
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
           /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
  if(popforecast==1) fprintf(fichtm,"\n        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
         <br>",fileres,fileres,fileres,fileres);          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
  else        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
 fprintf(fichtm," <li>Graphs</li><p>");          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
   
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
  jj1=0;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
  for(k1=1; k1<=m;k1++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
    for(i1=1; i1<=ncodemax[k1];i1++){        savm=oldm;
      jj1++;        oldm=newm;
      if (cptcovn > 0) {      }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      for(i=1; i<=nlstate+ndeath; i++)
        for (cpt=1; cpt<=cptcoveff;cpt++)        for(j=1;j<=nlstate+ndeath;j++) {
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          po[i][j][h]=newm[i][j];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
      }        }
      /* Pij */      /*printf("h=%d ",h);*/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    } /* end h */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      /*     printf("\n H=%d \n",h); */
      /* Quasi-incidences */    return po;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  }
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
        /* Stable prevalence in each health state */  #ifdef NLOPT
        for(cpt=1; cpt<nlstate;cpt++){    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    double fret;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double *xt;
        }    int j;
     for(cpt=1; cpt<=nlstate;cpt++) {    myfunc_data *d2 = (myfunc_data *) pd;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  /* xt = (p1-1); */
 interval) in state (%d): v%s%d%d.png <br>    xt=vector(1,n); 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    printf("Function = %.12lf ",fret);
      }    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    printf("\n");
 health expectancies in states (1) and (2): e%s%d.png<br>   free_vector(xt,1,n);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    return fret;
    }  }
  }  #endif
 fclose(fichtm);  
 }  /*************** log-likelihood *************/
   double func( double *x)
 /******************* Gnuplot file **************/  {
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    double **out;
   int ng;    double sw; /* Sum of weights */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double lli; /* Individual log likelihood */
     printf("Problem with file %s",optionfilegnuplot);    int s1, s2;
   }    double bbh, survp;
     long ipmx;
 #ifdef windows    double agexact;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    /*extern weight */
 #endif    /* We are differentiating ll according to initial status */
 m=pow(2,cptcoveff);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
  /* 1eme*/      printf(" %d\n",s[4][i]);
   for (cpt=1; cpt<= nlstate ; cpt ++) {    */
    for (k1=1; k1<= m ; k1 ++) {  
     ++countcallfunc;
 #ifdef windows  
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    cov[1]=1.;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif    for(k=1; k<=nlstate; k++) ll[k]=0.;
 #ifdef unix  
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    if(mle==1){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 #endif        /* Computes the values of the ncovmodel covariates of the model
            depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 for (i=1; i<= nlstate ; i ++) {           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");           to be observed in j being in i according to the model.
   else fprintf(ficgp," \%%*lf (\%%*lf)");         */
 }        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            cov[2+nagesqr+k]=covar[Tvar[k]][i];
     for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   else fprintf(ficgp," \%%*lf (\%%*lf)");           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 }           has been calculated etc */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(mi=1; mi<= wav[i]-1; mi++){
      for (i=1; i<= nlstate ; i ++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            for (j=1;j<=nlstate+ndeath;j++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }                savm[ii][j]=(ii==j ? 1.0 : 0.0);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            }
 #ifdef unix          for(d=0; d<dh[mi][i]; d++){
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");            newm=savm;
 #endif            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
    }            cov[2]=agexact;
   }            if(nagesqr==1)
   /*2 eme*/              cov[3]= agexact*agexact;
             for (kk=1; kk<=cptcovage;kk++) {
   for (k1=1; k1<= m ; k1 ++) {              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);            }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                             1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1; i<= nlstate+1 ; i ++) {            savm=oldm;
       k=2*i;            oldm=newm;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          } /* end mult */
       for (j=1; j<= nlstate+1 ; j ++) {        
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          /* But now since version 0.9 we anticipate for bias at large stepm.
 }             * If stepm is larger than one month (smallest stepm) and if the exact delay 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");           * (in months) between two waves is not a multiple of stepm, we rounded to 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);           * the nearest (and in case of equal distance, to the lowest) interval but now
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for (j=1; j<= nlstate+1 ; j ++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");           * probability in order to take into account the bias as a fraction of the way
         else fprintf(ficgp," \%%*lf (\%%*lf)");           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 }             * -stepm/2 to stepm/2 .
       fprintf(ficgp,"\" t\"\" w l 0,");           * For stepm=1 the results are the same as for previous versions of Imach.
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);           * For stepm > 1 the results are less biased than in previous versions. 
       for (j=1; j<= nlstate+1 ; j ++) {           */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          s1=s[mw[mi][i]][i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");          s2=s[mw[mi+1][i]][i];
 }            bbh=(double)bh[mi][i]/(double)stepm; 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          /* bias bh is positive if real duration
       else fprintf(ficgp,"\" t\"\" w l 0,");           * is higher than the multiple of stepm and negative otherwise.
     }           */
   }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
            if( s2 > nlstate){ 
   /*3eme*/            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
   for (k1=1; k1<= m ; k1 ++) {               die between last step unit time and current  step unit time, 
     for (cpt=1; cpt<= nlstate ; cpt ++) {               which is also equal to probability to die before dh 
       k=2+nlstate*(2*cpt-2);               minus probability to die before dh-stepm . 
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);               In version up to 0.92 likelihood was computed
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          as if date of death was unknown. Death was treated as any other
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          health state: the date of the interview describes the actual state
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          and not the date of a change in health state. The former idea was
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          to consider that at each interview the state was recorded
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          (healthy, disable or death) and IMaCh was corrected; but when we
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          introduced the exact date of death then we should have modified
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
 */          stepm. It is no more the probability to die between last interview
       for (i=1; i< nlstate ; i ++) {          and month of death but the probability to survive from last
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
       }          Jackson for correcting this bug.  Former versions increased
     }          mortality artificially. The bad side is that we add another loop
   }          which slows down the processing. The difference can be up to 10%
            lower mortality.
   /* CV preval stat */            */
     for (k1=1; k1<= m ; k1 ++) {          /* If, at the beginning of the maximization mostly, the
     for (cpt=1; cpt<nlstate ; cpt ++) {             cumulative probability or probability to be dead is
       k=3;             constant (ie = 1) over time d, the difference is equal to
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);             0.  out[s1][3] = savm[s1][3]: probability, being at state
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);             s1 at precedent wave, to be dead a month before current
              wave is equal to probability, being at state s1 at
       for (i=1; i< nlstate ; i ++)             precedent wave, to be dead at mont of the current
         fprintf(ficgp,"+$%d",k+i+1);             wave. Then the observed probability (that this person died)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);             is null according to current estimated parameter. In fact,
                   it should be very low but not zero otherwise the log go to
       l=3+(nlstate+ndeath)*cpt;             infinity.
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          */
       for (i=1; i< nlstate ; i ++) {  /* #ifdef INFINITYORIGINAL */
         l=3+(nlstate+ndeath)*cpt;  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
         fprintf(ficgp,"+$%d",l+i+1);  /* #else */
       }  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    /*          lli=log(mytinydouble); */
     }  /*        else */
   }    /*          lli=log(out[s1][s2] - savm[s1][s2]); */
    /* #endif */
   /* proba elementaires */              lli=log(out[s1][s2] - savm[s1][s2]);
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){          } else if  (s2==-2) {
       if (k != i) {            for (j=1,survp=0. ; j<=nlstate; j++) 
         for(j=1; j <=ncovmodel; j++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                    /*survp += out[s1][j]; */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            lli= log(survp);
           jk++;          }
           fprintf(ficgp,"\n");          
         }          else if  (s2==-4) { 
       }            for (j=3,survp=0. ; j<=nlstate; j++)  
     }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    }            lli= log(survp); 
           } 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {          else if  (s2==-5) { 
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);            for (j=1,survp=0. ; j<=2; j++)  
        if (ng==2)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");            lli= log(survp); 
        else          } 
          fprintf(ficgp,"\nset title \"Probability\"\n");          
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          else{
        i=1;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
        for(k2=1; k2<=nlstate; k2++) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
          k3=i;          } 
          for(k=1; k<=(nlstate+ndeath); k++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            if (k != k2){          /*if(lli ==000.0)*/
              if(ng==2)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          ipmx +=1;
              else          sw += weight[i];
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              ij=1;          /* if (lli < log(mytinydouble)){ */
              for(j=3; j <=ncovmodel; j++) {          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          /* } */
                  ij++;        } /* end of wave */
                }      } /* end of individual */
                else    }  else if(mle==2){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
              fprintf(ficgp,")/(1");        for(mi=1; mi<= wav[i]-1; mi++){
                        for (ii=1;ii<=nlstate+ndeath;ii++)
              for(k1=1; k1 <=nlstate; k1++){              for (j=1;j<=nlstate+ndeath;j++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                ij=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                for(j=3; j <=ncovmodel; j++){            }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          for(d=0; d<=dh[mi][i]; d++){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            newm=savm;
                    ij++;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  }            cov[2]=agexact;
                  else            if(nagesqr==1)
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              cov[3]= agexact*agexact;
                }            for (kk=1; kk<=cptcovage;kk++) {
                fprintf(ficgp,")");              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
              }            }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              i=i+ncovmodel;            savm=oldm;
            }            oldm=newm;
          }          } /* end mult */
        }        
      }          s1=s[mw[mi][i]][i];
    }          s2=s[mw[mi+1][i]][i];
    fclose(ficgp);          bbh=(double)bh[mi][i]/(double)stepm; 
 }  /* end gnuplot */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
           sw += weight[i];
 /*************** Moving average **************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        } /* end of wave */
       } /* end of individual */
   int i, cpt, cptcod;    }  else if(mle==3){  /* exponential inter-extrapolation */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        for(mi=1; mi<= wav[i]-1; mi++){
           mobaverage[(int)agedeb][i][cptcod]=0.;          for (ii=1;ii<=nlstate+ndeath;ii++)
                for (j=1;j<=nlstate+ndeath;j++){
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=1; i<=nlstate;i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            }
           for (cpt=0;cpt<=4;cpt++){          for(d=0; d<dh[mi][i]; d++){
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            newm=savm;
           }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            cov[2]=agexact;
         }            if(nagesqr==1)
       }              cov[3]= agexact*agexact;
     }            for (kk=1; kk<=cptcovage;kk++) {
                  cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /************** Forecasting ******************/            savm=oldm;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){            oldm=newm;
            } /* end mult */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        
   int *popage;          s1=s[mw[mi][i]][i];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          s2=s[mw[mi+1][i]][i];
   double *popeffectif,*popcount;          bbh=(double)bh[mi][i]/(double)stepm; 
   double ***p3mat;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   char fileresf[FILENAMELENGTH];          ipmx +=1;
           sw += weight[i];
  agelim=AGESUP;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        } /* end of wave */
       } /* end of individual */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   strcpy(fileresf,"f");        for(mi=1; mi<= wav[i]-1; mi++){
   strcat(fileresf,fileres);          for (ii=1;ii<=nlstate+ndeath;ii++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {            for (j=1;j<=nlstate+ndeath;j++){
     printf("Problem with forecast resultfile: %s\n", fileresf);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("Computing forecasting: result on file '%s' \n", fileresf);            }
           for(d=0; d<dh[mi][i]; d++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            newm=savm;
             agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if (mobilav==1) {            cov[2]=agexact;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if(nagesqr==1)
     movingaverage(agedeb, fage, ageminpar, mobaverage);              cov[3]= agexact*agexact;
   }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   stepsize=(int) (stepm+YEARM-1)/YEARM;            }
   if (stepm<=12) stepsize=1;          
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   agelim=AGESUP;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   hstepm=1;            oldm=newm;
   hstepm=hstepm/stepm;          } /* end mult */
   yp1=modf(dateintmean,&yp);        
   anprojmean=yp;          s1=s[mw[mi][i]][i];
   yp2=modf((yp1*12),&yp);          s2=s[mw[mi+1][i]][i];
   mprojmean=yp;          if( s2 > nlstate){ 
   yp1=modf((yp2*30.5),&yp);            lli=log(out[s1][s2] - savm[s1][s2]);
   jprojmean=yp;          }else{
   if(jprojmean==0) jprojmean=1;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   if(mprojmean==0) jprojmean=1;          }
            ipmx +=1;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(cptcov=1;cptcov<=i2;cptcov++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        } /* end of wave */
       k=k+1;      } /* end of individual */
       fprintf(ficresf,"\n#******");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for(j=1;j<=cptcoveff;j++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficresf,"******\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficresf,"# StartingAge FinalAge");            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          for(d=0; d<dh[mi][i]; d++){
         fprintf(ficresf,"\n");            newm=savm;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[2]=agexact;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            if(nagesqr==1)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              cov[3]= agexact*agexact;
           nhstepm = nhstepm/hstepm;            for (kk=1; kk<=cptcovage;kk++) {
                        cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;          
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for (h=0; h<=nhstepm; h++){            savm=oldm;
             if (h==(int) (calagedate+YEARM*cpt)) {            oldm=newm;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          } /* end mult */
             }        
             for(j=1; j<=nlstate+ndeath;j++) {          s1=s[mw[mi][i]][i];
               kk1=0.;kk2=0;          s2=s[mw[mi+1][i]][i];
               for(i=1; i<=nlstate;i++) {                        lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                 if (mobilav==1)          ipmx +=1;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          sw += weight[i];
                 else {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
                 }        } /* end of wave */
                      } /* end of individual */
               }    } /* End of if */
               if (h==(int)(calagedate+12*cpt)){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                 fprintf(ficresf," %.3f", kk1);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                            l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               }    return -l;
             }  }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*************** log-likelihood *************/
         }  double funcone( double *x)
       }  {
     }    /* Same as likeli but slower because of a lot of printf and if */
   }    int i, ii, j, k, mi, d, kk;
            double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **out;
     double lli; /* Individual log likelihood */
   fclose(ficresf);    double llt;
 }    int s1, s2;
 /************** Forecasting ******************/    double bbh, survp;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    double agexact;
      /*extern weight */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    /* We are differentiating ll according to initial status */
   int *popage;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /*for(i=1;i<imx;i++) 
   double *popeffectif,*popcount;      printf(" %d\n",s[4][i]);
   double ***p3mat,***tabpop,***tabpopprev;    */
   char filerespop[FILENAMELENGTH];    cov[1]=1.;
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
        for(mi=1; mi<= wav[i]-1; mi++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for (ii=1;ii<=nlstate+ndeath;ii++)
            for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcpy(filerespop,"pop");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(filerespop,fileres);          }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        for(d=0; d<dh[mi][i]; d++){
     printf("Problem with forecast resultfile: %s\n", filerespop);          newm=savm;
   }          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   printf("Computing forecasting: result on file '%s' \n", filerespop);          cov[2]=agexact;
           if(nagesqr==1)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            cov[3]= agexact*agexact;
           for (kk=1; kk<=cptcovage;kk++) {
   if (mobilav==1) {            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   stepsize=(int) (stepm+YEARM-1)/YEARM;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if (stepm<=12) stepsize=1;          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
            /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   agelim=AGESUP;          savm=oldm;
            oldm=newm;
   hstepm=1;        } /* end mult */
   hstepm=hstepm/stepm;        
          s1=s[mw[mi][i]][i];
   if (popforecast==1) {        s2=s[mw[mi+1][i]][i];
     if((ficpop=fopen(popfile,"r"))==NULL) {        bbh=(double)bh[mi][i]/(double)stepm; 
       printf("Problem with population file : %s\n",popfile);exit(0);        /* bias is positive if real duration
     }         * is higher than the multiple of stepm and negative otherwise.
     popage=ivector(0,AGESUP);         */
     popeffectif=vector(0,AGESUP);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     popcount=vector(0,AGESUP);          lli=log(out[s1][s2] - savm[s1][s2]);
            } else if  (s2==-2) {
     i=1;            for (j=1,survp=0. ; j<=nlstate; j++) 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              lli= log(survp);
     imx=i;        }else if (mle==1){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for(cptcov=1;cptcov<=i2;cptcov++){        } else if(mle==3){  /* exponential inter-extrapolation */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       k=k+1;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       fprintf(ficrespop,"\n#******");          lli=log(out[s1][s2]); /* Original formula */
       for(j=1;j<=cptcoveff;j++) {        } else{  /* mle=0 back to 1 */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }          /*lli=log(out[s1][s2]); */ /* Original formula */
       fprintf(ficrespop,"******\n");        } /* End of if */
       fprintf(ficrespop,"# Age");        ipmx +=1;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        sw += weight[i];
       if (popforecast==1)  fprintf(ficrespop," [Population]");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for (cpt=0; cpt<=0;cpt++) {        if(globpr){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficresilk,"%9ld %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f %8.3f\
           %11.6f %11.6f %11.6f ", \
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                  num[i], agexact, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           nhstepm = nhstepm/hstepm;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                      llt +=ll[k]*gipmx/gsw;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficresilk," %10.6f\n", -llt);
                }
           for (h=0; h<=nhstepm; h++){      } /* end of wave */
             if (h==(int) (calagedate+YEARM*cpt)) {    } /* end of individual */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             for(j=1; j<=nlstate+ndeath;j++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               kk1=0.;kk2=0;    if(globpr==0){ /* First time we count the contributions and weights */
               for(i=1; i<=nlstate;i++) {                    gipmx=ipmx;
                 if (mobilav==1)      gsw=sw;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    }
                 else {    return -l;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  }
                 }  
               }  
               if (h==(int)(calagedate+12*cpt)){  /*************** function likelione ***********/
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
                   /*fprintf(ficrespop," %.3f", kk1);  {
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    /* This routine should help understanding what is done with 
               }       the selection of individuals/waves and
             }       to check the exact contribution to the likelihood.
             for(i=1; i<=nlstate;i++){       Plotting could be done.
               kk1=0.;     */
                 for(j=1; j<=nlstate;j++){    int k;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }    if(*globpri !=0){ /* Just counts and sums, no printings */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      strcpy(fileresilk,"ILK_"); 
             }      strcat(fileresilk,fileresu);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        printf("Problem with resultfile: %s\n", fileresilk);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresilk, "#individual(line's_record) count age s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         }      fprintf(ficresilk, "#num_i age i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
       }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
        for(k=1; k<=nlstate; k++) 
   /******/        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    *fretone=(*funcone)(p);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    if(*globpri !=0){
           nhstepm = nhstepm/hstepm;      fclose(ficresilk);
                if (mle ==0)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
           oldm=oldms;savm=savms;      else if(mle >=1)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
           for (h=0; h<=nhstepm; h++){      fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
             if (h==(int) (calagedate+YEARM*cpt)) {      
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        
             }      for (k=1; k<= nlstate ; k++) {
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
               kk1=0.;kk2=0;  <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
               for(i=1; i<=nlstate;i++) {                    }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
               }  <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
             }  <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
           }      fflush(fichtm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
         }    return;
       }  }
    }  
   }  
    /*********** Maximum Likelihood Estimation ***************/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   if (popforecast==1) {  {
     free_ivector(popage,0,AGESUP);    int i,j, iter=0;
     free_vector(popeffectif,0,AGESUP);    double **xi;
     free_vector(popcount,0,AGESUP);    double fret;
   }    double fretone; /* Only one call to likelihood */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  char filerespow[FILENAMELENGTH];*/
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);  #ifdef NLOPT
 }    int creturn;
     nlopt_opt opt;
 /***********************************************/    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 /**************** Main Program *****************/    double *lb;
 /***********************************************/    double minf; /* the minimum objective value, upon return */
     double * p1; /* Shifted parameters from 0 instead of 1 */
 int main(int argc, char *argv[])    myfunc_data dinst, *d = &dinst;
 {  #endif
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;    xi=matrix(1,npar,1,npar);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
   double fret;        xi[i][j]=(i==j ? 1.0 : 0.0);
   double **xi,tmp,delta;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"POW_"); 
   double dum; /* Dummy variable */    strcat(filerespow,fileres);
   double ***p3mat;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int *indx;      printf("Problem with resultfile: %s\n", filerespow);
   char line[MAXLINE], linepar[MAXLINE];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    }
   int firstobs=1, lastobs=10;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   int sdeb, sfin; /* Status at beginning and end */    for (i=1;i<=nlstate;i++)
   int c,  h , cpt,l;      for(j=1;j<=nlstate+ndeath;j++)
   int ju,jl, mi;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fprintf(ficrespow,"\n");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  #ifdef POWELL
   int mobilav=0,popforecast=0;    powell(p,xi,npar,ftol,&iter,&fret,func);
   int hstepm, nhstepm;  #endif
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
   #ifdef NLOPT
   double bage, fage, age, agelim, agebase;  #ifdef NEWUOA
   double ftolpl=FTOL;    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   double **prlim;  #else
   double *severity;    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   double ***param; /* Matrix of parameters */  #endif
   double  *p;    lb=vector(0,npar-1);
   double **matcov; /* Matrix of covariance */    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
   double ***delti3; /* Scale */    nlopt_set_lower_bounds(opt, lb);
   double *delti; /* Scale */    nlopt_set_initial_step1(opt, 0.1);
   double ***eij, ***vareij;    
   double **varpl; /* Variances of prevalence limits by age */    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   double *epj, vepp;    d->function = func;
   double kk1, kk2;    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    nlopt_set_min_objective(opt, myfunc, d);
      nlopt_set_xtol_rel(opt, ftol);
     if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   char *alph[]={"a","a","b","c","d","e"}, str[4];      printf("nlopt failed! %d\n",creturn); 
     }
     else {
   char z[1]="c", occ;      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
 #include <sys/time.h>      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
 #include <time.h>      iter=1; /* not equal */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    }
      nlopt_destroy(opt);
   /* long total_usecs;  #endif
   struct timeval start_time, end_time;    free_matrix(xi,1,npar,1,npar);
      fclose(ficrespow);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   getcwd(pathcd, size);    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   printf("\n%s",version);  
   if(argc <=1){  }
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);  /**** Computes Hessian and covariance matrix ***/
   }  void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   else{  {
     strcpy(pathtot,argv[1]);    double  **a,**y,*x,pd;
   }    /* double **hess; */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    int i, j;
   /*cygwin_split_path(pathtot,path,optionfile);    int *indx;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    void lubksb(double **a, int npar, int *indx, double b[]) ;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   chdir(path);    double gompertz(double p[]);
   replace(pathc,path);    /* hess=matrix(1,npar,1,npar); */
   
 /*-------- arguments in the command line --------*/    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   strcpy(fileres,"r");    for (i=1;i<=npar;i++){
   strcat(fileres, optionfilefiname);      printf("%d-",i);fflush(stdout);
   strcat(fileres,".txt");    /* Other files have txt extension */      fprintf(ficlog,"%d-",i);fflush(ficlog);
      
   /*---------arguments file --------*/       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      /*  printf(" %f ",p[i]);
     printf("Problem with optionfile %s\n",optionfile);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     goto end;    }
   }    
     for (i=1;i<=npar;i++) {
   strcpy(filereso,"o");      for (j=1;j<=npar;j++)  {
   strcat(filereso,fileres);        if (j>i) { 
   if((ficparo=fopen(filereso,"w"))==NULL) {          printf(".%d-%d",i,j);fflush(stdout);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
   }          hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
           
   /* Reads comments: lines beginning with '#' */          hess[j][i]=hess[i][j];    
   while((c=getc(ficpar))=='#' && c!= EOF){          /*printf(" %lf ",hess[i][j]);*/
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    }
     fputs(line,ficparo);    printf("\n");
   }    fprintf(ficlog,"\n");
   ungetc(c,ficpar);  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    a=matrix(1,npar,1,npar);
 while((c=getc(ficpar))=='#' && c!= EOF){    y=matrix(1,npar,1,npar);
     ungetc(c,ficpar);    x=vector(1,npar);
     fgets(line, MAXLINE, ficpar);    indx=ivector(1,npar);
     puts(line);    for (i=1;i<=npar;i++)
     fputs(line,ficparo);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   }    ludcmp(a,npar,indx,&pd);
   ungetc(c,ficpar);  
      for (j=1;j<=npar;j++) {
          for (i=1;i<=npar;i++) x[i]=0;
   covar=matrix(0,NCOVMAX,1,n);      x[j]=1;
   cptcovn=0;      lubksb(a,npar,indx,x);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
   ncovmodel=2+cptcovn;      }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    }
    
   /* Read guess parameters */    printf("\n#Hessian matrix#\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficlog,"\n#Hessian matrix#\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    for (i=1;i<=npar;i++) { 
     ungetc(c,ficpar);      for (j=1;j<=npar;j++) { 
     fgets(line, MAXLINE, ficpar);        printf("%.6e ",hess[i][j]);
     puts(line);        fprintf(ficlog,"%.6e ",hess[i][j]);
     fputs(line,ficparo);      }
   }      printf("\n");
   ungetc(c,ficpar);      fprintf(ficlog,"\n");
      }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    /* printf("\n#Covariance matrix#\n"); */
     for(j=1; j <=nlstate+ndeath-1; j++){    /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /* for (i=1;i<=npar;i++) {  */
       fprintf(ficparo,"%1d%1d",i1,j1);    /*   for (j=1;j<=npar;j++) {  */
       printf("%1d%1d",i,j);    /*     printf("%.6e ",matcov[i][j]); */
       for(k=1; k<=ncovmodel;k++){    /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
         fscanf(ficpar," %lf",&param[i][j][k]);    /*   } */
         printf(" %lf",param[i][j][k]);    /*   printf("\n"); */
         fprintf(ficparo," %lf",param[i][j][k]);    /*   fprintf(ficlog,"\n"); */
       }    /* } */
       fscanf(ficpar,"\n");  
       printf("\n");    /* Recompute Inverse */
       fprintf(ficparo,"\n");    /* for (i=1;i<=npar;i++) */
     }    /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
      /* ludcmp(a,npar,indx,&pd); */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
     /*  printf("\n#Hessian matrix recomputed#\n"); */
   p=param[1][1];  
      /* for (j=1;j<=npar;j++) { */
   /* Reads comments: lines beginning with '#' */    /*   for (i=1;i<=npar;i++) x[i]=0; */
   while((c=getc(ficpar))=='#' && c!= EOF){    /*   x[j]=1; */
     ungetc(c,ficpar);    /*   lubksb(a,npar,indx,x); */
     fgets(line, MAXLINE, ficpar);    /*   for (i=1;i<=npar;i++){  */
     puts(line);    /*     y[i][j]=x[i]; */
     fputs(line,ficparo);    /*     printf("%.3e ",y[i][j]); */
   }    /*     fprintf(ficlog,"%.3e ",y[i][j]); */
   ungetc(c,ficpar);    /*   } */
     /*   printf("\n"); */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /*   fprintf(ficlog,"\n"); */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    /* } */
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){    /* Verifying the inverse matrix */
       fscanf(ficpar,"%1d%1d",&i1,&j1);  #ifdef DEBUGHESS
       printf("%1d%1d",i,j);    y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){     printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
         fscanf(ficpar,"%le",&delti3[i][j][k]);     fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++){ 
       fscanf(ficpar,"\n");        printf("%.2f ",y[i][j]);
       printf("\n");        fprintf(ficlog,"%.2f ",y[i][j]);
       fprintf(ficparo,"\n");      }
     }      printf("\n");
   }      fprintf(ficlog,"\n");
   delti=delti3[1][1];    }
    #endif
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(a,1,npar,1,npar);
     ungetc(c,ficpar);    free_matrix(y,1,npar,1,npar);
     fgets(line, MAXLINE, ficpar);    free_vector(x,1,npar);
     puts(line);    free_ivector(indx,1,npar);
     fputs(line,ficparo);    /* free_matrix(hess,1,npar,1,npar); */
   }  
   ungetc(c,ficpar);  
    }
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){  /*************** hessian matrix ****************/
     fscanf(ficpar,"%s",&str);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     printf("%s",str);  { /* Around values of x, computes the function func and returns the scales delti and hessian */
     fprintf(ficparo,"%s",str);    int i;
     for(j=1; j <=i; j++){    int l=1, lmax=20;
       fscanf(ficpar," %le",&matcov[i][j]);    double k1,k2, res, fx;
       printf(" %.5le",matcov[i][j]);    double p2[MAXPARM+1]; /* identical to x */
       fprintf(ficparo," %.5le",matcov[i][j]);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     }    int k=0,kmax=10;
     fscanf(ficpar,"\n");    double l1;
     printf("\n");  
     fprintf(ficparo,"\n");    fx=func(x);
   }    for (i=1;i<=npar;i++) p2[i]=x[i];
   for(i=1; i <=npar; i++)    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     for(j=i+1;j<=npar;j++)      l1=pow(10,l);
       matcov[i][j]=matcov[j][i];      delts=delt;
          for(k=1 ; k <kmax; k=k+1){
   printf("\n");        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
     /*-------- Rewriting paramater file ----------*/        p2[theta]=x[theta]-delt;
      strcpy(rfileres,"r");    /* "Rparameterfile */        k2=func(p2)-fx;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
      strcat(rfileres,".");    /* */        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        
     if((ficres =fopen(rfileres,"w"))==NULL) {  #ifdef DEBUGHESSII
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficres,"#%s\n",version);  #endif
            /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     /*-------- data file ----------*/        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     if((fic=fopen(datafile,"r"))==NULL)    {          k=kmax;
       printf("Problem with datafile: %s\n", datafile);goto end;        }
     }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10;
     n= lastobs;        }
     severity = vector(1,maxwav);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     outcome=imatrix(1,maxwav+1,1,n);          delts=delt;
     num=ivector(1,n);        }
     moisnais=vector(1,n);      } /* End loop k */
     annais=vector(1,n);    }
     moisdc=vector(1,n);    delti[theta]=delts;
     andc=vector(1,n);    return res; 
     agedc=vector(1,n);    
     cod=ivector(1,n);  }
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     mint=matrix(1,maxwav,1,n);  {
     anint=matrix(1,maxwav,1,n);    int i;
     s=imatrix(1,maxwav+1,1,n);    int l=1, lmax=20;
     adl=imatrix(1,maxwav+1,1,n);        double k1,k2,k3,k4,res,fx;
     tab=ivector(1,NCOVMAX);    double p2[MAXPARM+1];
     ncodemax=ivector(1,8);    int k, kmax=1;
     double v1, v2, cv12, lc1, lc2;
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {    int firstime=0;
       if ((i >= firstobs) && (i <=lastobs)) {    
            fx=func(x);
         for (j=maxwav;j>=1;j--){    for (k=1; k<=kmax; k=k+10) {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      for (i=1;i<=npar;i++) p2[i]=x[i];
           strcpy(line,stra);      p2[thetai]=x[thetai]+delti[thetai]*k;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      k1=func(p2)-fx;
         }    
              p2[thetai]=x[thetai]+delti[thetai]*k;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      k2=func(p2)-fx;
     
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      p2[thetai]=x[thetai]-delti[thetai]*k;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
       k3=func(p2)-fx;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    
         for (j=ncovcol;j>=1;j--){      p2[thetai]=x[thetai]-delti[thetai]*k;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
         }      k4=func(p2)-fx;
         num[i]=atol(stra);      res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
              if(k1*k2*k3*k4 <0.){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        firstime=1;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        kmax=kmax+10;
       }
         i=i+1;      if(kmax >=10 || firstime ==1){
       }        printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
     }        fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
     /* printf("ii=%d", ij);        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        scanf("%d",i);*/        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   imx=i-1; /* Number of individuals */      }
   #ifdef DEBUGHESSIJ
   /* for (i=1; i<=imx; i++){      v1=hess[thetai][thetai];
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      v2=hess[thetaj][thetaj];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      cv12=res;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      /* Computing eigen value of Hessian matrix */
     }*/      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    /*  for (i=1; i<=imx; i++){      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      if (s[4][i]==9)  s[4][i]=-1;      if ((lc2 <0) || (lc1 <0) ){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
          fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
          printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   /* Calculation of the number of parameter from char model*/        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   Tvar=ivector(1,15);      }
   Tprod=ivector(1,15);  #endif
   Tvaraff=ivector(1,15);    }
   Tvard=imatrix(1,15,1,2);    return res;
   Tage=ivector(1,15);        }
      
   if (strlen(model) >1){      /* Not done yet: Was supposed to fix if not exactly at the maximum */
     j=0, j1=0, k1=1, k2=1;  /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
     j=nbocc(model,'+');  /* { */
     j1=nbocc(model,'*');  /*   int i; */
     cptcovn=j+1;  /*   int l=1, lmax=20; */
     cptcovprod=j1;  /*   double k1,k2,k3,k4,res,fx; */
      /*   double p2[MAXPARM+1]; */
     strcpy(modelsav,model);  /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  /*   int k=0,kmax=10; */
       printf("Error. Non available option model=%s ",model);  /*   double l1; */
       goto end;    
     }  /*   fx=func(x); */
      /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
     for(i=(j+1); i>=1;i--){  /*     l1=pow(10,l); */
       cutv(stra,strb,modelsav,'+');  /*     delts=delt; */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  /*     for(k=1 ; k <kmax; k=k+1){ */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  /*       delt = delti*(l1*k); */
       /*scanf("%d",i);*/  /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
       if (strchr(strb,'*')) {  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
         cutv(strd,strc,strb,'*');  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
         if (strcmp(strc,"age")==0) {  /*       k1=func(p2)-fx; */
           cptcovprod--;        
           cutv(strb,stre,strd,'V');  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
           Tvar[i]=atoi(stre);  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
           cptcovage++;  /*       k2=func(p2)-fx; */
             Tage[cptcovage]=i;        
             /*printf("stre=%s ", stre);*/  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
         }  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
         else if (strcmp(strd,"age")==0) {  /*       k3=func(p2)-fx; */
           cptcovprod--;        
           cutv(strb,stre,strc,'V');  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
           Tvar[i]=atoi(stre);  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
           cptcovage++;  /*       k4=func(p2)-fx; */
           Tage[cptcovage]=i;  /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
         }  /* #ifdef DEBUGHESSIJ */
         else {  /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
           cutv(strb,stre,strc,'V');  /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
           Tvar[i]=ncovcol+k1;  /* #endif */
           cutv(strb,strc,strd,'V');  /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
           Tprod[k1]=i;  /*      k=kmax; */
           Tvard[k1][1]=atoi(strc);  /*       } */
           Tvard[k1][2]=atoi(stre);  /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
           Tvar[cptcovn+k2]=Tvard[k1][1];  /*      k=kmax; l=lmax*10; */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  /*       } */
           for (k=1; k<=lastobs;k++)  /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  /*      delts=delt; */
           k1++;  /*       } */
           k2=k2+2;  /*     } /\* End loop k *\/ */
         }  /*   } */
       }  /*   delti[theta]=delts; */
       else {  /*   return res;  */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  /* } */
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);  /************** Inverse of matrix **************/
       }  void ludcmp(double **a, int n, int *indx, double *d) 
       strcpy(modelsav,stra);    { 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    int i,imax,j,k; 
         scanf("%d",i);*/    double big,dum,sum,temp; 
     }    double *vv; 
 }   
      vv=vector(1,n); 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    *d=1.0; 
   printf("cptcovprod=%d ", cptcovprod);    for (i=1;i<=n;i++) { 
   scanf("%d ",i);*/      big=0.0; 
     fclose(fic);      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
     /*  if(mle==1){*/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     if (weightopt != 1) { /* Maximisation without weights*/      vv[i]=1.0/big; 
       for(i=1;i<=n;i++) weight[i]=1.0;    } 
     }    for (j=1;j<=n;j++) { 
     /*-calculation of age at interview from date of interview and age at death -*/      for (i=1;i<j;i++) { 
     agev=matrix(1,maxwav,1,imx);        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     for (i=1; i<=imx; i++) {        a[i][j]=sum; 
       for(m=2; (m<= maxwav); m++) {      } 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      big=0.0; 
          anint[m][i]=9999;      for (i=j;i<=n;i++) { 
          s[m][i]=-1;        sum=a[i][j]; 
        }        for (k=1;k<j;k++) 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          sum -= a[i][k]*a[k][j]; 
       }        a[i][j]=sum; 
     }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
     for (i=1; i<=imx; i++)  {          imax=i; 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        } 
       for(m=1; (m<= maxwav); m++){      } 
         if(s[m][i] >0){      if (j != imax) { 
           if (s[m][i] >= nlstate+1) {        for (k=1;k<=n;k++) { 
             if(agedc[i]>0)          dum=a[imax][k]; 
               if(moisdc[i]!=99 && andc[i]!=9999)          a[imax][k]=a[j][k]; 
                 agev[m][i]=agedc[i];          a[j][k]=dum; 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        } 
            else {        *d = -(*d); 
               if (andc[i]!=9999){        vv[imax]=vv[j]; 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      } 
               agev[m][i]=-1;      indx[j]=imax; 
               }      if (a[j][j] == 0.0) a[j][j]=TINY; 
             }      if (j != n) { 
           }        dum=1.0/(a[j][j]); 
           else if(s[m][i] !=9){ /* Should no more exist */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      } 
             if(mint[m][i]==99 || anint[m][i]==9999)    } 
               agev[m][i]=1;    free_vector(vv,1,n);  /* Doesn't work */
             else if(agev[m][i] <agemin){  ;
               agemin=agev[m][i];  } 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }  void lubksb(double **a, int n, int *indx, double b[]) 
             else if(agev[m][i] >agemax){  { 
               agemax=agev[m][i];    int i,ii=0,ip,j; 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double sum; 
             }   
             /*agev[m][i]=anint[m][i]-annais[i];*/    for (i=1;i<=n;i++) { 
             /*   agev[m][i] = age[i]+2*m;*/      ip=indx[i]; 
           }      sum=b[ip]; 
           else { /* =9 */      b[ip]=b[i]; 
             agev[m][i]=1;      if (ii) 
             s[m][i]=-1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           }      else if (sum) ii=i; 
         }      b[i]=sum; 
         else /*= 0 Unknown */    } 
           agev[m][i]=1;    for (i=n;i>=1;i--) { 
       }      sum=b[i]; 
          for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     }      b[i]=sum/a[i][i]; 
     for (i=1; i<=imx; i++)  {    } 
       for(m=1; (m<= maxwav); m++){  } 
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: Wrong value in nlstate or ndeath\n");    void pstamp(FILE *fichier)
           goto end;  {
         }    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
       }  }
     }  
   /************ Frequencies ********************/
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
     free_vector(severity,1,maxwav);    
     free_imatrix(outcome,1,maxwav+1,1,n);    int i, m, jk, j1, bool, z1,j;
     free_vector(moisnais,1,n);    int first;
     free_vector(annais,1,n);    double ***freq; /* Frequencies */
     /* free_matrix(mint,1,maxwav,1,n);    double *pp, **prop;
        free_matrix(anint,1,maxwav,1,n);*/    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     free_vector(moisdc,1,n);    char fileresp[FILENAMELENGTH];
     free_vector(andc,1,n);    
     pp=vector(1,nlstate);
        prop=matrix(1,nlstate,iagemin,iagemax+3);
     wav=ivector(1,imx);    strcpy(fileresp,"P_");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    strcat(fileresp,fileresu);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    if((ficresp=fopen(fileresp,"w"))==NULL) {
          printf("Problem with prevalence resultfile: %s\n", fileresp);
     /* Concatenates waves */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      exit(0);
     }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       Tcode=ivector(1,100);    j1=0;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    
       ncodemax[1]=1;    j=cptcoveff;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        
    codtab=imatrix(1,100,1,10);    first=1;
    h=0;  
    m=pow(2,cptcoveff);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
      /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
    for(k=1;k<=cptcoveff; k++){    /*    j1++; */
      for(i=1; i <=(m/pow(2,k));i++){    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
        for(j=1; j <= ncodemax[k]; j++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          scanf("%d", i);*/
            h++;        for (i=-5; i<=nlstate+ndeath; i++)  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            for(m=iagemin; m <= iagemax+3; m++)
          }              freq[i][jk][m]=0;
        }        
      }        for (i=1; i<=nlstate; i++)  
    }          for(m=iagemin; m <= iagemax+3; m++)
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);            prop[i][m]=0;
       codtab[1][2]=1;codtab[2][2]=2; */        
    /* for(i=1; i <=m ;i++){        dateintsum=0;
       for(k=1; k <=cptcovn; k++){        k2cpt=0;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        for (i=1; i<=imx; i++) {
       }          bool=1;
       printf("\n");          if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
       }            for (z1=1; z1<=cptcoveff; z1++)       
       scanf("%d",i);*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
                      /* Tests if the value of each of the covariates of i is equal to filter j1 */
    /* Calculates basic frequencies. Computes observed prevalence at single age                bool=0;
        and prints on file fileres'p'. */                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
                   bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
                      j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
                    /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              } 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          } /* cptcovn > 0 */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if (bool==1){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            for(m=firstpass; m<=lastpass; m++){
                    k2=anint[m][i]+(mint[m][i]/12.);
     /* For Powell, parameters are in a vector p[] starting at p[1]              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     if(mle==1){                if (m<lastpass) {
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                    }
     /*--------- results files --------------*/                
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3)) && (anint[m][i]!=9999) && (mint[m][i]!=99)) {
                    dateintsum=dateintsum+k2;
                   k2cpt++;
    jk=1;                  /* printf("i=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",i, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                /*}*/
    for(i=1,jk=1; i <=nlstate; i++){            } /* end m */
      for(k=1; k <=(nlstate+ndeath); k++){          } /* end bool */
        if (k != i)        } /* end i = 1 to imx */
          {         
            printf("%d%d ",i,k);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
            fprintf(ficres,"%1d%1d ",i,k);        pstamp(ficresp);
            for(j=1; j <=ncovmodel; j++){        if  (cptcovn>0) {
              printf("%f ",p[jk]);          fprintf(ficresp, "\n#********** Variable "); 
              fprintf(ficres,"%f ",p[jk]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
              jk++;          fprintf(ficresp, "**********\n#");
            }          fprintf(ficlog, "\n#********** Variable "); 
            printf("\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
            fprintf(ficres,"\n");          fprintf(ficlog, "**********\n#");
          }        }
      }        for(i=1; i<=nlstate;i++) 
    }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
  if(mle==1){        fprintf(ficresp, "\n");
     /* Computing hessian and covariance matrix */        
     ftolhess=ftol; /* Usually correct */        for(i=iagemin; i <= iagemax+3; i++){
     hesscov(matcov, p, npar, delti, ftolhess, func);          if(i==iagemax+3){
  }            fprintf(ficlog,"Total");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          }else{
     printf("# Scales (for hessian or gradient estimation)\n");            if(first==1){
      for(i=1,jk=1; i <=nlstate; i++){              first=0;
       for(j=1; j <=nlstate+ndeath; j++){              printf("See log file for details...\n");
         if (j!=i) {            }
           fprintf(ficres,"%1d%1d",i,j);            fprintf(ficlog,"Age %d", i);
           printf("%1d%1d",i,j);          }
           for(k=1; k<=ncovmodel;k++){          for(jk=1; jk <=nlstate ; jk++){
             printf(" %.5e",delti[jk]);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             fprintf(ficres," %.5e",delti[jk]);              pp[jk] += freq[jk][m][i]; 
             jk++;          }
           }          for(jk=1; jk <=nlstate ; jk++){
           printf("\n");            for(m=-1, pos=0; m <=0 ; m++)
           fprintf(ficres,"\n");              pos += freq[jk][m][i];
         }            if(pp[jk]>=1.e-10){
       }              if(first==1){
      }                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                  }
     k=1;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            }else{
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              if(first==1)
     for(i=1;i<=npar;i++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       /*  if (k>nlstate) k=1;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       i1=(i-1)/(ncovmodel*nlstate)+1;            }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          }
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);          for(jk=1; jk <=nlstate ; jk++){
       printf("%3d",i);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       for(j=1; j<=i;j++){              pp[jk] += freq[jk][m][i];
         fprintf(ficres," %.5e",matcov[i][j]);          }       
         printf(" %.5e",matcov[i][j]);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       }            pos += pp[jk];
       fprintf(ficres,"\n");            posprop += prop[jk][i];
       printf("\n");          }
       k++;          for(jk=1; jk <=nlstate ; jk++){
     }            if(pos>=1.e-5){
                  if(first==1)
     while((c=getc(ficpar))=='#' && c!= EOF){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       ungetc(c,ficpar);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fgets(line, MAXLINE, ficpar);            }else{
       puts(line);              if(first==1)
       fputs(line,ficparo);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     ungetc(c,ficpar);            }
     estepm=0;            if( i <= iagemax){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);              if(pos>=1.e-5){
     if (estepm==0 || estepm < stepm) estepm=stepm;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     if (fage <= 2) {                /*probs[i][jk][j1]= pp[jk]/pos;*/
       bage = ageminpar;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       fage = agemaxpar;              }
     }              else
                    fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          
            for(jk=-1; jk <=nlstate+ndeath; jk++)
     while((c=getc(ficpar))=='#' && c!= EOF){            for(m=-1; m <=nlstate+ndeath; m++)
     ungetc(c,ficpar);              if(freq[jk][m][i] !=0 ) {
     fgets(line, MAXLINE, ficpar);              if(first==1)
     puts(line);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     fputs(line,ficparo);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   }              }
   ungetc(c,ficpar);          if(i <= iagemax)
              fprintf(ficresp,"\n");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          if(first==1)
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            printf("Others in log...\n");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficlog,"\n");
              } /* end loop i */
   while((c=getc(ficpar))=='#' && c!= EOF){        /*}*/
     ungetc(c,ficpar);    } /* end j1 */
     fgets(line, MAXLINE, ficpar);    dateintmean=dateintsum/k2cpt; 
     puts(line);   
     fputs(line,ficparo);    fclose(ficresp);
   }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   ungetc(c,ficpar);    free_vector(pp,1,nlstate);
      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
   /************ Prevalence ********************/
   fscanf(ficpar,"pop_based=%d\n",&popbased);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   fprintf(ficparo,"pop_based=%d\n",popbased);    {  
   fprintf(ficres,"pop_based=%d\n",popbased);      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
   while((c=getc(ficpar))=='#' && c!= EOF){       We still use firstpass and lastpass as another selection.
     ungetc(c,ficpar);    */
     fgets(line, MAXLINE, ficpar);   
     puts(line);    int i, m, jk, j1, bool, z1,j;
     fputs(line,ficparo);  
   }    double **prop;
   ungetc(c,ficpar);    double posprop; 
     double  y2; /* in fractional years */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    int iagemin, iagemax;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    int first; /** to stop verbosity which is redirected to log file */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
     iagemin= (int) agemin;
     iagemax= (int) agemax;
 while((c=getc(ficpar))=='#' && c!= EOF){    /*pp=vector(1,nlstate);*/
     ungetc(c,ficpar);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     fgets(line, MAXLINE, ficpar);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     puts(line);    j1=0;
     fputs(line,ficparo);    
   }    /*j=cptcoveff;*/
   ungetc(c,ficpar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    first=1;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      /*for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;*/
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        
         for (i=1; i<=nlstate; i++)  
 /*------------ gnuplot -------------*/          for(m=iagemin; m <= iagemax+3; m++)
   strcpy(optionfilegnuplot,optionfilefiname);            prop[i][m]=0.0;
   strcat(optionfilegnuplot,".gp");       
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        for (i=1; i<=imx; i++) { /* Each individual */
     printf("Problem with file %s",optionfilegnuplot);          bool=1;
   }          if  (cptcovn>0) {
   fclose(ficgp);            for (z1=1; z1<=cptcoveff; z1++) 
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
 /*--------- index.htm --------*/                bool=0;
           } 
   strcpy(optionfilehtm,optionfile);          if (bool==1) { 
   strcat(optionfilehtm,".htm");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     printf("Problem with %s \n",optionfilehtm), exit(0);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 \n                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 Total number of observations=%d <br>\n                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                  prop[s[m][i]][iagemax+3] += weight[i]; 
 <hr  size=\"2\" color=\"#EC5E5E\">                } 
  <ul><li>Parameter files<br>\n              }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            } /* end selection of waves */
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);          }
   fclose(fichtm);        }
         for(i=iagemin; i <= iagemax+3; i++){  
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
              posprop += prop[jk][i]; 
 /*------------ free_vector  -------------*/          } 
  chdir(path);          
            for(jk=1; jk <=nlstate ; jk++){     
  free_ivector(wav,1,imx);            if( i <=  iagemax){ 
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              if(posprop>=1.e-5){ 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                  probs[i][jk][j1]= prop[jk][i]/posprop;
  free_ivector(num,1,n);              } else{
  free_vector(agedc,1,n);                if(first==1){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                  first=0;
  fclose(ficparo);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
  fclose(ficres);                }
               }
             } 
   /*--------------- Prevalence limit --------------*/          }/* end jk */ 
          }/* end i */ 
   strcpy(filerespl,"pl");      /*} *//* end i1 */
   strcat(filerespl,fileres);    } /* end j1 */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   }    /*free_vector(pp,1,nlstate);*/
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   fprintf(ficrespl,"#Prevalence limit\n");  }  /* End of prevalence */
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  /************* Waves Concatenation ***************/
   fprintf(ficrespl,"\n");  
    void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   prlim=matrix(1,nlstate,1,nlstate);  {
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       Death is a valid wave (if date is known).
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       and mw[mi+1][i]. dh depends on stepm.
   k=0;       */
   agebase=ageminpar;  
   agelim=agemaxpar;    int i, mi, m;
   ftolpl=1.e-10;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   i1=cptcoveff;       double sum=0., jmean=0.;*/
   if (cptcovn < 1){i1=1;}    int first;
     int j, k=0,jk, ju, jl;
   for(cptcov=1;cptcov<=i1;cptcov++){    double sum=0.;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    first=0;
         k=k+1;    jmin=100000;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    jmax=-1;
         fprintf(ficrespl,"\n#******");    jmean=0.;
         for(j=1;j<=cptcoveff;j++)    for(i=1; i<=imx; i++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      mi=0;
         fprintf(ficrespl,"******\n");      m=firstpass;
              while(s[m][i] <= nlstate){
         for (age=agebase; age<=agelim; age++){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          mw[++mi][i]=m;
           fprintf(ficrespl,"%.0f",age );        if(m >=lastpass)
           for(i=1; i<=nlstate;i++)          break;
           fprintf(ficrespl," %.5f", prlim[i][i]);        else
           fprintf(ficrespl,"\n");          m++;
         }      }/* end while */
       }      if (s[m][i] > nlstate){
     }        mi++;     /* Death is another wave */
   fclose(ficrespl);        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   /*------------- h Pij x at various ages ------------*/        mw[mi][i]=m;
        }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      wav[i]=mi;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      if(mi==0){
   }        nbwarn++;
   printf("Computing pij: result on file '%s' \n", filerespij);        if(first==0){
            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          first=1;
   /*if (stepm<=24) stepsize=2;*/        }
         if(first==1){
   agelim=AGESUP;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   hstepm=stepsize*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      } /* end mi==0 */
      } /* End individuals */
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    for(i=1; i<=imx; i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(mi=1; mi<wav[i];mi++){
       k=k+1;        if (stepm <=0)
         fprintf(ficrespij,"\n#****** ");          dh[mi][i]=1;
         for(j=1;j<=cptcoveff;j++)        else{
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         fprintf(ficrespij,"******\n");            if (agedc[i] < 2*AGESUP) {
                      j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */              if(j==0) j=1;  /* Survives at least one month after exam */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              else if(j<0){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                nberr++;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           oldm=oldms;savm=savms;                j=1; /* Temporary Dangerous patch */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           fprintf(ficrespij,"# Age");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           for(i=1; i<=nlstate;i++)                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             for(j=1; j<=nlstate+ndeath;j++)              }
               fprintf(ficrespij," %1d-%1d",i,j);              k=k+1;
           fprintf(ficrespij,"\n");              if (j >= jmax){
            for (h=0; h<=nhstepm; h++){                jmax=j;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                ijmax=i;
             for(i=1; i<=nlstate;i++)              }
               for(j=1; j<=nlstate+ndeath;j++)              if (j <= jmin){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                jmin=j;
             fprintf(ficrespij,"\n");                ijmin=i;
              }              }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              sum=sum+j;
           fprintf(ficrespij,"\n");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     }            }
   }          }
           else{
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   fclose(ficrespij);  
             k=k+1;
             if (j >= jmax) {
   /*---------- Forecasting ------------------*/              jmax=j;
   if((stepm == 1) && (strcmp(model,".")==0)){              ijmax=i;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);            }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            else if (j <= jmin){
   }              jmin=j;
   else{              ijmin=i;
     erreur=108;            }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              if(j<0){
               nberr++;
   /*---------- Health expectancies and variances ------------*/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   strcpy(filerest,"t");            }
   strcat(filerest,fileres);            sum=sum+j;
   if((ficrest=fopen(filerest,"w"))==NULL) {          }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          jk= j/stepm;
   }          jl= j -jk*stepm;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
   strcpy(filerese,"e");              dh[mi][i]=jk;
   strcat(filerese,fileres);              bh[mi][i]=0;
   if((ficreseij=fopen(filerese,"w"))==NULL) {            }else{ /* We want a negative bias in order to only have interpolation ie
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                    * to avoid the price of an extra matrix product in likelihood */
   }              dh[mi][i]=jk+1;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);              bh[mi][i]=ju;
             }
  strcpy(fileresv,"v");          }else{
   strcat(fileresv,fileres);            if(jl <= -ju){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {              dh[mi][i]=jk;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);              bh[mi][i]=jl;       /* bias is positive if real duration
   }                                   * is higher than the multiple of stepm and negative otherwise.
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                                   */
   calagedate=-1;            }
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            else{
               dh[mi][i]=jk+1;
   k=0;              bh[mi][i]=ju;
   for(cptcov=1;cptcov<=i1;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            if(dh[mi][i]==0){
       k=k+1;              dh[mi][i]=1; /* At least one step */
       fprintf(ficrest,"\n#****** ");              bh[mi][i]=ju; /* At least one step */
       for(j=1;j<=cptcoveff;j++)              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       fprintf(ficrest,"******\n");          } /* end if mle */
         }
       fprintf(ficreseij,"\n#****** ");      } /* end wave */
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    jmean=sum/k;
       fprintf(ficreseij,"******\n");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       fprintf(ficresvij,"\n#****** ");   }
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*********** Tricode ****************************/
       fprintf(ficresvij,"******\n");  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
       oldm=oldms;savm=savms;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);       * Boring subroutine which should only output nbcode[Tvar[j]][k]
       * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     * nbcode[Tvar[j]][1]= 
       oldm=oldms;savm=savms;    */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  
        int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
      int cptcode=0; /* Modality max of covariates j */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    int modmincovj=0; /* Modality min of covariates j */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");  
     cptcoveff=0; 
       epj=vector(1,nlstate+1);   
       for(age=bage; age <=fage ;age++){    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {    /* Loop on covariates without age and products */
           for(i=1; i<=nlstate;i++)    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
             prlim[i][i]=probs[(int)age][i][k];      for (k=-1; k < maxncov; k++) Ndum[k]=0;
         }      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
                                         modality of this covariate Vj*/ 
         fprintf(ficrest," %4.0f",age);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                                      * If product of Vn*Vm, still boolean *:
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
           }                                        modality of the nth covariate of individual i. */
           epj[nlstate+1] +=epj[j];        if (ij > modmaxcovj)
         }          modmaxcovj=ij; 
         else if (ij < modmincovj) 
         for(i=1, vepp=0.;i <=nlstate;i++)          modmincovj=ij; 
           for(j=1;j <=nlstate;j++)        if ((ij < -1) && (ij > NCOVMAX)){
             vepp += vareij[i][j][(int)age];          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          exit(1);
         for(j=1;j <=nlstate;j++){        }else
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         }        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
         fprintf(ficrest,"\n");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       }        /* getting the maximum value of the modality of the covariate
     }           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   }           female is 1, then modmaxcovj=1.*/
 free_matrix(mint,1,maxwav,1,n);      } /* end for loop on individuals i */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     free_vector(weight,1,n);      fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   fclose(ficreseij);      cptcode=modmaxcovj;
   fclose(ficresvij);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   fclose(ficrest);     /*for (i=0; i<=cptcode; i++) {*/
   fclose(ficpar);      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
   free_vector(epj,1,nlstate+1);        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
          fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
   /*------- Variance limit prevalence------*/          if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
           if( k != -1){
   strcpy(fileresvpl,"vpl");            ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
   strcat(fileresvpl,fileres);                               covariate for which somebody answered excluding 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                               undefined. Usually 2: 0 and 1. */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          }
     exit(0);          ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
   }                               covariate for which somebody answered including 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                               undefined. Usually 3: -1, 0 and 1. */
         }
   k=0;        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   for(cptcov=1;cptcov<=i1;cptcov++){           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } /* Ndum[-1] number of undefined modalities */
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       for(j=1;j<=cptcoveff;j++)      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
       fprintf(ficresvpl,"******\n");         modmincovj=3; modmaxcovj = 7;
               There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
       oldm=oldms;savm=savms;         defining two dummy variables: variables V1_1 and V1_2.
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);         nbcode[Tvar[j]][ij]=k;
     }         nbcode[Tvar[j]][1]=0;
  }         nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
   fclose(ficresvpl);         To be continued (not working yet).
       */
   /*---------- End : free ----------------*/      ij=0; /* ij is similar to i but can jump over null modalities */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
            if (Ndum[i] == 0) { /* If nobody responded to this modality k */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            break;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          }
            ij++;
            nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          cptcode = ij; /* New max modality for covar j */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      } /* end of loop on modality i=-1 to 1 or more */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
        /*  /\*recode from 0 *\/ */
   free_matrix(matcov,1,npar,1,npar);      /*                               k is a modality. If we have model=V1+V1*sex  */
   free_vector(delti,1,npar);      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   free_matrix(agev,1,maxwav,1,imx);      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      /*  } */
       /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
   fprintf(fichtm,"\n</body>");      /*  if (ij > ncodemax[j]) { */
   fclose(fichtm);      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
   fclose(ficgp);      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
        /*    break; */
       /*  } */
   if(erreur >0)      /*   }  /\* end of loop on modality k *\/ */
     printf("End of Imach with error or warning %d\n",erreur);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   else   printf("End of Imach\n");    
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
      
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
   /*printf("Total time was %d uSec.\n", total_usecs);*/     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   /*------ End -----------*/     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; /* Might be supersed V1 + V1*age */
    } 
  end:  
 #ifdef windows   ij=0;
   /* chdir(pathcd);*/   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 #endif     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
  /*system("wgnuplot graph.plt");*/     if((Ndum[i]!=0) && (i<=ncovcol)){
  /*system("../gp37mgw/wgnuplot graph.plt");*/       ij++;
  /*system("cd ../gp37mgw");*/       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/       Tvaraff[ij]=i; /*For printing (unclear) */
  strcpy(plotcmd,GNUPLOTPROGRAM);     }else{
  strcat(plotcmd," ");         /* Tvaraff[ij]=0; */
  strcat(plotcmd,optionfilegnuplot);     }
  system(plotcmd);   }
    /* ij--; */
 #ifdef windows   cptcoveff=ij; /*Number of total covariates*/
   while (z[0] != 'q') {  
     /* chdir(path); */  }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");  /*********** Health Expectancies ****************/
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     else if (z[0] == 'q') exit(0);  
   }  {
 #endif    /* Health expectancies, no variances */
 }    int i, j, nhstepm, hstepm, h, nstepm;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3mat;
     double eip;
   
     pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-POPULBASED-MOBILAV_");
       else strcpy(digitp,"-POPULBASED-NOMOBIL_");
     }
     else 
       strcpy(digitp,"-STABLBASED_");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"PRMORPREV-"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileresu);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     
     fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficgp,"\nunset title \n");
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelim. 
        Look at function hpijx to understand why because of memory size limitations, 
        we decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* Next for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
   
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
     fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[])
   {
     /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mgm, **mgp;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       mgp=matrix(1,npar,1,nlstate);
       mgm=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
           gp[i] = prlim[i][i];
           mgp[theta][i] = prlim[i][i];
         }
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
           gm[i] = prlim[i][i];
           mgm[theta][i] = prlim[i][i];
         }
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\nmgm mgp %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf(" %d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\n gradg %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf("%d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf("%d %lf ",theta,gradg[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       if((int)age==79 ||(int)age== 80  ||(int)age== 81){
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }else{
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(mgm,1,npar,1,nlstate);
       free_matrix(mgp,1,npar,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"PROB_"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"PROBCOV_"); 
     strcat(fileresprobcov,fileresu);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"PROBCOR_"); 
     strcat(fileresprobcor,fileresu);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
             /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter svg size 640, 480");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int prevfcast, int estepm ,          \
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      if(prevfcast==1){
        fprintf(fichtm,"\
    - Prevalence projections by age and states:                            \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
      }
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
   <img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
        /* Pij */
        fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
   <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\
    incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
   divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
    Or probability to survive in various states (1 to %d) being in state %d at different ages.\
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
        }
        /* Period (stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
        }
       if(prevfcast==1){
         /* Projection of prevalence up to period (stable) prevalence in each health state */
         for(cpt=1; cpt<=nlstate;cpt++){
           fprintf(fichtm,"<br>\n- Projection of prevalece up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1);
         }
       }
   
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \
   <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d%d.svg\"> %s_%d-%d.svg <br>\
   <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences:  <a href=\"%s_%d.svg\">%s_%d.svg<br>\
   <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
       void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int lv=0, vlv=0, kl=0;
     int ng=0;
     int vpopbased;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     /* Contribution to likelihood */
     /* Plot the probability implied in the likelihood */
       fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
       fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
       /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
       fprintf(ficgp,"\nset ter pngcairo size 640, 480");
   /* nice for mle=4 plot by number of matrix products.
      replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
       /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
       fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$12):5 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
       fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$12):4 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
         fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
         fprintf(ficgp,"  u  2:($4 == %d && $5==%d ? $9 : 1/0):($11/4.):5 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
         for (j=2; j<= nlstate+ndeath ; j ++) {
           fprintf(ficgp,",\\\n \"\" u  2:($4 == %d && $5==%d ? $9 : 1/0):($11/4.):5 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
         }
         fprintf(ficgp,";\nset out; unset ylabel;\n"); 
       }
       /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */              
       /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
       /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
       fprintf(ficgp,"\nset out;unset log\n");
       /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */
       for (k1=1; k1<= m ; k1 ++) { /* For each combination of covariate */
         /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files ");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
        fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
        fprintf(ficgp,"\nset out \n");
       } /* k1 */
     } /* cpt */
     /*2 eme*/
     for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
       fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
         if(vpopbased==0)
           fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
         else
           fprintf(ficgp,"\nreplot ");
         for (i=1; i<= nlstate+1 ; i ++) {
           k=2*i;
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
           else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           fprintf(ficgp,"\" t\"\" w l lt 0,");
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
           else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
         } /* state */
       } /* vpopbased */
       fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
     } /* k1 */
   
   
     /*3eme*/
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files:  cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
         fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate+ndeath ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           if(j==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(cpt-1) +j;
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
           /* for (i=2; i<= nlstate+ndeath ; i ++) */
           /*   fprintf(ficgp,"+$%d",k+l+i-1); */
           fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
         } /* nlstate */
         fprintf(ficgp,", '' ");
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           l=(nlstate+ndeath)*(cpt-1) +j;
           if(j < nlstate)
             fprintf(ficgp,"$%d +",k+l);
           else
             fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
         }
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3; /* Offset */
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     if(prevfcast==1){
     /* Projection from cross-sectional to stable (period) for each covariate */
   
       for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[lv]][lv];
             fprintf(ficgp," V%d=%d ",k,vlv);
           }
           fprintf(ficgp,"\n#\n");
           
           fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
           for (i=1; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==1){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               fprintf(ficgp," u 2:("); /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               if(i==nlstate+1)
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p.%d' with line ", \
                           2+(cpt-1)*(nlstate+1)+1+(i-1),  2+1+(i-1)+(nlstate+1)*nlstate,cpt );
               else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \
                         2+(cpt-1)*(nlstate+1)+1+(i-1),  2+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
             }else{
               fprintf(ficgp,"u 6:(("); /* Age is in 6 */
               /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
               /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
               kl=0;
               for (k=1; k<=cptcoveff; k++){    /* For each covariate  */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[lv]][lv];
                 kl++;
                 /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                 /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                 /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                 /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                 if(k==cptcoveff)
                   if(i==nlstate+1)
                     fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \
                             6+(cpt-1)*(nlstate+1)+1+(i-1),  6+1+(i-1)+(nlstate+1)*nlstate,cpt );
                   else
                     fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \
                             6+(cpt-1)*(nlstate+1)+1+(i-1),  6+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                 else{
                   fprintf(ficgp,"$%d==%d && $%d==%d && ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv]);
                   kl++;
                 }
               } /* end covariate */
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevfcast */
   
   
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
          fprintf(ficgp,"\nset ter svg size 640, 480 ");
          if (ng==1){
            fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
            fprintf(ficgp,"\nunset log y");
          }else if (ng==2){
            fprintf(ficgp,"\nset ylabel \"Probability\"\n");
            fprintf(ficgp,"\nset log y");
          }else if (ng==3){
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
            fprintf(ficgp,"\nset log y");
          }else
            fprintf(ficgp,"\nunset title ");
          fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                switch( ng) {
                case 1:
                  if(nagesqr==0)
                    fprintf(ficgp," p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 2: /* ng=2 */
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                      fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 3:
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                  break;
                }
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                  if(ij <=cptcovage) { /* Bug valgrind */
                    if((j-2)==Tage[ij]) { /* Bug valgrind */
                      fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                      /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                      ij++;
                    }
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                }
                if(ng != 1){
                  fprintf(ficgp,")/(1");
                
                  for(k1=1; k1 <=nlstate; k1++){ 
                    if(nagesqr==0)
                      fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                    else /* nagesqr =1 */
                      fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                    
                    ij=1;
                    for(j=3; j <=ncovmodel-nagesqr; j++){
                      if(ij <=cptcovage) { /* Bug valgrind */
                        if((j-2)==Tage[ij]) { /* Bug valgrind */
                          fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                          /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                          ij++;
                        }
                      }
                      else
                        fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                    }
                    fprintf(ficgp,")");
                  }
                  fprintf(ficgp,")");
                  if(ng ==2)
                    fprintf(ficgp," t \"p%d%d\" ", k2,k);
                  else /* ng= 3 */
                    fprintf(ficgp," t \"i%d%d\" ", k2,k);
                }else{ /* end ng <> 1 */
                  fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
                }
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
          fprintf(ficgp,"\n set out\n");
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresf," yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"POP_"); 
     strcat(filerespop,fileresu);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
    int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"#******");
           printf("#******");
           fprintf(ficlog,"#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
           fprintf(ficrespl,"Total Years_to_converge\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             tot=0.;
             for(i=1; i<=nlstate;i++){
               tot +=  prlim[i][i];
               fprintf(ficrespl," %.5f", prlim[i][i]);
             }
             fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyear=0; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
       }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         printf("but line=%s\n",line);
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
      * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
      * (currently 0 or 1) in the data.
      * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
      * corresponding modality (h,j).
      */
   
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to m=2**k
              * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
              * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates?
        /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
        * and the value of each covariate?
        * V1=1, V2=1, V3=2, V4=1 ?
        * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
        * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
        * In order to get the real value in the data, we use nbcode
        * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
        * We are keeping this crazy system in order to be able (in the future?) 
        * to have more than 2 values (0 or 1) for a covariate.
        * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
        * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
        *              bbbbbbbb
        *              76543210     
        *   h-1        00000101 (6-1=5)
        *(h-1)>>(k-1)= 00000001 >> (2-1) = 1 right shift
        *           &
        *     1        00000001 (1)
        *              00000001        = 1 & ((h-1) >> (k-1))
        *          +1= 00000010 =2 
        *
        * h=14, k=3 => h'=h-1=13, k'=k-1=2
        *          h'      1101 =2^3+2^2+0x2^1+2^0
        *    >>k'            11
        *          &   00000001
        *            = 00000001
        *      +1    = 00000010=2    =  codtabm(14,3)   
        * Reverse h=6 and m=16?
        * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
        * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
        * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
        * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
        * V3=decodtabm(14,3,2**4)=2
        *          h'=13   1101 =2^3+2^2+0x2^1+2^0
        *(h-1) >> (j-1)    0011 =13 >> 2
        *          &1 000000001
        *           = 000000001
        *         +1= 000000010 =2
        *                  2211
        *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
        *                  V3=2
        */
   
     /* /\* for(h=1; h <=100 ;h++){  *\/ */
     /*   /\* printf("h=%2d ", h); *\/ */
     /*    /\* for(k=1; k <=10; k++){ *\/ */
     /*      /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */
     /*    /\*   codtab[h][k]=codtabm(h,k); *\/ */
     /*    /\* } *\/ */
     /*    /\* printf("\n"); *\/ */
     /* } */
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
           fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard  */
     else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
   
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
         while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
   
       /* while((c=getc(ficpar))=='#' && c!= EOF){ */
       /*   ungetc(c,ficpar); */
       /*   fgets(line, MAXLINE, ficpar); */
       /*   fputs(line,stdout); */
       /*   fputs(line,ficparo); */
       /* } */
       /* ungetc(c,ficpar); */
       
       estepm=0;
       if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
   
       if (num_filled != 6) {
         printf("Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n");
         printf("but line=%s\n",line);
         goto end;
       }
       printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
   
       /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, pathc,p);
       
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,estepm, \
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(stdout);
       fprintf(ficlog,"      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrest,"******\n");
         
         fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         printf(" cvevsij %d, ",k);
         fprintf(ficlog, " cvevsij %d, ",k);
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);
         printf(" end cvevsij \n ");
         fprintf(ficlog, " end cvevsij \n ");
         
         /*
          */
         /* goto endfree; */
         
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         pstamp(ficrest);
         
         
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           oldm=oldms;savm=savms; /* ZZ Segmentation fault */
           cptcod= 0; /* To be deleted */
           printf("varevsij %d \n",vpopbased);
           fprintf(ficlog, "varevsij %d \n",vpopbased);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           if(vpopbased==1)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
           else
             fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
           fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
           /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
           epj=vector(1,nlstate+1);
           printf("Computing age specific period (stable) prevalences in each health state \n");
           fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */
             if (vpopbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
             
             fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
             /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
             /* printf(" age %4.0f ",age); */
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
               }
               epj[nlstate+1] +=epj[j];
             }
             /* printf(" age %4.0f \n",age); */
             
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
         } /* End vpopbased */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
         printf("done \n");fflush(stdout);
         fprintf(ficlog,"done\n");fflush(ficlog);
         
         /*}*/
       } /* End k */
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       printf("done Health expectancies\n");fflush(stdout);
       fprintf(ficlog,"done Health expectancies\n");fflush(ficlog);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
       printf("done variance-covariance of period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       free_matrix(hess,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.47  
changed lines
  Added in v.1.211


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>