Diff for /imach/src/imach.c between versions 1.47 and 1.83

version 1.47, 2002/06/10 13:12:01 version 1.83, 2003/06/10 13:39:11
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.83  2003/06/10 13:39:11  lievre
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.82  2003/06/05 15:57:20  brouard
   first survey ("cross") where individuals from different ages are    Add log in  imach.c and  fullversion number is now printed.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a  */
   second wave of interviews ("longitudinal") which measure each change  /*
   (if any) in individual health status.  Health expectancies are     Interpolated Markov Chain
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Short summary of the programme:
   Maximum Likelihood of the parameters involved in the model.  The    
   simplest model is the multinomial logistic model where pij is the    This program computes Healthy Life Expectancies from
   probability to be observed in state j at the second wave    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   conditional to be observed in state i at the first wave. Therefore    first survey ("cross") where individuals from different ages are
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    interviewed on their health status or degree of disability (in the
   'age' is age and 'sex' is a covariate. If you want to have a more    case of a health survey which is our main interest) -2- at least a
   complex model than "constant and age", you should modify the program    second wave of interviews ("longitudinal") which measure each change
   where the markup *Covariates have to be included here again* invites    (if any) in individual health status.  Health expectancies are
   you to do it.  More covariates you add, slower the    computed from the time spent in each health state according to a
   convergence.    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
   The advantage of this computer programme, compared to a simple    simplest model is the multinomial logistic model where pij is the
   multinomial logistic model, is clear when the delay between waves is not    probability to be observed in state j at the second wave
   identical for each individual. Also, if a individual missed an    conditional to be observed in state i at the first wave. Therefore
   intermediate interview, the information is lost, but taken into    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   account using an interpolation or extrapolation.      'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   hPijx is the probability to be observed in state i at age x+h    where the markup *Covariates have to be included here again* invites
   conditional to the observed state i at age x. The delay 'h' can be    you to do it.  More covariates you add, slower the
   split into an exact number (nh*stepm) of unobserved intermediate    convergence.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    The advantage of this computer programme, compared to a simple
   matrix is simply the matrix product of nh*stepm elementary matrices    multinomial logistic model, is clear when the delay between waves is not
   and the contribution of each individual to the likelihood is simply    identical for each individual. Also, if a individual missed an
   hPijx.    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    hPijx is the probability to be observed in state i at age x+h
      conditional to the observed state i at age x. The delay 'h' can be
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    split into an exact number (nh*stepm) of unobserved intermediate
            Institut national d'études démographiques, Paris.    states. This elementary transition (by month, quarter,
   This software have been partly granted by Euro-REVES, a concerted action    semester or year) is modelled as a multinomial logistic.  The hPx
   from the European Union.    matrix is simply the matrix product of nh*stepm elementary matrices
   It is copyrighted identically to a GNU software product, ie programme and    and the contribution of each individual to the likelihood is simply
   software can be distributed freely for non commercial use. Latest version    hPijx.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Also this programme outputs the covariance matrix of the parameters but also
      of the life expectancies. It also computes the stable prevalence. 
 #include <math.h>    
 #include <stdio.h>    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <stdlib.h>             Institut national d'études démographiques, Paris.
 #include <unistd.h>    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 #define MAXLINE 256    It is copyrighted identically to a GNU software product, ie programme and
 #define GNUPLOTPROGRAM "gnuplot"    software can be distributed freely for non commercial use. Latest version
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    can be accessed at http://euroreves.ined.fr/imach .
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define windows    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    **********************************************************************/
   /*
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    main
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    read parameterfile
     read datafile
 #define NINTERVMAX 8    concatwav
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    if (mle >= 1)
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */      mlikeli
 #define NCOVMAX 8 /* Maximum number of covariates */    print results files
 #define MAXN 20000    if mle==1 
 #define YEARM 12. /* Number of months per year */       computes hessian
 #define AGESUP 130    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define AGEBASE 40        begin-prev-date,...
 #ifdef windows    open gnuplot file
 #define DIRSEPARATOR '\\'    open html file
 #else    stable prevalence
 #define DIRSEPARATOR '/'     for age prevalim()
 #endif    h Pij x
     variance of p varprob
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";    forecasting if prevfcast==1 prevforecast call prevalence()
 int erreur; /* Error number */    health expectancies
 int nvar;    Variance-covariance of DFLE
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    prevalence()
 int npar=NPARMAX;     movingaverage()
 int nlstate=2; /* Number of live states */    varevsij() 
 int ndeath=1; /* Number of dead states */    if popbased==1 varevsij(,popbased)
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    total life expectancies
 int popbased=0;    Variance of stable prevalence
    end
 int *wav; /* Number of waves for this individuual 0 is possible */  */
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */   
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #include <math.h>
 double jmean; /* Mean space between 2 waves */  #include <stdio.h>
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #include <stdlib.h>
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #include <unistd.h>
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define MAXLINE 256
 FILE *fichtm; /* Html File */  #define GNUPLOTPROGRAM "gnuplot"
 FILE *ficreseij;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 char filerese[FILENAMELENGTH];  #define FILENAMELENGTH 80
 FILE  *ficresvij;  /*#define DEBUG*/
 char fileresv[FILENAMELENGTH];  #define windows
 FILE  *ficresvpl;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 char fileresvpl[FILENAMELENGTH];  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 char filerest[FILENAMELENGTH];  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 char fileregp[FILENAMELENGTH];  #define NCOVMAX 8 /* Maximum number of covariates */
 char popfile[FILENAMELENGTH];  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  #define AGESUP 130
   #define AGEBASE 40
 #define NR_END 1  #ifdef windows
 #define FREE_ARG char*  #define DIRSEPARATOR '\\'
 #define FTOL 1.0e-10  #define ODIRSEPARATOR '/'
   #else
 #define NRANSI  #define DIRSEPARATOR '/'
 #define ITMAX 200  #define ODIRSEPARATOR '\\'
   #endif
 #define TOL 2.0e-4  
   /* $Id$ */
 #define CGOLD 0.3819660  /* $State$ */
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  char version[]="Imach version 0.95a1, June 2003, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 #define GOLD 1.618034  int erreur; /* Error number */
 #define GLIMIT 100.0  int nvar;
 #define TINY 1.0e-20  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 static double maxarg1,maxarg2;  int nlstate=2; /* Number of live states */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  int ndeath=1; /* Number of dead states */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    int popbased=0;
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 static double sqrarg;  int jmin, jmax; /* min, max spacing between 2 waves */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  int mle, weightopt;
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int imx;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 int stepm;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /* Stepm, step in month: minimum step interpolation*/  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 int estepm;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 int m,nb;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  FILE *ficresprobmorprev;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  FILE *fichtm; /* Html File */
 double **pmmij, ***probs, ***mobaverage;  FILE *ficreseij;
 double dateintmean=0;  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 double *weight;  char fileresv[FILENAMELENGTH];
 int **s; /* Status */  FILE  *ficresvpl;
 double *agedc, **covar, idx;  char fileresvpl[FILENAMELENGTH];
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 double ftolhess; /* Tolerance for computing hessian */  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /**************** split *************************/  char filelog[FILENAMELENGTH]; /* Log file */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
    char *s;                             /* pointer */  char popfile[FILENAMELENGTH];
    int  l1, l2;                         /* length counters */  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NR_END 1
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  #define FREE_ARG char*
    if ( s == NULL ) {                   /* no directory, so use current */  #define FTOL 1.0e-10
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );  #define NRANSI 
   #define ITMAX 200 
       if ( getwd( dirc ) == NULL ) {  
 #else  #define TOL 2.0e-4 
       extern char       *getcwd( );  
   #define CGOLD 0.3819660 
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define ZEPS 1.0e-10 
 #endif  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
          return( GLOCK_ERROR_GETCWD );  
       }  #define GOLD 1.618034 
       strcpy( name, path );             /* we've got it */  #define GLIMIT 100.0 
    } else {                             /* strip direcotry from path */  #define TINY 1.0e-20 
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */  static double maxarg1,maxarg2;
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       strcpy( name, s );                /* save file name */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    
       dirc[l1-l2] = 0;                  /* add zero */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    }  #define rint(a) floor(a+0.5)
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows  static double sqrarg;
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 #else  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif  int imx; 
    s = strrchr( name, '.' );            /* find last / */  int stepm;
    s++;  /* Stepm, step in month: minimum step interpolation*/
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  int estepm;
    l2= strlen( s)+1;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  int m,nb;
    return( 0 );                         /* we're done */  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
   double dateintmean=0;
 /******************************************/  
   double *weight;
 void replace(char *s, char*t)  int **s; /* Status */
 {  double *agedc, **covar, idx;
   int i;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   int lg=20;  
   i=0;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   lg=strlen(t);  double ftolhess; /* Tolerance for computing hessian */
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  /**************** split *************************/
     if (t[i]== '\\') s[i]='/';  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   }  {
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 int nbocc(char *s, char occ)  
 {    l1 = strlen(path );                   /* length of path */
   int i,j=0;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   int lg=20;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   i=0;    if ( ss == NULL ) {                   /* no directory, so use current */
   lg=strlen(s);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   for(i=0; i<= lg; i++) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   if  (s[i] == occ ) j++;      /* get current working directory */
   }      /*    extern  char* getcwd ( char *buf , int len);*/
   return j;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 void cutv(char *u,char *v, char*t, char occ)      strcpy( name, path );               /* we've got it */
 {    } else {                              /* strip direcotry from path */
   int i,lg,j,p=0;      ss++;                               /* after this, the filename */
   i=0;      l2 = strlen( ss );                  /* length of filename */
   for(j=0; j<=strlen(t)-1; j++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      strcpy( name, ss );         /* save file name */
   }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
   lg=strlen(t);    }
   for(j=0; j<p; j++) {    l1 = strlen( dirc );                  /* length of directory */
     (u[j] = t[j]);  #ifdef windows
   }    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
      u[p]='\0';  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
    for(j=0; j<= lg; j++) {  #endif
     if (j>=(p+1))(v[j-p-1] = t[j]);    ss = strrchr( name, '.' );            /* find last / */
   }    ss++;
 }    strcpy(ext,ss);                       /* save extension */
     l1= strlen( name);
 /********************** nrerror ********************/    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
 void nrerror(char error_text[])    finame[l1-l2]= 0;
 {    return( 0 );                          /* we're done */
   fprintf(stderr,"ERREUR ...\n");  }
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  
 }  /******************************************/
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  void replace(char *s, char*t)
 {  {
   double *v;    int i;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    int lg=20;
   if (!v) nrerror("allocation failure in vector");    i=0;
   return v-nl+NR_END;    lg=strlen(t);
 }    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 /************************ free vector ******************/      if (t[i]== '\\') s[i]='/';
 void free_vector(double*v, int nl, int nh)    }
 {  }
   free((FREE_ARG)(v+nl-NR_END));  
 }  int nbocc(char *s, char occ)
   {
 /************************ivector *******************************/    int i,j=0;
 int *ivector(long nl,long nh)    int lg=20;
 {    i=0;
   int *v;    lg=strlen(s);
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    for(i=0; i<= lg; i++) {
   if (!v) nrerror("allocation failure in ivector");    if  (s[i] == occ ) j++;
   return v-nl+NR_END;    }
 }    return j;
   }
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    /* cuts string t into u and v where u is ended by char occ excluding it
 }       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
        gives u="abcedf" and v="ghi2j" */
 /******************* imatrix *******************************/    int i,lg,j,p=0;
 int **imatrix(long nrl, long nrh, long ncl, long nch)    i=0;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    for(j=0; j<=strlen(t)-1; j++) {
 {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    }
   int **m;  
      lg=strlen(t);
   /* allocate pointers to rows */    for(j=0; j<p; j++) {
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      (u[j] = t[j]);
   if (!m) nrerror("allocation failure 1 in matrix()");    }
   m += NR_END;       u[p]='\0';
   m -= nrl;  
       for(j=0; j<= lg; j++) {
        if (j>=(p+1))(v[j-p-1] = t[j]);
   /* allocate rows and set pointers to them */    }
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /********************** nrerror ********************/
   m[nrl] -= ncl;  
    void nrerror(char error_text[])
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  {
      fprintf(stderr,"ERREUR ...\n");
   /* return pointer to array of pointers to rows */    fprintf(stderr,"%s\n",error_text);
   return m;    exit(EXIT_FAILURE);
 }  }
   /*********************** vector *******************/
 /****************** free_imatrix *************************/  double *vector(int nl, int nh)
 void free_imatrix(m,nrl,nrh,ncl,nch)  {
       int **m;    double *v;
       long nch,ncl,nrh,nrl;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      /* free an int matrix allocated by imatrix() */    if (!v) nrerror("allocation failure in vector");
 {    return v-nl+NR_END;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  }
   free((FREE_ARG) (m+nrl-NR_END));  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /******************* matrix *******************************/  {
 double **matrix(long nrl, long nrh, long ncl, long nch)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  /************************ivector *******************************/
   char *cvector(long nl,long nh)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    char *v;
   m += NR_END;    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
   m -= nrl;    if (!v) nrerror("allocation failure in cvector");
     return v-nl+NR_END;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /******************free ivector **************************/
   m[nrl] -= ncl;  void free_cvector(char *v, long nl, long nh)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    free((FREE_ARG)(v+nl-NR_END));
   return m;  }
 }  
   /************************ivector *******************************/
 /*************************free matrix ************************/  int *ivector(long nl,long nh)
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  {
 {    int *v;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   free((FREE_ARG)(m+nrl-NR_END));    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  /******************free ivector **************************/
 {  void free_ivector(int *v, long nl, long nh)
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  {
   double ***m;    free((FREE_ARG)(v+nl-NR_END));
   }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /******************* imatrix *******************************/
   m += NR_END;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   m -= nrl;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int **m; 
   m[nrl] += NR_END;    
   m[nrl] -= ncl;    /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    m -= nrl; 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    
   m[nrl][ncl] += NR_END;    
   m[nrl][ncl] -= nll;    /* allocate rows and set pointers to them */ 
   for (j=ncl+1; j<=nch; j++)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     m[nrl][j]=m[nrl][j-1]+nlay;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      m[nrl] += NR_END; 
   for (i=nrl+1; i<=nrh; i++) {    m[nrl] -= ncl; 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    
     for (j=ncl+1; j<=nch; j++)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       m[i][j]=m[i][j-1]+nlay;    
   }    /* return pointer to array of pointers to rows */ 
   return m;    return m; 
 }  } 
   
 /*************************free ma3x ************************/  /****************** free_imatrix *************************/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  void free_imatrix(m,nrl,nrh,ncl,nch)
 {        int **m;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));        long nch,ncl,nrh,nrl; 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));       /* free an int matrix allocated by imatrix() */ 
   free((FREE_ARG)(m+nrl-NR_END));  { 
 }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
 /***************** f1dim *************************/  } 
 extern int ncom;  
 extern double *pcom,*xicom;  /******************* matrix *******************************/
 extern double (*nrfunc)(double []);  double **matrix(long nrl, long nrh, long ncl, long nch)
    {
 double f1dim(double x)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 {    double **m;
   int j;  
   double f;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double *xt;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
   xt=vector(1,ncom);    m -= nrl;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   free_vector(xt,1,ncom);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   return f;    m[nrl] += NR_END;
 }    m[nrl] -= ncl;
   
 /*****************brent *************************/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    return m;
 {    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
   int iter;     */
   double a,b,d,etemp;  }
   double fu,fv,fw,fx;  
   double ftemp;  /*************************free matrix ************************/
   double p,q,r,tol1,tol2,u,v,w,x,xm;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double e=0.0;  {
      free((FREE_ARG)(m[nrl]+ncl-NR_END));
   a=(ax < cx ? ax : cx);    free((FREE_ARG)(m+nrl-NR_END));
   b=(ax > cx ? ax : cx);  }
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  /******************* ma3x *******************************/
   for (iter=1;iter<=ITMAX;iter++) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     xm=0.5*(a+b);  {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    double ***m;
     printf(".");fflush(stdout);  
 #ifdef DEBUG    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    if (!m) nrerror("allocation failure 1 in matrix()");
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    m += NR_END;
 #endif    m -= nrl;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       return fx;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     ftemp=fu;    m[nrl] -= ncl;
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       q=2.0*(q-r);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       if (q > 0.0) p = -p;    m[nrl][ncl] += NR_END;
       q=fabs(q);    m[nrl][ncl] -= nll;
       etemp=e;    for (j=ncl+1; j<=nch; j++) 
       e=d;      m[nrl][j]=m[nrl][j-1]+nlay;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    for (i=nrl+1; i<=nrh; i++) {
       else {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         d=p/q;      for (j=ncl+1; j<=nch; j++) 
         u=x+d;        m[i][j]=m[i][j-1]+nlay;
         if (u-a < tol2 || b-u < tol2)    }
           d=SIGN(tol1,xm-x);    return m; 
       }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     } else {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    */
     }  }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  /*************************free ma3x ************************/
     if (fu <= fx) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       if (u >= x) a=x; else b=x;  {
       SHFT(v,w,x,u)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         SHFT(fv,fw,fx,fu)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         } else {    free((FREE_ARG)(m+nrl-NR_END));
           if (u < x) a=u; else b=u;  }
           if (fu <= fw || w == x) {  
             v=w;  /***************** f1dim *************************/
             w=u;  extern int ncom; 
             fv=fw;  extern double *pcom,*xicom;
             fw=fu;  extern double (*nrfunc)(double []); 
           } else if (fu <= fv || v == x || v == w) {   
             v=u;  double f1dim(double x) 
             fv=fu;  { 
           }    int j; 
         }    double f;
   }    double *xt; 
   nrerror("Too many iterations in brent");   
   *xmin=x;    xt=vector(1,ncom); 
   return fx;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 /****************** mnbrak ***********************/    return f; 
   } 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  /*****************brent *************************/
 {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double ulim,u,r,q, dum;  { 
   double fu;    int iter; 
      double a,b,d,etemp;
   *fa=(*func)(*ax);    double fu,fv,fw,fx;
   *fb=(*func)(*bx);    double ftemp;
   if (*fb > *fa) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     SHFT(dum,*ax,*bx,dum)    double e=0.0; 
       SHFT(dum,*fb,*fa,dum)   
       }    a=(ax < cx ? ax : cx); 
   *cx=(*bx)+GOLD*(*bx-*ax);    b=(ax > cx ? ax : cx); 
   *fc=(*func)(*cx);    x=w=v=bx; 
   while (*fb > *fc) {    fw=fv=fx=(*f)(x); 
     r=(*bx-*ax)*(*fb-*fc);    for (iter=1;iter<=ITMAX;iter++) { 
     q=(*bx-*cx)*(*fb-*fa);      xm=0.5*(a+b); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     ulim=(*bx)+GLIMIT*(*cx-*bx);      printf(".");fflush(stdout);
     if ((*bx-u)*(u-*cx) > 0.0) {      fprintf(ficlog,".");fflush(ficlog);
       fu=(*func)(u);  #ifdef DEBUG
     } else if ((*cx-u)*(u-ulim) > 0.0) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fu=(*func)(u);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       if (fu < *fc) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #endif
           SHFT(*fb,*fc,fu,(*func)(u))      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
           }        *xmin=x; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {        return fx; 
       u=ulim;      } 
       fu=(*func)(u);      ftemp=fu;
     } else {      if (fabs(e) > tol1) { 
       u=(*cx)+GOLD*(*cx-*bx);        r=(x-w)*(fx-fv); 
       fu=(*func)(u);        q=(x-v)*(fx-fw); 
     }        p=(x-v)*q-(x-w)*r; 
     SHFT(*ax,*bx,*cx,u)        q=2.0*(q-r); 
       SHFT(*fa,*fb,*fc,fu)        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
 }        etemp=e; 
         e=d; 
 /*************** linmin ************************/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 int ncom;        else { 
 double *pcom,*xicom;          d=p/q; 
 double (*nrfunc)(double []);          u=x+d; 
            if (u-a < tol2 || b-u < tol2) 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))            d=SIGN(tol1,xm-x); 
 {        } 
   double brent(double ax, double bx, double cx,      } else { 
                double (*f)(double), double tol, double *xmin);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double f1dim(double x);      } 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
               double *fc, double (*func)(double));      fu=(*f)(u); 
   int j;      if (fu <= fx) { 
   double xx,xmin,bx,ax;        if (u >= x) a=x; else b=x; 
   double fx,fb,fa;        SHFT(v,w,x,u) 
            SHFT(fv,fw,fx,fu) 
   ncom=n;          } else { 
   pcom=vector(1,n);            if (u < x) a=u; else b=u; 
   xicom=vector(1,n);            if (fu <= fw || w == x) { 
   nrfunc=func;              v=w; 
   for (j=1;j<=n;j++) {              w=u; 
     pcom[j]=p[j];              fv=fw; 
     xicom[j]=xi[j];              fw=fu; 
   }            } else if (fu <= fv || v == x || v == w) { 
   ax=0.0;              v=u; 
   xx=1.0;              fv=fu; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);            } 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);          } 
 #ifdef DEBUG    } 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    nrerror("Too many iterations in brent"); 
 #endif    *xmin=x; 
   for (j=1;j<=n;j++) {    return fx; 
     xi[j] *= xmin;  } 
     p[j] += xi[j];  
   }  /****************** mnbrak ***********************/
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 }              double (*func)(double)) 
   { 
 /*************** powell ************************/    double ulim,u,r,q, dum;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    double fu; 
             double (*func)(double []))   
 {    *fa=(*func)(*ax); 
   void linmin(double p[], double xi[], int n, double *fret,    *fb=(*func)(*bx); 
               double (*func)(double []));    if (*fb > *fa) { 
   int i,ibig,j;      SHFT(dum,*ax,*bx,dum) 
   double del,t,*pt,*ptt,*xit;        SHFT(dum,*fb,*fa,dum) 
   double fp,fptt;        } 
   double *xits;    *cx=(*bx)+GOLD*(*bx-*ax); 
   pt=vector(1,n);    *fc=(*func)(*cx); 
   ptt=vector(1,n);    while (*fb > *fc) { 
   xit=vector(1,n);      r=(*bx-*ax)*(*fb-*fc); 
   xits=vector(1,n);      q=(*bx-*cx)*(*fb-*fa); 
   *fret=(*func)(p);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   for (j=1;j<=n;j++) pt[j]=p[j];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   for (*iter=1;;++(*iter)) {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     fp=(*fret);      if ((*bx-u)*(u-*cx) > 0.0) { 
     ibig=0;        fu=(*func)(u); 
     del=0.0;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        fu=(*func)(u); 
     for (i=1;i<=n;i++)        if (fu < *fc) { 
       printf(" %d %.12f",i, p[i]);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     printf("\n");            SHFT(*fb,*fc,fu,(*func)(u)) 
     for (i=1;i<=n;i++) {            } 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       fptt=(*fret);        u=ulim; 
 #ifdef DEBUG        fu=(*func)(u); 
       printf("fret=%lf \n",*fret);      } else { 
 #endif        u=(*cx)+GOLD*(*cx-*bx); 
       printf("%d",i);fflush(stdout);        fu=(*func)(u); 
       linmin(p,xit,n,fret,func);      } 
       if (fabs(fptt-(*fret)) > del) {      SHFT(*ax,*bx,*cx,u) 
         del=fabs(fptt-(*fret));        SHFT(*fa,*fb,*fc,fu) 
         ibig=i;        } 
       }  } 
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  /*************** linmin ************************/
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  int ncom; 
         printf(" x(%d)=%.12e",j,xit[j]);  double *pcom,*xicom;
       }  double (*nrfunc)(double []); 
       for(j=1;j<=n;j++)   
         printf(" p=%.12e",p[j]);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       printf("\n");  { 
 #endif    double brent(double ax, double bx, double cx, 
     }                 double (*f)(double), double tol, double *xmin); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    double f1dim(double x); 
 #ifdef DEBUG    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       int k[2],l;                double *fc, double (*func)(double)); 
       k[0]=1;    int j; 
       k[1]=-1;    double xx,xmin,bx,ax; 
       printf("Max: %.12e",(*func)(p));    double fx,fb,fa;
       for (j=1;j<=n;j++)   
         printf(" %.12e",p[j]);    ncom=n; 
       printf("\n");    pcom=vector(1,n); 
       for(l=0;l<=1;l++) {    xicom=vector(1,n); 
         for (j=1;j<=n;j++) {    nrfunc=func; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    for (j=1;j<=n;j++) { 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      pcom[j]=p[j]; 
         }      xicom[j]=xi[j]; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    } 
       }    ax=0.0; 
 #endif    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       free_vector(xit,1,n);  #ifdef DEBUG
       free_vector(xits,1,n);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       free_vector(ptt,1,n);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       free_vector(pt,1,n);  #endif
       return;    for (j=1;j<=n;j++) { 
     }      xi[j] *= xmin; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      p[j] += xi[j]; 
     for (j=1;j<=n;j++) {    } 
       ptt[j]=2.0*p[j]-pt[j];    free_vector(xicom,1,n); 
       xit[j]=p[j]-pt[j];    free_vector(pcom,1,n); 
       pt[j]=p[j];  } 
     }  
     fptt=(*func)(ptt);  /*************** powell ************************/
     if (fptt < fp) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);              double (*func)(double [])) 
       if (t < 0.0) {  { 
         linmin(p,xit,n,fret,func);    void linmin(double p[], double xi[], int n, double *fret, 
         for (j=1;j<=n;j++) {                double (*func)(double [])); 
           xi[j][ibig]=xi[j][n];    int i,ibig,j; 
           xi[j][n]=xit[j];    double del,t,*pt,*ptt,*xit;
         }    double fp,fptt;
 #ifdef DEBUG    double *xits;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    pt=vector(1,n); 
         for(j=1;j<=n;j++)    ptt=vector(1,n); 
           printf(" %.12e",xit[j]);    xit=vector(1,n); 
         printf("\n");    xits=vector(1,n); 
 #endif    *fret=(*func)(p); 
       }    for (j=1;j<=n;j++) pt[j]=p[j]; 
     }    for (*iter=1;;++(*iter)) { 
   }      fp=(*fret); 
 }      ibig=0; 
       del=0.0; 
 /**** Prevalence limit ****************/      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      fprintf(ficrespow,"%d %.12f",*iter,*fret);
 {      for (i=1;i<=n;i++) {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        printf(" %d %.12f",i, p[i]);
      matrix by transitions matrix until convergence is reached */        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   int i, ii,j,k;      }
   double min, max, maxmin, maxmax,sumnew=0.;      printf("\n");
   double **matprod2();      fprintf(ficlog,"\n");
   double **out, cov[NCOVMAX], **pmij();      fprintf(ficrespow,"\n");
   double **newm;      for (i=1;i<=n;i++) { 
   double agefin, delaymax=50 ; /* Max number of years to converge */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
   for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef DEBUG
     for (j=1;j<=nlstate+ndeath;j++){        printf("fret=%lf \n",*fret);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
         printf("%d",i);fflush(stdout);
    cov[1]=1.;        fprintf(ficlog,"%d",i);fflush(ficlog);
          linmin(p,xit,n,fret,func); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        if (fabs(fptt-(*fret)) > del) { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){          del=fabs(fptt-(*fret)); 
     newm=savm;          ibig=i; 
     /* Covariates have to be included here again */        } 
      cov[2]=agefin;  #ifdef DEBUG
          printf("%d %.12e",i,(*fret));
       for (k=1; k<=cptcovn;k++) {        fprintf(ficlog,"%d %.12e",i,(*fret));
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        for (j=1;j<=n;j++) {
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       }          printf(" x(%d)=%.12e",j,xit[j]);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       for (k=1; k<=cptcovprod;k++)        }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          fprintf(ficlog," p=%.12e",p[j]);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        printf("\n");
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        fprintf(ficlog,"\n");
   #endif
     savm=oldm;      } 
     oldm=newm;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     maxmax=0.;  #ifdef DEBUG
     for(j=1;j<=nlstate;j++){        int k[2],l;
       min=1.;        k[0]=1;
       max=0.;        k[1]=-1;
       for(i=1; i<=nlstate; i++) {        printf("Max: %.12e",(*func)(p));
         sumnew=0;        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        for (j=1;j<=n;j++) {
         prlim[i][j]= newm[i][j]/(1-sumnew);          printf(" %.12e",p[j]);
         max=FMAX(max,prlim[i][j]);          fprintf(ficlog," %.12e",p[j]);
         min=FMIN(min,prlim[i][j]);        }
       }        printf("\n");
       maxmin=max-min;        fprintf(ficlog,"\n");
       maxmax=FMAX(maxmax,maxmin);        for(l=0;l<=1;l++) {
     }          for (j=1;j<=n;j++) {
     if(maxmax < ftolpl){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       return prlim;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }          }
 }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 /*************** transition probabilities ***************/        }
   #endif
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  
   double s1, s2;        free_vector(xit,1,n); 
   /*double t34;*/        free_vector(xits,1,n); 
   int i,j,j1, nc, ii, jj;        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
     for(i=1; i<= nlstate; i++){        return; 
     for(j=1; j<i;j++){      } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         /*s2 += param[i][j][nc]*cov[nc];*/      for (j=1;j<=n;j++) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        ptt[j]=2.0*p[j]-pt[j]; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        xit[j]=p[j]-pt[j]; 
       }        pt[j]=p[j]; 
       ps[i][j]=s2;      } 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
     for(j=i+1; j<=nlstate+ndeath;j++){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        if (t < 0.0) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          linmin(p,xit,n,fret,func); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          for (j=1;j<=n;j++) { 
       }            xi[j][ibig]=xi[j][n]; 
       ps[i][j]=s2;            xi[j][n]=xit[j]; 
     }          }
   }  #ifdef DEBUG
     /*ps[3][2]=1;*/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(i=1; i<= nlstate; i++){          for(j=1;j<=n;j++){
      s1=0;            printf(" %.12e",xit[j]);
     for(j=1; j<i; j++)            fprintf(ficlog," %.12e",xit[j]);
       s1+=exp(ps[i][j]);          }
     for(j=i+1; j<=nlstate+ndeath; j++)          printf("\n");
       s1+=exp(ps[i][j]);          fprintf(ficlog,"\n");
     ps[i][i]=1./(s1+1.);  #endif
     for(j=1; j<i; j++)        }
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } 
     for(j=i+1; j<=nlstate+ndeath; j++)    } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  } 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /**** Prevalence limit (stable prevalence)  ****************/
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
       ps[ii][jj]=0;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       ps[ii][ii]=1;       matrix by transitions matrix until convergence is reached */
     }  
   }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double **out, cov[NCOVMAX], **pmij();
     for(jj=1; jj<= nlstate+ndeath; jj++){    double **newm;
      printf("%lf ",ps[ii][jj]);    double agefin, delaymax=50 ; /* Max number of years to converge */
    }  
     printf("\n ");    for (ii=1;ii<=nlstate+ndeath;ii++)
     }      for (j=1;j<=nlstate+ndeath;j++){
     printf("\n ");printf("%lf ",cov[2]);*/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*      }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/     cov[1]=1.;
     return ps;   
 }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 /**************** Product of 2 matrices ******************/      newm=savm;
       /* Covariates have to be included here again */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)       cov[2]=agefin;
 {    
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        for (k=1; k<=cptcovn;k++) {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /* in, b, out are matrice of pointers which should have been initialized          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
      before: only the contents of out is modified. The function returns        }
      a pointer to pointers identical to out */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   long i, j, k;        for (k=1; k<=cptcovprod;k++)
   for(i=nrl; i<= nrh; i++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         out[i][k] +=in[i][j]*b[j][k];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   return out;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 }  
       savm=oldm;
       oldm=newm;
 /************* Higher Matrix Product ***************/      maxmax=0.;
       for(j=1;j<=nlstate;j++){
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        min=1.;
 {        max=0.;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        for(i=1; i<=nlstate; i++) {
      duration (i.e. until          sumnew=0;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          prlim[i][j]= newm[i][j]/(1-sumnew);
      (typically every 2 years instead of every month which is too big).          max=FMAX(max,prlim[i][j]);
      Model is determined by parameters x and covariates have to be          min=FMIN(min,prlim[i][j]);
      included manually here.        }
         maxmin=max-min;
      */        maxmax=FMAX(maxmax,maxmin);
       }
   int i, j, d, h, k;      if(maxmax < ftolpl){
   double **out, cov[NCOVMAX];        return prlim;
   double **newm;      }
     }
   /* Hstepm could be zero and should return the unit matrix */  }
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  /*************** transition probabilities ***************/ 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double s1, s2;
   for(h=1; h <=nhstepm; h++){    /*double t34;*/
     for(d=1; d <=hstepm; d++){    int i,j,j1, nc, ii, jj;
       newm=savm;  
       /* Covariates have to be included here again */      for(i=1; i<= nlstate; i++){
       cov[1]=1.;      for(j=1; j<i;j++){
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          /*s2 += param[i][j][nc]*cov[nc];*/
       for (k=1; k<=cptcovage;k++)          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       for (k=1; k<=cptcovprod;k++)        }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        ps[i][j]=s2;
         /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      for(j=i+1; j<=nlstate+ndeath;j++){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       savm=oldm;        }
       oldm=newm;        ps[i][j]=s2;
     }      }
     for(i=1; i<=nlstate+ndeath; i++)    }
       for(j=1;j<=nlstate+ndeath;j++) {      /*ps[3][2]=1;*/
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    for(i=1; i<= nlstate; i++){
          */       s1=0;
       }      for(j=1; j<i; j++)
   } /* end h */        s1+=exp(ps[i][j]);
   return po;      for(j=i+1; j<=nlstate+ndeath; j++)
 }        s1+=exp(ps[i][j]);
       ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
 /*************** log-likelihood *************/        ps[i][j]= exp(ps[i][j])*ps[i][i];
 double func( double *x)      for(j=i+1; j<=nlstate+ndeath; j++)
 {        ps[i][j]= exp(ps[i][j])*ps[i][i];
   int i, ii, j, k, mi, d, kk;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    } /* end i */
   double **out;  
   double sw; /* Sum of weights */    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   double lli; /* Individual log likelihood */      for(jj=1; jj<= nlstate+ndeath; jj++){
   long ipmx;        ps[ii][jj]=0;
   /*extern weight */        ps[ii][ii]=1;
   /* We are differentiating ll according to initial status */      }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    }
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);  
   */    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   cov[1]=1.;      for(jj=1; jj<= nlstate+ndeath; jj++){
        printf("%lf ",ps[ii][jj]);
   for(k=1; k<=nlstate; k++) ll[k]=0.;     }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      printf("\n ");
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      }
     for(mi=1; mi<= wav[i]-1; mi++){      printf("\n ");printf("%lf ",cov[2]);*/
       for (ii=1;ii<=nlstate+ndeath;ii++)  /*
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       for(d=0; d<dh[mi][i]; d++){    goto end;*/
         newm=savm;      return ps;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /**************** Product of 2 matrices ******************/
         }  
          double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  {
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         savm=oldm;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         oldm=newm;    /* in, b, out are matrice of pointers which should have been initialized 
               before: only the contents of out is modified. The function returns
               a pointer to pointers identical to out */
       } /* end mult */    long i, j, k;
          for(i=nrl; i<= nrh; i++)
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      for(k=ncolol; k<=ncoloh; k++)
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       ipmx +=1;          out[i][k] +=in[i][j]*b[j][k];
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    return out;
     } /* end of wave */  }
   } /* end of individual */  
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /************* Higher Matrix Product ***************/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   return -l;  {
 }    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 /*********** Maximum Likelihood Estimation ***************/       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))       (typically every 2 years instead of every month which is too big 
 {       for the memory).
   int i,j, iter;       Model is determined by parameters x and covariates have to be 
   double **xi,*delti;       included manually here. 
   double fret;  
   xi=matrix(1,npar,1,npar);       */
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)    int i, j, d, h, k;
       xi[i][j]=(i==j ? 1.0 : 0.0);    double **out, cov[NCOVMAX];
   printf("Powell\n");    double **newm;
   powell(p,xi,npar,ftol,&iter,&fret,func);  
     /* Hstepm could be zero and should return the unit matrix */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    for (i=1;i<=nlstate+ndeath;i++)
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
 }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
 /**** Computes Hessian and covariance matrix ***/    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    for(h=1; h <=nhstepm; h++){
 {      for(d=1; d <=hstepm; d++){
   double  **a,**y,*x,pd;        newm=savm;
   double **hess;        /* Covariates have to be included here again */
   int i, j,jk;        cov[1]=1.;
   int *indx;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double hessii(double p[], double delta, int theta, double delti[]);        for (k=1; k<=cptcovage;k++)
   double hessij(double p[], double delti[], int i, int j);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   void lubksb(double **a, int npar, int *indx, double b[]) ;        for (k=1; k<=cptcovprod;k++)
   void ludcmp(double **a, int npar, int *indx, double *d) ;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   hess=matrix(1,npar,1,npar);  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   printf("\nCalculation of the hessian matrix. Wait...\n");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for (i=1;i<=npar;i++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     printf("%d",i);fflush(stdout);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     hess[i][i]=hessii(p,ftolhess,i,delti);        savm=oldm;
     /*printf(" %f ",p[i]);*/        oldm=newm;
     /*printf(" %lf ",hess[i][i]);*/      }
   }      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
   for (i=1;i<=npar;i++) {          po[i][j][h]=newm[i][j];
     for (j=1;j<=npar;j++)  {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       if (j>i) {           */
         printf(".%d%d",i,j);fflush(stdout);        }
         hess[i][j]=hessij(p,delti,i,j);    } /* end h */
         hess[j][i]=hess[i][j];        return po;
         /*printf(" %lf ",hess[i][j]);*/  }
       }  
     }  
   }  /*************** log-likelihood *************/
   printf("\n");  double func( double *x)
   {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   a=matrix(1,npar,1,npar);    double **out;
   y=matrix(1,npar,1,npar);    double sw; /* Sum of weights */
   x=vector(1,npar);    double lli; /* Individual log likelihood */
   indx=ivector(1,npar);    int s1, s2;
   for (i=1;i<=npar;i++)    double bbh, survp;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    long ipmx;
   ludcmp(a,npar,indx,&pd);    /*extern weight */
     /* We are differentiating ll according to initial status */
   for (j=1;j<=npar;j++) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for (i=1;i<=npar;i++) x[i]=0;    /*for(i=1;i<imx;i++) 
     x[j]=1;      printf(" %d\n",s[4][i]);
     lubksb(a,npar,indx,x);    */
     for (i=1;i<=npar;i++){    cov[1]=1.;
       matcov[i][j]=x[i];  
     }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
     if(mle==1){
   printf("\n#Hessian matrix#\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (i=1;i<=npar;i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (j=1;j<=npar;j++) {        for(mi=1; mi<= wav[i]-1; mi++){
       printf("%.3e ",hess[i][j]);          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     printf("\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   /* Recompute Inverse */          for(d=0; d<dh[mi][i]; d++){
   for (i=1;i<=npar;i++)            newm=savm;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   ludcmp(a,npar,indx,&pd);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /*  printf("\n#Hessian matrix recomputed#\n");            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (j=1;j<=npar;j++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1;i<=npar;i++) x[i]=0;            savm=oldm;
     x[j]=1;            oldm=newm;
     lubksb(a,npar,indx,x);          } /* end mult */
     for (i=1;i<=npar;i++){        
       y[i][j]=x[i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       printf("%.3e ",y[i][j]);          /* But now since version 0.9 we anticipate for bias and large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     printf("\n");           * (in months) between two waves is not a multiple of stepm, we rounded to 
   }           * the nearest (and in case of equal distance, to the lowest) interval but now
   */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   free_matrix(a,1,npar,1,npar);           * probability in order to take into account the bias as a fraction of the way
   free_matrix(y,1,npar,1,npar);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   free_vector(x,1,npar);           * -stepm/2 to stepm/2 .
   free_ivector(indx,1,npar);           * For stepm=1 the results are the same as for previous versions of Imach.
   free_matrix(hess,1,npar,1,npar);           * For stepm > 1 the results are less biased than in previous versions. 
            */
           s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 /*************** hessian matrix ****************/          /* bias is positive if real duration
 double hessii( double x[], double delta, int theta, double delti[])           * is higher than the multiple of stepm and negative otherwise.
 {           */
   int i;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   int l=1, lmax=20;          if( s2 > nlstate){ 
   double k1,k2;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   double p2[NPARMAX+1];               to the likelihood is the probability to die between last step unit time and current 
   double res;               step unit time, which is also the differences between probability to die before dh 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;               and probability to die before dh-stepm . 
   double fx;               In version up to 0.92 likelihood was computed
   int k=0,kmax=10;          as if date of death was unknown. Death was treated as any other
   double l1;          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   fx=func(x);          to consider that at each interview the state was recorded
   for (i=1;i<=npar;i++) p2[i]=x[i];          (healthy, disable or death) and IMaCh was corrected; but when we
   for(l=0 ; l <=lmax; l++){          introduced the exact date of death then we should have modified
     l1=pow(10,l);          the contribution of an exact death to the likelihood. This new
     delts=delt;          contribution is smaller and very dependent of the step unit
     for(k=1 ; k <kmax; k=k+1){          stepm. It is no more the probability to die between last interview
       delt = delta*(l1*k);          and month of death but the probability to survive from last
       p2[theta]=x[theta] +delt;          interview up to one month before death multiplied by the
       k1=func(p2)-fx;          probability to die within a month. Thanks to Chris
       p2[theta]=x[theta]-delt;          Jackson for correcting this bug.  Former versions increased
       k2=func(p2)-fx;          mortality artificially. The bad side is that we add another loop
       /*res= (k1-2.0*fx+k2)/delt/delt; */          which slows down the processing. The difference can be up to 10%
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          lower mortality.
                  */
 #ifdef DEBUG            lli=log(out[s1][s2] - savm[s1][s2]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          }else{
 #endif            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          } 
         k=kmax;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       }          /*if(lli ==000.0)*/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         k=kmax; l=lmax*10.;          ipmx +=1;
       }          sw += weight[i];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         delts=delt;        } /* end of wave */
       }      } /* end of individual */
     }    }  else if(mle==2){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   delti[theta]=delts;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   return res;        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 double hessij( double x[], double delti[], int thetai,int thetaj)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   int i;          for(d=0; d<=dh[mi][i]; d++){
   int l=1, l1, lmax=20;            newm=savm;
   double k1,k2,k3,k4,res,fx;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double p2[NPARMAX+1];            for (kk=1; kk<=cptcovage;kk++) {
   int k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   fx=func(x);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (k=1; k<=2; k++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1;i<=npar;i++) p2[i]=x[i];            savm=oldm;
     p2[thetai]=x[thetai]+delti[thetai]/k;            oldm=newm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          } /* end mult */
     k1=func(p2)-fx;        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     p2[thetai]=x[thetai]+delti[thetai]/k;          /* But now since version 0.9 we anticipate for bias and large stepm.
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     k2=func(p2)-fx;           * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
     p2[thetai]=x[thetai]-delti[thetai]/k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     k3=func(p2)-fx;           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     p2[thetai]=x[thetai]-delti[thetai]/k;           * -stepm/2 to stepm/2 .
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * For stepm=1 the results are the same as for previous versions of Imach.
     k4=func(p2)-fx;           * For stepm > 1 the results are less biased than in previous versions. 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */           */
 #ifdef DEBUG          s1=s[mw[mi][i]][i];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          s2=s[mw[mi+1][i]][i];
 #endif          bbh=(double)bh[mi][i]/(double)stepm; 
   }          /* bias is positive if real duration
   return res;           * is higher than the multiple of stepm and negative otherwise.
 }           */
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 /************** Inverse of matrix **************/          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 void ludcmp(double **a, int n, int *indx, double *d)          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
 {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   int i,imax,j,k;          /*if(lli ==000.0)*/
   double big,dum,sum,temp;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   double *vv;          ipmx +=1;
            sw += weight[i];
   vv=vector(1,n);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   *d=1.0;        } /* end of wave */
   for (i=1;i<=n;i++) {      } /* end of individual */
     big=0.0;    }  else if(mle==3){  /* exponential inter-extrapolation */
     for (j=1;j<=n;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if ((temp=fabs(a[i][j])) > big) big=temp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        for(mi=1; mi<= wav[i]-1; mi++){
     vv[i]=1.0/big;          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   for (j=1;j<=n;j++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<j;i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       sum=a[i][j];            }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          for(d=0; d<dh[mi][i]; d++){
       a[i][j]=sum;            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     big=0.0;            for (kk=1; kk<=cptcovage;kk++) {
     for (i=j;i<=n;i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       sum=a[i][j];            }
       for (k=1;k<j;k++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         sum -= a[i][k]*a[k][j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       a[i][j]=sum;            savm=oldm;
       if ( (dum=vv[i]*fabs(sum)) >= big) {            oldm=newm;
         big=dum;          } /* end mult */
         imax=i;        
       }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     }          /* But now since version 0.9 we anticipate for bias and large stepm.
     if (j != imax) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for (k=1;k<=n;k++) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
         dum=a[imax][k];           * the nearest (and in case of equal distance, to the lowest) interval but now
         a[imax][k]=a[j][k];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         a[j][k]=dum;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       }           * probability in order to take into account the bias as a fraction of the way
       *d = -(*d);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       vv[imax]=vv[j];           * -stepm/2 to stepm/2 .
     }           * For stepm=1 the results are the same as for previous versions of Imach.
     indx[j]=imax;           * For stepm > 1 the results are less biased than in previous versions. 
     if (a[j][j] == 0.0) a[j][j]=TINY;           */
     if (j != n) {          s1=s[mw[mi][i]][i];
       dum=1.0/(a[j][j]);          s2=s[mw[mi+1][i]][i];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          bbh=(double)bh[mi][i]/(double)stepm; 
     }          /* bias is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
   free_vector(vv,1,n);  /* Doesn't work */           */
 ;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
 }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 void lubksb(double **a, int n, int *indx, double b[])          /*if(lli ==000.0)*/
 {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int i,ii=0,ip,j;          ipmx +=1;
   double sum;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (i=1;i<=n;i++) {        } /* end of wave */
     ip=indx[i];      } /* end of individual */
     sum=b[ip];    }else{  /* ml=4 no inter-extrapolation */
     b[ip]=b[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (ii)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for(mi=1; mi<= wav[i]-1; mi++){
     else if (sum) ii=i;          for (ii=1;ii<=nlstate+ndeath;ii++)
     b[i]=sum;            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=n;i>=1;i--) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     sum=b[i];            }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          for(d=0; d<dh[mi][i]; d++){
     b[i]=sum/a[i][i];            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************ Frequencies ********************/            }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          
 {  /* Some frequencies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            savm=oldm;
   double ***freq; /* Frequencies */            oldm=newm;
   double *pp;          } /* end mult */
   double pos, k2, dateintsum=0,k2cpt=0;        
   FILE *ficresp;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   char fileresp[FILENAMELENGTH];          ipmx +=1;
            sw += weight[i];
   pp=vector(1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        } /* end of wave */
   strcpy(fileresp,"p");      } /* end of individual */
   strcat(fileresp,fileres);    } /* End of if */
   if((ficresp=fopen(fileresp,"w"))==NULL) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     exit(0);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }    return -l;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  }
   j1=0;  
    
   j=cptcoveff;  /*********** Maximum Likelihood Estimation ***************/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for(k1=1; k1<=j;k1++){  {
     for(i1=1; i1<=ncodemax[k1];i1++){    int i,j, iter;
       j1++;    double **xi;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    double fret;
         scanf("%d", i);*/    char filerespow[FILENAMELENGTH];
       for (i=-1; i<=nlstate+ndeath; i++)      xi=matrix(1,npar,1,npar);
         for (jk=-1; jk<=nlstate+ndeath; jk++)      for (i=1;i<=npar;i++)
           for(m=agemin; m <= agemax+3; m++)      for (j=1;j<=npar;j++)
             freq[i][jk][m]=0;        xi[i][j]=(i==j ? 1.0 : 0.0);
          printf("Powell\n");  fprintf(ficlog,"Powell\n");
       dateintsum=0;    strcpy(filerespow,"pow"); 
       k2cpt=0;    strcat(filerespow,fileres);
       for (i=1; i<=imx; i++) {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         bool=1;      printf("Problem with resultfile: %s\n", filerespow);
         if  (cptcovn>0) {      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           for (z1=1; z1<=cptcoveff; z1++)    }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    fprintf(ficrespow,"# Powell\n# iter -2*LL");
               bool=0;    for (i=1;i<=nlstate;i++)
         }      for(j=1;j<=nlstate+ndeath;j++)
         if (bool==1) {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           for(m=firstpass; m<=lastpass; m++){    fprintf(ficrespow,"\n");
             k2=anint[m][i]+(mint[m][i]/12.);    powell(p,xi,npar,ftol,&iter,&fret,func);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;    fclose(ficrespow);
               if(agev[m][i]==1) agev[m][i]=agemax+2;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
               if (m<lastpass) {    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
               }  }
                
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  /**** Computes Hessian and covariance matrix ***/
                 dateintsum=dateintsum+k2;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
                 k2cpt++;  {
               }    double  **a,**y,*x,pd;
             }    double **hess;
           }    int i, j,jk;
         }    int *indx;
       }  
            double hessii(double p[], double delta, int theta, double delti[]);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double hessij(double p[], double delti[], int i, int j);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
       if  (cptcovn>0) {    void ludcmp(double **a, int npar, int *indx, double *d) ;
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    hess=matrix(1,npar,1,npar);
         fprintf(ficresp, "**********\n#");  
       }    printf("\nCalculation of the hessian matrix. Wait...\n");
       for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    for (i=1;i<=npar;i++){
       fprintf(ficresp, "\n");      printf("%d",i);fflush(stdout);
            fprintf(ficlog,"%d",i);fflush(ficlog);
       for(i=(int)agemin; i <= (int)agemax+3; i++){      hess[i][i]=hessii(p,ftolhess,i,delti);
         if(i==(int)agemax+3)      /*printf(" %f ",p[i]);*/
           printf("Total");      /*printf(" %lf ",hess[i][i]);*/
         else    }
           printf("Age %d", i);    
         for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=npar;i++) {
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for (j=1;j<=npar;j++)  {
             pp[jk] += freq[jk][m][i];        if (j>i) { 
         }          printf(".%d%d",i,j);fflush(stdout);
         for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           for(m=-1, pos=0; m <=0 ; m++)          hess[i][j]=hessij(p,delti,i,j);
             pos += freq[jk][m][i];          hess[j][i]=hess[i][j];    
           if(pp[jk]>=1.e-10)          /*printf(" %lf ",hess[i][j]);*/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        }
           else      }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    }
         }    printf("\n");
     fprintf(ficlog,"\n");
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
             pp[jk] += freq[jk][m][i];    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         }    
     a=matrix(1,npar,1,npar);
         for(jk=1,pos=0; jk <=nlstate ; jk++)    y=matrix(1,npar,1,npar);
           pos += pp[jk];    x=vector(1,npar);
         for(jk=1; jk <=nlstate ; jk++){    indx=ivector(1,npar);
           if(pos>=1.e-5)    for (i=1;i<=npar;i++)
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           else    ludcmp(a,npar,indx,&pd);
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           if( i <= (int) agemax){    for (j=1;j<=npar;j++) {
             if(pos>=1.e-5){      for (i=1;i<=npar;i++) x[i]=0;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      x[j]=1;
               probs[i][jk][j1]= pp[jk]/pos;      lubksb(a,npar,indx,x);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      for (i=1;i<=npar;i++){ 
             }        matcov[i][j]=x[i];
             else      }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    }
           }  
         }    printf("\n#Hessian matrix#\n");
            fprintf(ficlog,"\n#Hessian matrix#\n");
         for(jk=-1; jk <=nlstate+ndeath; jk++)    for (i=1;i<=npar;i++) { 
           for(m=-1; m <=nlstate+ndeath; m++)      for (j=1;j<=npar;j++) { 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        printf("%.3e ",hess[i][j]);
         if(i <= (int) agemax)        fprintf(ficlog,"%.3e ",hess[i][j]);
           fprintf(ficresp,"\n");      }
         printf("\n");      printf("\n");
       }      fprintf(ficlog,"\n");
     }    }
   }  
   dateintmean=dateintsum/k2cpt;    /* Recompute Inverse */
      for (i=1;i<=npar;i++)
   fclose(ficresp);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    ludcmp(a,npar,indx,&pd);
   free_vector(pp,1,nlstate);  
      /*  printf("\n#Hessian matrix recomputed#\n");
   /* End of Freq */  
 }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
 /************ Prevalence ********************/      x[j]=1;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      lubksb(a,npar,indx,x);
 {  /* Some frequencies */      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        printf("%.3e ",y[i][j]);
   double ***freq; /* Frequencies */        fprintf(ficlog,"%.3e ",y[i][j]);
   double *pp;      }
   double pos, k2;      printf("\n");
       fprintf(ficlog,"\n");
   pp=vector(1,nlstate);    }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    */
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    free_matrix(a,1,npar,1,npar);
   j1=0;    free_matrix(y,1,npar,1,npar);
      free_vector(x,1,npar);
   j=cptcoveff;    free_ivector(indx,1,npar);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    free_matrix(hess,1,npar,1,npar);
    
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  }
       j1++;  
        /*************** hessian matrix ****************/
       for (i=-1; i<=nlstate+ndeath; i++)    double hessii( double x[], double delta, int theta, double delti[])
         for (jk=-1; jk<=nlstate+ndeath; jk++)    {
           for(m=agemin; m <= agemax+3; m++)    int i;
             freq[i][jk][m]=0;    int l=1, lmax=20;
          double k1,k2;
       for (i=1; i<=imx; i++) {    double p2[NPARMAX+1];
         bool=1;    double res;
         if  (cptcovn>0) {    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           for (z1=1; z1<=cptcoveff; z1++)    double fx;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    int k=0,kmax=10;
               bool=0;    double l1;
         }  
         if (bool==1) {    fx=func(x);
           for(m=firstpass; m<=lastpass; m++){    for (i=1;i<=npar;i++) p2[i]=x[i];
             k2=anint[m][i]+(mint[m][i]/12.);    for(l=0 ; l <=lmax; l++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      l1=pow(10,l);
               if(agev[m][i]==0) agev[m][i]=agemax+1;      delts=delt;
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for(k=1 ; k <kmax; k=k+1){
               if (m<lastpass) {        delt = delta*(l1*k);
                 if (calagedate>0)        p2[theta]=x[theta] +delt;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        k1=func(p2)-fx;
                 else        p2[theta]=x[theta]-delt;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        k2=func(p2)-fx;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        /*res= (k1-2.0*fx+k2)/delt/delt; */
               }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
             }        
           }  #ifdef DEBUG
         }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(i=(int)agemin; i <= (int)agemax+3; i++){  #endif
         for(jk=1; jk <=nlstate ; jk++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             pp[jk] += freq[jk][m][i];          k=kmax;
         }        }
         for(jk=1; jk <=nlstate ; jk++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           for(m=-1, pos=0; m <=0 ; m++)          k=kmax; l=lmax*10.;
             pos += freq[jk][m][i];        }
         }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                  delts=delt;
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      }
             pp[jk] += freq[jk][m][i];    }
         }    delti[theta]=delts;
            return res; 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    
          }
         for(jk=1; jk <=nlstate ; jk++){      
           if( i <= (int) agemax){  double hessij( double x[], double delti[], int thetai,int thetaj)
             if(pos>=1.e-5){  {
               probs[i][jk][j1]= pp[jk]/pos;    int i;
             }    int l=1, l1, lmax=20;
           }    double k1,k2,k3,k4,res,fx;
         }    double p2[NPARMAX+1];
            int k;
       }  
     }    fx=func(x);
   }    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
        p2[thetai]=x[thetai]+delti[thetai]/k;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   free_vector(pp,1,nlstate);      k1=func(p2)-fx;
      
 }  /* End of Freq */      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 /************* Waves Concatenation ***************/      k2=func(p2)-fx;
     
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      p2[thetai]=x[thetai]-delti[thetai]/k;
 {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      k3=func(p2)-fx;
      Death is a valid wave (if date is known).    
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      p2[thetai]=x[thetai]-delti[thetai]/k;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      and mw[mi+1][i]. dh depends on stepm.      k4=func(p2)-fx;
      */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
   int i, mi, m;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      double sum=0., jmean=0.;*/  #endif
     }
   int j, k=0,jk, ju, jl;    return res;
   double sum=0.;  }
   jmin=1e+5;  
   jmax=-1;  /************** Inverse of matrix **************/
   jmean=0.;  void ludcmp(double **a, int n, int *indx, double *d) 
   for(i=1; i<=imx; i++){  { 
     mi=0;    int i,imax,j,k; 
     m=firstpass;    double big,dum,sum,temp; 
     while(s[m][i] <= nlstate){    double *vv; 
       if(s[m][i]>=1)   
         mw[++mi][i]=m;    vv=vector(1,n); 
       if(m >=lastpass)    *d=1.0; 
         break;    for (i=1;i<=n;i++) { 
       else      big=0.0; 
         m++;      for (j=1;j<=n;j++) 
     }/* end while */        if ((temp=fabs(a[i][j])) > big) big=temp; 
     if (s[m][i] > nlstate){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       mi++;     /* Death is another wave */      vv[i]=1.0/big; 
       /* if(mi==0)  never been interviewed correctly before death */    } 
          /* Only death is a correct wave */    for (j=1;j<=n;j++) { 
       mw[mi][i]=m;      for (i=1;i<j;i++) { 
     }        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     wav[i]=mi;        a[i][j]=sum; 
     if(mi==0)      } 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      big=0.0; 
   }      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
   for(i=1; i<=imx; i++){        for (k=1;k<j;k++) 
     for(mi=1; mi<wav[i];mi++){          sum -= a[i][k]*a[k][j]; 
       if (stepm <=0)        a[i][j]=sum; 
         dh[mi][i]=1;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       else{          big=dum; 
         if (s[mw[mi+1][i]][i] > nlstate) {          imax=i; 
           if (agedc[i] < 2*AGESUP) {        } 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      } 
           if(j==0) j=1;  /* Survives at least one month after exam */      if (j != imax) { 
           k=k+1;        for (k=1;k<=n;k++) { 
           if (j >= jmax) jmax=j;          dum=a[imax][k]; 
           if (j <= jmin) jmin=j;          a[imax][k]=a[j][k]; 
           sum=sum+j;          a[j][k]=dum; 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        } 
           }        *d = -(*d); 
         }        vv[imax]=vv[j]; 
         else{      } 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      indx[j]=imax; 
           k=k+1;      if (a[j][j] == 0.0) a[j][j]=TINY; 
           if (j >= jmax) jmax=j;      if (j != n) { 
           else if (j <= jmin)jmin=j;        dum=1.0/(a[j][j]); 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
           sum=sum+j;      } 
         }    } 
         jk= j/stepm;    free_vector(vv,1,n);  /* Doesn't work */
         jl= j -jk*stepm;  ;
         ju= j -(jk+1)*stepm;  } 
         if(jl <= -ju)  
           dh[mi][i]=jk;  void lubksb(double **a, int n, int *indx, double b[]) 
         else  { 
           dh[mi][i]=jk+1;    int i,ii=0,ip,j; 
         if(dh[mi][i]==0)    double sum; 
           dh[mi][i]=1; /* At least one step */   
       }    for (i=1;i<=n;i++) { 
     }      ip=indx[i]; 
   }      sum=b[ip]; 
   jmean=sum/k;      b[ip]=b[i]; 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      if (ii) 
  }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 /*********** Tricode ****************************/      else if (sum) ii=i; 
 void tricode(int *Tvar, int **nbcode, int imx)      b[i]=sum; 
 {    } 
   int Ndum[20],ij=1, k, j, i;    for (i=n;i>=1;i--) { 
   int cptcode=0;      sum=b[i]; 
   cptcoveff=0;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        b[i]=sum/a[i][i]; 
   for (k=0; k<19; k++) Ndum[k]=0;    } 
   for (k=1; k<=7; k++) ncodemax[k]=0;  } 
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  /************ Frequencies ********************/
     for (i=1; i<=imx; i++) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
       ij=(int)(covar[Tvar[j]][i]);  {  /* Some frequencies */
       Ndum[ij]++;    
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       if (ij > cptcode) cptcode=ij;    int first;
     }    double ***freq; /* Frequencies */
     double *pp, **prop;
     for (i=0; i<=cptcode; i++) {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       if(Ndum[i]!=0) ncodemax[j]++;    FILE *ficresp;
     }    char fileresp[FILENAMELENGTH];
     ij=1;    
     pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
     for (i=1; i<=ncodemax[j]; i++) {    strcpy(fileresp,"p");
       for (k=0; k<=19; k++) {    strcat(fileresp,fileres);
         if (Ndum[k] != 0) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
           nbcode[Tvar[j]][ij]=k;      printf("Problem with prevalence resultfile: %s\n", fileresp);
                fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           ij++;      exit(0);
         }    }
         if (ij > ncodemax[j]) break;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
       }      j1=0;
     }    
   }      j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
  for (k=0; k<19; k++) Ndum[k]=0;  
     first=1;
  for (i=1; i<=ncovmodel-2; i++) {  
       ij=Tvar[i];    for(k1=1; k1<=j;k1++){
       Ndum[ij]++;      for(i1=1; i1<=ncodemax[k1];i1++){
     }        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
  ij=1;          scanf("%d", i);*/
  for (i=1; i<=10; i++) {        for (i=-1; i<=nlstate+ndeath; i++)  
    if((Ndum[i]!=0) && (i<=ncovcol)){          for (jk=-1; jk<=nlstate+ndeath; jk++)  
      Tvaraff[ij]=i;            for(m=iagemin; m <= iagemax+3; m++)
      ij++;              freq[i][jk][m]=0;
    }  
  }      for (i=1; i<=nlstate; i++)  
          for(m=iagemin; m <= iagemax+3; m++)
     cptcoveff=ij-1;          prop[i][m]=0;
 }        
         dateintsum=0;
 /*********** Health Expectancies ****************/        k2cpt=0;
         for (i=1; i<=imx; i++) {
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          bool=1;
           if  (cptcovn>0) {
 {            for (z1=1; z1<=cptcoveff; z1++) 
   /* Health expectancies */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;                bool=0;
   double age, agelim, hf;          }
   double ***p3mat,***varhe;          if (bool==1){
   double **dnewm,**doldm;            for(m=firstpass; m<=lastpass; m++){
   double *xp;              k2=anint[m][i]+(mint[m][i]/12.);
   double **gp, **gm;              if ((k2>=dateprev1) && (k2<=dateprev2)) {
   double ***gradg, ***trgradg;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int theta;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);                if (m<lastpass) {
   xp=vector(1,npar);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   dnewm=matrix(1,nlstate*2,1,npar);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   doldm=matrix(1,nlstate*2,1,nlstate*2);                }
                  
   fprintf(ficreseij,"# Health expectancies\n");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   fprintf(ficreseij,"# Age");                  dateintsum=dateintsum+k2;
   for(i=1; i<=nlstate;i++)                  k2cpt++;
     for(j=1; j<=nlstate;j++)                }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);              }
   fprintf(ficreseij,"\n");            }
           }
   if(estepm < stepm){        }
     printf ("Problem %d lower than %d\n",estepm, stepm);         
   }        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months        if  (cptcovn>0) {
    * This is mainly to measure the difference between two models: for example          fprintf(ficresp, "\n#********** Variable "); 
    * if stepm=24 months pijx are given only every 2 years and by summing them          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    * we are calculating an estimate of the Life Expectancy assuming a linear          fprintf(ficresp, "**********\n#");
    * progression inbetween and thus overestimating or underestimating according        }
    * to the curvature of the survival function. If, for the same date, we        for(i=1; i<=nlstate;i++) 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
    * to compare the new estimate of Life expectancy with the same linear        fprintf(ficresp, "\n");
    * hypothesis. A more precise result, taking into account a more precise        
    * curvature will be obtained if estepm is as small as stepm. */        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
   /* For example we decided to compute the life expectancy with the smallest unit */            fprintf(ficlog,"Total");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          }else{
      nhstepm is the number of hstepm from age to agelim            if(first==1){
      nstepm is the number of stepm from age to agelin.              first=0;
      Look at hpijx to understand the reason of that which relies in memory size              printf("See log file for details...\n");
      and note for a fixed period like estepm months */            }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            fprintf(ficlog,"Age %d", i);
      survival function given by stepm (the optimization length). Unfortunately it          }
      means that if the survival funtion is printed only each two years of age and if          for(jk=1; jk <=nlstate ; jk++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
      results. So we changed our mind and took the option of the best precision.              pp[jk] += freq[jk][m][i]; 
   */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   agelim=AGESUP;              pos += freq[jk][m][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            if(pp[jk]>=1.e-10){
     /* nhstepm age range expressed in number of stepm */              if(first==1){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */              }
     /* if (stepm >= YEARM) hstepm=1;*/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            }else{
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if(first==1)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     gp=matrix(0,nhstepm,1,nlstate*2);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     gm=matrix(0,nhstepm,1,nlstate*2);            }
           }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          for(jk=1; jk <=nlstate ; jk++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                pp[jk] += freq[jk][m][i];
           }       
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
     /* Computing Variances of health expectancies */            posprop += prop[jk][i];
           }
      for(theta=1; theta <=npar; theta++){          for(jk=1; jk <=nlstate ; jk++){
       for(i=1; i<=npar; i++){            if(pos>=1.e-5){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              }else{
       cptj=0;              if(first==1)
       for(j=1; j<= nlstate; j++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for(i=1; i<=nlstate; i++){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           cptj=cptj+1;            }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            if( i <= iagemax){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              if(pos>=1.e-5){
           }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         }                probs[i][jk][j1]= pp[jk]/pos;
       }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                    }
                    else
       for(i=1; i<=npar; i++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
                
       cptj=0;          for(jk=-1; jk <=nlstate+ndeath; jk++)
       for(j=1; j<= nlstate; j++){            for(m=-1; m <=nlstate+ndeath; m++)
         for(i=1;i<=nlstate;i++){              if(freq[jk][m][i] !=0 ) {
           cptj=cptj+1;              if(first==1)
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           }              }
         }          if(i <= iagemax)
       }            fprintf(ficresp,"\n");
       for(j=1; j<= nlstate*2; j++)          if(first==1)
         for(h=0; h<=nhstepm-1; h++){            printf("Others in log...\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          fprintf(ficlog,"\n");
         }        }
      }      }
        }
 /* End theta */    dateintmean=dateintsum/k2cpt; 
    
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    fclose(ficresp);
     free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
      for(h=0; h<=nhstepm-1; h++)    free_vector(pp,1,nlstate);
       for(j=1; j<=nlstate*2;j++)    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         for(theta=1; theta <=npar; theta++)    /* End of Freq */
           trgradg[h][j][theta]=gradg[h][theta][j];  }
        
   /************ Prevalence ********************/
      for(i=1;i<=nlstate*2;i++)  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       for(j=1;j<=nlstate*2;j++)  {  
         varhe[i][j][(int)age] =0.;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
      printf("%d|",(int)age);fflush(stdout);       We still use firstpass and lastpass as another selection.
      for(h=0;h<=nhstepm-1;h++){    */
       for(k=0;k<=nhstepm-1;k++){   
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    double ***freq; /* Frequencies */
         for(i=1;i<=nlstate*2;i++)    double *pp, **prop;
           for(j=1;j<=nlstate*2;j++)    double pos,posprop; 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    double  y2; /* in fractional years */
       }    int iagemin, iagemax;
     }  
     /* Computing expectancies */    iagemin= (int) agemin;
     for(i=1; i<=nlstate;i++)    iagemax= (int) agemax;
       for(j=1; j<=nlstate;j++)    /*pp=vector(1,nlstate);*/
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
              j1=0;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    
     j=cptcoveff;
         }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
     fprintf(ficreseij,"%3.0f",age );    for(k1=1; k1<=j;k1++){
     cptj=0;      for(i1=1; i1<=ncodemax[k1];i1++){
     for(i=1; i<=nlstate;i++)        j1++;
       for(j=1; j<=nlstate;j++){        
         cptj++;        for (i=1; i<=nlstate; i++)  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          for(m=iagemin; m <= iagemax+3; m++)
       }            prop[i][m]=0.0;
     fprintf(ficreseij,"\n");       
            for (i=1; i<=imx; i++) { /* Each individual */
     free_matrix(gm,0,nhstepm,1,nlstate*2);          bool=1;
     free_matrix(gp,0,nhstepm,1,nlstate*2);          if  (cptcovn>0) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);            for (z1=1; z1<=cptcoveff; z1++) 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                bool=0;
   }          } 
   printf("\n");          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   free_vector(xp,1,npar);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   free_matrix(dnewm,1,nlstate*2,1,npar);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
 /************ Variance ******************/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 {                  prop[s[m][i]][iagemax+3] += weight[i]; 
   /* Variance of health expectancies */                } 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              }
   double **newm;            } /* end selection of waves */
   double **dnewm,**doldm;          }
   int i, j, nhstepm, hstepm, h, nstepm ;        }
   int k, cptcode;        for(i=iagemin; i <= iagemax+3; i++){  
   double *xp;          
   double **gp, **gm;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   double ***gradg, ***trgradg;            posprop += prop[jk][i]; 
   double ***p3mat;          } 
   double age,agelim, hf;  
   int theta;          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");              if(posprop>=1.e-5){ 
   fprintf(ficresvij,"# Age");                probs[i][jk][j1]= prop[jk][i]/posprop;
   for(i=1; i<=nlstate;i++)              } 
     for(j=1; j<=nlstate;j++)            } 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          }/* end jk */ 
   fprintf(ficresvij,"\n");        }/* end i */ 
       } /* end i1 */
   xp=vector(1,npar);    } /* end k1 */
   dnewm=matrix(1,nlstate,1,npar);    
   doldm=matrix(1,nlstate,1,nlstate);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      /*free_vector(pp,1,nlstate);*/
   if(estepm < stepm){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     printf ("Problem %d lower than %d\n",estepm, stepm);  }  /* End of prevalence */
   }  
   else  hstepm=estepm;    /************* Waves Concatenation ***************/
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      nhstepm is the number of hstepm from age to agelim  {
      nstepm is the number of stepm from age to agelin.    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
      Look at hpijx to understand the reason of that which relies in memory size       Death is a valid wave (if date is known).
      and note for a fixed period like k years */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      survival function given by stepm (the optimization length). Unfortunately it       and mw[mi+1][i]. dh depends on stepm.
      means that if the survival funtion is printed only each two years of age and if       */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.    int i, mi, m;
   */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       double sum=0., jmean=0.;*/
   agelim = AGESUP;    int first;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int j, k=0,jk, ju, jl;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double sum=0.;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    first=0;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    jmin=1e+5;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    jmax=-1;
     gp=matrix(0,nhstepm,1,nlstate);    jmean=0.;
     gm=matrix(0,nhstepm,1,nlstate);    for(i=1; i<=imx; i++){
       mi=0;
     for(theta=1; theta <=npar; theta++){      m=firstpass;
       for(i=1; i<=npar; i++){ /* Computes gradient */      while(s[m][i] <= nlstate){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if(s[m][i]>=1)
       }          mw[++mi][i]=m;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          if(m >=lastpass)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          break;
         else
       if (popbased==1) {          m++;
         for(i=1; i<=nlstate;i++)      }/* end while */
           prlim[i][i]=probs[(int)age][i][ij];      if (s[m][i] > nlstate){
       }        mi++;     /* Death is another wave */
          /* if(mi==0)  never been interviewed correctly before death */
       for(j=1; j<= nlstate; j++){           /* Only death is a correct wave */
         for(h=0; h<=nhstepm; h++){        mw[mi][i]=m;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }      wav[i]=mi;
       }      if(mi==0){
            if(first==0){
       for(i=1; i<=npar; i++) /* Computes gradient */          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          first=1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if(first==1){
            fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)      } /* end mi==0 */
           prlim[i][i]=probs[(int)age][i][ij];    } /* End individuals */
       }  
     for(i=1; i<=imx; i++){
       for(j=1; j<= nlstate; j++){      for(mi=1; mi<wav[i];mi++){
         for(h=0; h<=nhstepm; h++){        if (stepm <=0)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          dh[mi][i]=1;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        else{
         }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       }            if (agedc[i] < 2*AGESUP) {
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       for(j=1; j<= nlstate; j++)            if(j==0) j=1;  /* Survives at least one month after exam */
         for(h=0; h<=nhstepm; h++){            k=k+1;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            if (j >= jmax) jmax=j;
         }            if (j <= jmin) jmin=j;
     } /* End theta */            sum=sum+j;
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(h=0; h<=nhstepm; h++)            }
       for(j=1; j<=nlstate;j++)          }
         for(theta=1; theta <=npar; theta++)          else{
           trgradg[h][j][theta]=gradg[h][theta][j];            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            k=k+1;
     for(i=1;i<=nlstate;i++)            if (j >= jmax) jmax=j;
       for(j=1;j<=nlstate;j++)            else if (j <= jmin)jmin=j;
         vareij[i][j][(int)age] =0.;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for(h=0;h<=nhstepm;h++){            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(k=0;k<=nhstepm;k++){            sum=sum+j;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          jk= j/stepm;
         for(i=1;i<=nlstate;i++)          jl= j -jk*stepm;
           for(j=1;j<=nlstate;j++)          ju= j -(jk+1)*stepm;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          if(mle <=1){ 
       }            if(jl==0){
     }              dh[mi][i]=jk;
               bh[mi][i]=0;
     fprintf(ficresvij,"%.0f ",age );            }else{ /* We want a negative bias in order to only have interpolation ie
     for(i=1; i<=nlstate;i++)                    * at the price of an extra matrix product in likelihood */
       for(j=1; j<=nlstate;j++){              dh[mi][i]=jk+1;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              bh[mi][i]=ju;
       }            }
     fprintf(ficresvij,"\n");          }else{
     free_matrix(gp,0,nhstepm,1,nlstate);            if(jl <= -ju){
     free_matrix(gm,0,nhstepm,1,nlstate);              dh[mi][i]=jk;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              bh[mi][i]=jl;       /* bias is positive if real duration
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                                   * is higher than the multiple of stepm and negative otherwise.
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                                   */
   } /* End age */            }
              else{
   free_vector(xp,1,npar);              dh[mi][i]=jk+1;
   free_matrix(doldm,1,nlstate,1,npar);              bh[mi][i]=ju;
   free_matrix(dnewm,1,nlstate,1,nlstate);            }
             if(dh[mi][i]==0){
 }              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
 /************ Variance of prevlim ******************/              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            }
 {          }
   /* Variance of prevalence limit */        } /* end if mle */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      } /* end wave */
   double **newm;    }
   double **dnewm,**doldm;    jmean=sum/k;
   int i, j, nhstepm, hstepm;    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   int k, cptcode;    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   double *xp;   }
   double *gp, *gm;  
   double **gradg, **trgradg;  /*********** Tricode ****************************/
   double age,agelim;  void tricode(int *Tvar, int **nbcode, int imx)
   int theta;  {
        
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    int Ndum[20],ij=1, k, j, i, maxncov=19;
   fprintf(ficresvpl,"# Age");    int cptcode=0;
   for(i=1; i<=nlstate;i++)    cptcoveff=0; 
       fprintf(ficresvpl," %1d-%1d",i,i);   
   fprintf(ficresvpl,"\n");    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   doldm=matrix(1,nlstate,1,nlstate);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                   modality*/ 
   hstepm=1*YEARM; /* Every year of age */        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        Ndum[ij]++; /*store the modality */
   agelim = AGESUP;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                                         Tvar[j]. If V=sex and male is 0 and 
     if (stepm >= YEARM) hstepm=1;                                         female is 1, then  cptcode=1.*/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);      for (i=0; i<=cptcode; i++) {
     gm=vector(1,nlstate);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */      ij=1; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1; i<=ncodemax[j]; i++) {
       }        for (k=0; k<= maxncov; k++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if (Ndum[k] != 0) {
       for(i=1;i<=nlstate;i++)            nbcode[Tvar[j]][ij]=k; 
         gp[i] = prlim[i][i];            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                
       for(i=1; i<=npar; i++) /* Computes gradient */            ij++;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if (ij > ncodemax[j]) break; 
       for(i=1;i<=nlstate;i++)        }  
         gm[i] = prlim[i][i];      } 
     }  
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];   for (k=0; k< maxncov; k++) Ndum[k]=0;
     } /* End theta */  
    for (i=1; i<=ncovmodel-2; i++) { 
     trgradg =matrix(1,nlstate,1,npar);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
     for(j=1; j<=nlstate;j++)     Ndum[ij]++;
       for(theta=1; theta <=npar; theta++)   }
         trgradg[j][theta]=gradg[theta][j];  
    ij=1;
     for(i=1;i<=nlstate;i++)   for (i=1; i<= maxncov; i++) {
       varpl[i][(int)age] =0.;     if((Ndum[i]!=0) && (i<=ncovcol)){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);       Tvaraff[ij]=i; /*For printing */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);       ij++;
     for(i=1;i<=nlstate;i++)     }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */   }
    
     fprintf(ficresvpl,"%.0f ",age );   cptcoveff=ij-1; /*Number of simple covariates*/
     for(i=1; i<=nlstate;i++)  }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");  /*********** Health Expectancies ****************/
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);  {
   } /* End age */    /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   free_vector(xp,1,npar);    double age, agelim, hf;
   free_matrix(doldm,1,nlstate,1,npar);    double ***p3mat,***varhe;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double **dnewm,**doldm;
     double *xp;
 }    double **gp, **gm;
     double ***gradg, ***trgradg;
 /************ Variance of one-step probabilities  ******************/    int theta;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   int i, j,  i1, k1, l1;    xp=vector(1,npar);
   int k2, l2, j1,  z1;    dnewm=matrix(1,nlstate*nlstate,1,npar);
   int k=0,l, cptcode;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   int first=1;    
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    fprintf(ficreseij,"# Health expectancies\n");
   double **dnewm,**doldm;    fprintf(ficreseij,"# Age");
   double *xp;    for(i=1; i<=nlstate;i++)
   double *gp, *gm;      for(j=1; j<=nlstate;j++)
   double **gradg, **trgradg;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   double **mu;    fprintf(ficreseij,"\n");
   double age,agelim, cov[NCOVMAX];  
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    if(estepm < stepm){
   int theta;      printf ("Problem %d lower than %d\n",estepm, stepm);
   char fileresprob[FILENAMELENGTH];    }
   char fileresprobcov[FILENAMELENGTH];    else  hstepm=estepm;   
   char fileresprobcor[FILENAMELENGTH];    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   double ***varpij;     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   strcpy(fileresprob,"prob");     * progression in between and thus overestimating or underestimating according
   strcat(fileresprob,fileres);     * to the curvature of the survival function. If, for the same date, we 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     printf("Problem with resultfile: %s\n", fileresprob);     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
   strcpy(fileresprobcov,"probcov");     * curvature will be obtained if estepm is as small as stepm. */
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    /* For example we decided to compute the life expectancy with the smallest unit */
     printf("Problem with resultfile: %s\n", fileresprobcov);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
   strcpy(fileresprobcor,"probcor");       nstepm is the number of stepm from age to agelin. 
   strcat(fileresprobcor,fileres);       Look at hpijx to understand the reason of that which relies in memory size
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {       and note for a fixed period like estepm months */
     printf("Problem with resultfile: %s\n", fileresprobcor);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);       means that if the survival funtion is printed only each two years of age and if
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);       results. So we changed our mind and took the option of the best precision.
      */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fprintf(ficresprob,"# Age");  
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    agelim=AGESUP;
   fprintf(ficresprobcov,"# Age");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      /* nhstepm age range expressed in number of stepm */
   fprintf(ficresprobcov,"# Age");      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   for(i=1; i<=nlstate;i++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(j=1; j<=(nlstate+ndeath);j++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     }    
   fprintf(ficresprob,"\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   fprintf(ficresprobcov,"\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   fprintf(ficresprobcor,"\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   xp=vector(1,npar);   
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      /* Computing Variances of health expectancies */
   first=1;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {       for(theta=1; theta <=npar; theta++){
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        for(i=1; i<=npar; i++){ 
     exit(0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   else{        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fprintf(ficgp,"\n# Routine varprob");    
   }        cptj=0;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        for(j=1; j<= nlstate; j++){
     printf("Problem with html file: %s\n", optionfilehtm);          for(i=1; i<=nlstate; i++){
     exit(0);            cptj=cptj+1;
   }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   else{              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");            }
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          }
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        }
        
   }       
   cov[1]=1;        for(i=1; i<=npar; i++) 
   j=cptcoveff;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   j1=0;        
   for(k1=1; k1<=1;k1++){        cptj=0;
     for(i1=1; i1<=ncodemax[k1];i1++){        for(j=1; j<= nlstate; j++){
     j1++;          for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
     if  (cptcovn>0) {            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficresprob, "\n#********** Variable ");  
       fprintf(ficresprobcov, "\n#********** Variable ");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       fprintf(ficgp, "\n#********** Variable ");            }
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");          }
       fprintf(ficresprobcor, "\n#********** Variable ");        }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1; j<= nlstate*nlstate; j++)
       fprintf(ficresprob, "**********\n#");          for(h=0; h<=nhstepm-1; h++){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficresprobcov, "**********\n#");          }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       } 
       fprintf(ficgp, "**********\n#");     
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /* End theta */
       fprintf(ficgp, "**********\n#");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       fprintf(fichtm, "**********\n#");  
     }       for(h=0; h<=nhstepm-1; h++)
            for(j=1; j<=nlstate*nlstate;j++)
       for (age=bage; age<=fage; age ++){          for(theta=1; theta <=npar; theta++)
         cov[2]=age;            trgradg[h][j][theta]=gradg[h][theta][j];
         for (k=1; k<=cptcovn;k++) {       
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }       for(i=1;i<=nlstate*nlstate;i++)
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for(j=1;j<=nlstate*nlstate;j++)
         for (k=1; k<=cptcovprod;k++)          varhe[i][j][(int)age] =0.;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
               printf("%d|",(int)age);fflush(stdout);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);       for(h=0;h<=nhstepm-1;h++){
         gp=vector(1,(nlstate)*(nlstate+ndeath));        for(k=0;k<=nhstepm-1;k++){
         gm=vector(1,(nlstate)*(nlstate+ndeath));          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
              matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         for(theta=1; theta <=npar; theta++){          for(i=1;i<=nlstate*nlstate;i++)
           for(i=1; i<=npar; i++)            for(j=1;j<=nlstate*nlstate;j++)
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
                  }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      }
                /* Computing expectancies */
           k=0;      for(i=1; i<=nlstate;i++)
           for(i=1; i<= (nlstate); i++){        for(j=1; j<=nlstate;j++)
             for(j=1; j<=(nlstate+ndeath);j++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               k=k+1;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
               gp[k]=pmmij[i][j];            
             }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           }  
                    }
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficreseij,"%3.0f",age );
          cptj=0;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(i=1; i<=nlstate;i++)
           k=0;        for(j=1; j<=nlstate;j++){
           for(i=1; i<=(nlstate); i++){          cptj++;
             for(j=1; j<=(nlstate+ndeath);j++){          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
               k=k+1;        }
               gm[k]=pmmij[i][j];      fprintf(ficreseij,"\n");
             }     
           }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
            free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    printf("\n");
           for(theta=1; theta <=npar; theta++)    fprintf(ficlog,"\n");
             trgradg[j][theta]=gradg[theta][j];  
            free_vector(xp,1,npar);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
            free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         pmij(pmmij,cov,ncovmodel,x,nlstate);  }
          
         k=0;  /************ Variance ******************/
         for(i=1; i<=(nlstate); i++){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           for(j=1; j<=(nlstate+ndeath);j++){  {
             k=k+1;    /* Variance of health expectancies */
             mu[k][(int) age]=pmmij[i][j];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           }    /* double **newm;*/
         }    double **dnewm,**doldm;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    double **dnewmp,**doldmp;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    int i, j, nhstepm, hstepm, h, nstepm ;
             varpij[i][j][(int)age] = doldm[i][j];    int k, cptcode;
     double *xp;
         /*printf("\n%d ",(int)age);    double **gp, **gm;  /* for var eij */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double ***gradg, ***trgradg; /*for var eij */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    double **gradgp, **trgradgp; /* for var p point j */
      }*/    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         fprintf(ficresprob,"\n%d ",(int)age);    double ***p3mat;
         fprintf(ficresprobcov,"\n%d ",(int)age);    double age,agelim, hf;
         fprintf(ficresprobcor,"\n%d ",(int)age);    double ***mobaverage;
     int theta;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    char digit[4];
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    char digitp[25];
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    char fileresprobmorprev[FILENAMELENGTH];
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }    if(popbased==1){
         i=0;      if(mobilav!=0)
         for (k=1; k<=(nlstate);k++){        strcpy(digitp,"-populbased-mobilav-");
           for (l=1; l<=(nlstate+ndeath);l++){      else strcpy(digitp,"-populbased-nomobil-");
             i=i++;    }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    else 
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      strcpy(digitp,"-stablbased-");
             for (j=1; j<=i;j++){  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    if (mobilav!=0) {
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         }/* end of loop for state */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       } /* end of loop for age */      }
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    }
       for (k1=1; k1<=(nlstate);k1++){  
         for (l1=1; l1<=(nlstate+ndeath);l1++){    strcpy(fileresprobmorprev,"prmorprev"); 
           if(l1==k1) continue;    sprintf(digit,"%-d",ij);
           i=(k1-1)*(nlstate+ndeath)+l1;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           for (k2=1; k2<=(nlstate);k2++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
             for (l2=1; l2<=(nlstate+ndeath);l2++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
               if(l2==k2) continue;    strcat(fileresprobmorprev,fileres);
               j=(k2-1)*(nlstate+ndeath)+l2;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
               if(j<=i) continue;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               for (age=bage; age<=fage; age ++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                 if ((int)age %5==0){    }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
                   mu1=mu[i][(int) age]/stepm*YEARM ;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                   mu2=mu[j][(int) age]/stepm*YEARM;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   /* Computing eigen value of matrix of covariance */      fprintf(ficresprobmorprev," p.%-d SE",j);
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      for(i=1; i<=nlstate;i++)
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    }  
                   /* Eigen vectors */    fprintf(ficresprobmorprev,"\n");
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
                   v21=sqrt(1.-v11*v11);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
                   v12=-v21;      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
                   v22=v11;      exit(0);
                   /*printf(fignu*/    }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    else{
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */      fprintf(ficgp,"\n# Routine varevsij");
                   if(first==1){    }
                     first=0;    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
                     fprintf(ficgp,"\nset parametric;set nolabel");      printf("Problem with html file: %s\n", optionfilehtm);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      exit(0);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);    }
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);    else{
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                   }else{    fprintf(ficresvij,"# Age");
                     first=0;    for(i=1; i<=nlstate;i++)
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      for(j=1; j<=nlstate;j++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    fprintf(ficresvij,"\n");
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    xp=vector(1,npar);
                   }/* if first */    dnewm=matrix(1,nlstate,1,npar);
                 } /* age mod 5 */    doldm=matrix(1,nlstate,1,nlstate);
               } /* end loop age */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               first=1;  
             } /*l12 */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           } /* k12 */    gpp=vector(nlstate+1,nlstate+ndeath);
         } /*l1 */    gmp=vector(nlstate+1,nlstate+ndeath);
       }/* k1 */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     } /* loop covariates */    
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    if(estepm < stepm){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      printf ("Problem %d lower than %d\n",estepm, stepm);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    else  hstepm=estepm;   
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /* For example we decided to compute the life expectancy with the smallest unit */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
   free_vector(xp,1,npar);       nstepm is the number of stepm from age to agelin. 
   fclose(ficresprob);       Look at hpijx to understand the reason of that which relies in memory size
   fclose(ficresprobcov);       and note for a fixed period like k years */
   fclose(ficresprobcor);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fclose(ficgp);       survival function given by stepm (the optimization length). Unfortunately it
   fclose(fichtm);       means that if the survival funtion is printed every two years of age and if
 }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
 /******************* Printing html file ***********/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    agelim = AGESUP;
                   int lastpass, int stepm, int weightopt, char model[],\    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   int popforecast, int estepm ,\      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   double jprev1, double mprev1,double anprev1, \      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   double jprev2, double mprev2,double anprev2){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   int jj1, k1, i1, cpt;      gp=matrix(0,nhstepm,1,nlstate);
   /*char optionfilehtm[FILENAMELENGTH];*/      gm=matrix(0,nhstepm,1,nlstate);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n          xp[i] = x[i] + (i==theta ?delti[theta]:0);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n        }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  - Life expectancies by age and initial health status (estepm=%2d months):  
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        if (popbased==1) {
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n              prlim[i][i]=probs[(int)age][i][ij];
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          }else{ /* mobilav */ 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            for(i=1; i<=nlstate;i++)
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n              prlim[i][i]=mobaverage[(int)age][i][ij];
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          }
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
  if(popforecast==1) fprintf(fichtm,"\n            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          }
         <br>",fileres,fileres,fileres,fileres);        }
  else        /* This for computing probability of death (h=1 means
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);           computed over hstepm matrices product = hstepm*stepm months) 
 fprintf(fichtm," <li>Graphs</li><p>");           as a weighted average of prlim.
         */
  m=cptcoveff;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
  jj1=0;        }    
  for(k1=1; k1<=m;k1++){        /* end probability of death */
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
      if (cptcovn > 0) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        for (cpt=1; cpt<=cptcoveff;cpt++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);   
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        if (popbased==1) {
      }          if(mobilav ==0){
      /* Pij */            for(i=1; i<=nlstate;i++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>              prlim[i][i]=probs[(int)age][i][ij];
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              }else{ /* mobilav */ 
      /* Quasi-incidences */            for(i=1; i<=nlstate;i++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>              prlim[i][i]=mobaverage[(int)age][i][ij];
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }
        /* Stable prevalence in each health state */        }
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        for(j=1; j<= nlstate; j++){
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for(h=0; h<=nhstepm; h++){
        }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     for(cpt=1; cpt<=nlstate;cpt++) {              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          }
 interval) in state (%d): v%s%d%d.png <br>        }
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          /* This for computing probability of death (h=1 means
      }           computed over hstepm matrices product = hstepm*stepm months) 
      for(cpt=1; cpt<=nlstate;cpt++) {           as a weighted average of prlim.
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>        */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
      }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and           gmp[j] += prlim[i][i]*p3mat[i][j][1];
 health expectancies in states (1) and (2): e%s%d.png<br>        }    
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        /* end probability of death */
    }  
  }        for(j=1; j<= nlstate; j++) /* vareij */
 fclose(fichtm);          for(h=0; h<=nhstepm; h++){
 }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        }
   int ng;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      } /* End theta */
     printf("Problem with file %s",optionfilegnuplot);  
   }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
 #ifdef windows      for(h=0; h<=nhstepm; h++) /* veij */
     fprintf(ficgp,"cd \"%s\" \n",pathc);        for(j=1; j<=nlstate;j++)
 #endif          for(theta=1; theta <=npar; theta++)
 m=pow(2,cptcoveff);            trgradg[h][j][theta]=gradg[h][theta][j];
    
  /* 1eme*/      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   for (cpt=1; cpt<= nlstate ; cpt ++) {        for(theta=1; theta <=npar; theta++)
    for (k1=1; k1<= m ; k1 ++) {          trgradgp[j][theta]=gradgp[theta][j];
     
 #ifdef windows  
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      for(i=1;i<=nlstate;i++)
 #endif        for(j=1;j<=nlstate;j++)
 #ifdef unix          vareij[i][j][(int)age] =0.;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      for(h=0;h<=nhstepm;h++){
 #endif        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 for (i=1; i<= nlstate ; i ++) {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(i=1;i<=nlstate;i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(j=1;j<=nlstate;j++)
 }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        }
     for (i=1; i<= nlstate ; i ++) {      }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* pptj */
 }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
      for (i=1; i<= nlstate ; i ++) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          varppt[j][i]=doldmp[j][i];
 }        /* end ppptj */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      /*  x centered again */
 #ifdef unix      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 #endif   
    }      if (popbased==1) {
   }        if(mobilav ==0){
   /*2 eme*/          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
   for (k1=1; k1<= m ; k1 ++) {        }else{ /* mobilav */ 
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          for(i=1; i<=nlstate;i++)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            prlim[i][i]=mobaverage[(int)age][i][ij];
            }
     for (i=1; i<= nlstate+1 ; i ++) {      }
       k=2*i;               
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      /* This for computing probability of death (h=1 means
       for (j=1; j<= nlstate+1 ; j ++) {         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");         as a weighted average of prlim.
   else fprintf(ficgp," \%%*lf (\%%*lf)");      */
 }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      }    
       for (j=1; j<= nlstate+1 ; j ++) {      /* end probability of death */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 }        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(i=1; i<=nlstate;i++){
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      } 
 }        fprintf(ficresprobmorprev,"\n");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficresvij,"%.0f ",age );
     }      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   /*3eme*/        }
       fprintf(ficresvij,"\n");
   for (k1=1; k1<= m ; k1 ++) {      free_matrix(gp,0,nhstepm,1,nlstate);
     for (cpt=1; cpt<= nlstate ; cpt ++) {      free_matrix(gm,0,nhstepm,1,nlstate);
       k=2+nlstate*(2*cpt-2);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    } /* End age */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    free_vector(gpp,nlstate+1,nlstate+ndeath);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    free_vector(gmp,nlstate+1,nlstate+ndeath);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 */    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       for (i=1; i< nlstate ; i ++) {  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
     }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
   /* CV preval stat */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
     for (k1=1; k1<= m ; k1 ++) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     for (cpt=1; cpt<nlstate ; cpt ++) {  */
       k=3;    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
       for (i=1; i< nlstate ; i ++)    free_matrix(dnewm,1,nlstate,1,npar);
         fprintf(ficgp,"+$%d",k+i+1);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
          free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       l=3+(nlstate+ndeath)*cpt;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    fclose(ficresprobmorprev);
       for (i=1; i< nlstate ; i ++) {    fclose(ficgp);
         l=3+(nlstate+ndeath)*cpt;    fclose(fichtm);
         fprintf(ficgp,"+$%d",l+i+1);  }  
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    /************ Variance of prevlim ******************/
     }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   }    {
      /* Variance of prevalence limit */
   /* proba elementaires */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
    for(i=1,jk=1; i <=nlstate; i++){    double **newm;
     for(k=1; k <=(nlstate+ndeath); k++){    double **dnewm,**doldm;
       if (k != i) {    int i, j, nhstepm, hstepm;
         for(j=1; j <=ncovmodel; j++){    int k, cptcode;
            double *xp;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    double *gp, *gm;
           jk++;    double **gradg, **trgradg;
           fprintf(ficgp,"\n");    double age,agelim;
         }    int theta;
       }     
     }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
    }    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        fprintf(ficresvpl," %1d-%1d",i,i);
      for(jk=1; jk <=m; jk++) {    fprintf(ficresvpl,"\n");
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  
        if (ng==2)    xp=vector(1,npar);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    dnewm=matrix(1,nlstate,1,npar);
        else    doldm=matrix(1,nlstate,1,nlstate);
          fprintf(ficgp,"\nset title \"Probability\"\n");    
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    hstepm=1*YEARM; /* Every year of age */
        i=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
        for(k2=1; k2<=nlstate; k2++) {    agelim = AGESUP;
          k3=i;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          for(k=1; k<=(nlstate+ndeath); k++) {      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
            if (k != k2){      if (stepm >= YEARM) hstepm=1;
              if(ng==2)      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      gradg=matrix(1,npar,1,nlstate);
              else      gp=vector(1,nlstate);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      gm=vector(1,nlstate);
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {      for(theta=1; theta <=npar; theta++){
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(i=1; i<=npar; i++){ /* Computes gradient */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                  ij++;        }
                }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                else        for(i=1;i<=nlstate;i++)
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          gp[i] = prlim[i][i];
              }      
              fprintf(ficgp,")/(1");        for(i=1; i<=npar; i++) /* Computes gradient */
                        xp[i] = x[i] - (i==theta ?delti[theta]:0);
              for(k1=1; k1 <=nlstate; k1++){          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        for(i=1;i<=nlstate;i++)
                ij=1;          gm[i] = prlim[i][i];
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(i=1;i<=nlstate;i++)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                    ij++;      } /* End theta */
                  }  
                  else      trgradg =matrix(1,nlstate,1,npar);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
                }      for(j=1; j<=nlstate;j++)
                fprintf(ficgp,")");        for(theta=1; theta <=npar; theta++)
              }          trgradg[j][theta]=gradg[theta][j];
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      for(i=1;i<=nlstate;i++)
              i=i+ncovmodel;        varpl[i][(int)age] =0.;
            }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
          }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
        }      for(i=1;i<=nlstate;i++)
      }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    }  
    fclose(ficgp);      fprintf(ficresvpl,"%.0f ",age );
 }  /* end gnuplot */      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
 /*************** Moving average **************/      free_vector(gp,1,nlstate);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   int i, cpt, cptcod;      free_matrix(trgradg,1,nlstate,1,npar);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    } /* End age */
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    free_vector(xp,1,npar);
           mobaverage[(int)agedeb][i][cptcod]=0.;    free_matrix(doldm,1,nlstate,1,npar);
        free_matrix(dnewm,1,nlstate,1,nlstate);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){  }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){  /************ Variance of one-step probabilities  ******************/
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
           }  {
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    int i, j=0,  i1, k1, l1, t, tj;
         }    int k2, l2, j1,  z1;
       }    int k=0,l, cptcode;
     }    int first=1, first1;
        double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 }    double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
 /************** Forecasting ******************/    double **gradg, **trgradg;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    double **mu;
      double age,agelim, cov[NCOVMAX];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   int *popage;    int theta;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    char fileresprob[FILENAMELENGTH];
   double *popeffectif,*popcount;    char fileresprobcov[FILENAMELENGTH];
   double ***p3mat;    char fileresprobcor[FILENAMELENGTH];
   char fileresf[FILENAMELENGTH];  
     double ***varpij;
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprob);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   strcpy(fileresf,"f");    }
   strcat(fileresf,fileres);    strcpy(fileresprobcov,"probcov"); 
   if((ficresf=fopen(fileresf,"w"))==NULL) {    strcat(fileresprobcov,fileres);
     printf("Problem with forecast resultfile: %s\n", fileresf);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcov);
   printf("Computing forecasting: result on file '%s' \n", fileresf);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
   if (mobilav==1) {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with resultfile: %s\n", fileresprobcor);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   }    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   if (stepm<=12) stepsize=1;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   agelim=AGESUP;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   hstepm=1;    
   hstepm=hstepm/stepm;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   yp1=modf(dateintmean,&yp);    fprintf(ficresprob,"# Age");
   anprojmean=yp;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   yp2=modf((yp1*12),&yp);    fprintf(ficresprobcov,"# Age");
   mprojmean=yp;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   yp1=modf((yp2*30.5),&yp);    fprintf(ficresprobcov,"# Age");
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;    for(i=1; i<=nlstate;i++)
        for(j=1; j<=(nlstate+ndeath);j++){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
          fprintf(ficresprobcov," p%1d-%1d ",i,j);
   for(cptcov=1;cptcov<=i2;cptcov++){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      }  
       k=k+1;   /* fprintf(ficresprob,"\n");
       fprintf(ficresf,"\n#******");    fprintf(ficresprobcov,"\n");
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficresprobcor,"\n");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   */
       }   xp=vector(1,npar);
       fprintf(ficresf,"******\n");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fprintf(ficresf,"# StartingAge FinalAge");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
          varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
          first=1;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
         fprintf(ficresf,"\n");      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    else{
           nhstepm = nhstepm/hstepm;      fprintf(ficgp,"\n# Routine varprob");
              }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
           oldm=oldms;savm=savms;      printf("Problem with html file: %s\n", optionfilehtm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
              exit(0);
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    else{
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
             }      fprintf(fichtm,"\n");
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
               for(i=1; i<=nlstate;i++) {                    fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
                 if (mobilav==1)      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }    cov[1]=1;
                    tj=cptcoveff;
               }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
               if (h==(int)(calagedate+12*cpt)){    j1=0;
                 fprintf(ficresf," %.3f", kk1);    for(t=1; t<=tj;t++){
                              for(i1=1; i1<=ncodemax[t];i1++){ 
               }        j1++;
             }        if  (cptcovn>0) {
           }          fprintf(ficresprob, "\n#********** Variable "); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresprob, "**********\n#\n");
       }          fprintf(ficresprobcov, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcov, "**********\n#\n");
                  
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fclose(ficresf);          fprintf(ficgp, "**********\n#\n");
 }          
 /************** Forecasting ******************/          
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   int *popage;          
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          fprintf(ficresprobcor, "\n#********** Variable ");    
   double *popeffectif,*popcount;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double ***p3mat,***tabpop,***tabpopprev;          fprintf(ficresprobcor, "**********\n#");    
   char filerespop[FILENAMELENGTH];        }
         
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (age=bage; age<=fage; age ++){ 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          cov[2]=age;
   agelim=AGESUP;          for (k=1; k<=cptcovn;k++) {
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
            }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            for (k=1; k<=cptcovprod;k++)
              cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   strcpy(filerespop,"pop");          
   strcat(filerespop,fileres);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     printf("Problem with forecast resultfile: %s\n", filerespop);          gp=vector(1,(nlstate)*(nlstate+ndeath));
   }          gm=vector(1,(nlstate)*(nlstate+ndeath));
   printf("Computing forecasting: result on file '%s' \n", filerespop);      
           for(theta=1; theta <=npar; theta++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   if (mobilav==1) {            
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     movingaverage(agedeb, fage, ageminpar, mobaverage);            
   }            k=0;
             for(i=1; i<= (nlstate); i++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;              for(j=1; j<=(nlstate+ndeath);j++){
   if (stepm<=12) stepsize=1;                k=k+1;
                  gp[k]=pmmij[i][j];
   agelim=AGESUP;              }
              }
   hstepm=1;            
   hstepm=hstepm/stepm;            for(i=1; i<=npar; i++)
                xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   if (popforecast==1) {      
     if((ficpop=fopen(popfile,"r"))==NULL) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       printf("Problem with population file : %s\n",popfile);exit(0);            k=0;
     }            for(i=1; i<=(nlstate); i++){
     popage=ivector(0,AGESUP);              for(j=1; j<=(nlstate+ndeath);j++){
     popeffectif=vector(0,AGESUP);                k=k+1;
     popcount=vector(0,AGESUP);                gm[k]=pmmij[i][j];
                  }
     i=1;              }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;       
                for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     imx=i;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          }
   }  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   for(cptcov=1;cptcov<=i2;cptcov++){            for(theta=1; theta <=npar; theta++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              trgradg[j][theta]=gradg[theta][j];
       k=k+1;          
       fprintf(ficrespop,"\n#******");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       for(j=1;j<=cptcoveff;j++) {          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       fprintf(ficrespop,"******\n");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       fprintf(ficrespop,"# Age");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");          pmij(pmmij,cov,ncovmodel,x,nlstate);
                
       for (cpt=0; cpt<=0;cpt++) {          k=0;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for(i=1; i<=(nlstate); i++){
                    for(j=1; j<=(nlstate+ndeath);j++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              k=k+1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              mu[k][(int) age]=pmmij[i][j];
           nhstepm = nhstepm/hstepm;            }
                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           oldm=oldms;savm=savms;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                varpij[i][j][(int)age] = doldm[i][j];
          
           for (h=0; h<=nhstepm; h++){          /*printf("\n%d ",(int)age);
             if (h==(int) (calagedate+YEARM*cpt)) {            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             for(j=1; j<=nlstate+ndeath;j++) {            }*/
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                        fprintf(ficresprob,"\n%d ",(int)age);
                 if (mobilav==1)          fprintf(ficresprobcov,"\n%d ",(int)age);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          fprintf(ficresprobcor,"\n%d ",(int)age);
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                 }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
               }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               if (h==(int)(calagedate+12*cpt)){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                   /*fprintf(ficrespop," %.3f", kk1);          }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          i=0;
               }          for (k=1; k<=(nlstate);k++){
             }            for (l=1; l<=(nlstate+ndeath);l++){ 
             for(i=1; i<=nlstate;i++){              i=i++;
               kk1=0.;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                 for(j=1; j<=nlstate;j++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              for (j=1; j<=i;j++){
                 }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
             }              }
             }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          }/* end of loop for state */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        } /* end of loop for age */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* Confidence intervalle of pij  */
         }        /*
       }          fprintf(ficgp,"\nset noparametric;unset label");
            fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   /******/          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        */
           nhstepm = nhstepm/hstepm;  
                  /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        first1=1;
           oldm=oldms;savm=savms;        for (k2=1; k2<=(nlstate);k2++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           for (h=0; h<=nhstepm; h++){            if(l2==k2) continue;
             if (h==(int) (calagedate+YEARM*cpt)) {            j=(k2-1)*(nlstate+ndeath)+l2;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            for (k1=1; k1<=(nlstate);k1++){
             }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
             for(j=1; j<=nlstate+ndeath;j++) {                if(l1==k1) continue;
               kk1=0.;kk2=0;                i=(k1-1)*(nlstate+ndeath)+l1;
               for(i=1; i<=nlstate;i++) {                              if(i<=j) continue;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                    for (age=bage; age<=fage; age ++){ 
               }                  if ((int)age %5==0){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
             }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    mu1=mu[i][(int) age]/stepm*YEARM ;
         }                    mu2=mu[j][(int) age]/stepm*YEARM;
       }                    c12=cv12/sqrt(v1*v2);
    }                    /* Computing eigen value of matrix of covariance */
   }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   if (popforecast==1) {                    /*v21=sqrt(1.-v11*v11); *//* error */
     free_ivector(popage,0,AGESUP);                    v21=(lc1-v1)/cv12*v11;
     free_vector(popeffectif,0,AGESUP);                    v12=-v21;
     free_vector(popcount,0,AGESUP);                    v22=v11;
   }                    tnalp=v21/v11;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    if(first1==1){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                      first1=0;
   fclose(ficrespop);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 }                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 /***********************************************/                    /*printf(fignu*/
 /**************** Main Program *****************/                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 /***********************************************/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
 int main(int argc, char *argv[])                      first=0;
 {                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   double agedeb, agefin,hf;                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   double fret;                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
   double **xi,tmp,delta;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   double dum; /* Dummy variable */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   double ***p3mat;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   int *indx;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   char line[MAXLINE], linepar[MAXLINE];                    }else{
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];                      first=0;
   int firstobs=1, lastobs=10;                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
   int sdeb, sfin; /* Status at beginning and end */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   int c,  h , cpt,l;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   int ju,jl, mi;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   int mobilav=0,popforecast=0;                    }/* if first */
   int hstepm, nhstepm;                  } /* age mod 5 */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
   double bage, fage, age, agelim, agebase;                first=1;
   double ftolpl=FTOL;              } /*l12 */
   double **prlim;            } /* k12 */
   double *severity;          } /*l1 */
   double ***param; /* Matrix of parameters */        }/* k1 */
   double  *p;      } /* loop covariates */
   double **matcov; /* Matrix of covariance */    }
   double ***delti3; /* Scale */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   double *delti; /* Scale */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   double ***eij, ***vareij;    free_vector(xp,1,npar);
   double **varpl; /* Variances of prevalence limits by age */    fclose(ficresprob);
   double *epj, vepp;    fclose(ficresprobcov);
   double kk1, kk2;    fclose(ficresprobcor);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    fclose(ficgp);
      fclose(fichtm);
   }
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
   
   /******************* Printing html file ***********/
   char z[1]="c", occ;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 #include <sys/time.h>                    int lastpass, int stepm, int weightopt, char model[],\
 #include <time.h>                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                    int popforecast, int estepm ,\
                      double jprev1, double mprev1,double anprev1, \
   /* long total_usecs;                    double jprev2, double mprev2,double anprev2){
   struct timeval start_time, end_time;    int jj1, k1, i1, cpt;
      /*char optionfilehtm[FILENAMELENGTH];*/
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
   getcwd(pathcd, size);      printf("Problem with %s \n",optionfilehtm), exit(0);
       fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
   printf("\n%s",version);    }
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
     scanf("%s",pathtot);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
   }   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
   else{   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
     strcpy(pathtot,argv[1]);   - Life expectancies by age and initial health status (estepm=%2d months): 
   }     <a href=\"e%s\">e%s</a> <br>\n</li>", \
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   /* cutv(path,optionfile,pathtot,'\\');*/  
    m=cptcoveff;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);   jj1=0;
   replace(pathc,path);   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
 /*-------- arguments in the command line --------*/       jj1++;
        if (cptcovn > 0) {
   strcpy(fileres,"r");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   strcat(fileres, optionfilefiname);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   strcat(fileres,".txt");    /* Other files have txt extension */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   /*---------arguments file --------*/       }
        /* Pij */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
     printf("Problem with optionfile %s\n",optionfile);  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
     goto end;       /* Quasi-incidences */
   }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
   <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
   strcpy(filereso,"o");         /* Stable prevalence in each health state */
   strcat(filereso,fileres);         for(cpt=1; cpt<nlstate;cpt++){
   if((ficparo=fopen(filereso,"w"))==NULL) {           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   }         }
        for(cpt=1; cpt<=nlstate;cpt++) {
   /* Reads comments: lines beginning with '#' */          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
   while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
     ungetc(c,ficpar);       }
     fgets(line, MAXLINE, ficpar);       fprintf(fichtm,"\n<br>- Total life expectancy by age and
     puts(line);  health expectancies in states (1) and (2): e%s%d.png<br>
     fputs(line,ficparo);  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
   }     } /* end i1 */
   ungetc(c,ficpar);   }/* End k1 */
    fprintf(fichtm,"</ul>");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
 while((c=getc(ficpar))=='#' && c!= EOF){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
     ungetc(c,ficpar);   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
     fgets(line, MAXLINE, ficpar);   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
     puts(line);   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
     fputs(line,ficparo);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
   }   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
   ungetc(c,ficpar);   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
    
      /*  if(popforecast==1) fprintf(fichtm,"\n */
   covar=matrix(0,NCOVMAX,1,n);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   cptcovn=0;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   ncovmodel=2+cptcovn;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
    
   /* Read guess parameters */   m=cptcoveff;
   /* Reads comments: lines beginning with '#' */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   jj1=0;
     fgets(line, MAXLINE, ficpar);   for(k1=1; k1<=m;k1++){
     puts(line);     for(i1=1; i1<=ncodemax[k1];i1++){
     fputs(line,ficparo);       jj1++;
   }       if (cptcovn > 0) {
   ungetc(c,ficpar);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     for(i=1; i <=nlstate; i++)         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     for(j=1; j <=nlstate+ndeath-1; j++){       }
       fscanf(ficpar,"%1d%1d",&i1,&j1);       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficparo,"%1d%1d",i1,j1);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
       printf("%1d%1d",i,j);  interval) in state (%d): v%s%d%d.png <br>
       for(k=1; k<=ncovmodel;k++){  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
         fscanf(ficpar," %lf",&param[i][j][k]);       }
         printf(" %lf",param[i][j][k]);     } /* end i1 */
         fprintf(ficparo," %lf",param[i][j][k]);   }/* End k1 */
       }   fprintf(fichtm,"</ul>");
       fscanf(ficpar,"\n");  fclose(fichtm);
       printf("\n");  }
       fprintf(ficparo,"\n");  
     }  /******************* Gnuplot file **************/
    void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   p=param[1][1];    int ng;
      if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   /* Reads comments: lines beginning with '#' */      printf("Problem with file %s",optionfilegnuplot);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);  
     puts(line);    /*#ifdef windows */
     fputs(line,ficparo);      fprintf(ficgp,"cd \"%s\" \n",pathc);
   }      /*#endif */
   ungetc(c,ficpar);  m=pow(2,cptcoveff);
     
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   /* 1eme*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    for (cpt=1; cpt<= nlstate ; cpt ++) {
   for(i=1; i <=nlstate; i++){     for (k1=1; k1<= m ; k1 ++) {
     for(j=1; j <=nlstate+ndeath-1; j++){       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       fscanf(ficpar,"%1d%1d",&i1,&j1);       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);       for (i=1; i<= nlstate ; i ++) {
       for(k=1; k<=ncovmodel;k++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fscanf(ficpar,"%le",&delti3[i][j][k]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         printf(" %le",delti3[i][j][k]);       }
         fprintf(ficparo," %le",delti3[i][j][k]);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
       }       for (i=1; i<= nlstate ; i ++) {
       fscanf(ficpar,"\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       printf("\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficparo,"\n");       } 
     }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
   }       for (i=1; i<= nlstate ; i ++) {
   delti=delti3[1][1];         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* Reads comments: lines beginning with '#' */       }  
   while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
     ungetc(c,ficpar);     }
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    /*2 eme*/
     fputs(line,ficparo);    
   }    for (k1=1; k1<= m ; k1 ++) { 
   ungetc(c,ficpar);      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
        fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   matcov=matrix(1,npar,1,npar);      
   for(i=1; i <=npar; i++){      for (i=1; i<= nlstate+1 ; i ++) {
     fscanf(ficpar,"%s",&str);        k=2*i;
     printf("%s",str);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
     fprintf(ficparo,"%s",str);        for (j=1; j<= nlstate+1 ; j ++) {
     for(j=1; j <=i; j++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fscanf(ficpar," %le",&matcov[i][j]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       printf(" %.5le",matcov[i][j]);        }   
       fprintf(ficparo," %.5le",matcov[i][j]);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     fscanf(ficpar,"\n");        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
     printf("\n");        for (j=1; j<= nlstate+1 ; j ++) {
     fprintf(ficparo,"\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   for(i=1; i <=npar; i++)        }   
     for(j=i+1;j<=npar;j++)        fprintf(ficgp,"\" t\"\" w l 0,");
       matcov[i][j]=matcov[j][i];        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
            for (j=1; j<= nlstate+1 ; j ++) {
   printf("\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
     /*-------- Rewriting paramater file ----------*/        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
      strcpy(rfileres,"r");    /* "Rparameterfile */        else fprintf(ficgp,"\" t\"\" w l 0,");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      }
      strcat(rfileres,".");    /* */    }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    
     if((ficres =fopen(rfileres,"w"))==NULL) {    /*3eme*/
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    
     }    for (k1=1; k1<= m ; k1 ++) { 
     fprintf(ficres,"#%s\n",version);      for (cpt=1; cpt<= nlstate ; cpt ++) {
            k=2+nlstate*(2*cpt-2);
     /*-------- data file ----------*/        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     if((fic=fopen(datafile,"r"))==NULL)    {        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
       printf("Problem with datafile: %s\n", datafile);goto end;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     n= lastobs;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     severity = vector(1,maxwav);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     outcome=imatrix(1,maxwav+1,1,n);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     num=ivector(1,n);          
     moisnais=vector(1,n);        */
     annais=vector(1,n);        for (i=1; i< nlstate ; i ++) {
     moisdc=vector(1,n);          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
     andc=vector(1,n);          
     agedc=vector(1,n);        } 
     cod=ivector(1,n);      }
     weight=vector(1,n);    }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    
     mint=matrix(1,maxwav,1,n);    /* CV preval stable (period) */
     anint=matrix(1,maxwav,1,n);    for (k1=1; k1<= m ; k1 ++) { 
     s=imatrix(1,maxwav+1,1,n);      for (cpt=1; cpt<=nlstate ; cpt ++) {
     adl=imatrix(1,maxwav+1,1,n);            k=3;
     tab=ivector(1,NCOVMAX);        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     ncodemax=ivector(1,8);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
     i=1;        for (i=1; i< nlstate ; i ++)
     while (fgets(line, MAXLINE, fic) != NULL)    {          fprintf(ficgp,"+$%d",k+i+1);
       if ((i >= firstobs) && (i <=lastobs)) {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
                
         for (j=maxwav;j>=1;j--){        l=3+(nlstate+ndeath)*cpt;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
           strcpy(line,stra);        for (i=1; i< nlstate ; i ++) {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          l=3+(nlstate+ndeath)*cpt;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"+$%d",l+i+1);
         }        }
                fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      } 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    }  
     
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    /* proba elementaires */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        if (k != i) {
         for (j=ncovcol;j>=1;j--){          for(j=1; j <=ncovmodel; j++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         }            jk++; 
         num[i]=atol(stra);            fprintf(ficgp,"\n");
                  }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      }
      }
         i=i+1;  
       }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     }       for(jk=1; jk <=m; jk++) {
     /* printf("ii=%d", ij);         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
        scanf("%d",i);*/         if (ng==2)
   imx=i-1; /* Number of individuals */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
   /* for (i=1; i<=imx; i++){           fprintf(ficgp,"\nset title \"Probability\"\n");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;         i=1;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;         for(k2=1; k2<=nlstate; k2++) {
     }*/           k3=i;
    /*  for (i=1; i<=imx; i++){           for(k=1; k<=(nlstate+ndeath); k++) {
      if (s[4][i]==9)  s[4][i]=-1;             if (k != k2){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/               if(ng==2)
                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else
   /* Calculation of the number of parameter from char model*/                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   Tvar=ivector(1,15);               ij=1;
   Tprod=ivector(1,15);               for(j=3; j <=ncovmodel; j++) {
   Tvaraff=ivector(1,15);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   Tvard=imatrix(1,15,1,2);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   Tage=ivector(1,15);                         ij++;
                     }
   if (strlen(model) >1){                 else
     j=0, j1=0, k1=1, k2=1;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     j=nbocc(model,'+');               }
     j1=nbocc(model,'*');               fprintf(ficgp,")/(1");
     cptcovn=j+1;               
     cptcovprod=j1;               for(k1=1; k1 <=nlstate; k1++){   
                     fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     strcpy(modelsav,model);                 ij=1;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                 for(j=3; j <=ncovmodel; j++){
       printf("Error. Non available option model=%s ",model);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       goto end;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     }                     ij++;
                       }
     for(i=(j+1); i>=1;i--){                   else
       cutv(stra,strb,modelsav,'+');                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                 }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                 fprintf(ficgp,")");
       /*scanf("%d",i);*/               }
       if (strchr(strb,'*')) {               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
         cutv(strd,strc,strb,'*');               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         if (strcmp(strc,"age")==0) {               i=i+ncovmodel;
           cptcovprod--;             }
           cutv(strb,stre,strd,'V');           } /* end k */
           Tvar[i]=atoi(stre);         } /* end k2 */
           cptcovage++;       } /* end jk */
             Tage[cptcovage]=i;     } /* end ng */
             /*printf("stre=%s ", stre);*/     fclose(ficgp); 
         }  }  /* end gnuplot */
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;  
           cutv(strb,stre,strc,'V');  /*************** Moving average **************/
           Tvar[i]=atoi(stre);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
           cptcovage++;  
           Tage[cptcovage]=i;    int i, cpt, cptcod;
         }    int modcovmax =1;
         else {    int mobilavrange, mob;
           cutv(strb,stre,strc,'V');    double age;
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V');    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           Tprod[k1]=i;                             a covariate has 2 modalities */
           Tvard[k1][1]=atoi(strc);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      if(mobilav==1) mobilavrange=5; /* default */
           for (k=1; k<=lastobs;k++)      else mobilavrange=mobilav;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for (age=bage; age<=fage; age++)
           k1++;        for (i=1; i<=nlstate;i++)
           k2=k2+2;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
         }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       }      /* We keep the original values on the extreme ages bage, fage and for 
       else {         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/         we use a 5 terms etc. until the borders are no more concerned. 
        /*  scanf("%d",i);*/      */ 
       cutv(strd,strc,strb,'V');      for (mob=3;mob <=mobilavrange;mob=mob+2){
       Tvar[i]=atoi(strc);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       }          for (i=1; i<=nlstate;i++){
       strcpy(modelsav,stra);              for (cptcod=1;cptcod<=modcovmax;cptcod++){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         scanf("%d",i);*/                for (cpt=1;cpt<=(mob-1)/2;cpt++){
     }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                  }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   printf("cptcovprod=%d ", cptcovprod);            }
   scanf("%d ",i);*/          }
     fclose(fic);        }/* end age */
       }/* end mob */
     /*  if(mle==1){*/    }else return -1;
     if (weightopt != 1) { /* Maximisation without weights*/    return 0;
       for(i=1;i<=n;i++) weight[i]=1.0;  }/* End movingaverage */
     }  
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);  /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     for (i=1; i<=imx; i++) {    /* proj1, year, month, day of starting projection 
       for(m=2; (m<= maxwav); m++) {       agemin, agemax range of age
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){       dateprev1 dateprev2 range of dates during which prevalence is computed
          anint[m][i]=9999;       anproj2 year of en of projection (same day and month as proj1).
          s[m][i]=-1;    */
        }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    int *popage;
       }    double agec; /* generic age */
     }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     for (i=1; i<=imx; i++)  {    double ***p3mat;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    double ***mobaverage;
       for(m=1; (m<= maxwav); m++){    char fileresf[FILENAMELENGTH];
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {    agelim=AGESUP;
             if(agedc[i]>0)    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
               if(moisdc[i]!=99 && andc[i]!=9999)   
                 agev[m][i]=agedc[i];    strcpy(fileresf,"f"); 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    strcat(fileresf,fileres);
            else {    if((ficresf=fopen(fileresf,"w"))==NULL) {
               if (andc[i]!=9999){      printf("Problem with forecast resultfile: %s\n", fileresf);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
               agev[m][i]=-1;    }
               }    printf("Computing forecasting: result on file '%s' \n", fileresf);
             }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           }  
           else if(s[m][i] !=9){ /* Should no more exist */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)    if (mobilav!=0) {
               agev[m][i]=1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             else if(agev[m][i] <agemin){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
               agemin=agev[m][i];        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             }      }
             else if(agev[m][i] >agemax){    }
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    stepsize=(int) (stepm+YEARM-1)/YEARM;
             }    if (stepm<=12) stepsize=1;
             /*agev[m][i]=anint[m][i]-annais[i];*/    if(estepm < stepm){
             /*   agev[m][i] = age[i]+2*m;*/      printf ("Problem %d lower than %d\n",estepm, stepm);
           }    }
           else { /* =9 */    else  hstepm=estepm;   
             agev[m][i]=1;  
             s[m][i]=-1;    hstepm=hstepm/stepm; 
           }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
         }                                 fractional in yp1 */
         else /*= 0 Unknown */    anprojmean=yp;
           agev[m][i]=1;    yp2=modf((yp1*12),&yp);
       }    mprojmean=yp;
        yp1=modf((yp2*30.5),&yp);
     }    jprojmean=yp;
     for (i=1; i<=imx; i++)  {    if(jprojmean==0) jprojmean=1;
       for(m=1; (m<= maxwav); m++){    if(mprojmean==0) jprojmean=1;
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: Wrong value in nlstate or ndeath\n");      i1=cptcoveff;
           goto end;    if (cptcovn < 1){i1=1;}
         }    
       }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     }    
     fprintf(ficresf,"#****** Routine prevforecast **\n");
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
   /*            if (h==(int)(YEARM*yearp)){ */
     free_vector(severity,1,maxwav);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     free_imatrix(outcome,1,maxwav+1,1,n);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     free_vector(moisnais,1,n);        k=k+1;
     free_vector(annais,1,n);        fprintf(ficresf,"\n#******");
     /* free_matrix(mint,1,maxwav,1,n);        for(j=1;j<=cptcoveff;j++) {
        free_matrix(anint,1,maxwav,1,n);*/          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     free_vector(moisdc,1,n);        }
     free_vector(andc,1,n);        fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
            for(j=1; j<=nlstate+ndeath;j++){ 
     wav=ivector(1,imx);          for(i=1; i<=nlstate;i++)              
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            fprintf(ficresf," p%d%d",i,j);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(ficresf," p.%d",j);
            }
     /* Concatenates waves */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
       Tcode=ivector(1,100);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
       ncodemax[1]=1;            nhstepm = nhstepm/hstepm; 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                  oldm=oldms;savm=savms;
    codtab=imatrix(1,100,1,10);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
    h=0;          
    m=pow(2,cptcoveff);            for (h=0; h<=nhstepm; h++){
                if (h*hstepm/YEARM*stepm ==yearp) {
    for(k=1;k<=cptcoveff; k++){                fprintf(ficresf,"\n");
      for(i=1; i <=(m/pow(2,k));i++){                for(j=1;j<=cptcoveff;j++) 
        for(j=1; j <= ncodemax[k]; j++){                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
            h++;              } 
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;              for(j=1; j<=nlstate+ndeath;j++) {
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                ppij=0.;
          }                for(i=1; i<=nlstate;i++) {
        }                  if (mobilav==1) 
      }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
    }                  else {
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
       codtab[1][2]=1;codtab[2][2]=2; */                  }
    /* for(i=1; i <=m ;i++){                  if (h*hstepm/YEARM*stepm== yearp) {
       for(k=1; k <=cptcovn; k++){                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                  }
       }                } /* end i */
       printf("\n");                if (h*hstepm/YEARM*stepm==yearp) {
       }                  fprintf(ficresf," %.3f", ppij);
       scanf("%d",i);*/                }
                  }/* end j */
    /* Calculates basic frequencies. Computes observed prevalence at single age            } /* end h */
        and prints on file fileres'p'. */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
            } /* end yearp */
          } /* end cptcod */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    } /* end  cptcov */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fclose(ficresf);
        }
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  /************** Forecasting *****not tested NB*************/
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     if(mle==1){    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    int *popage;
     }    double calagedatem, agelim, kk1, kk2;
        double *popeffectif,*popcount;
     /*--------- results files --------------*/    double ***p3mat,***tabpop,***tabpopprev;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    double ***mobaverage;
      char filerespop[FILENAMELENGTH];
   
    jk=1;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    agelim=AGESUP;
    for(i=1,jk=1; i <=nlstate; i++){    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
      for(k=1; k <=(nlstate+ndeath); k++){    
        if (k != i)    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
          {    
            printf("%d%d ",i,k);    
            fprintf(ficres,"%1d%1d ",i,k);    strcpy(filerespop,"pop"); 
            for(j=1; j <=ncovmodel; j++){    strcat(filerespop,fileres);
              printf("%f ",p[jk]);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
              fprintf(ficres,"%f ",p[jk]);      printf("Problem with forecast resultfile: %s\n", filerespop);
              jk++;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
            }    }
            printf("\n");    printf("Computing forecasting: result on file '%s' \n", filerespop);
            fprintf(ficres,"\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
          }  
      }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    }  
  if(mle==1){    if (mobilav!=0) {
     /* Computing hessian and covariance matrix */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     ftolhess=ftol; /* Usually correct */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     hesscov(matcov, p, npar, delti, ftolhess, func);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      }
     printf("# Scales (for hessian or gradient estimation)\n");    }
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){    stepsize=(int) (stepm+YEARM-1)/YEARM;
         if (j!=i) {    if (stepm<=12) stepsize=1;
           fprintf(ficres,"%1d%1d",i,j);    
           printf("%1d%1d",i,j);    agelim=AGESUP;
           for(k=1; k<=ncovmodel;k++){    
             printf(" %.5e",delti[jk]);    hstepm=1;
             fprintf(ficres," %.5e",delti[jk]);    hstepm=hstepm/stepm; 
             jk++;    
           }    if (popforecast==1) {
           printf("\n");      if((ficpop=fopen(popfile,"r"))==NULL) {
           fprintf(ficres,"\n");        printf("Problem with population file : %s\n",popfile);exit(0);
         }        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       }      } 
      }      popage=ivector(0,AGESUP);
          popeffectif=vector(0,AGESUP);
     k=1;      popcount=vector(0,AGESUP);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      i=1;   
     for(i=1;i<=npar;i++){      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       /*  if (k>nlstate) k=1;     
       i1=(i-1)/(ncovmodel*nlstate)+1;      imx=i;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
       printf("%s%d%d",alph[k],i1,tab[i]);*/    }
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       for(j=1; j<=i;j++){     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         fprintf(ficres," %.5e",matcov[i][j]);        k=k+1;
         printf(" %.5e",matcov[i][j]);        fprintf(ficrespop,"\n#******");
       }        for(j=1;j<=cptcoveff;j++) {
       fprintf(ficres,"\n");          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       printf("\n");        }
       k++;        fprintf(ficrespop,"******\n");
     }        fprintf(ficrespop,"# Age");
            for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     while((c=getc(ficpar))=='#' && c!= EOF){        if (popforecast==1)  fprintf(ficrespop," [Population]");
       ungetc(c,ficpar);        
       fgets(line, MAXLINE, ficpar);        for (cpt=0; cpt<=0;cpt++) { 
       puts(line);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
       fputs(line,ficparo);          
     }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
     ungetc(c,ficpar);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     estepm=0;            nhstepm = nhstepm/hstepm; 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            
     if (estepm==0 || estepm < stepm) estepm=stepm;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if (fage <= 2) {            oldm=oldms;savm=savms;
       bage = ageminpar;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       fage = agemaxpar;          
     }            for (h=0; h<=nhstepm; h++){
                  if (h==(int) (calagedatem+YEARM*cpt)) {
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              } 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              for(j=1; j<=nlstate+ndeath;j++) {
                  kk1=0.;kk2=0;
     while((c=getc(ficpar))=='#' && c!= EOF){                for(i=1; i<=nlstate;i++) {              
     ungetc(c,ficpar);                  if (mobilav==1) 
     fgets(line, MAXLINE, ficpar);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     puts(line);                  else {
     fputs(line,ficparo);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   }                  }
   ungetc(c,ficpar);                }
                  if (h==(int)(calagedatem+12*cpt)){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    /*fprintf(ficrespop," %.3f", kk1);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                      }
   while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);              for(i=1; i<=nlstate;i++){
     fgets(line, MAXLINE, ficpar);                kk1=0.;
     puts(line);                  for(j=1; j<=nlstate;j++){
     fputs(line,ficparo);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   }                  }
   ungetc(c,ficpar);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
                }
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
   fscanf(ficpar,"pop_based=%d\n",&popbased);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"pop_based=%d\n",popbased);            }
   fprintf(ficres,"pop_based=%d\n",popbased);          }
     
   while((c=getc(ficpar))=='#' && c!= EOF){    /******/
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
     puts(line);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     fputs(line,ficparo);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   ungetc(c,ficpar);            nhstepm = nhstepm/hstepm; 
             
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            oldm=oldms;savm=savms;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
 while((c=getc(ficpar))=='#' && c!= EOF){                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     ungetc(c,ficpar);              } 
     fgets(line, MAXLINE, ficpar);              for(j=1; j<=nlstate+ndeath;j++) {
     puts(line);                kk1=0.;kk2=0;
     fputs(line,ficparo);                for(i=1; i<=nlstate;i++) {              
   }                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   ungetc(c,ficpar);                }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);              }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }
      } 
 /*------------ gnuplot -------------*/    }
   strcpy(optionfilegnuplot,optionfilefiname);   
   strcat(optionfilegnuplot,".gp");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);    if (popforecast==1) {
   }      free_ivector(popage,0,AGESUP);
   fclose(ficgp);      free_vector(popeffectif,0,AGESUP);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);      free_vector(popcount,0,AGESUP);
 /*--------- index.htm --------*/    }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(optionfilehtm,optionfile);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(optionfilehtm,".htm");    fclose(ficrespop);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  }
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }  /***********************************************/
   /**************** Main Program *****************/
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  /***********************************************/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n  int main(int argc, char *argv[])
 Total number of observations=%d <br>\n  {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 <hr  size=\"2\" color=\"#EC5E5E\">    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
  <ul><li>Parameter files<br>\n    double agedeb, agefin,hf;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);  
   fclose(fichtm);    double fret;
     double **xi,tmp,delta;
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  
      double dum; /* Dummy variable */
 /*------------ free_vector  -------------*/    double ***p3mat;
  chdir(path);    double ***mobaverage;
      int *indx;
  free_ivector(wav,1,imx);    char line[MAXLINE], linepar[MAXLINE];
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      int firstobs=1, lastobs=10;
  free_ivector(num,1,n);    int sdeb, sfin; /* Status at beginning and end */
  free_vector(agedc,1,n);    int c,  h , cpt,l;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    int ju,jl, mi;
  fclose(ficparo);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
  fclose(ficres);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
   /*--------------- Prevalence limit --------------*/    int hstepm, nhstepm;
      double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   strcpy(filerespl,"pl");    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    double bage, fage, age, agelim, agebase;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    double ftolpl=FTOL;
   }    double **prlim;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    double *severity;
   fprintf(ficrespl,"#Prevalence limit\n");    double ***param; /* Matrix of parameters */
   fprintf(ficrespl,"#Age ");    double  *p;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    double **matcov; /* Matrix of covariance */
   fprintf(ficrespl,"\n");    double ***delti3; /* Scale */
      double *delti; /* Scale */
   prlim=matrix(1,nlstate,1,nlstate);    double ***eij, ***vareij;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **varpl; /* Variances of prevalence limits by age */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *epj, vepp;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double kk1, kk2;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;    char *alph[]={"a","a","b","c","d","e"}, str[4];
   agebase=ageminpar;  
   agelim=agemaxpar;  
   ftolpl=1.e-10;    char z[1]="c", occ;
   i1=cptcoveff;  #include <sys/time.h>
   if (cptcovn < 1){i1=1;}  #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   for(cptcov=1;cptcov<=i1;cptcov++){   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* long total_usecs;
         k=k+1;       struct timeval start_time, end_time;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    
         fprintf(ficrespl,"\n#******");       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
         for(j=1;j<=cptcoveff;j++)    getcwd(pathcd, size);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");    printf("\n%s\n%s",version,fullversion);
            if(argc <=1){
         for (age=agebase; age<=agelim; age++){      printf("\nEnter the parameter file name: ");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      scanf("%s",pathtot);
           fprintf(ficrespl,"%.0f",age );    }
           for(i=1; i<=nlstate;i++)    else{
           fprintf(ficrespl," %.5f", prlim[i][i]);      strcpy(pathtot,argv[1]);
           fprintf(ficrespl,"\n");    }
         }    /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
       }    /*cygwin_split_path(pathtot,path,optionfile);
     }      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   fclose(ficrespl);    /* cutv(path,optionfile,pathtot,'\\');*/
   
   /*------------- h Pij x at various ages ------------*/    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
      printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    chdir(path);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    replace(pathc,path);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }    /*-------- arguments in the command line --------*/
   printf("Computing pij: result on file '%s' \n", filerespij);  
      /* Log file */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    strcat(filelog, optionfilefiname);
   /*if (stepm<=24) stepsize=2;*/    strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
   agelim=AGESUP;      printf("Problem with logfile %s\n",filelog);
   hstepm=stepsize*YEARM; /* Every year of age */      goto end;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    }
      fprintf(ficlog,"Log filename:%s\n",filelog);
   k=0;    fprintf(ficlog,"\n%s",version);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficlog,"\nEnter the parameter file name: ");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
       k=k+1;    fflush(ficlog);
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)    /* */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(fileres,"r");
         fprintf(ficrespij,"******\n");    strcat(fileres, optionfilefiname);
            strcat(fileres,".txt");    /* Other files have txt extension */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /*---------arguments file --------*/
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
           oldm=oldms;savm=savms;      printf("Problem with optionfile %s\n",optionfile);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
           fprintf(ficrespij,"# Age");      goto end;
           for(i=1; i<=nlstate;i++)    }
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);    strcpy(filereso,"o");
           fprintf(ficrespij,"\n");    strcat(filereso,fileres);
            for (h=0; h<=nhstepm; h++){    if((ficparo=fopen(filereso,"w"))==NULL) {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      printf("Problem with Output resultfile: %s\n", filereso);
             for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
               for(j=1; j<=nlstate+ndeath;j++)      goto end;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    }
             fprintf(ficrespij,"\n");  
              }    /* Reads comments: lines beginning with '#' */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    while((c=getc(ficpar))=='#' && c!= EOF){
           fprintf(ficrespij,"\n");      ungetc(c,ficpar);
         }      fgets(line, MAXLINE, ficpar);
     }      puts(line);
   }      fputs(line,ficparo);
     }
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    ungetc(c,ficpar);
   
   fclose(ficrespij);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   /*---------- Forecasting ------------------*/    while((c=getc(ficpar))=='#' && c!= EOF){
   if((stepm == 1) && (strcmp(model,".")==0)){      ungetc(c,ficpar);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      fgets(line, MAXLINE, ficpar);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      puts(line);
   }      fputs(line,ficparo);
   else{    }
     erreur=108;    ungetc(c,ficpar);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    
   }     
      covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   /*---------- Health expectancies and variances ------------*/    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
   strcpy(filerest,"t");    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
   strcat(filerest,fileres);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
   if((ficrest=fopen(filerest,"w"))==NULL) {    
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    /* Read guess parameters */
   }    /* Reads comments: lines beginning with '#' */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
   strcpy(filerese,"e");      puts(line);
   strcat(filerese,fileres);      fputs(line,ficparo);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    ungetc(c,ficpar);
   }    
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
  strcpy(fileresv,"v");      for(j=1; j <=nlstate+ndeath-1; j++){
   strcat(fileresv,fileres);        fscanf(ficpar,"%1d%1d",&i1,&j1);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        fprintf(ficparo,"%1d%1d",i1,j1);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        if(mle==1)
   }          printf("%1d%1d",i,j);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficlog,"%1d%1d",i,j);
   calagedate=-1;        for(k=1; k<=ncovmodel;k++){
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
   k=0;            printf(" %lf",param[i][j][k]);
   for(cptcov=1;cptcov<=i1;cptcov++){            fprintf(ficlog," %lf",param[i][j][k]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
       k=k+1;          else
       fprintf(ficrest,"\n#****** ");            fprintf(ficlog," %lf",param[i][j][k]);
       for(j=1;j<=cptcoveff;j++)          fprintf(ficparo," %lf",param[i][j][k]);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       fprintf(ficrest,"******\n");        fscanf(ficpar,"\n");
         if(mle==1)
       fprintf(ficreseij,"\n#****** ");          printf("\n");
       for(j=1;j<=cptcoveff;j++)        fprintf(ficlog,"\n");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficparo,"\n");
       fprintf(ficreseij,"******\n");      }
     
       fprintf(ficresvij,"\n#****** ");    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    p=param[1][1];
       fprintf(ficresvij,"******\n");    
     /* Reads comments: lines beginning with '#' */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    while((c=getc(ficpar))=='#' && c!= EOF){
       oldm=oldms;savm=savms;      ungetc(c,ficpar);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        fgets(line, MAXLINE, ficpar);
        puts(line);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fputs(line,ficparo);
       oldm=oldms;savm=savms;    }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    ungetc(c,ficpar);
      
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
      /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    for(i=1; i <=nlstate; i++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      for(j=1; j <=nlstate+ndeath-1; j++){
       fprintf(ficrest,"\n");        fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
       epj=vector(1,nlstate+1);        fprintf(ficparo,"%1d%1d",i1,j1);
       for(age=bage; age <=fage ;age++){        for(k=1; k<=ncovmodel;k++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          fscanf(ficpar,"%le",&delti3[i][j][k]);
         if (popbased==1) {          printf(" %le",delti3[i][j][k]);
           for(i=1; i<=nlstate;i++)          fprintf(ficparo," %le",delti3[i][j][k]);
             prlim[i][i]=probs[(int)age][i][k];        }
         }        fscanf(ficpar,"\n");
                printf("\n");
         fprintf(ficrest," %4.0f",age);        fprintf(ficparo,"\n");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    delti=delti3[1][1];
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }  
           epj[nlstate+1] +=epj[j];    /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
         }    
     /* Reads comments: lines beginning with '#' */
         for(i=1, vepp=0.;i <=nlstate;i++)    while((c=getc(ficpar))=='#' && c!= EOF){
           for(j=1;j <=nlstate;j++)      ungetc(c,ficpar);
             vepp += vareij[i][j][(int)age];      fgets(line, MAXLINE, ficpar);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      puts(line);
         for(j=1;j <=nlstate;j++){      fputs(line,ficparo);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    }
         }    ungetc(c,ficpar);
         fprintf(ficrest,"\n");    
       }    matcov=matrix(1,npar,1,npar);
     }    for(i=1; i <=npar; i++){
   }      fscanf(ficpar,"%s",&str);
 free_matrix(mint,1,maxwav,1,n);      if(mle==1)
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        printf("%s",str);
     free_vector(weight,1,n);      fprintf(ficlog,"%s",str);
   fclose(ficreseij);      fprintf(ficparo,"%s",str);
   fclose(ficresvij);      for(j=1; j <=i; j++){
   fclose(ficrest);        fscanf(ficpar," %le",&matcov[i][j]);
   fclose(ficpar);        if(mle==1){
   free_vector(epj,1,nlstate+1);          printf(" %.5le",matcov[i][j]);
            fprintf(ficlog," %.5le",matcov[i][j]);
   /*------- Variance limit prevalence------*/          }
         else
   strcpy(fileresvpl,"vpl");          fprintf(ficlog," %.5le",matcov[i][j]);
   strcat(fileresvpl,fileres);        fprintf(ficparo," %.5le",matcov[i][j]);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      fscanf(ficpar,"\n");
     exit(0);      if(mle==1)
   }        printf("\n");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){    for(i=1; i <=npar; i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(j=i+1;j<=npar;j++)
       k=k+1;        matcov[i][j]=matcov[j][i];
       fprintf(ficresvpl,"\n#****** ");     
       for(j=1;j<=cptcoveff;j++)    if(mle==1)
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("\n");
       fprintf(ficresvpl,"******\n");    fprintf(ficlog,"\n");
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    /*-------- Rewriting paramater file ----------*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    strcpy(rfileres,"r");    /* "Rparameterfile */
     }    strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
  }    strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
   fclose(ficresvpl);    if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
   /*---------- End : free ----------------*/      fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    }
      fprintf(ficres,"#%s\n",version);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /*-------- data file ----------*/
      if((fic=fopen(datafile,"r"))==NULL)    {
        printf("Problem with datafile: %s\n", datafile);goto end;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    n= lastobs;
      severity = vector(1,maxwav);
   free_matrix(matcov,1,npar,1,npar);    outcome=imatrix(1,maxwav+1,1,n);
   free_vector(delti,1,npar);    num=ivector(1,n);
   free_matrix(agev,1,maxwav,1,imx);    moisnais=vector(1,n);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    annais=vector(1,n);
     moisdc=vector(1,n);
   fprintf(fichtm,"\n</body>");    andc=vector(1,n);
   fclose(fichtm);    agedc=vector(1,n);
   fclose(ficgp);    cod=ivector(1,n);
      weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
   if(erreur >0)    mint=matrix(1,maxwav,1,n);
     printf("End of Imach with error or warning %d\n",erreur);    anint=matrix(1,maxwav,1,n);
   else   printf("End of Imach\n");    s=imatrix(1,maxwav+1,1,n);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    tab=ivector(1,NCOVMAX);
      ncodemax=ivector(1,8);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/    i=1;
   /*------ End -----------*/    while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
  end:        for (j=maxwav;j>=1;j--){
 #ifdef windows          cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
   /* chdir(pathcd);*/          strcpy(line,stra);
 #endif          cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
  /*system("wgnuplot graph.plt");*/          cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
  /*system("../gp37mgw/wgnuplot graph.plt");*/        }
  /*system("cd ../gp37mgw");*/          
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
  strcpy(plotcmd,GNUPLOTPROGRAM);        cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);        cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
  system(plotcmd);        cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
 #ifdef windows        cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
   while (z[0] != 'q') {        for (j=ncovcol;j>=1;j--){
     /* chdir(path); */          cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        } 
     scanf("%s",z);        num[i]=atol(stra);
     if (z[0] == 'c') system("./imach");          
     else if (z[0] == 'e') system(optionfilehtm);        /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
     else if (z[0] == 'g') system(plotcmd);          printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
     else if (z[0] == 'q') exit(0);  
   }        i=i+1;
 #endif      }
 }    }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1;
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.47  
changed lines
  Added in v.1.83


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>