Diff for /imach/src/imach.c between versions 1.47 and 1.93

version 1.47, 2002/06/10 13:12:01 version 1.93, 2003/06/25 16:33:55
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   This program computes Healthy Life Expectancies from    exist so I changed back to asctime which exists.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Version 0.96b
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.92  2003/06/25 16:30:45  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): On windows (cygwin) function asctime_r doesn't
   second wave of interviews ("longitudinal") which measure each change    exist so I changed back to asctime which exists.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.91  2003/06/25 15:30:29  brouard
   model. More health states you consider, more time is necessary to reach the    * imach.c (Repository): Duplicated warning errors corrected.
   Maximum Likelihood of the parameters involved in the model.  The    (Repository): Elapsed time after each iteration is now output. It
   simplest model is the multinomial logistic model where pij is the    helps to forecast when convergence will be reached. Elapsed time
   probability to be observed in state j at the second wave    is stamped in powell.  We created a new html file for the graphs
   conditional to be observed in state i at the first wave. Therefore    concerning matrix of covariance. It has extension -cov.htm.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.90  2003/06/24 12:34:15  brouard
   complex model than "constant and age", you should modify the program    (Module): Some bugs corrected for windows. Also, when
   where the markup *Covariates have to be included here again* invites    mle=-1 a template is output in file "or"mypar.txt with the design
   you to do it.  More covariates you add, slower the    of the covariance matrix to be input.
   convergence.  
     Revision 1.89  2003/06/24 12:30:52  brouard
   The advantage of this computer programme, compared to a simple    (Module): Some bugs corrected for windows. Also, when
   multinomial logistic model, is clear when the delay between waves is not    mle=-1 a template is output in file "or"mypar.txt with the design
   identical for each individual. Also, if a individual missed an    of the covariance matrix to be input.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.87  2003/06/18 12:26:01  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    Version 0.96
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.86  2003/06/17 20:04:08  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    (Module): Change position of html and gnuplot routines and added
   and the contribution of each individual to the likelihood is simply    routine fileappend.
   hPijx.  
     Revision 1.85  2003/06/17 13:12:43  brouard
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Repository): Check when date of death was earlier that
   of the life expectancies. It also computes the prevalence limits.    current date of interview. It may happen when the death was just
      prior to the death. In this case, dh was negative and likelihood
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    was wrong (infinity). We still send an "Error" but patch by
            Institut national d'études démographiques, Paris.    assuming that the date of death was just one stepm after the
   This software have been partly granted by Euro-REVES, a concerted action    interview.
   from the European Union.    (Repository): Because some people have very long ID (first column)
   It is copyrighted identically to a GNU software product, ie programme and    we changed int to long in num[] and we added a new lvector for
   software can be distributed freely for non commercial use. Latest version    memory allocation. But we also truncated to 8 characters (left
   can be accessed at http://euroreves.ined.fr/imach .    truncation)
   **********************************************************************/    (Repository): No more line truncation errors.
    
 #include <math.h>    Revision 1.84  2003/06/13 21:44:43  brouard
 #include <stdio.h>    * imach.c (Repository): Replace "freqsummary" at a correct
 #include <stdlib.h>    place. It differs from routine "prevalence" which may be called
 #include <unistd.h>    many times. Probs is memory consuming and must be used with
     parcimony.
 #define MAXLINE 256    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.83  2003/06/10 13:39:11  lievre
 #define FILENAMELENGTH 80    *** empty log message ***
 /*#define DEBUG*/  
 #define windows    Revision 1.82  2003/06/05 15:57:20  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Add log in  imach.c and  fullversion number is now printed.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
   */
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  /*
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */     Interpolated Markov Chain
   
 #define NINTERVMAX 8    Short summary of the programme:
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    This program computes Healthy Life Expectancies from
 #define NCOVMAX 8 /* Maximum number of covariates */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define MAXN 20000    first survey ("cross") where individuals from different ages are
 #define YEARM 12. /* Number of months per year */    interviewed on their health status or degree of disability (in the
 #define AGESUP 130    case of a health survey which is our main interest) -2- at least a
 #define AGEBASE 40    second wave of interviews ("longitudinal") which measure each change
 #ifdef windows    (if any) in individual health status.  Health expectancies are
 #define DIRSEPARATOR '\\'    computed from the time spent in each health state according to a
 #else    model. More health states you consider, more time is necessary to reach the
 #define DIRSEPARATOR '/'    Maximum Likelihood of the parameters involved in the model.  The
 #endif    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";    conditional to be observed in state i at the first wave. Therefore
 int erreur; /* Error number */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int nvar;    'age' is age and 'sex' is a covariate. If you want to have a more
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    complex model than "constant and age", you should modify the program
 int npar=NPARMAX;    where the markup *Covariates have to be included here again* invites
 int nlstate=2; /* Number of live states */    you to do it.  More covariates you add, slower the
 int ndeath=1; /* Number of dead states */    convergence.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 int *wav; /* Number of waves for this individuual 0 is possible */    identical for each individual. Also, if a individual missed an
 int maxwav; /* Maxim number of waves */    intermediate interview, the information is lost, but taken into
 int jmin, jmax; /* min, max spacing between 2 waves */    account using an interpolation or extrapolation.  
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    hPijx is the probability to be observed in state i at age x+h
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    conditional to the observed state i at age x. The delay 'h' can be
 double jmean; /* Mean space between 2 waves */    split into an exact number (nh*stepm) of unobserved intermediate
 double **oldm, **newm, **savm; /* Working pointers to matrices */    states. This elementary transition (by month, quarter,
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    semester or year) is modelled as a multinomial logistic.  The hPx
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    matrix is simply the matrix product of nh*stepm elementary matrices
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    and the contribution of each individual to the likelihood is simply
 FILE *fichtm; /* Html File */    hPijx.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Also this programme outputs the covariance matrix of the parameters but also
 FILE  *ficresvij;    of the life expectancies. It also computes the stable prevalence. 
 char fileresv[FILENAMELENGTH];    
 FILE  *ficresvpl;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 char fileresvpl[FILENAMELENGTH];             Institut national d'études démographiques, Paris.
 char title[MAXLINE];    This software have been partly granted by Euro-REVES, a concerted action
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    from the European Union.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    can be accessed at http://euroreves.ined.fr/imach .
   
 char filerest[FILENAMELENGTH];    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 char fileregp[FILENAMELENGTH];    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 char popfile[FILENAMELENGTH];    
     **********************************************************************/
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  /*
     main
 #define NR_END 1    read parameterfile
 #define FREE_ARG char*    read datafile
 #define FTOL 1.0e-10    concatwav
     freqsummary
 #define NRANSI    if (mle >= 1)
 #define ITMAX 200      mlikeli
     print results files
 #define TOL 2.0e-4    if mle==1 
        computes hessian
 #define CGOLD 0.3819660    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define ZEPS 1.0e-10        begin-prev-date,...
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    open gnuplot file
     open html file
 #define GOLD 1.618034    stable prevalence
 #define GLIMIT 100.0     for age prevalim()
 #define TINY 1.0e-20    h Pij x
     variance of p varprob
 static double maxarg1,maxarg2;    forecasting if prevfcast==1 prevforecast call prevalence()
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    health expectancies
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Variance-covariance of DFLE
      prevalence()
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))     movingaverage()
 #define rint(a) floor(a+0.5)    varevsij() 
     if popbased==1 varevsij(,popbased)
 static double sqrarg;    total life expectancies
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Variance of stable prevalence
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   end
   */
 int imx;  
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/  
    
 int estepm;  #include <math.h>
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #include <stdio.h>
   #include <stdlib.h>
 int m,nb;  #include <unistd.h>
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #include <sys/time.h>
 double **pmmij, ***probs, ***mobaverage;  #include <time.h>
 double dateintmean=0;  #include "timeval.h"
   
 double *weight;  #define MAXLINE 256
 int **s; /* Status */  #define GNUPLOTPROGRAM "gnuplot"
 double *agedc, **covar, idx;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define FILENAMELENGTH 132
   /*#define DEBUG*/
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  /*#define windows*/
 double ftolhess; /* Tolerance for computing hessian */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    l1 = strlen( path );                 /* length of path */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NCOVMAX 8 /* Maximum number of covariates */
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  #define MAXN 20000
    if ( s == NULL ) {                   /* no directory, so use current */  #define YEARM 12. /* Number of months per year */
 #if     defined(__bsd__)                /* get current working directory */  #define AGESUP 130
       extern char       *getwd( );  #define AGEBASE 40
   #ifdef unix
       if ( getwd( dirc ) == NULL ) {  #define DIRSEPARATOR '/'
 #else  #define ODIRSEPARATOR '\\'
       extern char       *getcwd( );  #else
   #define DIRSEPARATOR '\\'
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define ODIRSEPARATOR '/'
 #endif  #endif
          return( GLOCK_ERROR_GETCWD );  
       }  /* $Id$ */
       strcpy( name, path );             /* we've got it */  /* $State$ */
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
       l2 = strlen( s );                 /* length of filename */  char fullversion[]="$Revision$ $Date$"; 
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       strcpy( name, s );                /* save file name */  int nvar;
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       dirc[l1-l2] = 0;                  /* add zero */  int npar=NPARMAX;
    }  int nlstate=2; /* Number of live states */
    l1 = strlen( dirc );                 /* length of directory */  int ndeath=1; /* Number of dead states */
 #ifdef windows  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int popbased=0;
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  int *wav; /* Number of waves for this individuual 0 is possible */
 #endif  int maxwav; /* Maxim number of waves */
    s = strrchr( name, '.' );            /* find last / */  int jmin, jmax; /* min, max spacing between 2 waves */
    s++;  int gipmx, gsw; /* Global variables on the number of contributions 
    strcpy(ext,s);                       /* save extension */                     to the likelihood and the sum of weights (done by funcone)*/
    l1= strlen( name);  int mle, weightopt;
    l2= strlen( s)+1;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    strncpy( finame, name, l1-l2);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    finame[l1-l2]= 0;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    return( 0 );                         /* we're done */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 }  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /******************************************/  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 void replace(char *s, char*t)  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   int i;  long ipmx; /* Number of contributions */
   int lg=20;  double sw; /* Sum of weights */
   i=0;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   lg=strlen(t);  FILE *ficresilk;
   for(i=0; i<= lg; i++) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     (s[i] = t[i]);  FILE *ficresprobmorprev;
     if (t[i]== '\\') s[i]='/';  FILE *fichtm, *fichtmcov; /* Html File */
   }  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 int nbocc(char *s, char occ)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   int i,j=0;  char fileresvpl[FILENAMELENGTH];
   int lg=20;  char title[MAXLINE];
   i=0;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   lg=strlen(s);  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char tmpout[FILENAMELENGTH]; 
   if  (s[i] == occ ) j++;  char command[FILENAMELENGTH];
   }  int  outcmd=0;
   return j;  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char lfileres[FILENAMELENGTH];
 void cutv(char *u,char *v, char*t, char occ)  char filelog[FILENAMELENGTH]; /* Log file */
 {  char filerest[FILENAMELENGTH];
   int i,lg,j,p=0;  char fileregp[FILENAMELENGTH];
   i=0;  char popfile[FILENAMELENGTH];
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   }  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   lg=strlen(t);  struct timezone tzp;
   for(j=0; j<p; j++) {  extern int gettimeofday();
     (u[j] = t[j]);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   }  long time_value;
      u[p]='\0';  extern long time();
   char strcurr[80], strfor[80];
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define NR_END 1
   }  #define FREE_ARG char*
 }  #define FTOL 1.0e-10
   
 /********************** nrerror ********************/  #define NRANSI 
   #define ITMAX 200 
 void nrerror(char error_text[])  
 {  #define TOL 2.0e-4 
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  #define CGOLD 0.3819660 
   exit(1);  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   double *v;  #define TINY 1.0e-20 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  static double maxarg1,maxarg2;
   return v-nl+NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /************************ free vector ******************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void free_vector(double*v, int nl, int nh)  #define rint(a) floor(a+0.5)
 {  
   free((FREE_ARG)(v+nl-NR_END));  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  int imx; 
 {  int stepm;
   int *v;  /* Stepm, step in month: minimum step interpolation*/
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  int estepm;
   return v-nl+NR_END;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /******************free ivector **************************/  long *num;
 void free_ivector(int *v, long nl, long nh)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   free((FREE_ARG)(v+nl-NR_END));  double **pmmij, ***probs;
 }  double dateintmean=0;
   
 /******************* imatrix *******************************/  double *weight;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int **s; /* Status */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  double *agedc, **covar, idx;
 {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
    double ftolhess; /* Tolerance for computing hessian */
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  /**************** split *************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m += NR_END;  {
   m -= nrl;    char  *ss;                            /* pointer */
      int   l1, l2;                         /* length counters */
    
   /* allocate rows and set pointers to them */    l1 = strlen(path );                   /* length of path */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m[nrl] += NR_END;    if ( ss == NULL ) {                   /* no directory, so use current */
   m[nrl] -= ncl;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
          printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      /* get current working directory */
        /*    extern  char* getcwd ( char *buf , int len);*/
   /* return pointer to array of pointers to rows */      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   return m;        return( GLOCK_ERROR_GETCWD );
 }      }
       strcpy( name, path );               /* we've got it */
 /****************** free_imatrix *************************/    } else {                              /* strip direcotry from path */
 void free_imatrix(m,nrl,nrh,ncl,nch)      ss++;                               /* after this, the filename */
       int **m;      l2 = strlen( ss );                  /* length of filename */
       long nch,ncl,nrh,nrl;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
      /* free an int matrix allocated by imatrix() */      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      dirc[l1-l2] = 0;                    /* add zero */
   free((FREE_ARG) (m+nrl-NR_END));    }
 }    l1 = strlen( dirc );                  /* length of directory */
     /*#ifdef windows
 /******************* matrix *******************************/    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 double **matrix(long nrl, long nrh, long ncl, long nch)  #else
 {    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #endif
   double **m;    */
     ss = strrchr( name, '.' );            /* find last / */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    ss++;
   if (!m) nrerror("allocation failure 1 in matrix()");    strcpy(ext,ss);                       /* save extension */
   m += NR_END;    l1= strlen( name);
   m -= nrl;    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    finame[l1-l2]= 0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    return( 0 );                          /* we're done */
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /******************************************/
   return m;  
 }  void replace_back_to_slash(char *s, char*t)
   {
 /*************************free matrix ************************/    int i;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    int lg=0;
 {    i=0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    lg=strlen(t);
   free((FREE_ARG)(m+nrl-NR_END));    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /******************* ma3x *******************************/    }
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  }
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int nbocc(char *s, char occ)
   double ***m;  {
     int i,j=0;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    int lg=20;
   if (!m) nrerror("allocation failure 1 in matrix()");    i=0;
   m += NR_END;    lg=strlen(s);
   m -= nrl;    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    return j;
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   void cutv(char *u,char *v, char*t, char occ)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
     /* cuts string t into u and v where u is ended by char occ excluding it
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");       gives u="abcedf" and v="ghi2j" */
   m[nrl][ncl] += NR_END;    int i,lg,j,p=0;
   m[nrl][ncl] -= nll;    i=0;
   for (j=ncl+1; j<=nch; j++)    for(j=0; j<=strlen(t)-1; j++) {
     m[nrl][j]=m[nrl][j-1]+nlay;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
      }
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    lg=strlen(t);
     for (j=ncl+1; j<=nch; j++)    for(j=0; j<p; j++) {
       m[i][j]=m[i][j-1]+nlay;      (u[j] = t[j]);
   }    }
   return m;       u[p]='\0';
 }  
      for(j=0; j<= lg; j++) {
 /*************************free ma3x ************************/      if (j>=(p+1))(v[j-p-1] = t[j]);
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    }
 {  }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /********************** nrerror ********************/
   free((FREE_ARG)(m+nrl-NR_END));  
 }  void nrerror(char error_text[])
   {
 /***************** f1dim *************************/    fprintf(stderr,"ERREUR ...\n");
 extern int ncom;    fprintf(stderr,"%s\n",error_text);
 extern double *pcom,*xicom;    exit(EXIT_FAILURE);
 extern double (*nrfunc)(double []);  }
    /*********************** vector *******************/
 double f1dim(double x)  double *vector(int nl, int nh)
 {  {
   int j;    double *v;
   double f;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double *xt;    if (!v) nrerror("allocation failure in vector");
      return v-nl+NR_END;
   xt=vector(1,ncom);  }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /************************ free vector ******************/
   free_vector(xt,1,ncom);  void free_vector(double*v, int nl, int nh)
   return f;  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /************************ivector *******************************/
 {  int *ivector(long nl,long nh)
   int iter;  {
   double a,b,d,etemp;    int *v;
   double fu,fv,fw,fx;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double ftemp;    if (!v) nrerror("allocation failure in ivector");
   double p,q,r,tol1,tol2,u,v,w,x,xm;    return v-nl+NR_END;
   double e=0.0;  }
    
   a=(ax < cx ? ax : cx);  /******************free ivector **************************/
   b=(ax > cx ? ax : cx);  void free_ivector(int *v, long nl, long nh)
   x=w=v=bx;  {
   fw=fv=fx=(*f)(x);    free((FREE_ARG)(v+nl-NR_END));
   for (iter=1;iter<=ITMAX;iter++) {  }
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  /************************lvector *******************************/
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  long *lvector(long nl,long nh)
     printf(".");fflush(stdout);  {
 #ifdef DEBUG    long *v;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    if (!v) nrerror("allocation failure in ivector");
 #endif    return v-nl+NR_END;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  /******************free lvector **************************/
     }  void free_lvector(long *v, long nl, long nh)
     ftemp=fu;  {
     if (fabs(e) > tol1) {    free((FREE_ARG)(v+nl-NR_END));
       r=(x-w)*(fx-fv);  }
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  /******************* imatrix *******************************/
       q=2.0*(q-r);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       if (q > 0.0) p = -p;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       q=fabs(q);  { 
       etemp=e;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       e=d;    int **m; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    /* allocate pointers to rows */ 
       else {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         d=p/q;    if (!m) nrerror("allocation failure 1 in matrix()"); 
         u=x+d;    m += NR_END; 
         if (u-a < tol2 || b-u < tol2)    m -= nrl; 
           d=SIGN(tol1,xm-x);    
       }    
     } else {    /* allocate rows and set pointers to them */ 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    m[nrl] += NR_END; 
     fu=(*f)(u);    m[nrl] -= ncl; 
     if (fu <= fx) {    
       if (u >= x) a=x; else b=x;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       SHFT(v,w,x,u)    
         SHFT(fv,fw,fx,fu)    /* return pointer to array of pointers to rows */ 
         } else {    return m; 
           if (u < x) a=u; else b=u;  } 
           if (fu <= fw || w == x) {  
             v=w;  /****************** free_imatrix *************************/
             w=u;  void free_imatrix(m,nrl,nrh,ncl,nch)
             fv=fw;        int **m;
             fw=fu;        long nch,ncl,nrh,nrl; 
           } else if (fu <= fv || v == x || v == w) {       /* free an int matrix allocated by imatrix() */ 
             v=u;  { 
             fv=fu;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
           }    free((FREE_ARG) (m+nrl-NR_END)); 
         }  } 
   }  
   nrerror("Too many iterations in brent");  /******************* matrix *******************************/
   *xmin=x;  double **matrix(long nrl, long nrh, long ncl, long nch)
   return fx;  {
 }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
 /****************** mnbrak ***********************/  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!m) nrerror("allocation failure 1 in matrix()");
             double (*func)(double))    m += NR_END;
 {    m -= nrl;
   double ulim,u,r,q, dum;  
   double fu;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *fa=(*func)(*ax);    m[nrl] += NR_END;
   *fb=(*func)(*bx);    m[nrl] -= ncl;
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       SHFT(dum,*fb,*fa,dum)    return m;
       }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   *cx=(*bx)+GOLD*(*bx-*ax);     */
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /*************************free matrix ************************/
     q=(*bx-*cx)*(*fb-*fa);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     ulim=(*bx)+GLIMIT*(*cx-*bx);    free((FREE_ARG)(m+nrl-NR_END));
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /******************* ma3x *******************************/
       fu=(*func)(u);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       if (fu < *fc) {  {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
           SHFT(*fb,*fc,fu,(*func)(u))    double ***m;
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       u=ulim;    if (!m) nrerror("allocation failure 1 in matrix()");
       fu=(*func)(u);    m += NR_END;
     } else {    m -= nrl;
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     SHFT(*ax,*bx,*cx,u)    m[nrl] += NR_END;
       SHFT(*fa,*fb,*fc,fu)    m[nrl] -= ncl;
       }  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
 /*************** linmin ************************/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 int ncom;    m[nrl][ncl] += NR_END;
 double *pcom,*xicom;    m[nrl][ncl] -= nll;
 double (*nrfunc)(double []);    for (j=ncl+1; j<=nch; j++) 
        m[nrl][j]=m[nrl][j-1]+nlay;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    
 {    for (i=nrl+1; i<=nrh; i++) {
   double brent(double ax, double bx, double cx,      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                double (*f)(double), double tol, double *xmin);      for (j=ncl+1; j<=nch; j++) 
   double f1dim(double x);        m[i][j]=m[i][j-1]+nlay;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    }
               double *fc, double (*func)(double));    return m; 
   int j;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double xx,xmin,bx,ax;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double fx,fb,fa;    */
    }
   ncom=n;  
   pcom=vector(1,n);  /*************************free ma3x ************************/
   xicom=vector(1,n);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     pcom[j]=p[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     xicom[j]=xi[j];    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   ax=0.0;  
   xx=1.0;  /***************** f1dim *************************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  extern int ncom; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  extern double *pcom,*xicom;
 #ifdef DEBUG  extern double (*nrfunc)(double []); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);   
 #endif  double f1dim(double x) 
   for (j=1;j<=n;j++) {  { 
     xi[j] *= xmin;    int j; 
     p[j] += xi[j];    double f;
   }    double *xt; 
   free_vector(xicom,1,n);   
   free_vector(pcom,1,n);    xt=vector(1,ncom); 
 }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
 /*************** powell ************************/    free_vector(xt,1,ncom); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    return f; 
             double (*func)(double []))  } 
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /*****************brent *************************/
               double (*func)(double []));  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   int i,ibig,j;  { 
   double del,t,*pt,*ptt,*xit;    int iter; 
   double fp,fptt;    double a,b,d,etemp;
   double *xits;    double fu,fv,fw,fx;
   pt=vector(1,n);    double ftemp;
   ptt=vector(1,n);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   xit=vector(1,n);    double e=0.0; 
   xits=vector(1,n);   
   *fret=(*func)(p);    a=(ax < cx ? ax : cx); 
   for (j=1;j<=n;j++) pt[j]=p[j];    b=(ax > cx ? ax : cx); 
   for (*iter=1;;++(*iter)) {    x=w=v=bx; 
     fp=(*fret);    fw=fv=fx=(*f)(x); 
     ibig=0;    for (iter=1;iter<=ITMAX;iter++) { 
     del=0.0;      xm=0.5*(a+b); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for (i=1;i<=n;i++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(" %d %.12f",i, p[i]);      printf(".");fflush(stdout);
     printf("\n");      fprintf(ficlog,".");fflush(ficlog);
     for (i=1;i<=n;i++) {  #ifdef DEBUG
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fptt=(*fret);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #ifdef DEBUG      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       printf("fret=%lf \n",*fret);  #endif
 #endif      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       printf("%d",i);fflush(stdout);        *xmin=x; 
       linmin(p,xit,n,fret,func);        return fx; 
       if (fabs(fptt-(*fret)) > del) {      } 
         del=fabs(fptt-(*fret));      ftemp=fu;
         ibig=i;      if (fabs(e) > tol1) { 
       }        r=(x-w)*(fx-fv); 
 #ifdef DEBUG        q=(x-v)*(fx-fw); 
       printf("%d %.12e",i,(*fret));        p=(x-v)*q-(x-w)*r; 
       for (j=1;j<=n;j++) {        q=2.0*(q-r); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        if (q > 0.0) p = -p; 
         printf(" x(%d)=%.12e",j,xit[j]);        q=fabs(q); 
       }        etemp=e; 
       for(j=1;j<=n;j++)        e=d; 
         printf(" p=%.12e",p[j]);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       printf("\n");          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #endif        else { 
     }          d=p/q; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {          u=x+d; 
 #ifdef DEBUG          if (u-a < tol2 || b-u < tol2) 
       int k[2],l;            d=SIGN(tol1,xm-x); 
       k[0]=1;        } 
       k[1]=-1;      } else { 
       printf("Max: %.12e",(*func)(p));        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (j=1;j<=n;j++)      } 
         printf(" %.12e",p[j]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       printf("\n");      fu=(*f)(u); 
       for(l=0;l<=1;l++) {      if (fu <= fx) { 
         for (j=1;j<=n;j++) {        if (u >= x) a=x; else b=x; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        SHFT(v,w,x,u) 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          SHFT(fv,fw,fx,fu) 
         }          } else { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));            if (u < x) a=u; else b=u; 
       }            if (fu <= fw || w == x) { 
 #endif              v=w; 
               w=u; 
               fv=fw; 
       free_vector(xit,1,n);              fw=fu; 
       free_vector(xits,1,n);            } else if (fu <= fv || v == x || v == w) { 
       free_vector(ptt,1,n);              v=u; 
       free_vector(pt,1,n);              fv=fu; 
       return;            } 
     }          } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    } 
     for (j=1;j<=n;j++) {    nrerror("Too many iterations in brent"); 
       ptt[j]=2.0*p[j]-pt[j];    *xmin=x; 
       xit[j]=p[j]-pt[j];    return fx; 
       pt[j]=p[j];  } 
     }  
     fptt=(*func)(ptt);  /****************** mnbrak ***********************/
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       if (t < 0.0) {              double (*func)(double)) 
         linmin(p,xit,n,fret,func);  { 
         for (j=1;j<=n;j++) {    double ulim,u,r,q, dum;
           xi[j][ibig]=xi[j][n];    double fu; 
           xi[j][n]=xit[j];   
         }    *fa=(*func)(*ax); 
 #ifdef DEBUG    *fb=(*func)(*bx); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    if (*fb > *fa) { 
         for(j=1;j<=n;j++)      SHFT(dum,*ax,*bx,dum) 
           printf(" %.12e",xit[j]);        SHFT(dum,*fb,*fa,dum) 
         printf("\n");        } 
 #endif    *cx=(*bx)+GOLD*(*bx-*ax); 
       }    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
   }      r=(*bx-*ax)*(*fb-*fc); 
 }      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 /**** Prevalence limit ****************/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      if ((*bx-u)*(u-*cx) > 0.0) { 
 {        fu=(*func)(u); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      } else if ((*cx-u)*(u-ulim) > 0.0) { 
      matrix by transitions matrix until convergence is reached */        fu=(*func)(u); 
         if (fu < *fc) { 
   int i, ii,j,k;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double min, max, maxmin, maxmax,sumnew=0.;            SHFT(*fb,*fc,fu,(*func)(u)) 
   double **matprod2();            } 
   double **out, cov[NCOVMAX], **pmij();      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double **newm;        u=ulim; 
   double agefin, delaymax=50 ; /* Max number of years to converge */        fu=(*func)(u); 
       } else { 
   for (ii=1;ii<=nlstate+ndeath;ii++)        u=(*cx)+GOLD*(*cx-*bx); 
     for (j=1;j<=nlstate+ndeath;j++){        fu=(*func)(u); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } 
     }      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
    cov[1]=1.;        } 
    } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /*************** linmin ************************/
     newm=savm;  
     /* Covariates have to be included here again */  int ncom; 
      cov[2]=agefin;  double *pcom,*xicom;
    double (*nrfunc)(double []); 
       for (k=1; k<=cptcovn;k++) {   
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  { 
       }    double brent(double ax, double bx, double cx, 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                 double (*f)(double), double tol, double *xmin); 
       for (k=1; k<=cptcovprod;k++)    double f1dim(double x); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    int j; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    double xx,xmin,bx,ax; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    double fx,fb,fa;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);   
     ncom=n; 
     savm=oldm;    pcom=vector(1,n); 
     oldm=newm;    xicom=vector(1,n); 
     maxmax=0.;    nrfunc=func; 
     for(j=1;j<=nlstate;j++){    for (j=1;j<=n;j++) { 
       min=1.;      pcom[j]=p[j]; 
       max=0.;      xicom[j]=xi[j]; 
       for(i=1; i<=nlstate; i++) {    } 
         sumnew=0;    ax=0.0; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    xx=1.0; 
         prlim[i][j]= newm[i][j]/(1-sumnew);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         max=FMAX(max,prlim[i][j]);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         min=FMIN(min,prlim[i][j]);  #ifdef DEBUG
       }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       maxmin=max-min;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       maxmax=FMAX(maxmax,maxmin);  #endif
     }    for (j=1;j<=n;j++) { 
     if(maxmax < ftolpl){      xi[j] *= xmin; 
       return prlim;      p[j] += xi[j]; 
     }    } 
   }    free_vector(xicom,1,n); 
 }    free_vector(pcom,1,n); 
   } 
 /*************** transition probabilities ***************/  
   char *asc_diff_time(long time_sec, char ascdiff[])
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  {
 {    long sec_left, days, hours, minutes;
   double s1, s2;    days = (time_sec) / (60*60*24);
   /*double t34;*/    sec_left = (time_sec) % (60*60*24);
   int i,j,j1, nc, ii, jj;    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
     for(i=1; i<= nlstate; i++){    minutes = (sec_left) /60;
     for(j=1; j<i;j++){    sec_left = (sec_left) % (60);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         /*s2 += param[i][j][nc]*cov[nc];*/    return ascdiff;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /*************** powell ************************/
       ps[i][j]=s2;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/              double (*func)(double [])) 
     }  { 
     for(j=i+1; j<=nlstate+ndeath;j++){    void linmin(double p[], double xi[], int n, double *fret, 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){                double (*func)(double [])); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    int i,ibig,j; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    double del,t,*pt,*ptt,*xit;
       }    double fp,fptt;
       ps[i][j]=s2;    double *xits;
     }    int niterf, itmp;
   }  
     /*ps[3][2]=1;*/    pt=vector(1,n); 
     ptt=vector(1,n); 
   for(i=1; i<= nlstate; i++){    xit=vector(1,n); 
      s1=0;    xits=vector(1,n); 
     for(j=1; j<i; j++)    *fret=(*func)(p); 
       s1+=exp(ps[i][j]);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (*iter=1;;++(*iter)) { 
       s1+=exp(ps[i][j]);      fp=(*fret); 
     ps[i][i]=1./(s1+1.);      ibig=0; 
     for(j=1; j<i; j++)      del=0.0; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      last_time=curr_time;
     for(j=i+1; j<=nlstate+ndeath; j++)      (void) gettimeofday(&curr_time,&tzp);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   } /* end i */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       for (i=1;i<=n;i++) {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        printf(" %d %.12f",i, p[i]);
     for(jj=1; jj<= nlstate+ndeath; jj++){        fprintf(ficlog," %d %.12lf",i, p[i]);
       ps[ii][jj]=0;        fprintf(ficrespow," %.12lf", p[i]);
       ps[ii][ii]=1;      }
     }      printf("\n");
   }      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        tm = *localtime(&curr_time.tv_sec);
     for(jj=1; jj<= nlstate+ndeath; jj++){        strcpy(strcurr,asctime(&tmf));
      printf("%lf ",ps[ii][jj]);  /*       asctime_r(&tm,strcurr); */
    }        forecast_time=curr_time;
     printf("\n ");        itmp = strlen(strcurr);
     }        if(strcurr[itmp-1]=='\n')
     printf("\n ");printf("%lf ",cov[2]);*/          strcurr[itmp-1]='\0';
 /*        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   goto end;*/        for(niterf=10;niterf<=30;niterf+=10){
     return ps;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 }          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
 /**************** Product of 2 matrices ******************/          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          if(strfor[itmp-1]=='\n')
 {          strfor[itmp-1]='\0';
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   /* in, b, out are matrice of pointers which should have been initialized        }
      before: only the contents of out is modified. The function returns      }
      a pointer to pointers identical to out */      for (i=1;i<=n;i++) { 
   long i, j, k;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for(i=nrl; i<= nrh; i++)        fptt=(*fret); 
     for(k=ncolol; k<=ncoloh; k++)  #ifdef DEBUG
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        printf("fret=%lf \n",*fret);
         out[i][k] +=in[i][j]*b[j][k];        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
   return out;        printf("%d",i);fflush(stdout);
 }        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 /************* Higher Matrix Product ***************/          del=fabs(fptt-(*fret)); 
           ibig=i; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        } 
 {  #ifdef DEBUG
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        printf("%d %.12e",i,(*fret));
      duration (i.e. until        fprintf(ficlog,"%d %.12e",i,(*fret));
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        for (j=1;j<=n;j++) {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
      (typically every 2 years instead of every month which is too big).          printf(" x(%d)=%.12e",j,xit[j]);
      Model is determined by parameters x and covariates have to be          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
      included manually here.        }
         for(j=1;j<=n;j++) {
      */          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
   int i, j, d, h, k;        }
   double **out, cov[NCOVMAX];        printf("\n");
   double **newm;        fprintf(ficlog,"\n");
   #endif
   /* Hstepm could be zero and should return the unit matrix */      } 
   for (i=1;i<=nlstate+ndeath;i++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (j=1;j<=nlstate+ndeath;j++){  #ifdef DEBUG
       oldm[i][j]=(i==j ? 1.0 : 0.0);        int k[2],l;
       po[i][j][0]=(i==j ? 1.0 : 0.0);        k[0]=1;
     }        k[1]=-1;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        printf("Max: %.12e",(*func)(p));
   for(h=1; h <=nhstepm; h++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for(d=1; d <=hstepm; d++){        for (j=1;j<=n;j++) {
       newm=savm;          printf(" %.12e",p[j]);
       /* Covariates have to be included here again */          fprintf(ficlog," %.12e",p[j]);
       cov[1]=1.;        }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        printf("\n");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        fprintf(ficlog,"\n");
       for (k=1; k<=cptcovage;k++)        for(l=0;l<=1;l++) {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          for (j=1;j<=n;j++) {
       for (k=1; k<=cptcovprod;k++)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
       savm=oldm;  
       oldm=newm;  
     }        free_vector(xit,1,n); 
     for(i=1; i<=nlstate+ndeath; i++)        free_vector(xits,1,n); 
       for(j=1;j<=nlstate+ndeath;j++) {        free_vector(ptt,1,n); 
         po[i][j][h]=newm[i][j];        free_vector(pt,1,n); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        return; 
          */      } 
       }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   } /* end h */      for (j=1;j<=n;j++) { 
   return po;        ptt[j]=2.0*p[j]-pt[j]; 
 }        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
       } 
 /*************** log-likelihood *************/      fptt=(*func)(ptt); 
 double func( double *x)      if (fptt < fp) { 
 {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   int i, ii, j, k, mi, d, kk;        if (t < 0.0) { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          linmin(p,xit,n,fret,func); 
   double **out;          for (j=1;j<=n;j++) { 
   double sw; /* Sum of weights */            xi[j][ibig]=xi[j][n]; 
   double lli; /* Individual log likelihood */            xi[j][n]=xit[j]; 
   long ipmx;          }
   /*extern weight */  #ifdef DEBUG
   /* We are differentiating ll according to initial status */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   /*for(i=1;i<imx;i++)          for(j=1;j<=n;j++){
     printf(" %d\n",s[4][i]);            printf(" %.12e",xit[j]);
   */            fprintf(ficlog," %.12e",xit[j]);
   cov[1]=1.;          }
           printf("\n");
   for(k=1; k<=nlstate; k++) ll[k]=0.;          fprintf(ficlog,"\n");
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #endif
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        }
     for(mi=1; mi<= wav[i]-1; mi++){      } 
       for (ii=1;ii<=nlstate+ndeath;ii++)    } 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  } 
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  /**** Prevalence limit (stable prevalence)  ****************/
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  {
         }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
               matrix by transitions matrix until convergence is reached */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    int i, ii,j,k;
         savm=oldm;    double min, max, maxmin, maxmax,sumnew=0.;
         oldm=newm;    double **matprod2();
            double **out, cov[NCOVMAX], **pmij();
            double **newm;
       } /* end mult */    double agefin, delaymax=50 ; /* Max number of years to converge */
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    for (ii=1;ii<=nlstate+ndeath;ii++)
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      for (j=1;j<=nlstate+ndeath;j++){
       ipmx +=1;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       sw += weight[i];      }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */     cov[1]=1.;
   } /* end of individual */   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      newm=savm;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      /* Covariates have to be included here again */
   return -l;       cov[2]=agefin;
 }    
         for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 /*********** Maximum Likelihood Estimation ***************/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {        for (k=1; k<=cptcovprod;k++)
   int i,j, iter;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double **xi,*delti;  
   double fret;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   xi=matrix(1,npar,1,npar);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   for (i=1;i<=npar;i++)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     for (j=1;j<=npar;j++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");      savm=oldm;
   powell(p,xi,npar,ftol,&iter,&fret,func);      oldm=newm;
       maxmax=0.;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      for(j=1;j<=nlstate;j++){
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        min=1.;
         max=0.;
 }        for(i=1; i<=nlstate; i++) {
           sumnew=0;
 /**** Computes Hessian and covariance matrix ***/          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          prlim[i][j]= newm[i][j]/(1-sumnew);
 {          max=FMAX(max,prlim[i][j]);
   double  **a,**y,*x,pd;          min=FMIN(min,prlim[i][j]);
   double **hess;        }
   int i, j,jk;        maxmin=max-min;
   int *indx;        maxmax=FMAX(maxmax,maxmin);
       }
   double hessii(double p[], double delta, int theta, double delti[]);      if(maxmax < ftolpl){
   double hessij(double p[], double delti[], int i, int j);        return prlim;
   void lubksb(double **a, int npar, int *indx, double b[]) ;      }
   void ludcmp(double **a, int npar, int *indx, double *d) ;    }
   }
   hess=matrix(1,npar,1,npar);  
   /*************** transition probabilities ***************/ 
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     printf("%d",i);fflush(stdout);  {
     hess[i][i]=hessii(p,ftolhess,i,delti);    double s1, s2;
     /*printf(" %f ",p[i]);*/    /*double t34;*/
     /*printf(" %lf ",hess[i][i]);*/    int i,j,j1, nc, ii, jj;
   }  
        for(i=1; i<= nlstate; i++){
   for (i=1;i<=npar;i++) {      for(j=1; j<i;j++){
     for (j=1;j<=npar;j++)  {        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       if (j>i) {          /*s2 += param[i][j][nc]*cov[nc];*/
         printf(".%d%d",i,j);fflush(stdout);          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         hess[i][j]=hessij(p,delti,i,j);          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         hess[j][i]=hess[i][j];            }
         /*printf(" %lf ",hess[i][j]);*/        ps[i][j]=s2;
       }        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     }      }
   }      for(j=i+1; j<=nlstate+ndeath;j++){
   printf("\n");        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
          }
   a=matrix(1,npar,1,npar);        ps[i][j]=s2;
   y=matrix(1,npar,1,npar);      }
   x=vector(1,npar);    }
   indx=ivector(1,npar);      /*ps[3][2]=1;*/
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    for(i=1; i<= nlstate; i++){
   ludcmp(a,npar,indx,&pd);       s1=0;
       for(j=1; j<i; j++)
   for (j=1;j<=npar;j++) {        s1+=exp(ps[i][j]);
     for (i=1;i<=npar;i++) x[i]=0;      for(j=i+1; j<=nlstate+ndeath; j++)
     x[j]=1;        s1+=exp(ps[i][j]);
     lubksb(a,npar,indx,x);      ps[i][i]=1./(s1+1.);
     for (i=1;i<=npar;i++){      for(j=1; j<i; j++)
       matcov[i][j]=x[i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
     }      for(j=i+1; j<=nlstate+ndeath; j++)
   }        ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   printf("\n#Hessian matrix#\n");    } /* end i */
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       printf("%.3e ",hess[i][j]);      for(jj=1; jj<= nlstate+ndeath; jj++){
     }        ps[ii][jj]=0;
     printf("\n");        ps[ii][ii]=1;
   }      }
     }
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   ludcmp(a,npar,indx,&pd);      for(jj=1; jj<= nlstate+ndeath; jj++){
        printf("%lf ",ps[ii][jj]);
   /*  printf("\n#Hessian matrix recomputed#\n");     }
       printf("\n ");
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;      printf("\n ");printf("%lf ",cov[2]);*/
     x[j]=1;  /*
     lubksb(a,npar,indx,x);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for (i=1;i<=npar;i++){    goto end;*/
       y[i][j]=x[i];      return ps;
       printf("%.3e ",y[i][j]);  }
     }  
     printf("\n");  /**************** Product of 2 matrices ******************/
   }  
   */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
   free_matrix(a,1,npar,1,npar);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   free_matrix(y,1,npar,1,npar);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   free_vector(x,1,npar);    /* in, b, out are matrice of pointers which should have been initialized 
   free_ivector(indx,1,npar);       before: only the contents of out is modified. The function returns
   free_matrix(hess,1,npar,1,npar);       a pointer to pointers identical to out */
     long i, j, k;
     for(i=nrl; i<= nrh; i++)
 }      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
 /*************** hessian matrix ****************/          out[i][k] +=in[i][j]*b[j][k];
 double hessii( double x[], double delta, int theta, double delti[])  
 {    return out;
   int i;  }
   int l=1, lmax=20;  
   double k1,k2;  
   double p2[NPARMAX+1];  /************* Higher Matrix Product ***************/
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double fx;  {
   int k=0,kmax=10;    /* Computes the transition matrix starting at age 'age' over 
   double l1;       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   fx=func(x);       nhstepm*hstepm matrices. 
   for (i=1;i<=npar;i++) p2[i]=x[i];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   for(l=0 ; l <=lmax; l++){       (typically every 2 years instead of every month which is too big 
     l1=pow(10,l);       for the memory).
     delts=delt;       Model is determined by parameters x and covariates have to be 
     for(k=1 ; k <kmax; k=k+1){       included manually here. 
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;       */
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;    int i, j, d, h, k;
       k2=func(p2)-fx;    double **out, cov[NCOVMAX];
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double **newm;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
          /* Hstepm could be zero and should return the unit matrix */
 #ifdef DEBUG    for (i=1;i<=nlstate+ndeath;i++)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for (j=1;j<=nlstate+ndeath;j++){
 #endif        oldm[i][j]=(i==j ? 1.0 : 0.0);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        po[i][j][0]=(i==j ? 1.0 : 0.0);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      }
         k=kmax;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    for(h=1; h <=nhstepm; h++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for(d=1; d <=hstepm; d++){
         k=kmax; l=lmax*10.;        newm=savm;
       }        /* Covariates have to be included here again */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        cov[1]=1.;
         delts=delt;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }        for (k=1; k<=cptcovage;k++)
   }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   delti[theta]=delts;        for (k=1; k<=cptcovprod;k++)
   return res;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
 }  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 double hessij( double x[], double delti[], int thetai,int thetaj)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   int i;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   int l=1, l1, lmax=20;        savm=oldm;
   double k1,k2,k3,k4,res,fx;        oldm=newm;
   double p2[NPARMAX+1];      }
   int k;      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
   fx=func(x);          po[i][j][h]=newm[i][j];
   for (k=1; k<=2; k++) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     for (i=1;i<=npar;i++) p2[i]=x[i];           */
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    } /* end h */
     k1=func(p2)-fx;    return po;
    }
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  /*************** log-likelihood *************/
    double func( double *x)
     p2[thetai]=x[thetai]-delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int i, ii, j, k, mi, d, kk;
     k3=func(p2)-fx;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      double **out;
     p2[thetai]=x[thetai]-delti[thetai]/k;    double sw; /* Sum of weights */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double lli; /* Individual log likelihood */
     k4=func(p2)-fx;    int s1, s2;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double bbh, survp;
 #ifdef DEBUG    long ipmx;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    /*extern weight */
 #endif    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   return res;    /*for(i=1;i<imx;i++) 
 }      printf(" %d\n",s[4][i]);
     */
 /************** Inverse of matrix **************/    cov[1]=1.;
 void ludcmp(double **a, int n, int *indx, double *d)  
 {    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int i,imax,j,k;  
   double big,dum,sum,temp;    if(mle==1){
   double *vv;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   vv=vector(1,n);        for(mi=1; mi<= wav[i]-1; mi++){
   *d=1.0;          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=1;i<=n;i++) {            for (j=1;j<=nlstate+ndeath;j++){
     big=0.0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=n;j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if ((temp=fabs(a[i][j])) > big) big=temp;            }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          for(d=0; d<dh[mi][i]; d++){
     vv[i]=1.0/big;            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (j=1;j<=n;j++) {            for (kk=1; kk<=cptcovage;kk++) {
     for (i=1;i<j;i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       sum=a[i][j];            }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       a[i][j]=sum;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
     big=0.0;            oldm=newm;
     for (i=j;i<=n;i++) {          } /* end mult */
       sum=a[i][j];        
       for (k=1;k<j;k++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         sum -= a[i][k]*a[k][j];          /* But now since version 0.9 we anticipate for bias and large stepm.
       a[i][j]=sum;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
         big=dum;           * the nearest (and in case of equal distance, to the lowest) interval but now
         imax=i;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     }           * probability in order to take into account the bias as a fraction of the way
     if (j != imax) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       for (k=1;k<=n;k++) {           * -stepm/2 to stepm/2 .
         dum=a[imax][k];           * For stepm=1 the results are the same as for previous versions of Imach.
         a[imax][k]=a[j][k];           * For stepm > 1 the results are less biased than in previous versions. 
         a[j][k]=dum;           */
       }          s1=s[mw[mi][i]][i];
       *d = -(*d);          s2=s[mw[mi+1][i]][i];
       vv[imax]=vv[j];          bbh=(double)bh[mi][i]/(double)stepm; 
     }          /* bias is positive if real duration
     indx[j]=imax;           * is higher than the multiple of stepm and negative otherwise.
     if (a[j][j] == 0.0) a[j][j]=TINY;           */
     if (j != n) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       dum=1.0/(a[j][j]);          if( s2 > nlstate){ 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     }               to the likelihood is the probability to die between last step unit time and current 
   }               step unit time, which is also the differences between probability to die before dh 
   free_vector(vv,1,n);  /* Doesn't work */               and probability to die before dh-stepm . 
 ;               In version up to 0.92 likelihood was computed
 }          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
 void lubksb(double **a, int n, int *indx, double b[])          and not the date of a change in health state. The former idea was
 {          to consider that at each interview the state was recorded
   int i,ii=0,ip,j;          (healthy, disable or death) and IMaCh was corrected; but when we
   double sum;          introduced the exact date of death then we should have modified
            the contribution of an exact death to the likelihood. This new
   for (i=1;i<=n;i++) {          contribution is smaller and very dependent of the step unit
     ip=indx[i];          stepm. It is no more the probability to die between last interview
     sum=b[ip];          and month of death but the probability to survive from last
     b[ip]=b[i];          interview up to one month before death multiplied by the
     if (ii)          probability to die within a month. Thanks to Chris
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          Jackson for correcting this bug.  Former versions increased
     else if (sum) ii=i;          mortality artificially. The bad side is that we add another loop
     b[i]=sum;          which slows down the processing. The difference can be up to 10%
   }          lower mortality.
   for (i=n;i>=1;i--) {            */
     sum=b[i];            lli=log(out[s1][s2] - savm[s1][s2]);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          }else{
     b[i]=sum/a[i][i];            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 }          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 /************ Frequencies ********************/          /*if(lli ==000.0)*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 {  /* Some frequencies */          ipmx +=1;
            sw += weight[i];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***freq; /* Frequencies */        } /* end of wave */
   double *pp;      } /* end of individual */
   double pos, k2, dateintsum=0,k2cpt=0;    }  else if(mle==2){
   FILE *ficresp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char fileresp[FILENAMELENGTH];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   pp=vector(1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (j=1;j<=nlstate+ndeath;j++){
   strcpy(fileresp,"p");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresp,fileres);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficresp=fopen(fileresp,"w"))==NULL) {            }
     printf("Problem with prevalence resultfile: %s\n", fileresp);          for(d=0; d<=dh[mi][i]; d++){
     exit(0);            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            for (kk=1; kk<=cptcovage;kk++) {
   j1=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   j=cptcoveff;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   for(k1=1; k1<=j;k1++){            oldm=newm;
     for(i1=1; i1<=ncodemax[k1];i1++){          } /* end mult */
       j1++;        
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         scanf("%d", i);*/          /* But now since version 0.9 we anticipate for bias and large stepm.
       for (i=-1; i<=nlstate+ndeath; i++)             * If stepm is larger than one month (smallest stepm) and if the exact delay 
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * (in months) between two waves is not a multiple of stepm, we rounded to 
           for(m=agemin; m <= agemax+3; m++)           * the nearest (and in case of equal distance, to the lowest) interval but now
             freq[i][jk][m]=0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                 * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       dateintsum=0;           * probability in order to take into account the bias as a fraction of the way
       k2cpt=0;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       for (i=1; i<=imx; i++) {           * -stepm/2 to stepm/2 .
         bool=1;           * For stepm=1 the results are the same as for previous versions of Imach.
         if  (cptcovn>0) {           * For stepm > 1 the results are less biased than in previous versions. 
           for (z1=1; z1<=cptcoveff; z1++)           */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s1=s[mw[mi][i]][i];
               bool=0;          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
         if (bool==1) {          /* bias is positive if real duration
           for(m=firstpass; m<=lastpass; m++){           * is higher than the multiple of stepm and negative otherwise.
             k2=anint[m][i]+(mint[m][i]/12.);           */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
               if(agev[m][i]==1) agev[m][i]=agemax+2;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
               if (m<lastpass) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          /*if(lli ==000.0)*/
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               }          ipmx +=1;
                        sw += weight[i];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 dateintsum=dateintsum+k2;        } /* end of wave */
                 k2cpt++;      } /* end of individual */
               }    }  else if(mle==3){  /* exponential inter-extrapolation */
             }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if  (cptcovn>0) {            }
         fprintf(ficresp, "\n#********** Variable ");          for(d=0; d<dh[mi][i]; d++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            newm=savm;
         fprintf(ficresp, "**********\n#");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            }
       fprintf(ficresp, "\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                               1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=(int)agemin; i <= (int)agemax+3; i++){            savm=oldm;
         if(i==(int)agemax+3)            oldm=newm;
           printf("Total");          } /* end mult */
         else        
           printf("Age %d", i);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         for(jk=1; jk <=nlstate ; jk++){          /* But now since version 0.9 we anticipate for bias and large stepm.
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             pp[jk] += freq[jk][m][i];           * (in months) between two waves is not a multiple of stepm, we rounded to 
         }           * the nearest (and in case of equal distance, to the lowest) interval but now
         for(jk=1; jk <=nlstate ; jk++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           for(m=-1, pos=0; m <=0 ; m++)           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
             pos += freq[jk][m][i];           * probability in order to take into account the bias as a fraction of the way
           if(pp[jk]>=1.e-10)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           * -stepm/2 to stepm/2 .
           else           * For stepm=1 the results are the same as for previous versions of Imach.
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * For stepm > 1 the results are less biased than in previous versions. 
         }           */
           s1=s[mw[mi][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          s2=s[mw[mi+1][i]][i];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          bbh=(double)bh[mi][i]/(double)stepm; 
             pp[jk] += freq[jk][m][i];          /* bias is positive if real duration
         }           * is higher than the multiple of stepm and negative otherwise.
            */
         for(jk=1,pos=0; jk <=nlstate ; jk++)          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
           pos += pp[jk];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(jk=1; jk <=nlstate ; jk++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           if(pos>=1.e-5)          /*if(lli ==000.0)*/
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           else          ipmx +=1;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          sw += weight[i];
           if( i <= (int) agemax){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if(pos>=1.e-5){        } /* end of wave */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      } /* end of individual */
               probs[i][jk][j1]= pp[jk]/pos;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             else        for(mi=1; mi<= wav[i]-1; mi++){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
           }            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=-1; jk <=nlstate+ndeath; jk++)            }
           for(m=-1; m <=nlstate+ndeath; m++)          for(d=0; d<dh[mi][i]; d++){
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            newm=savm;
         if(i <= (int) agemax)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           fprintf(ficresp,"\n");            for (kk=1; kk<=cptcovage;kk++) {
         printf("\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }          
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   dateintmean=dateintsum/k2cpt;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   fclose(ficresp);            oldm=newm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          } /* end mult */
   free_vector(pp,1,nlstate);        
            s1=s[mw[mi][i]][i];
   /* End of Freq */          s2=s[mw[mi+1][i]][i];
 }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
 /************ Prevalence ********************/          }else{
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 {  /* Some frequencies */          }
            ipmx +=1;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          sw += weight[i];
   double ***freq; /* Frequencies */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *pp;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double pos, k2;        } /* end of wave */
       } /* end of individual */
   pp=vector(1,nlstate);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(mi=1; mi<= wav[i]-1; mi++){
   j1=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   j=cptcoveff;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   for(k1=1; k1<=j;k1++){          for(d=0; d<dh[mi][i]; d++){
     for(i1=1; i1<=ncodemax[k1];i1++){            newm=savm;
       j1++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
       for (i=-1; i<=nlstate+ndeath; i++)                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for (jk=-1; jk<=nlstate+ndeath; jk++)              }
           for(m=agemin; m <= agemax+3; m++)          
             freq[i][jk][m]=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                               1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (i=1; i<=imx; i++) {            savm=oldm;
         bool=1;            oldm=newm;
         if  (cptcovn>0) {          } /* end mult */
           for (z1=1; z1<=cptcoveff; z1++)        
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s1=s[mw[mi][i]][i];
               bool=0;          s2=s[mw[mi+1][i]][i];
         }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         if (bool==1) {          ipmx +=1;
           for(m=firstpass; m<=lastpass; m++){          sw += weight[i];
             k2=anint[m][i]+(mint[m][i]/12.);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
               if(agev[m][i]==0) agev[m][i]=agemax+1;        } /* end of wave */
               if(agev[m][i]==1) agev[m][i]=agemax+2;      } /* end of individual */
               if (m<lastpass) {    } /* End of if */
                 if (calagedate>0)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                 else    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    return -l;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  }
               }  
             }  /*************** log-likelihood *************/
           }  double funcone( double *x)
         }  {
       }    /* Same as likeli but slower because of a lot of printf and if */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    int i, ii, j, k, mi, d, kk;
         for(jk=1; jk <=nlstate ; jk++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double **out;
             pp[jk] += freq[jk][m][i];    double lli; /* Individual log likelihood */
         }    double llt;
         for(jk=1; jk <=nlstate ; jk++){    int s1, s2;
           for(m=-1, pos=0; m <=0 ; m++)    double bbh, survp;
             pos += freq[jk][m][i];    /*extern weight */
         }    /* We are differentiating ll according to initial status */
            /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for(jk=1; jk <=nlstate ; jk++){    /*for(i=1;i<imx;i++) 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      printf(" %d\n",s[4][i]);
             pp[jk] += freq[jk][m][i];    */
         }    cov[1]=1.;
          
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    for(k=1; k<=nlstate; k++) ll[k]=0.;
          
         for(jk=1; jk <=nlstate ; jk++){        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if( i <= (int) agemax){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if(pos>=1.e-5){      for(mi=1; mi<= wav[i]-1; mi++){
               probs[i][jk][j1]= pp[jk]/pos;        for (ii=1;ii<=nlstate+ndeath;ii++)
             }          for (j=1;j<=nlstate+ndeath;j++){
           }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
       }        for(d=0; d<dh[mi][i]; d++){
     }          newm=savm;
   }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          }
   free_vector(pp,1,nlstate);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }  /* End of Freq */          savm=oldm;
           oldm=newm;
 /************* Waves Concatenation ***************/        } /* end mult */
         
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        s1=s[mw[mi][i]][i];
 {        s2=s[mw[mi+1][i]][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        bbh=(double)bh[mi][i]/(double)stepm; 
      Death is a valid wave (if date is known).        /* bias is positive if real duration
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i         * is higher than the multiple of stepm and negative otherwise.
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]         */
      and mw[mi+1][i]. dh depends on stepm.        if( s2 > nlstate && (mle <5) ){  /* Jackson */
      */          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if (mle==1){
   int i, mi, m;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        } else if(mle==2){
      double sum=0., jmean=0.;*/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
   int j, k=0,jk, ju, jl;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double sum=0.;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   jmin=1e+5;          lli=log(out[s1][s2]); /* Original formula */
   jmax=-1;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   jmean=0.;          lli=log(out[s1][s2]); /* Original formula */
   for(i=1; i<=imx; i++){        } /* End of if */
     mi=0;        ipmx +=1;
     m=firstpass;        sw += weight[i];
     while(s[m][i] <= nlstate){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(s[m][i]>=1)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         mw[++mi][i]=m;        if(globpr){
       if(m >=lastpass)          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         break;   %10.6f %10.6f %10.6f ", \
       else                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         m++;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     }/* end while */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     if (s[m][i] > nlstate){            llt +=ll[k]*gipmx/gsw;
       mi++;     /* Death is another wave */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       /* if(mi==0)  never been interviewed correctly before death */          }
          /* Only death is a correct wave */          fprintf(ficresilk," %10.6f\n", -llt);
       mw[mi][i]=m;        }
     }      } /* end of wave */
     } /* end of individual */
     wav[i]=mi;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     if(mi==0)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   for(i=1; i<=imx; i++){      gsw=sw;
     for(mi=1; mi<wav[i];mi++){    }
       if (stepm <=0)    return -l;
         dh[mi][i]=1;  }
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {  char *subdirf(char fileres[])
           if (agedc[i] < 2*AGESUP) {  {
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    /* Caution optionfilefiname is hidden */
           if(j==0) j=1;  /* Survives at least one month after exam */    strcpy(tmpout,optionfilefiname);
           k=k+1;    strcat(tmpout,"/"); /* Add to the right */
           if (j >= jmax) jmax=j;    strcat(tmpout,fileres);
           if (j <= jmin) jmin=j;    return tmpout;
           sum=sum+j;  }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  
           }  char *subdirf2(char fileres[], char *preop)
         }  {
         else{    
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    strcpy(tmpout,optionfilefiname);
           k=k+1;    strcat(tmpout,"/");
           if (j >= jmax) jmax=j;    strcat(tmpout,preop);
           else if (j <= jmin)jmin=j;    strcat(tmpout,fileres);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    return tmpout;
           sum=sum+j;  }
         }  char *subdirf3(char fileres[], char *preop, char *preop2)
         jk= j/stepm;  {
         jl= j -jk*stepm;    
         ju= j -(jk+1)*stepm;    strcpy(tmpout,optionfilefiname);
         if(jl <= -ju)    strcat(tmpout,"/");
           dh[mi][i]=jk;    strcat(tmpout,preop);
         else    strcat(tmpout,preop2);
           dh[mi][i]=jk+1;    strcat(tmpout,fileres);
         if(dh[mi][i]==0)    return tmpout;
           dh[mi][i]=1; /* At least one step */  }
       }  
     }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   }  {
   jmean=sum/k;    /* This routine should help understanding what is done with 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);       the selection of individuals/waves and
  }       to check the exact contribution to the likelihood.
 /*********** Tricode ****************************/       Plotting could be done.
 void tricode(int *Tvar, int **nbcode, int imx)     */
 {    int k;
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;    if(*globpri !=0){ /* Just counts and sums, no printings */
   cptcoveff=0;      strcpy(fileresilk,"ilk"); 
        strcat(fileresilk,fileres);
   for (k=0; k<19; k++) Ndum[k]=0;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   for (k=1; k<=7; k++) ncodemax[k]=0;        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      }
     for (i=1; i<=imx; i++) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       ij=(int)(covar[Tvar[j]][i]);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       Ndum[ij]++;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      for(k=1; k<=nlstate; k++) 
       if (ij > cptcode) cptcode=ij;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;    *fretone=(*funcone)(p);
     }    if(*globpri !=0){
     ij=1;      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
     for (i=1; i<=ncodemax[j]; i++) {    } 
       for (k=0; k<=19; k++) {    return;
         if (Ndum[k] != 0) {  }
           nbcode[Tvar[j]][ij]=k;  
            
           ij++;  /*********** Maximum Likelihood Estimation ***************/
         }  
         if (ij > ncodemax[j]) break;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       }    {
     }    int i,j, iter;
   }      double **xi;
     double fret;
  for (k=0; k<19; k++) Ndum[k]=0;    double fretone; /* Only one call to likelihood */
     char filerespow[FILENAMELENGTH];
  for (i=1; i<=ncovmodel-2; i++) {    xi=matrix(1,npar,1,npar);
       ij=Tvar[i];    for (i=1;i<=npar;i++)
       Ndum[ij]++;      for (j=1;j<=npar;j++)
     }        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
  ij=1;    strcpy(filerespow,"pow"); 
  for (i=1; i<=10; i++) {    strcat(filerespow,fileres);
    if((Ndum[i]!=0) && (i<=ncovcol)){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
      Tvaraff[ij]=i;      printf("Problem with resultfile: %s\n", filerespow);
      ij++;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
    }    }
  }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      for (i=1;i<=nlstate;i++)
     cptcoveff=ij-1;      for(j=1;j<=nlstate+ndeath;j++)
 }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
 /*********** Health Expectancies ****************/  
     powell(p,xi,npar,ftol,&iter,&fret,func);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
     fclose(ficrespow);
 {    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   /* Health expectancies */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double age, agelim, hf;  
   double ***p3mat,***varhe;  }
   double **dnewm,**doldm;  
   double *xp;  /**** Computes Hessian and covariance matrix ***/
   double **gp, **gm;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double ***gradg, ***trgradg;  {
   int theta;    double  **a,**y,*x,pd;
     double **hess;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    int i, j,jk;
   xp=vector(1,npar);    int *indx;
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);    double hessii(double p[], double delta, int theta, double delti[]);
      double hessij(double p[], double delti[], int i, int j);
   fprintf(ficreseij,"# Health expectancies\n");    void lubksb(double **a, int npar, int *indx, double b[]) ;
   fprintf(ficreseij,"# Age");    void ludcmp(double **a, int npar, int *indx, double *d) ;
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    hess=matrix(1,npar,1,npar);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   if(estepm < stepm){    for (i=1;i<=npar;i++){
     printf ("Problem %d lower than %d\n",estepm, stepm);      printf("%d",i);fflush(stdout);
   }      fprintf(ficlog,"%d",i);fflush(ficlog);
   else  hstepm=estepm;        hess[i][i]=hessii(p,ftolhess,i,delti);
   /* We compute the life expectancy from trapezoids spaced every estepm months      /*printf(" %f ",p[i]);*/
    * This is mainly to measure the difference between two models: for example      /*printf(" %lf ",hess[i][i]);*/
    * if stepm=24 months pijx are given only every 2 years and by summing them    }
    * we are calculating an estimate of the Life Expectancy assuming a linear    
    * progression inbetween and thus overestimating or underestimating according    for (i=1;i<=npar;i++) {
    * to the curvature of the survival function. If, for the same date, we      for (j=1;j<=npar;j++)  {
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        if (j>i) { 
    * to compare the new estimate of Life expectancy with the same linear          printf(".%d%d",i,j);fflush(stdout);
    * hypothesis. A more precise result, taking into account a more precise          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
    * curvature will be obtained if estepm is as small as stepm. */          hess[i][j]=hessij(p,delti,i,j);
           hess[j][i]=hess[i][j];    
   /* For example we decided to compute the life expectancy with the smallest unit */          /*printf(" %lf ",hess[i][j]);*/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        }
      nhstepm is the number of hstepm from age to agelim      }
      nstepm is the number of stepm from age to agelin.    }
      Look at hpijx to understand the reason of that which relies in memory size    printf("\n");
      and note for a fixed period like estepm months */    fprintf(ficlog,"\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      means that if the survival funtion is printed only each two years of age and if    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    
      results. So we changed our mind and took the option of the best precision.    a=matrix(1,npar,1,npar);
   */    y=matrix(1,npar,1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    x=vector(1,npar);
     indx=ivector(1,npar);
   agelim=AGESUP;    for (i=1;i<=npar;i++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     /* nhstepm age range expressed in number of stepm */    ludcmp(a,npar,indx,&pd);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    for (j=1;j<=npar;j++) {
     /* if (stepm >= YEARM) hstepm=1;*/      for (i=1;i<=npar;i++) x[i]=0;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      x[j]=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      lubksb(a,npar,indx,x);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      for (i=1;i<=npar;i++){ 
     gp=matrix(0,nhstepm,1,nlstate*2);        matcov[i][j]=x[i];
     gm=matrix(0,nhstepm,1,nlstate*2);      }
     }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    printf("\n#Hessian matrix#\n");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      fprintf(ficlog,"\n#Hessian matrix#\n");
      for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
     /* Computing Variances of health expectancies */      }
       printf("\n");
      for(theta=1; theta <=npar; theta++){      fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++){    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    /* Recompute Inverse */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       cptj=0;    ludcmp(a,npar,indx,&pd);
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){    /*  printf("\n#Hessian matrix recomputed#\n");
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    for (j=1;j<=npar;j++) {
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for (i=1;i<=npar;i++) x[i]=0;
           }      x[j]=1;
         }      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
              y[i][j]=x[i];
              printf("%.3e ",y[i][j]);
       for(i=1; i<=npar; i++)        fprintf(ficlog,"%.3e ",y[i][j]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        printf("\n");
            fprintf(ficlog,"\n");
       cptj=0;    }
       for(j=1; j<= nlstate; j++){    */
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;    free_matrix(a,1,npar,1,npar);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    free_matrix(y,1,npar,1,npar);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    free_vector(x,1,npar);
           }    free_ivector(indx,1,npar);
         }    free_matrix(hess,1,npar,1,npar);
       }  
       for(j=1; j<= nlstate*2; j++)  
         for(h=0; h<=nhstepm-1; h++){  }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  /*************** hessian matrix ****************/
      }  double hessii( double x[], double delta, int theta, double delti[])
      {
 /* End theta */    int i;
     int l=1, lmax=20;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    double k1,k2;
     double p2[NPARMAX+1];
      for(h=0; h<=nhstepm-1; h++)    double res;
       for(j=1; j<=nlstate*2;j++)    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         for(theta=1; theta <=npar; theta++)    double fx;
           trgradg[h][j][theta]=gradg[h][theta][j];    int k=0,kmax=10;
          double l1;
   
      for(i=1;i<=nlstate*2;i++)    fx=func(x);
       for(j=1;j<=nlstate*2;j++)    for (i=1;i<=npar;i++) p2[i]=x[i];
         varhe[i][j][(int)age] =0.;    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
      printf("%d|",(int)age);fflush(stdout);      delts=delt;
      for(h=0;h<=nhstepm-1;h++){      for(k=1 ; k <kmax; k=k+1){
       for(k=0;k<=nhstepm-1;k++){        delt = delta*(l1*k);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        p2[theta]=x[theta] +delt;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        k1=func(p2)-fx;
         for(i=1;i<=nlstate*2;i++)        p2[theta]=x[theta]-delt;
           for(j=1;j<=nlstate*2;j++)        k2=func(p2)-fx;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        /*res= (k1-2.0*fx+k2)/delt/delt; */
       }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     }        
     /* Computing expectancies */  #ifdef DEBUG
     for(i=1; i<=nlstate;i++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(j=1; j<=nlstate;j++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  #endif
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                  if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          k=kmax;
         }
         }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
     fprintf(ficreseij,"%3.0f",age );        }
     cptj=0;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     for(i=1; i<=nlstate;i++)          delts=delt;
       for(j=1; j<=nlstate;j++){        }
         cptj++;      }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    }
       }    delti[theta]=delts;
     fprintf(ficreseij,"\n");    return res; 
        
     free_matrix(gm,0,nhstepm,1,nlstate*2);  }
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  double hessij( double x[], double delti[], int thetai,int thetaj)
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i;
   }    int l=1, l1, lmax=20;
   printf("\n");    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
   free_vector(xp,1,npar);    int k;
   free_matrix(dnewm,1,nlstate*2,1,npar);  
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    fx=func(x);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    for (k=1; k<=2; k++) {
 }      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
 /************ Variance ******************/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      k1=func(p2)-fx;
 {    
   /* Variance of health expectancies */      p2[thetai]=x[thetai]+delti[thetai]/k;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double **newm;      k2=func(p2)-fx;
   double **dnewm,**doldm;    
   int i, j, nhstepm, hstepm, h, nstepm ;      p2[thetai]=x[thetai]-delti[thetai]/k;
   int k, cptcode;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double *xp;      k3=func(p2)-fx;
   double **gp, **gm;    
   double ***gradg, ***trgradg;      p2[thetai]=x[thetai]-delti[thetai]/k;
   double ***p3mat;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double age,agelim, hf;      k4=func(p2)-fx;
   int theta;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficresvij,"# Age");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   for(i=1; i<=nlstate;i++)  #endif
     for(j=1; j<=nlstate;j++)    }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    return res;
   fprintf(ficresvij,"\n");  }
   
   xp=vector(1,npar);  /************** Inverse of matrix **************/
   dnewm=matrix(1,nlstate,1,npar);  void ludcmp(double **a, int n, int *indx, double *d) 
   doldm=matrix(1,nlstate,1,nlstate);  { 
      int i,imax,j,k; 
   if(estepm < stepm){    double big,dum,sum,temp; 
     printf ("Problem %d lower than %d\n",estepm, stepm);    double *vv; 
   }   
   else  hstepm=estepm;      vv=vector(1,n); 
   /* For example we decided to compute the life expectancy with the smallest unit */    *d=1.0; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (i=1;i<=n;i++) { 
      nhstepm is the number of hstepm from age to agelim      big=0.0; 
      nstepm is the number of stepm from age to agelin.      for (j=1;j<=n;j++) 
      Look at hpijx to understand the reason of that which relies in memory size        if ((temp=fabs(a[i][j])) > big) big=temp; 
      and note for a fixed period like k years */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      vv[i]=1.0/big; 
      survival function given by stepm (the optimization length). Unfortunately it    } 
      means that if the survival funtion is printed only each two years of age and if    for (j=1;j<=n;j++) { 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (i=1;i<j;i++) { 
      results. So we changed our mind and took the option of the best precision.        sum=a[i][j]; 
   */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        a[i][j]=sum; 
   agelim = AGESUP;      } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      big=0.0; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=j;i<=n;i++) { 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        sum=a[i][j]; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (k=1;k<j;k++) 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          sum -= a[i][k]*a[k][j]; 
     gp=matrix(0,nhstepm,1,nlstate);        a[i][j]=sum; 
     gm=matrix(0,nhstepm,1,nlstate);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
     for(theta=1; theta <=npar; theta++){          imax=i; 
       for(i=1; i<=npar; i++){ /* Computes gradient */        } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } 
       }      if (j != imax) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (k=1;k<=n;k++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
       if (popbased==1) {          a[j][k]=dum; 
         for(i=1; i<=nlstate;i++)        } 
           prlim[i][i]=probs[(int)age][i][ij];        *d = -(*d); 
       }        vv[imax]=vv[j]; 
        } 
       for(j=1; j<= nlstate; j++){      indx[j]=imax; 
         for(h=0; h<=nhstepm; h++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      if (j != n) { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        dum=1.0/(a[j][j]); 
         }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       }      } 
        } 
       for(i=1; i<=npar; i++) /* Computes gradient */    free_vector(vv,1,n);  /* Doesn't work */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  ;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
    void lubksb(double **a, int n, int *indx, double b[]) 
       if (popbased==1) {  { 
         for(i=1; i<=nlstate;i++)    int i,ii=0,ip,j; 
           prlim[i][i]=probs[(int)age][i][ij];    double sum; 
       }   
     for (i=1;i<=n;i++) { 
       for(j=1; j<= nlstate; j++){      ip=indx[i]; 
         for(h=0; h<=nhstepm; h++){      sum=b[ip]; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      b[ip]=b[i]; 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      if (ii) 
         }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       }      else if (sum) ii=i; 
       b[i]=sum; 
       for(j=1; j<= nlstate; j++)    } 
         for(h=0; h<=nhstepm; h++){    for (i=n;i>=1;i--) { 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      sum=b[i]; 
         }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     } /* End theta */      b[i]=sum/a[i][i]; 
     } 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  } 
   
     for(h=0; h<=nhstepm; h++)  /************ Frequencies ********************/
       for(j=1; j<=nlstate;j++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
         for(theta=1; theta <=npar; theta++)  {  /* Some frequencies */
           trgradg[h][j][theta]=gradg[h][theta][j];    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    int first;
     for(i=1;i<=nlstate;i++)    double ***freq; /* Frequencies */
       for(j=1;j<=nlstate;j++)    double *pp, **prop;
         vareij[i][j][(int)age] =0.;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
     for(h=0;h<=nhstepm;h++){    char fileresp[FILENAMELENGTH];
       for(k=0;k<=nhstepm;k++){    
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    pp=vector(1,nlstate);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    prop=matrix(1,nlstate,iagemin,iagemax+3);
         for(i=1;i<=nlstate;i++)    strcpy(fileresp,"p");
           for(j=1;j<=nlstate;j++)    strcat(fileresp,fileres);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    if((ficresp=fopen(fileresp,"w"))==NULL) {
       }      printf("Problem with prevalence resultfile: %s\n", fileresp);
     }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
     fprintf(ficresvij,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
       for(j=1; j<=nlstate;j++){    j1=0;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    
       }    j=cptcoveff;
     fprintf(ficresvij,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);    first=1;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    for(k1=1; k1<=j;k1++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i1=1; i1<=ncodemax[k1];i1++){
   } /* End age */        j1++;
          /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   free_vector(xp,1,npar);          scanf("%d", i);*/
   free_matrix(doldm,1,nlstate,1,npar);        for (i=-1; i<=nlstate+ndeath; i++)  
   free_matrix(dnewm,1,nlstate,1,nlstate);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
 }              freq[i][jk][m]=0;
   
 /************ Variance of prevlim ******************/      for (i=1; i<=nlstate; i++)  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        for(m=iagemin; m <= iagemax+3; m++)
 {          prop[i][m]=0;
   /* Variance of prevalence limit */        
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        dateintsum=0;
   double **newm;        k2cpt=0;
   double **dnewm,**doldm;        for (i=1; i<=imx; i++) {
   int i, j, nhstepm, hstepm;          bool=1;
   int k, cptcode;          if  (cptcovn>0) {
   double *xp;            for (z1=1; z1<=cptcoveff; z1++) 
   double *gp, *gm;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   double **gradg, **trgradg;                bool=0;
   double age,agelim;          }
   int theta;          if (bool==1){
                for(m=firstpass; m<=lastpass; m++){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");              k2=anint[m][i]+(mint[m][i]/12.);
   fprintf(ficresvpl,"# Age");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   for(i=1; i<=nlstate;i++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       fprintf(ficresvpl," %1d-%1d",i,i);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficresvpl,"\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
   xp=vector(1,npar);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   dnewm=matrix(1,nlstate,1,npar);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   doldm=matrix(1,nlstate,1,nlstate);                }
                  
   hstepm=1*YEARM; /* Every year of age */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                  dateintsum=dateintsum+k2;
   agelim = AGESUP;                  k2cpt++;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                /*}*/
     if (stepm >= YEARM) hstepm=1;            }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          }
     gradg=matrix(1,npar,1,nlstate);        }
     gp=vector(1,nlstate);         
     gm=vector(1,nlstate);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     for(theta=1; theta <=npar; theta++){        if  (cptcovn>0) {
       for(i=1; i<=npar; i++){ /* Computes gradient */          fprintf(ficresp, "\n#********** Variable "); 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresp, "**********\n#");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       for(i=1;i<=nlstate;i++)        for(i=1; i<=nlstate;i++) 
         gp[i] = prlim[i][i];          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
            fprintf(ficresp, "\n");
       for(i=1; i<=npar; i++) /* Computes gradient */        
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(i=iagemin; i <= iagemax+3; i++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if(i==iagemax+3){
       for(i=1;i<=nlstate;i++)            fprintf(ficlog,"Total");
         gm[i] = prlim[i][i];          }else{
             if(first==1){
       for(i=1;i<=nlstate;i++)              first=0;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              printf("See log file for details...\n");
     } /* End theta */            }
             fprintf(ficlog,"Age %d", i);
     trgradg =matrix(1,nlstate,1,npar);          }
           for(jk=1; jk <=nlstate ; jk++){
     for(j=1; j<=nlstate;j++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       for(theta=1; theta <=npar; theta++)              pp[jk] += freq[jk][m][i]; 
         trgradg[j][theta]=gradg[theta][j];          }
           for(jk=1; jk <=nlstate ; jk++){
     for(i=1;i<=nlstate;i++)            for(m=-1, pos=0; m <=0 ; m++)
       varpl[i][(int)age] =0.;              pos += freq[jk][m][i];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            if(pp[jk]>=1.e-10){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);              if(first==1){
     for(i=1;i<=nlstate;i++)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fprintf(ficresvpl,"%.0f ",age );            }else{
     for(i=1; i<=nlstate;i++)              if(first==1)
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficresvpl,"\n");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     free_vector(gp,1,nlstate);            }
     free_vector(gm,1,nlstate);          }
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){
   } /* End age */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
   free_vector(xp,1,npar);          }       
   free_matrix(doldm,1,nlstate,1,npar);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   free_matrix(dnewm,1,nlstate,1,nlstate);            pos += pp[jk];
             posprop += prop[jk][i];
 }          }
           for(jk=1; jk <=nlstate ; jk++){
 /************ Variance of one-step probabilities  ******************/            if(pos>=1.e-5){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              if(first==1)
 {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   int i, j,  i1, k1, l1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   int k2, l2, j1,  z1;            }else{
   int k=0,l, cptcode;              if(first==1)
   int first=1;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double **dnewm,**doldm;            }
   double *xp;            if( i <= iagemax){
   double *gp, *gm;              if(pos>=1.e-5){
   double **gradg, **trgradg;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   double **mu;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   double age,agelim, cov[NCOVMAX];                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */              }
   int theta;              else
   char fileresprob[FILENAMELENGTH];                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   char fileresprobcov[FILENAMELENGTH];            }
   char fileresprobcor[FILENAMELENGTH];          }
           
   double ***varpij;          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   strcpy(fileresprob,"prob");              if(freq[jk][m][i] !=0 ) {
   strcat(fileresprob,fileres);              if(first==1)
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     printf("Problem with resultfile: %s\n", fileresprob);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   }              }
   strcpy(fileresprobcov,"probcov");          if(i <= iagemax)
   strcat(fileresprobcov,fileres);            fprintf(ficresp,"\n");
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          if(first==1)
     printf("Problem with resultfile: %s\n", fileresprobcov);            printf("Others in log...\n");
   }          fprintf(ficlog,"\n");
   strcpy(fileresprobcor,"probcor");        }
   strcat(fileresprobcor,fileres);      }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprobcor);    dateintmean=dateintsum/k2cpt; 
   }   
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    fclose(ficresp);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    free_vector(pp,1,nlstate);
      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    /* End of Freq */
   fprintf(ficresprob,"# Age");  }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  
   fprintf(ficresprobcov,"# Age");  /************ Prevalence ********************/
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   fprintf(ficresprobcov,"# Age");  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
   for(i=1; i<=nlstate;i++)       We still use firstpass and lastpass as another selection.
     for(j=1; j<=(nlstate+ndeath);j++){    */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);   
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    double ***freq; /* Frequencies */
     }      double *pp, **prop;
   fprintf(ficresprob,"\n");    double pos,posprop; 
   fprintf(ficresprobcov,"\n");    double  y2; /* in fractional years */
   fprintf(ficresprobcor,"\n");    int iagemin, iagemax;
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    iagemin= (int) agemin;
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    iagemax= (int) agemax;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    /*pp=vector(1,nlstate);*/
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   first=1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    j1=0;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    
     exit(0);    j=cptcoveff;
   }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   else{    
     fprintf(ficgp,"\n# Routine varprob");    for(k1=1; k1<=j;k1++){
   }      for(i1=1; i1<=ncodemax[k1];i1++){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        j1++;
     printf("Problem with html file: %s\n", optionfilehtm);        
     exit(0);        for (i=1; i<=nlstate; i++)  
   }          for(m=iagemin; m <= iagemax+3; m++)
   else{            prop[i][m]=0.0;
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");       
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        for (i=1; i<=imx; i++) { /* Each individual */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          bool=1;
           if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++) 
   cov[1]=1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   j=cptcoveff;                bool=0;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          } 
   j1=0;          if (bool==1) { 
   for(k1=1; k1<=1;k1++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     for(i1=1; i1<=ncodemax[k1];i1++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     j1++;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     if  (cptcovn>0) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficresprob, "\n#********** Variable ");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       fprintf(ficresprobcov, "\n#********** Variable ");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       fprintf(ficgp, "\n#********** Variable ");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficresprobcor, "\n#********** Variable ");                  prop[s[m][i]][iagemax+3] += weight[i]; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                } 
       fprintf(ficresprob, "**********\n#");              }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            } /* end selection of waves */
       fprintf(ficresprobcov, "**********\n#");          }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
       fprintf(ficgp, "**********\n#");        for(i=iagemin; i <= iagemax+3; i++){  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          
       fprintf(ficgp, "**********\n#");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            posprop += prop[jk][i]; 
       fprintf(fichtm, "**********\n#");          } 
     }  
              for(jk=1; jk <=nlstate ; jk++){     
       for (age=bage; age<=fage; age ++){            if( i <=  iagemax){ 
         cov[2]=age;              if(posprop>=1.e-5){ 
         for (k=1; k<=cptcovn;k++) {                probs[i][jk][j1]= prop[jk][i]/posprop;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              } 
         }            } 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          }/* end jk */ 
         for (k=1; k<=cptcovprod;k++)        }/* end i */ 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } /* end i1 */
            } /* end k1 */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         gp=vector(1,(nlstate)*(nlstate+ndeath));    /*free_vector(pp,1,nlstate);*/
         gm=vector(1,(nlstate)*(nlstate+ndeath));    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      }  /* End of prevalence */
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)  /************* Waves Concatenation ***************/
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  
            void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  {
              /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           k=0;       Death is a valid wave (if date is known).
           for(i=1; i<= (nlstate); i++){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             for(j=1; j<=(nlstate+ndeath);j++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
               k=k+1;       and mw[mi+1][i]. dh depends on stepm.
               gp[k]=pmmij[i][j];       */
             }  
           }    int i, mi, m;
              /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           for(i=1; i<=npar; i++)       double sum=0., jmean=0.;*/
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    int first;
        int j, k=0,jk, ju, jl;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double sum=0.;
           k=0;    first=0;
           for(i=1; i<=(nlstate); i++){    jmin=1e+5;
             for(j=1; j<=(nlstate+ndeath);j++){    jmax=-1;
               k=k+1;    jmean=0.;
               gm[k]=pmmij[i][j];    for(i=1; i<=imx; i++){
             }      mi=0;
           }      m=firstpass;
            while(s[m][i] <= nlstate){
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        if(s[m][i]>=1)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            mw[++mi][i]=m;
         }        if(m >=lastpass)
           break;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        else
           for(theta=1; theta <=npar; theta++)          m++;
             trgradg[j][theta]=gradg[theta][j];      }/* end while */
              if (s[m][i] > nlstate){
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        mi++;     /* Death is another wave */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        /* if(mi==0)  never been interviewed correctly before death */
                   /* Only death is a correct wave */
         pmij(pmmij,cov,ncovmodel,x,nlstate);        mw[mi][i]=m;
              }
         k=0;  
         for(i=1; i<=(nlstate); i++){      wav[i]=mi;
           for(j=1; j<=(nlstate+ndeath);j++){      if(mi==0){
             k=k+1;        nbwarn++;
             mu[k][(int) age]=pmmij[i][j];        if(first==0){
           }          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         }          first=1;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        if(first==1){
             varpij[i][j][(int)age] = doldm[i][j];          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         }
         /*printf("\n%d ",(int)age);      } /* end mi==0 */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    } /* End individuals */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
      }*/    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
         fprintf(ficresprob,"\n%d ",(int)age);        if (stepm <=0)
         fprintf(ficresprobcov,"\n%d ",(int)age);          dh[mi][i]=1;
         fprintf(ficresprobcor,"\n%d ",(int)age);        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            if (agedc[i] < 2*AGESUP) {
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              if(j==0) j=1;  /* Survives at least one month after exam */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);              else if(j<0){
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);                nberr++;
         }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         i=0;                j=1; /* Temporary Dangerous patch */
         for (k=1; k<=(nlstate);k++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
           for (l=1; l<=(nlstate+ndeath);l++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             i=i++;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);              k=k+1;
             for (j=1; j<=i;j++){              if (j >= jmax) jmax=j;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              if (j <= jmin) jmin=j;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));              sum=sum+j;
             }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         }/* end of loop for state */            }
       } /* end of loop for age */          }
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          else{
       for (k1=1; k1<=(nlstate);k1++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         for (l1=1; l1<=(nlstate+ndeath);l1++){            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           if(l1==k1) continue;            k=k+1;
           i=(k1-1)*(nlstate+ndeath)+l1;            if (j >= jmax) jmax=j;
           for (k2=1; k2<=(nlstate);k2++){            else if (j <= jmin)jmin=j;
             for (l2=1; l2<=(nlstate+ndeath);l2++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
               if(l2==k2) continue;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
               j=(k2-1)*(nlstate+ndeath)+l2;            if(j<0){
               if(j<=i) continue;              nberr++;
               for (age=bage; age<=fage; age ++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 if ((int)age %5==0){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;            sum=sum+j;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          }
                   mu1=mu[i][(int) age]/stepm*YEARM ;          jk= j/stepm;
                   mu2=mu[j][(int) age]/stepm*YEARM;          jl= j -jk*stepm;
                   /* Computing eigen value of matrix of covariance */          ju= j -(jk+1)*stepm;
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            if(jl==0){
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);              dh[mi][i]=jk;
                   /* Eigen vectors */              bh[mi][i]=0;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            }else{ /* We want a negative bias in order to only have interpolation ie
                   v21=sqrt(1.-v11*v11);                    * at the price of an extra matrix product in likelihood */
                   v12=-v21;              dh[mi][i]=jk+1;
                   v22=v11;              bh[mi][i]=ju;
                   /*printf(fignu*/            }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          }else{
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            if(jl <= -ju){
                   if(first==1){              dh[mi][i]=jk;
                     first=0;              bh[mi][i]=jl;       /* bias is positive if real duration
                     fprintf(ficgp,"\nset parametric;set nolabel");                                   * is higher than the multiple of stepm and negative otherwise.
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);                                   */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            }
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);            else{
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);              dh[mi][i]=jk+1;
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);              bh[mi][i]=ju;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            if(dh[mi][i]==0){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              dh[mi][i]=1; /* At least one step */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              bh[mi][i]=ju; /* At least one step */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                   }else{            }
                     first=0;          } /* end if mle */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);        }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      } /* end wave */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    jmean=sum/k;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                   }/* if first */    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                 } /* age mod 5 */   }
               } /* end loop age */  
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);  /*********** Tricode ****************************/
               first=1;  void tricode(int *Tvar, int **nbcode, int imx)
             } /*l12 */  {
           } /* k12 */    
         } /*l1 */    int Ndum[20],ij=1, k, j, i, maxncov=19;
       }/* k1 */    int cptcode=0;
     } /* loop covariates */    cptcoveff=0; 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);   
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    for (k=0; k<maxncov; k++) Ndum[k]=0;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    for (k=1; k<=7; k++) ncodemax[k]=0;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   }                                 modality*/ 
   free_vector(xp,1,npar);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   fclose(ficresprob);        Ndum[ij]++; /*store the modality */
   fclose(ficresprobcov);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   fclose(ficresprobcor);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   fclose(ficgp);                                         Tvar[j]. If V=sex and male is 0 and 
   fclose(fichtm);                                         female is 1, then  cptcode=1.*/
 }      }
   
       for (i=0; i<=cptcode; i++) {
 /******************* Printing html file ***********/        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      }
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      ij=1; 
                   int popforecast, int estepm ,\      for (i=1; i<=ncodemax[j]; i++) {
                   double jprev1, double mprev1,double anprev1, \        for (k=0; k<= maxncov; k++) {
                   double jprev2, double mprev2,double anprev2){          if (Ndum[k] != 0) {
   int jj1, k1, i1, cpt;            nbcode[Tvar[j]][ij]=k; 
   /*char optionfilehtm[FILENAMELENGTH];*/            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            
     printf("Problem with %s \n",optionfilehtm), exit(0);            ij++;
   }          }
           if (ij > ncodemax[j]) break; 
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n        }  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n      } 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    }  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months):   for (k=0; k< maxncov; k++) Ndum[k]=0;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n     ij=Tvar[i];
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n     Ndum[ij]++;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n   }
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n   ij=1;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n   for (i=1; i<= maxncov; i++) {
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n     if((Ndum[i]!=0) && (i<=ncovcol)){
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       Tvaraff[ij]=i; /*For printing */
        ij++;
  if(popforecast==1) fprintf(fichtm,"\n     }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n   }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n   
         <br>",fileres,fileres,fileres,fileres);   cptcoveff=ij-1; /*Number of simple covariates*/
  else  }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  
 fprintf(fichtm," <li>Graphs</li><p>");  /*********** Health Expectancies ****************/
   
  m=cptcoveff;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
   {
  jj1=0;    /* Health expectancies */
  for(k1=1; k1<=m;k1++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
    for(i1=1; i1<=ncodemax[k1];i1++){    double age, agelim, hf;
      jj1++;    double ***p3mat,***varhe;
      if (cptcovn > 0) {    double **dnewm,**doldm;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double *xp;
        for (cpt=1; cpt<=cptcoveff;cpt++)    double **gp, **gm;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    double ***gradg, ***trgradg;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    int theta;
      }  
      /* Pij */    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    xp=vector(1,npar);
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        dnewm=matrix(1,nlstate*nlstate,1,npar);
      /* Quasi-incidences */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    fprintf(ficreseij,"# Health expectancies\n");
        /* Stable prevalence in each health state */    fprintf(ficreseij,"# Age");
        for(cpt=1; cpt<nlstate;cpt++){    for(i=1; i<=nlstate;i++)
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      for(j=1; j<=nlstate;j++)
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
        }    fprintf(ficreseij,"\n");
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    if(estepm < stepm){
 interval) in state (%d): v%s%d%d.png <br>      printf ("Problem %d lower than %d\n",estepm, stepm);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      }
      }    else  hstepm=estepm;   
      for(cpt=1; cpt<=nlstate;cpt++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>     * This is mainly to measure the difference between two models: for example
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     * if stepm=24 months pijx are given only every 2 years and by summing them
      }     * we are calculating an estimate of the Life Expectancy assuming a linear 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and     * progression in between and thus overestimating or underestimating according
 health expectancies in states (1) and (2): e%s%d.png<br>     * to the curvature of the survival function. If, for the same date, we 
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
    }     * to compare the new estimate of Life expectancy with the same linear 
  }     * hypothesis. A more precise result, taking into account a more precise
 fclose(fichtm);     * curvature will be obtained if estepm is as small as stepm. */
 }  
     /* For example we decided to compute the life expectancy with the smallest unit */
 /******************* Gnuplot file **************/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;       Look at hpijx to understand the reason of that which relies in memory size
   int ng;       and note for a fixed period like estepm months */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     printf("Problem with file %s",optionfilegnuplot);       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 #ifdef windows       results. So we changed our mind and took the option of the best precision.
     fprintf(ficgp,"cd \"%s\" \n",pathc);    */
 #endif    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 m=pow(2,cptcoveff);  
      agelim=AGESUP;
  /* 1eme*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   for (cpt=1; cpt<= nlstate ; cpt ++) {      /* nhstepm age range expressed in number of stepm */
    for (k1=1; k1<= m ; k1 ++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 #ifdef windows      /* if (stepm >= YEARM) hstepm=1;*/
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #endif      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 #ifdef unix      gp=matrix(0,nhstepm,1,nlstate*nlstate);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  
 #endif      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 for (i=1; i<= nlstate ; i ++) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {      /* Computing Variances of health expectancies */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");       for(theta=1; theta <=npar; theta++){
 }        for(i=1; i<=npar; i++){ 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }          cptj=0;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        for(j=1; j<= nlstate; j++){
 #ifdef unix          for(i=1; i<=nlstate; i++){
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");            cptj=cptj+1;
 #endif            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
    }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   }            }
   /*2 eme*/          }
         }
   for (k1=1; k1<= m ; k1 ++) {       
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);       
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        for(i=1; i<=npar; i++) 
              xp[i] = x[i] - (i==theta ?delti[theta]:0);
     for (i=1; i<= nlstate+1 ; i ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       k=2*i;        
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        cptj=0;
       for (j=1; j<= nlstate+1 ; j ++) {        for(j=1; j<= nlstate; j++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for(i=1;i<=nlstate;i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            cptj=cptj+1;
 }              for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<= nlstate*nlstate; j++)
 }            for(h=0; h<=nhstepm-1; h++){
       fprintf(ficgp,"\" t\"\" w l 0,");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {       } 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");     
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /* End theta */
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }       for(h=0; h<=nhstepm-1; h++)
   }        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   /*3eme*/            trgradg[h][j][theta]=gradg[h][theta][j];
        
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {       for(i=1;i<=nlstate*nlstate;i++)
       k=2+nlstate*(2*cpt-2);        for(j=1;j<=nlstate*nlstate;j++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          varhe[i][j][(int)age] =0.;
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       printf("%d|",(int)age);fflush(stdout);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       for(h=0;h<=nhstepm-1;h++){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for(k=0;k<=nhstepm-1;k++){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
 */            for(j=1;j<=nlstate*nlstate;j++)
       for (i=1; i< nlstate ; i ++) {              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        }
       }
       }      /* Computing expectancies */
     }      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /* CV preval stat */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     for (k1=1; k1<= m ; k1 ++) {            
     for (cpt=1; cpt<nlstate ; cpt ++) {  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       k=3;  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
       fprintf(ficreseij,"%3.0f",age );
       for (i=1; i< nlstate ; i ++)      cptj=0;
         fprintf(ficgp,"+$%d",k+i+1);      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        for(j=1; j<=nlstate;j++){
                cptj++;
       l=3+(nlstate+ndeath)*cpt;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        }
       for (i=1; i< nlstate ; i ++) {      fprintf(ficreseij,"\n");
         l=3+(nlstate+ndeath)*cpt;     
         fprintf(ficgp,"+$%d",l+i+1);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   }        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }
   /* proba elementaires */    printf("\n");
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficlog,"\n");
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {    free_vector(xp,1,npar);
         for(j=1; j <=ncovmodel; j++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
            free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           jk++;  }
           fprintf(ficgp,"\n");  
         }  /************ Variance ******************/
       }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
     }  {
    }    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    /* double **newm;*/
      for(jk=1; jk <=m; jk++) {    double **dnewm,**doldm;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    double **dnewmp,**doldmp;
        if (ng==2)    int i, j, nhstepm, hstepm, h, nstepm ;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    int k, cptcode;
        else    double *xp;
          fprintf(ficgp,"\nset title \"Probability\"\n");    double **gp, **gm;  /* for var eij */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    double ***gradg, ***trgradg; /*for var eij */
        i=1;    double **gradgp, **trgradgp; /* for var p point j */
        for(k2=1; k2<=nlstate; k2++) {    double *gpp, *gmp; /* for var p point j */
          k3=i;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
          for(k=1; k<=(nlstate+ndeath); k++) {    double ***p3mat;
            if (k != k2){    double age,agelim, hf;
              if(ng==2)    double ***mobaverage;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    int theta;
              else    char digit[4];
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    char digitp[25];
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {    char fileresprobmorprev[FILENAMELENGTH];
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    if(popbased==1){
                  ij++;      if(mobilav!=0)
                }        strcpy(digitp,"-populbased-mobilav-");
                else      else strcpy(digitp,"-populbased-nomobil-");
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    }
              }    else 
              fprintf(ficgp,")/(1");      strcpy(digitp,"-stablbased-");
                
              for(k1=1; k1 <=nlstate; k1++){      if (mobilav!=0) {
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                ij=1;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                for(j=3; j <=ncovmodel; j++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      }
                    ij++;    }
                  }  
                  else    strcpy(fileresprobmorprev,"prmorprev"); 
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    sprintf(digit,"%-d",ij);
                }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                fprintf(ficgp,")");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
              }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    strcat(fileresprobmorprev,fileres);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
              i=i+ncovmodel;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
            }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
          }    }
        }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
    fclose(ficgp);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 }  /* end gnuplot */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
 /*************** Moving average **************/        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    }  
     fprintf(ficresprobmorprev,"\n");
   int i, cpt, cptcod;    fprintf(ficgp,"\n# Routine varevsij");
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       for (i=1; i<=nlstate;i++)    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  /*   } */
           mobaverage[(int)agedeb][i][cptcod]=0.;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       for (i=1; i<=nlstate;i++){    fprintf(ficresvij,"# Age");
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for(i=1; i<=nlstate;i++)
           for (cpt=0;cpt<=4;cpt++){      for(j=1; j<=nlstate;j++)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
           }    fprintf(ficresvij,"\n");
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
     }    doldm=matrix(1,nlstate,1,nlstate);
        dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 /************** Forecasting ******************/    gpp=vector(nlstate+1,nlstate+ndeath);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    
   int *popage;    if(estepm < stepm){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double *popeffectif,*popcount;    }
   double ***p3mat;    else  hstepm=estepm;   
   char fileresf[FILENAMELENGTH];    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  agelim=AGESUP;       nhstepm is the number of hstepm from age to agelim 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       and note for a fixed period like k years */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   strcpy(fileresf,"f");       means that if the survival funtion is printed every two years of age and if
   strcat(fileresf,fileres);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if((ficresf=fopen(fileresf,"w"))==NULL) {       results. So we changed our mind and took the option of the best precision.
     printf("Problem with forecast resultfile: %s\n", fileresf);    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   printf("Computing forecasting: result on file '%s' \n", fileresf);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (mobilav==1) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      gp=matrix(0,nhstepm,1,nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate);
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   agelim=AGESUP;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   hstepm=1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   hstepm=hstepm/stepm;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;        if (popbased==1) {
   yp2=modf((yp1*12),&yp);          if(mobilav ==0){
   mprojmean=yp;            for(i=1; i<=nlstate;i++)
   yp1=modf((yp2*30.5),&yp);              prlim[i][i]=probs[(int)age][i][ij];
   jprojmean=yp;          }else{ /* mobilav */ 
   if(jprojmean==0) jprojmean=1;            for(i=1; i<=nlstate;i++)
   if(mprojmean==0) jprojmean=1;              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        }
      
   for(cptcov=1;cptcov<=i2;cptcov++){        for(j=1; j<= nlstate; j++){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for(h=0; h<=nhstepm; h++){
       k=k+1;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       fprintf(ficresf,"\n#******");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       for(j=1;j<=cptcoveff;j++) {          }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       }        /* This for computing probability of death (h=1 means
       fprintf(ficresf,"******\n");           computed over hstepm matrices product = hstepm*stepm months) 
       fprintf(ficresf,"# StartingAge FinalAge");           as a weighted average of prlim.
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        */
              for(j=nlstate+1;j<=nlstate+ndeath;j++){
                for(i=1,gpp[j]=0.; i<= nlstate; i++)
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         fprintf(ficresf,"\n");        }    
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          /* end probability of death */
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           nhstepm = nhstepm/hstepm;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                  prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
           oldm=oldms;savm=savms;        if (popbased==1) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            if(mobilav ==0){
                    for(i=1; i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){              prlim[i][i]=probs[(int)age][i][ij];
             if (h==(int) (calagedate+YEARM*cpt)) {          }else{ /* mobilav */ 
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=mobaverage[(int)age][i][ij];
             for(j=1; j<=nlstate+ndeath;j++) {          }
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)        for(j=1; j<= nlstate; j++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for(h=0; h<=nhstepm; h++){
                 else {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                 }          }
                        }
               }        /* This for computing probability of death (h=1 means
               if (h==(int)(calagedate+12*cpt)){           computed over hstepm matrices product = hstepm*stepm months) 
                 fprintf(ficresf," %.3f", kk1);           as a weighted average of prlim.
                                */
               }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }    
         }        /* end probability of death */
       }  
     }        for(j=1; j<= nlstate; j++) /* vareij */
   }          for(h=0; h<=nhstepm; h++){
                    gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   
   fclose(ficresf);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 /************** Forecasting ******************/        }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
        } /* End theta */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;      for(h=0; h<=nhstepm; h++) /* veij */
   double ***p3mat,***tabpop,***tabpopprev;        for(j=1; j<=nlstate;j++)
   char filerespop[FILENAMELENGTH];          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   agelim=AGESUP;        for(theta=1; theta <=npar; theta++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          trgradgp[j][theta]=gradgp[theta][j];
      
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(i=1;i<=nlstate;i++)
   strcpy(filerespop,"pop");        for(j=1;j<=nlstate;j++)
   strcat(filerespop,fileres);          vareij[i][j][(int)age] =0.;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);      for(h=0;h<=nhstepm;h++){
   }        for(k=0;k<=nhstepm;k++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
   if (mobilav==1) {              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
     movingaverage(agedeb, fage, ageminpar, mobaverage);      }
   }    
       /* pptj */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   if (stepm<=12) stepsize=1;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
   agelim=AGESUP;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
            varppt[j][i]=doldmp[j][i];
   hstepm=1;      /* end ppptj */
   hstepm=hstepm/stepm;      /*  x centered again */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   if (popforecast==1) {      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     if((ficpop=fopen(popfile,"r"))==NULL) {   
       printf("Problem with population file : %s\n",popfile);exit(0);      if (popbased==1) {
     }        if(mobilav ==0){
     popage=ivector(0,AGESUP);          for(i=1; i<=nlstate;i++)
     popeffectif=vector(0,AGESUP);            prlim[i][i]=probs[(int)age][i][ij];
     popcount=vector(0,AGESUP);        }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
     i=1;              prlim[i][i]=mobaverage[(int)age][i][ij];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        }
          }
     imx=i;               
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      /* This for computing probability of death (h=1 means
   }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   for(cptcov=1;cptcov<=i2;cptcov++){      */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       k=k+1;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       fprintf(ficrespop,"\n#******");          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       for(j=1;j<=cptcoveff;j++) {      }    
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* end probability of death */
       }  
       fprintf(ficrespop,"******\n");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       fprintf(ficrespop,"# Age");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       if (popforecast==1)  fprintf(ficrespop," [Population]");        for(i=1; i<=nlstate;i++){
                fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       for (cpt=0; cpt<=0;cpt++) {        }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        } 
              fprintf(ficresprobmorprev,"\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      fprintf(ficresvij,"%.0f ",age );
           nhstepm = nhstepm/hstepm;      for(i=1; i<=nlstate;i++)
                  for(j=1; j<=nlstate;j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficresvij,"\n");
              free_matrix(gp,0,nhstepm,1,nlstate);
           for (h=0; h<=nhstepm; h++){      free_matrix(gm,0,nhstepm,1,nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
             }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             for(j=1; j<=nlstate+ndeath;j++) {    } /* End age */
               kk1=0.;kk2=0;    free_vector(gpp,nlstate+1,nlstate+ndeath);
               for(i=1; i<=nlstate;i++) {                  free_vector(gmp,nlstate+1,nlstate+ndeath);
                 if (mobilav==1)    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                 else {    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                 }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
               }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
               if (h==(int)(calagedate+12*cpt)){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   /*fprintf(ficrespop," %.3f", kk1);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
               }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
             }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
             for(i=1; i<=nlstate;i++){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
               kk1=0.;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                 for(j=1; j<=nlstate;j++){  */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
                 }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  
             }    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    free_matrix(dnewm,1,nlstate,1,npar);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }    fclose(ficresprobmorprev);
      fflush(ficgp);
   /******/    fflush(fichtm); 
   }  /* end varevsij */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    /************ Variance of prevlim ******************/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  {
           nhstepm = nhstepm/hstepm;    /* Variance of prevalence limit */
              /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **newm;
           oldm=oldms;savm=savms;    double **dnewm,**doldm;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int i, j, nhstepm, hstepm;
           for (h=0; h<=nhstepm; h++){    int k, cptcode;
             if (h==(int) (calagedate+YEARM*cpt)) {    double *xp;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double *gp, *gm;
             }    double **gradg, **trgradg;
             for(j=1; j<=nlstate+ndeath;j++) {    double age,agelim;
               kk1=0.;kk2=0;    int theta;
               for(i=1; i<=nlstate;i++) {                   
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
               }    fprintf(ficresvpl,"# Age");
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    for(i=1; i<=nlstate;i++)
             }        fprintf(ficresvpl," %1d-%1d",i,i);
           }    fprintf(ficresvpl,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
    }    doldm=matrix(1,nlstate,1,nlstate);
   }    
      hstepm=1*YEARM; /* Every year of age */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
   if (popforecast==1) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     free_ivector(popage,0,AGESUP);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     free_vector(popeffectif,0,AGESUP);      if (stepm >= YEARM) hstepm=1;
     free_vector(popcount,0,AGESUP);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   }      gradg=matrix(1,npar,1,nlstate);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      gp=vector(1,nlstate);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      gm=vector(1,nlstate);
   fclose(ficrespop);  
 }      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
 /***********************************************/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 /**************** Main Program *****************/        }
 /***********************************************/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
 int main(int argc, char *argv[])          gp[i] = prlim[i][i];
 {      
         for(i=1; i<=npar; i++) /* Computes gradient */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double agedeb, agefin,hf;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   double fret;  
   double **xi,tmp,delta;        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   double dum; /* Dummy variable */      } /* End theta */
   double ***p3mat;  
   int *indx;      trgradg =matrix(1,nlstate,1,npar);
   char line[MAXLINE], linepar[MAXLINE];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      for(j=1; j<=nlstate;j++)
   int firstobs=1, lastobs=10;        for(theta=1; theta <=npar; theta++)
   int sdeb, sfin; /* Status at beginning and end */          trgradg[j][theta]=gradg[theta][j];
   int c,  h , cpt,l;  
   int ju,jl, mi;      for(i=1;i<=nlstate;i++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        varpl[i][(int)age] =0.;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   int mobilav=0,popforecast=0;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   int hstepm, nhstepm;      for(i=1;i<=nlstate;i++)
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
   double bage, fage, age, agelim, agebase;      fprintf(ficresvpl,"%.0f ",age );
   double ftolpl=FTOL;      for(i=1; i<=nlstate;i++)
   double **prlim;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   double *severity;      fprintf(ficresvpl,"\n");
   double ***param; /* Matrix of parameters */      free_vector(gp,1,nlstate);
   double  *p;      free_vector(gm,1,nlstate);
   double **matcov; /* Matrix of covariance */      free_matrix(gradg,1,npar,1,nlstate);
   double ***delti3; /* Scale */      free_matrix(trgradg,1,nlstate,1,npar);
   double *delti; /* Scale */    } /* End age */
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */    free_vector(xp,1,npar);
   double *epj, vepp;    free_matrix(doldm,1,nlstate,1,npar);
   double kk1, kk2;    free_matrix(dnewm,1,nlstate,1,nlstate);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
    }
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
   char z[1]="c", occ;    int i, j=0,  i1, k1, l1, t, tj;
 #include <sys/time.h>    int k2, l2, j1,  z1;
 #include <time.h>    int k=0,l, cptcode;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    int first=1, first1;
      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   /* long total_usecs;    double **dnewm,**doldm;
   struct timeval start_time, end_time;    double *xp;
      double *gp, *gm;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double **gradg, **trgradg;
   getcwd(pathcd, size);    double **mu;
     double age,agelim, cov[NCOVMAX];
   printf("\n%s",version);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   if(argc <=1){    int theta;
     printf("\nEnter the parameter file name: ");    char fileresprob[FILENAMELENGTH];
     scanf("%s",pathtot);    char fileresprobcov[FILENAMELENGTH];
   }    char fileresprobcor[FILENAMELENGTH];
   else{  
     strcpy(pathtot,argv[1]);    double ***varpij;
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    strcpy(fileresprob,"prob"); 
   /*cygwin_split_path(pathtot,path,optionfile);    strcat(fileresprob,fileres);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   /* cutv(path,optionfile,pathtot,'\\');*/      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    strcpy(fileresprobcov,"probcov"); 
   chdir(path);    strcat(fileresprobcov,fileres);
   replace(pathc,path);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
 /*-------- arguments in the command line --------*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
   strcpy(fileres,"r");    strcpy(fileresprobcor,"probcor"); 
   strcat(fileres, optionfilefiname);    strcat(fileresprobcor,fileres);
   strcat(fileres,".txt");    /* Other files have txt extension */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
   /*---------arguments file --------*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Problem with optionfile %s\n",optionfile);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     goto end;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   strcpy(filereso,"o");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   strcat(filereso,fileres);    
   if((ficparo=fopen(filereso,"w"))==NULL) {    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    fprintf(ficresprob,"# Age");
   }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
   /* Reads comments: lines beginning with '#' */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobcov,"# Age");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  
     puts(line);    for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);      for(j=1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   ungetc(c,ficpar);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      }  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);   /* fprintf(ficresprob,"\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficresprobcov,"\n");
 while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobcor,"\n");
     ungetc(c,ficpar);   */
     fgets(line, MAXLINE, ficpar);   xp=vector(1,npar);
     puts(line);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     fputs(line,ficparo);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   ungetc(c,ficpar);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      first=1;
        fprintf(ficgp,"\n# Routine varprob");
   covar=matrix(0,NCOVMAX,1,n);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   cptcovn=0;    fprintf(fichtm,"\n");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
   ncovmodel=2+cptcovn;    fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    file %s<br>\n",optionfilehtmcov);
      fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   /* Read guess parameters */  and drawn. It helps understanding how is the covariance between two incidences.\
   /* Reads comments: lines beginning with '#' */   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     ungetc(c,ficpar);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     fgets(line, MAXLINE, ficpar);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     puts(line);  standard deviations wide on each axis. <br>\
     fputs(line,ficparo);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   ungetc(c,ficpar);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    cov[1]=1;
     for(i=1; i <=nlstate; i++)    tj=cptcoveff;
     for(j=1; j <=nlstate+ndeath-1; j++){    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       fscanf(ficpar,"%1d%1d",&i1,&j1);    j1=0;
       fprintf(ficparo,"%1d%1d",i1,j1);    for(t=1; t<=tj;t++){
       printf("%1d%1d",i,j);      for(i1=1; i1<=ncodemax[t];i1++){ 
       for(k=1; k<=ncovmodel;k++){        j1++;
         fscanf(ficpar," %lf",&param[i][j][k]);        if  (cptcovn>0) {
         printf(" %lf",param[i][j][k]);          fprintf(ficresprob, "\n#********** Variable "); 
         fprintf(ficparo," %lf",param[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresprob, "**********\n#\n");
       fscanf(ficpar,"\n");          fprintf(ficresprobcov, "\n#********** Variable "); 
       printf("\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficparo,"\n");          fprintf(ficresprobcov, "**********\n#\n");
     }          
            fprintf(ficgp, "\n#********** Variable "); 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
   p=param[1][1];          
            
   /* Reads comments: lines beginning with '#' */          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   while((c=getc(ficpar))=='#' && c!= EOF){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     fgets(line, MAXLINE, ficpar);          
     puts(line);          fprintf(ficresprobcor, "\n#********** Variable ");    
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcor, "**********\n#");    
   ungetc(c,ficpar);        }
         
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for (age=bage; age<=fage; age ++){ 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          cov[2]=age;
   for(i=1; i <=nlstate; i++){          for (k=1; k<=cptcovn;k++) {
     for(j=1; j <=nlstate+ndeath-1; j++){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       fscanf(ficpar,"%1d%1d",&i1,&j1);          }
       printf("%1d%1d",i,j);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       fprintf(ficparo,"%1d%1d",i1,j1);          for (k=1; k<=cptcovprod;k++)
       for(k=1; k<=ncovmodel;k++){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         fscanf(ficpar,"%le",&delti3[i][j][k]);          
         printf(" %le",delti3[i][j][k]);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         fprintf(ficparo," %le",delti3[i][j][k]);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       }          gp=vector(1,(nlstate)*(nlstate+ndeath));
       fscanf(ficpar,"\n");          gm=vector(1,(nlstate)*(nlstate+ndeath));
       printf("\n");      
       fprintf(ficparo,"\n");          for(theta=1; theta <=npar; theta++){
     }            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   delti=delti3[1][1];            
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
   /* Reads comments: lines beginning with '#' */            
   while((c=getc(ficpar))=='#' && c!= EOF){            k=0;
     ungetc(c,ficpar);            for(i=1; i<= (nlstate); i++){
     fgets(line, MAXLINE, ficpar);              for(j=1; j<=(nlstate+ndeath);j++){
     puts(line);                k=k+1;
     fputs(line,ficparo);                gp[k]=pmmij[i][j];
   }              }
   ungetc(c,ficpar);            }
              
   matcov=matrix(1,npar,1,npar);            for(i=1; i<=npar; i++)
   for(i=1; i <=npar; i++){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     fscanf(ficpar,"%s",&str);      
     printf("%s",str);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fprintf(ficparo,"%s",str);            k=0;
     for(j=1; j <=i; j++){            for(i=1; i<=(nlstate); i++){
       fscanf(ficpar," %le",&matcov[i][j]);              for(j=1; j<=(nlstate+ndeath);j++){
       printf(" %.5le",matcov[i][j]);                k=k+1;
       fprintf(ficparo," %.5le",matcov[i][j]);                gm[k]=pmmij[i][j];
     }              }
     fscanf(ficpar,"\n");            }
     printf("\n");       
     fprintf(ficparo,"\n");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   for(i=1; i <=npar; i++)          }
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                for(theta=1; theta <=npar; theta++)
   printf("\n");              trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     /*-------- Rewriting paramater file ----------*/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
      strcpy(rfileres,"r");    /* "Rparameterfile */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
      strcat(rfileres,".");    /* */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          pmij(pmmij,cov,ncovmodel,x,nlstate);
     }          
     fprintf(ficres,"#%s\n",version);          k=0;
              for(i=1; i<=(nlstate); i++){
     /*-------- data file ----------*/            for(j=1; j<=(nlstate+ndeath);j++){
     if((fic=fopen(datafile,"r"))==NULL)    {              k=k+1;
       printf("Problem with datafile: %s\n", datafile);goto end;              mu[k][(int) age]=pmmij[i][j];
     }            }
           }
     n= lastobs;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     severity = vector(1,maxwav);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     outcome=imatrix(1,maxwav+1,1,n);              varpij[i][j][(int)age] = doldm[i][j];
     num=ivector(1,n);  
     moisnais=vector(1,n);          /*printf("\n%d ",(int)age);
     annais=vector(1,n);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     moisdc=vector(1,n);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     andc=vector(1,n);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     agedc=vector(1,n);            }*/
     cod=ivector(1,n);  
     weight=vector(1,n);          fprintf(ficresprob,"\n%d ",(int)age);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          fprintf(ficresprobcov,"\n%d ",(int)age);
     mint=matrix(1,maxwav,1,n);          fprintf(ficresprobcor,"\n%d ",(int)age);
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     adl=imatrix(1,maxwav+1,1,n);                fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     tab=ivector(1,NCOVMAX);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     ncodemax=ivector(1,8);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     i=1;          }
     while (fgets(line, MAXLINE, fic) != NULL)    {          i=0;
       if ((i >= firstobs) && (i <=lastobs)) {          for (k=1; k<=(nlstate);k++){
                    for (l=1; l<=(nlstate+ndeath);l++){ 
         for (j=maxwav;j>=1;j--){              i=i++;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           strcpy(line,stra);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              for (j=1; j<=i;j++){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                      }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          }/* end of loop for state */
         } /* end of loop for age */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        /* Confidence intervalle of pij  */
         /*
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nset noparametric;unset label");
         for (j=ncovcol;j>=1;j--){          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         num[i]=atol(stra);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                  fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        */
   
         i=i+1;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       }        first1=1;
     }        for (k2=1; k2<=(nlstate);k2++){
     /* printf("ii=%d", ij);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
        scanf("%d",i);*/            if(l2==k2) continue;
   imx=i-1; /* Number of individuals */            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
   /* for (i=1; i<=imx; i++){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                if(l1==k1) continue;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                i=(k1-1)*(nlstate+ndeath)+l1;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                if(i<=j) continue;
     }*/                for (age=bage; age<=fage; age ++){ 
    /*  for (i=1; i<=imx; i++){                  if ((int)age %5==0){
      if (s[4][i]==9)  s[4][i]=-1;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      mu1=mu[i][(int) age]/stepm*YEARM ;
   /* Calculation of the number of parameter from char model*/                    mu2=mu[j][(int) age]/stepm*YEARM;
   Tvar=ivector(1,15);                    c12=cv12/sqrt(v1*v2);
   Tprod=ivector(1,15);                    /* Computing eigen value of matrix of covariance */
   Tvaraff=ivector(1,15);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   Tvard=imatrix(1,15,1,2);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   Tage=ivector(1,15);                          /* Eigen vectors */
                        v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   if (strlen(model) >1){                    /*v21=sqrt(1.-v11*v11); *//* error */
     j=0, j1=0, k1=1, k2=1;                    v21=(lc1-v1)/cv12*v11;
     j=nbocc(model,'+');                    v12=-v21;
     j1=nbocc(model,'*');                    v22=v11;
     cptcovn=j+1;                    tnalp=v21/v11;
     cptcovprod=j1;                    if(first1==1){
                          first1=0;
     strcpy(modelsav,model);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                    }
       printf("Error. Non available option model=%s ",model);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       goto end;                    /*printf(fignu*/
     }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                        /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     for(i=(j+1); i>=1;i--){                    if(first==1){
       cutv(stra,strb,modelsav,'+');                      first=0;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                      fprintf(ficgp,"\nset parametric;unset label");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       /*scanf("%d",i);*/                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       if (strchr(strb,'*')) {                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         cutv(strd,strc,strb,'*');   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         if (strcmp(strc,"age")==0) {  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           cptcovprod--;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           cutv(strb,stre,strd,'V');                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           Tvar[i]=atoi(stre);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           cptcovage++;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
             Tage[cptcovage]=i;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             /*printf("stre=%s ", stre);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         else if (strcmp(strd,"age")==0) {                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           cptcovprod--;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           cutv(strb,stre,strc,'V');                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           Tvar[i]=atoi(stre);                    }else{
           cptcovage++;                      first=0;
           Tage[cptcovage]=i;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
         }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         else {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           cutv(strb,stre,strc,'V');                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           Tvar[i]=ncovcol+k1;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           cutv(strb,strc,strd,'V');                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           Tprod[k1]=i;                    }/* if first */
           Tvard[k1][1]=atoi(strc);                  } /* age mod 5 */
           Tvard[k1][2]=atoi(stre);                } /* end loop age */
           Tvar[cptcovn+k2]=Tvard[k1][1];                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                first=1;
           for (k=1; k<=lastobs;k++)              } /*l12 */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            } /* k12 */
           k1++;          } /*l1 */
           k2=k2+2;        }/* k1 */
         }      } /* loop covariates */
       }    }
       else {    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
        /*  scanf("%d",i);*/    free_vector(xp,1,npar);
       cutv(strd,strc,strb,'V');    fclose(ficresprob);
       Tvar[i]=atoi(strc);    fclose(ficresprobcov);
       }    fclose(ficresprobcor);
       strcpy(modelsav,stra);      fflush(ficgp);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fflush(fichtmcov);
         scanf("%d",i);*/  }
     }  
 }  
    /******************* Printing html file ***********/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   printf("cptcovprod=%d ", cptcovprod);                    int lastpass, int stepm, int weightopt, char model[],\
   scanf("%d ",i);*/                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     fclose(fic);                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
     /*  if(mle==1){*/                    double jprev2, double mprev2,double anprev2){
     if (weightopt != 1) { /* Maximisation without weights*/    int jj1, k1, i1, cpt;
       for(i=1;i<=n;i++) weight[i]=1.0;    /*char optionfilehtm[FILENAMELENGTH];*/
     }  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
     /*-calculation of age at interview from date of interview and age at death -*/  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
     agev=matrix(1,maxwav,1,imx);  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
          anint[m][i]=9999;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
          s[m][i]=-1;   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
        }   - Life expectancies by age and initial health status (estepm=%2d months): \
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;     <a href=\"%s\">%s</a> <br>\n</li>", \
       }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
     }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
     for (i=1; i<=imx; i++)  {             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {   m=cptcoveff;
             if(agedc[i]>0)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];   jj1=0;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/   for(k1=1; k1<=m;k1++){
            else {     for(i1=1; i1<=ncodemax[k1];i1++){
               if (andc[i]!=9999){       jj1++;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);       if (cptcovn > 0) {
               agev[m][i]=-1;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
               }         for (cpt=1; cpt<=cptcoveff;cpt++) 
             }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           else if(s[m][i] !=9){ /* Should no more exist */       }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);       /* Pij */
             if(mint[m][i]==99 || anint[m][i]==9999)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
               agev[m][i]=1;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
             else if(agev[m][i] <agemin){       /* Quasi-incidences */
               agemin=agev[m][i];       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
             }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
             else if(agev[m][i] >agemax){         /* Stable prevalence in each health state */
               agemax=agev[m][i];         for(cpt=1; cpt<nlstate;cpt++){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
             }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
             /*agev[m][i]=anint[m][i]-annais[i];*/         }
             /*   agev[m][i] = age[i]+2*m;*/       for(cpt=1; cpt<=nlstate;cpt++) {
           }          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
           else { /* =9 */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
             agev[m][i]=1;       }
             s[m][i]=-1;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
           }  health expectancies in states (1) and (2): %s%d.png<br>\
         }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         else /*= 0 Unknown */     } /* end i1 */
           agev[m][i]=1;   }/* End k1 */
       }   fprintf(fichtm,"</ul>");
      
     }  
     for (i=1; i<=imx; i++)  {   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
       for(m=1; (m<= maxwav); m++){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
         if (s[m][i] > (nlstate+ndeath)) {   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
           printf("Error: Wrong value in nlstate or ndeath\n");     - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
           goto end;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
         }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
       }   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
     }   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
     free_vector(severity,1,maxwav);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
     free_imatrix(outcome,1,maxwav+1,1,n);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
     free_vector(moisnais,1,n);           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
     free_vector(annais,1,n);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/  /*  if(popforecast==1) fprintf(fichtm,"\n */
     free_vector(moisdc,1,n);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     free_vector(andc,1,n);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
      /*  else  */
     wav=ivector(1,imx);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
       m=cptcoveff;
     /* Concatenates waves */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
    jj1=0;
    for(k1=1; k1<=m;k1++){
       Tcode=ivector(1,100);     for(i1=1; i1<=ncodemax[k1];i1++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);       jj1++;
       ncodemax[1]=1;       if (cptcovn > 0) {
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
               for (cpt=1; cpt<=cptcoveff;cpt++) 
    codtab=imatrix(1,100,1,10);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    h=0;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    m=pow(2,cptcoveff);       }
         for(cpt=1; cpt<=nlstate;cpt++) {
    for(k=1;k<=cptcoveff; k++){         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
      for(i=1; i <=(m/pow(2,k));i++){  interval) in state (%d): %s%d%d.png <br>\
        for(j=1; j <= ncodemax[k]; j++){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){       }
            h++;     } /* end i1 */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;   }/* End k1 */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   fprintf(fichtm,"</ul>");
          }   fflush(fichtm);
        }  }
      }  
    }  /******************* Gnuplot file **************/
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){    char dirfileres[132],optfileres[132];
       for(k=1; k <=cptcovn; k++){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    int ng;
       }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       printf("\n");  /*     printf("Problem with file %s",optionfilegnuplot); */
       }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       scanf("%d",i);*/  /*   } */
      
    /* Calculates basic frequencies. Computes observed prevalence at single age    /*#ifdef windows */
        and prints on file fileres'p'. */    fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
        m=pow(2,cptcoveff);
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(dirfileres,optionfilefiname);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(optfileres,"vpl");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   /* 1eme*/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (cpt=1; cpt<= nlstate ; cpt ++) {
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     for (k1=1; k1<= m ; k1 ++) {
             fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     /* For Powell, parameters are in a vector p[] starting at p[1]       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       fprintf(ficgp,"set xlabel \"Age\" \n\
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  set ylabel \"Probability\" \n\
   set ter png small\n\
     if(mle==1){  set size 0.65,0.65\n\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     }  
           for (i=1; i<= nlstate ; i ++) {
     /*--------- results files --------------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
    jk=1;       for (i=1; i<= nlstate ; i ++) {
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
    for(i=1,jk=1; i <=nlstate; i++){       } 
      for(k=1; k <=(nlstate+ndeath); k++){       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        if (k != i)       for (i=1; i<= nlstate ; i ++) {
          {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
            printf("%d%d ",i,k);         else fprintf(ficgp," \%%*lf (\%%*lf)");
            fprintf(ficres,"%1d%1d ",i,k);       }  
            for(j=1; j <=ncovmodel; j++){       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
              printf("%f ",p[jk]);     }
              fprintf(ficres,"%f ",p[jk]);    }
              jk++;    /*2 eme*/
            }    
            printf("\n");    for (k1=1; k1<= m ; k1 ++) { 
            fprintf(ficres,"\n");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
          }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
      }      
    }      for (i=1; i<= nlstate+1 ; i ++) {
  if(mle==1){        k=2*i;
     /* Computing hessian and covariance matrix */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     ftolhess=ftol; /* Usually correct */        for (j=1; j<= nlstate+1 ; j ++) {
     hesscov(matcov, p, npar, delti, ftolhess, func);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  }          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        }   
     printf("# Scales (for hessian or gradient estimation)\n");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
      for(i=1,jk=1; i <=nlstate; i++){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       for(j=1; j <=nlstate+ndeath; j++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         if (j!=i) {        for (j=1; j<= nlstate+1 ; j ++) {
           fprintf(ficres,"%1d%1d",i,j);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           printf("%1d%1d",i,j);          else fprintf(ficgp," \%%*lf (\%%*lf)");
           for(k=1; k<=ncovmodel;k++){        }   
             printf(" %.5e",delti[jk]);        fprintf(ficgp,"\" t\"\" w l 0,");
             fprintf(ficres," %.5e",delti[jk]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
             jk++;        for (j=1; j<= nlstate+1 ; j ++) {
           }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           printf("\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
           fprintf(ficres,"\n");        }   
         }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       }        else fprintf(ficgp,"\" t\"\" w l 0,");
      }      }
        }
     k=1;    
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /*3eme*/
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    
     for(i=1;i<=npar;i++){    for (k1=1; k1<= m ; k1 ++) { 
       /*  if (k>nlstate) k=1;      for (cpt=1; cpt<= nlstate ; cpt ++) {
       i1=(i-1)/(ncovmodel*nlstate)+1;        k=2+nlstate*(2*cpt-2);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       printf("%s%d%d",alph[k],i1,tab[i]);*/        fprintf(ficgp,"set ter png small\n\
       fprintf(ficres,"%3d",i);  set size 0.65,0.65\n\
       printf("%3d",i);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       for(j=1; j<=i;j++){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         fprintf(ficres," %.5e",matcov[i][j]);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         printf(" %.5e",matcov[i][j]);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficres,"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       printf("\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       k++;          
     }        */
            for (i=1; i< nlstate ; i ++) {
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
       ungetc(c,ficpar);          
       fgets(line, MAXLINE, ficpar);        } 
       puts(line);      }
       fputs(line,ficparo);    }
     }    
     ungetc(c,ficpar);    /* CV preval stable (period) */
     estepm=0;    for (k1=1; k1<= m ; k1 ++) { 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      for (cpt=1; cpt<=nlstate ; cpt ++) {
     if (estepm==0 || estepm < stepm) estepm=stepm;        k=3;
     if (fage <= 2) {        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       bage = ageminpar;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       fage = agemaxpar;  set ter png small\nset size 0.65,0.65\n\
     }  unset log y\n\
      plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for (i=1; i< nlstate ; i ++)
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficgp,"+$%d",k+i+1);
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     while((c=getc(ficpar))=='#' && c!= EOF){        
     ungetc(c,ficpar);        l=3+(nlstate+ndeath)*cpt;
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     puts(line);        for (i=1; i< nlstate ; i ++) {
     fputs(line,ficparo);          l=3+(nlstate+ndeath)*cpt;
   }          fprintf(ficgp,"+$%d",l+i+1);
   ungetc(c,ficpar);        }
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      } 
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    
          /* proba elementaires */
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1,jk=1; i <=nlstate; i++){
     ungetc(c,ficpar);      for(k=1; k <=(nlstate+ndeath); k++){
     fgets(line, MAXLINE, ficpar);        if (k != i) {
     puts(line);          for(j=1; j <=ncovmodel; j++){
     fputs(line,ficparo);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   }            jk++; 
   ungetc(c,ficpar);            fprintf(ficgp,"\n");
            }
         }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;     }
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   fprintf(ficparo,"pop_based=%d\n",popbased);         for(jk=1; jk <=m; jk++) {
   fprintf(ficres,"pop_based=%d\n",popbased);           fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           if (ng==2)
   while((c=getc(ficpar))=='#' && c!= EOF){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     ungetc(c,ficpar);         else
     fgets(line, MAXLINE, ficpar);           fprintf(ficgp,"\nset title \"Probability\"\n");
     puts(line);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     fputs(line,ficparo);         i=1;
   }         for(k2=1; k2<=nlstate; k2++) {
   ungetc(c,ficpar);           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);             if (k != k2){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);               if(ng==2)
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 while((c=getc(ficpar))=='#' && c!= EOF){               ij=1;
     ungetc(c,ficpar);               for(j=3; j <=ncovmodel; j++) {
     fgets(line, MAXLINE, ficpar);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     puts(line);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     fputs(line,ficparo);                   ij++;
   }                 }
   ungetc(c,ficpar);                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);               }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);               fprintf(ficgp,")/(1");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);               
                for(k1=1; k1 <=nlstate; k1++){   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
 /*------------ gnuplot -------------*/                 for(j=3; j <=ncovmodel; j++){
   strcpy(optionfilegnuplot,optionfilefiname);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   strcat(optionfilegnuplot,".gp");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                     ij++;
     printf("Problem with file %s",optionfilegnuplot);                   }
   }                   else
   fclose(ficgp);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                 }
 /*--------- index.htm --------*/                 fprintf(ficgp,")");
                }
   strcpy(optionfilehtm,optionfile);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   strcat(optionfilehtm,".htm");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {               i=i+ncovmodel;
     printf("Problem with %s \n",optionfilehtm), exit(0);             }
   }           } /* end k */
          } /* end k2 */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n       } /* end jk */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n     } /* end ng */
 \n     fflush(ficgp); 
 Total number of observations=%d <br>\n  }  /* end gnuplot */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  
 <hr  size=\"2\" color=\"#EC5E5E\">  
  <ul><li>Parameter files<br>\n  /*************** Moving average **************/
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);  
   fclose(fichtm);    int i, cpt, cptcod;
     int modcovmax =1;
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    int mobilavrange, mob;
      double age;
 /*------------ free_vector  -------------*/  
  chdir(path);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                               a covariate has 2 modalities */
  free_ivector(wav,1,imx);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
  free_ivector(num,1,n);      if(mobilav==1) mobilavrange=5; /* default */
  free_vector(agedc,1,n);      else mobilavrange=mobilav;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      for (age=bage; age<=fage; age++)
  fclose(ficparo);        for (i=1; i<=nlstate;i++)
  fclose(ficres);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
   /*--------------- Prevalence limit --------------*/         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           we use a 5 terms etc. until the borders are no more concerned. 
   strcpy(filerespl,"pl");      */ 
   strcat(filerespl,fileres);      for (mob=3;mob <=mobilavrange;mob=mob+2){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          for (i=1; i<=nlstate;i++){
   }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   fprintf(ficrespl,"#Prevalence limit\n");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   fprintf(ficrespl,"#Age ");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   fprintf(ficrespl,"\n");                }
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   prlim=matrix(1,nlstate,1,nlstate);            }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }/* end age */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }/* end mob */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }else return -1;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    return 0;
   k=0;  }/* End movingaverage */
   agebase=ageminpar;  
   agelim=agemaxpar;  
   ftolpl=1.e-10;  /************** Forecasting ******************/
   i1=cptcoveff;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   if (cptcovn < 1){i1=1;}    /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
   for(cptcov=1;cptcov<=i1;cptcov++){       dateprev1 dateprev2 range of dates during which prevalence is computed
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       anproj2 year of en of projection (same day and month as proj1).
         k=k+1;    */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
         fprintf(ficrespl,"\n#******");    int *popage;
         for(j=1;j<=cptcoveff;j++)    double agec; /* generic age */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
         fprintf(ficrespl,"******\n");    double *popeffectif,*popcount;
            double ***p3mat;
         for (age=agebase; age<=agelim; age++){    double ***mobaverage;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    char fileresf[FILENAMELENGTH];
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)    agelim=AGESUP;
           fprintf(ficrespl," %.5f", prlim[i][i]);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           fprintf(ficrespl,"\n");   
         }    strcpy(fileresf,"f"); 
       }    strcat(fileresf,fileres);
     }    if((ficresf=fopen(fileresf,"w"))==NULL) {
   fclose(ficrespl);      printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   /*------------- h Pij x at various ages ------------*/    }
      printf("Computing forecasting: result on file '%s' \n", fileresf);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   /*if (stepm<=24) stepsize=2;*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   agelim=AGESUP;      }
   hstepm=stepsize*YEARM; /* Every year of age */    }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
      stepsize=(int) (stepm+YEARM-1)/YEARM;
   k=0;    if (stepm<=12) stepsize=1;
   for(cptcov=1;cptcov<=i1;cptcov++){    if(estepm < stepm){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       k=k+1;    }
         fprintf(ficrespij,"\n#****** ");    else  hstepm=estepm;   
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    hstepm=hstepm/stepm; 
         fprintf(ficrespij,"******\n");    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                         fractional in yp1 */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    anprojmean=yp;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    yp2=modf((yp1*12),&yp);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    mprojmean=yp;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    yp1=modf((yp2*30.5),&yp);
           oldm=oldms;savm=savms;    jprojmean=yp;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if(jprojmean==0) jprojmean=1;
           fprintf(ficrespij,"# Age");    if(mprojmean==0) jprojmean=1;
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)    i1=cptcoveff;
               fprintf(ficrespij," %1d-%1d",i,j);    if (cptcovn < 1){i1=1;}
           fprintf(ficrespij,"\n");    
            for (h=0; h<=nhstepm; h++){    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    
             for(i=1; i<=nlstate;i++)    fprintf(ficresf,"#****** Routine prevforecast **\n");
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  /*            if (h==(int)(YEARM*yearp)){ */
             fprintf(ficrespij,"\n");    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
              }      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        k=k+1;
           fprintf(ficrespij,"\n");        fprintf(ficresf,"\n#******");
         }        for(j=1;j<=cptcoveff;j++) {
     }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }        }
         fprintf(ficresf,"******\n");
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
   fclose(ficrespij);          for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
   /*---------- Forecasting ------------------*/        }
   if((stepm == 1) && (strcmp(model,".")==0)){        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          fprintf(ficresf,"\n");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   }  
   else{          for (agec=fage; agec>=(ageminpar-1); agec--){ 
     erreur=108;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            nhstepm = nhstepm/hstepm; 
   }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   /*---------- Health expectancies and variances ------------*/          
             for (h=0; h<=nhstepm; h++){
   strcpy(filerest,"t");              if (h*hstepm/YEARM*stepm ==yearp) {
   strcat(filerest,fileres);                fprintf(ficresf,"\n");
   if((ficrest=fopen(filerest,"w"))==NULL) {                for(j=1;j<=cptcoveff;j++) 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);              } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
   strcpy(filerese,"e");                for(i=1; i<=nlstate;i++) {
   strcat(filerese,fileres);                  if (mobilav==1) 
   if((ficreseij=fopen(filerese,"w"))==NULL) {                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                  else {
   }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                  }
                   if (h*hstepm/YEARM*stepm== yearp) {
  strcpy(fileresv,"v");                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   strcat(fileresv,fileres);                  }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                } /* end i */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                if (h*hstepm/YEARM*stepm==yearp) {
   }                  fprintf(ficresf," %.3f", ppij);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                }
   calagedate=-1;              }/* end j */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   k=0;          } /* end agec */
   for(cptcov=1;cptcov<=i1;cptcov++){        } /* end yearp */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } /* end cptcod */
       k=k+1;    } /* end  cptcov */
       fprintf(ficrest,"\n#****** ");         
       for(j=1;j<=cptcoveff;j++)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    fclose(ficresf);
   }
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  /************** Forecasting *****not tested NB*************/
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       fprintf(ficreseij,"******\n");    
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
       fprintf(ficresvij,"\n#****** ");    int *popage;
       for(j=1;j<=cptcoveff;j++)    double calagedatem, agelim, kk1, kk2;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double *popeffectif,*popcount;
       fprintf(ficresvij,"******\n");    double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    char filerespop[FILENAMELENGTH];
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    agelim=AGESUP;
       oldm=oldms;savm=savms;    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    
        prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
      
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    strcpy(filerespop,"pop"); 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    strcat(filerespop,fileres);
       fprintf(ficrest,"\n");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       epj=vector(1,nlstate+1);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       for(age=bage; age <=fage ;age++){    }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    printf("Computing forecasting: result on file '%s' \n", filerespop);
         if (popbased==1) {    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         }  
            if (mobilav!=0) {
         fprintf(ficrest," %4.0f",age);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      }
           }    }
           epj[nlstate+1] +=epj[j];  
         }    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
         for(i=1, vepp=0.;i <=nlstate;i++)    
           for(j=1;j <=nlstate;j++)    agelim=AGESUP;
             vepp += vareij[i][j][(int)age];    
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    hstepm=1;
         for(j=1;j <=nlstate;j++){    hstepm=hstepm/stepm; 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    
         }    if (popforecast==1) {
         fprintf(ficrest,"\n");      if((ficpop=fopen(popfile,"r"))==NULL) {
       }        printf("Problem with population file : %s\n",popfile);exit(0);
     }        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   }      } 
 free_matrix(mint,1,maxwav,1,n);      popage=ivector(0,AGESUP);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      popeffectif=vector(0,AGESUP);
     free_vector(weight,1,n);      popcount=vector(0,AGESUP);
   fclose(ficreseij);      
   fclose(ficresvij);      i=1;   
   fclose(ficrest);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   fclose(ficpar);     
   free_vector(epj,1,nlstate+1);      imx=i;
        for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   /*------- Variance limit prevalence------*/      }
   
   strcpy(fileresvpl,"vpl");    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   strcat(fileresvpl,fileres);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        k=k+1;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        fprintf(ficrespop,"\n#******");
     exit(0);        for(j=1;j<=cptcoveff;j++) {
   }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        }
         fprintf(ficrespop,"******\n");
   k=0;        fprintf(ficrespop,"# Age");
   for(cptcov=1;cptcov<=i1;cptcov++){        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if (popforecast==1)  fprintf(ficrespop," [Population]");
       k=k+1;        
       fprintf(ficresvpl,"\n#****** ");        for (cpt=0; cpt<=0;cpt++) { 
       for(j=1;j<=cptcoveff;j++)          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       fprintf(ficresvpl,"******\n");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
                  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            nhstepm = nhstepm/hstepm; 
       oldm=oldms;savm=savms;            
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }            oldm=oldms;savm=savms;
  }            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
   fclose(ficresvpl);            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
   /*---------- End : free ----------------*/                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);              } 
                for(j=1; j<=nlstate+ndeath;j++) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                kk1=0.;kk2=0;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                for(i=1; i<=nlstate;i++) {              
                    if (mobilav==1) 
                      kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                  else {
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                  }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                }
                  if (h==(int)(calagedatem+12*cpt)){
   free_matrix(matcov,1,npar,1,npar);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   free_vector(delti,1,npar);                    /*fprintf(ficrespop," %.3f", kk1);
   free_matrix(agev,1,maxwav,1,imx);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                }
               }
   fprintf(fichtm,"\n</body>");              for(i=1; i<=nlstate;i++){
   fclose(fichtm);                kk1=0.;
   fclose(ficgp);                  for(j=1; j<=nlstate;j++){
                      kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
   if(erreur >0)                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     printf("End of Imach with error or warning %d\n",erreur);              }
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                  fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            }
   /*printf("Total time was %d uSec.\n", total_usecs);*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*------ End -----------*/          }
         }
    
  end:    /******/
 #ifdef windows  
   /* chdir(pathcd);*/        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 #endif          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
  /*system("wgnuplot graph.plt");*/          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
  /*system("../gp37mgw/wgnuplot graph.plt");*/            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
  /*system("cd ../gp37mgw");*/            nhstepm = nhstepm/hstepm; 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            
  strcpy(plotcmd,GNUPLOTPROGRAM);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  strcat(plotcmd," ");            oldm=oldms;savm=savms;
  strcat(plotcmd,optionfilegnuplot);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
  system(plotcmd);            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
 #ifdef windows                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   while (z[0] != 'q') {              } 
     /* chdir(path); */              for(j=1; j<=nlstate+ndeath;j++) {
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                kk1=0.;kk2=0;
     scanf("%s",z);                for(i=1; i<=nlstate;i++) {              
     if (z[0] == 'c') system("./imach");                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     else if (z[0] == 'e') system(optionfilehtm);                }
     else if (z[0] == 'g') system(plotcmd);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     else if (z[0] == 'q') exit(0);              }
   }            }
 #endif            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }          }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.47  
changed lines
  Added in v.1.93


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>