Diff for /imach/src/imach.c between versions 1.47 and 1.98

version 1.47, 2002/06/10 13:12:01 version 1.98, 2004/05/16 15:05:56
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
   This program computes Healthy Life Expectancies from    directly from the data i.e. without the need of knowing the health
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    state at each age, but using a Gompertz model: log u =a + b*age .
   first survey ("cross") where individuals from different ages are    This is the basic analysis of mortality and should be done before any
   interviewed on their health status or degree of disability (in the    other analysis, in order to test if the mortality estimated from the
   case of a health survey which is our main interest) -2- at least a    cross-longitudinal survey is different from the mortality estimated
   second wave of interviews ("longitudinal") which measure each change    from other sources like vital statistic data.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    The same imach parameter file can be used but the option for mle should be -3.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Agnès, who wrote this part of the code, tried to keep most of the
   simplest model is the multinomial logistic model where pij is the    former routines in order to include the new code within the former code.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    The output is very simple: only an estimate of the intercept and of
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the slope with 95% confident intervals.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Current limitations:
   where the markup *Covariates have to be included here again* invites    A) Even if you enter covariates, i.e. with the
   you to do it.  More covariates you add, slower the    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   convergence.    B) There is no computation of Life Expectancy nor Life Table.
   
   The advantage of this computer programme, compared to a simple    Revision 1.97  2004/02/20 13:25:42  lievre
   multinomial logistic model, is clear when the delay between waves is not    Version 0.96d. Population forecasting command line is (temporarily)
   identical for each individual. Also, if a individual missed an    suppressed.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   hPijx is the probability to be observed in state i at age x+h    rewritten within the same printf. Workaround: many printfs.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.95  2003/07/08 07:54:34  brouard
   states. This elementary transition (by month or quarter trimester,    * imach.c (Repository):
   semester or year) is model as a multinomial logistic.  The hPx    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix (cov(a12,c31) instead of numbers.
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    exist so I changed back to asctime which exists.
            Institut national d'études démographiques, Paris.    (Module): Version 0.96b
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.92  2003/06/25 16:30:45  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): On windows (cygwin) function asctime_r doesn't
   software can be distributed freely for non commercial use. Latest version    exist so I changed back to asctime which exists.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.91  2003/06/25 15:30:29  brouard
      * imach.c (Repository): Duplicated warning errors corrected.
 #include <math.h>    (Repository): Elapsed time after each iteration is now output. It
 #include <stdio.h>    helps to forecast when convergence will be reached. Elapsed time
 #include <stdlib.h>    is stamped in powell.  We created a new html file for the graphs
 #include <unistd.h>    concerning matrix of covariance. It has extension -cov.htm.
   
 #define MAXLINE 256    Revision 1.90  2003/06/24 12:34:15  brouard
 #define GNUPLOTPROGRAM "gnuplot"    (Module): Some bugs corrected for windows. Also, when
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FILENAMELENGTH 80    of the covariance matrix to be input.
 /*#define DEBUG*/  
 #define windows    Revision 1.89  2003/06/24 12:30:52  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Some bugs corrected for windows. Also, when
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.87  2003/06/18 12:26:01  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Version 0.96
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.86  2003/06/17 20:04:08  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Change position of html and gnuplot routines and added
 #define AGESUP 130    routine fileappend.
 #define AGEBASE 40  
 #ifdef windows    Revision 1.85  2003/06/17 13:12:43  brouard
 #define DIRSEPARATOR '\\'    * imach.c (Repository): Check when date of death was earlier that
 #else    current date of interview. It may happen when the death was just
 #define DIRSEPARATOR '/'    prior to the death. In this case, dh was negative and likelihood
 #endif    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";    interview.
 int erreur; /* Error number */    (Repository): Because some people have very long ID (first column)
 int nvar;    we changed int to long in num[] and we added a new lvector for
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    memory allocation. But we also truncated to 8 characters (left
 int npar=NPARMAX;    truncation)
 int nlstate=2; /* Number of live states */    (Repository): No more line truncation errors.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.84  2003/06/13 21:44:43  brouard
 int popbased=0;    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 int *wav; /* Number of waves for this individuual 0 is possible */    many times. Probs is memory consuming and must be used with
 int maxwav; /* Maxim number of waves */    parcimony.
 int jmin, jmax; /* min, max spacing between 2 waves */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.83  2003/06/10 13:39:11  lievre
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    *** empty log message ***
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.82  2003/06/05 15:57:20  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Add log in  imach.c and  fullversion number is now printed.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  */
 FILE *fichtm; /* Html File */  /*
 FILE *ficreseij;     Interpolated Markov Chain
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Short summary of the programme:
 char fileresv[FILENAMELENGTH];    
 FILE  *ficresvpl;    This program computes Healthy Life Expectancies from
 char fileresvpl[FILENAMELENGTH];    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 char title[MAXLINE];    first survey ("cross") where individuals from different ages are
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    interviewed on their health status or degree of disability (in the
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 char filerest[FILENAMELENGTH];    model. More health states you consider, more time is necessary to reach the
 char fileregp[FILENAMELENGTH];    Maximum Likelihood of the parameters involved in the model.  The
 char popfile[FILENAMELENGTH];    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define NR_END 1    'age' is age and 'sex' is a covariate. If you want to have a more
 #define FREE_ARG char*    complex model than "constant and age", you should modify the program
 #define FTOL 1.0e-10    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 #define NRANSI    convergence.
 #define ITMAX 200  
     The advantage of this computer programme, compared to a simple
 #define TOL 2.0e-4    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 #define CGOLD 0.3819660    intermediate interview, the information is lost, but taken into
 #define ZEPS 1.0e-10    account using an interpolation or extrapolation.  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     hPijx is the probability to be observed in state i at age x+h
 #define GOLD 1.618034    conditional to the observed state i at age x. The delay 'h' can be
 #define GLIMIT 100.0    split into an exact number (nh*stepm) of unobserved intermediate
 #define TINY 1.0e-20    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 static double maxarg1,maxarg2;    matrix is simply the matrix product of nh*stepm elementary matrices
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    and the contribution of each individual to the likelihood is simply
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    hPijx.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Also this programme outputs the covariance matrix of the parameters but also
 #define rint(a) floor(a+0.5)    of the life expectancies. It also computes the stable prevalence. 
     
 static double sqrarg;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)             Institut national d'études démographiques, Paris.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 int imx;    It is copyrighted identically to a GNU software product, ie programme and
 int stepm;    software can be distributed freely for non commercial use. Latest version
 /* Stepm, step in month: minimum step interpolation*/    can be accessed at http://euroreves.ined.fr/imach .
   
 int estepm;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 int m,nb;    **********************************************************************/
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  /*
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    main
 double **pmmij, ***probs, ***mobaverage;    read parameterfile
 double dateintmean=0;    read datafile
     concatwav
 double *weight;    freqsummary
 int **s; /* Status */    if (mle >= 1)
 double *agedc, **covar, idx;      mlikeli
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    print results files
     if mle==1 
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */       computes hessian
 double ftolhess; /* Tolerance for computing hessian */    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 /**************** split *************************/    open gnuplot file
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    open html file
 {    stable prevalence
    char *s;                             /* pointer */     for age prevalim()
    int  l1, l2;                         /* length counters */    h Pij x
     variance of p varprob
    l1 = strlen( path );                 /* length of path */    forecasting if prevfcast==1 prevforecast call prevalence()
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    health expectancies
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    Variance-covariance of DFLE
    if ( s == NULL ) {                   /* no directory, so use current */    prevalence()
 #if     defined(__bsd__)                /* get current working directory */     movingaverage()
       extern char       *getwd( );    varevsij() 
     if popbased==1 varevsij(,popbased)
       if ( getwd( dirc ) == NULL ) {    total life expectancies
 #else    Variance of stable prevalence
       extern char       *getcwd( );   end
   */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif  
          return( GLOCK_ERROR_GETCWD );  
       }   
       strcpy( name, path );             /* we've got it */  #include <math.h>
    } else {                             /* strip direcotry from path */  #include <stdio.h>
       s++;                              /* after this, the filename */  #include <stdlib.h>
       l2 = strlen( s );                 /* length of filename */  #include <unistd.h>
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  #include <sys/time.h>
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #include <time.h>
       dirc[l1-l2] = 0;                  /* add zero */  #include "timeval.h"
    }  
    l1 = strlen( dirc );                 /* length of directory */  /* #include <libintl.h> */
 #ifdef windows  /* #define _(String) gettext (String) */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  #define MAXLINE 256
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define GNUPLOTPROGRAM "gnuplot"
 #endif  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    s = strrchr( name, '.' );            /* find last / */  #define FILENAMELENGTH 132
    s++;  /*#define DEBUG*/
    strcpy(ext,s);                       /* save extension */  /*#define windows*/
    l1= strlen( name);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    l2= strlen( s)+1;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    return( 0 );                         /* we're done */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /******************************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 void replace(char *s, char*t)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   int i;  #define AGESUP 130
   int lg=20;  #define AGEBASE 40
   i=0;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   lg=strlen(t);  #ifdef unix
   for(i=0; i<= lg; i++) {  #define DIRSEPARATOR '/'
     (s[i] = t[i]);  #define ODIRSEPARATOR '\\'
     if (t[i]== '\\') s[i]='/';  #else
   }  #define DIRSEPARATOR '\\'
 }  #define ODIRSEPARATOR '/'
   #endif
 int nbocc(char *s, char occ)  
 {  /* $Id$ */
   int i,j=0;  /* $State$ */
   int lg=20;  
   i=0;  char version[]="Imach version 0.70, May 2004, INED-EUROREVES ";
   lg=strlen(s);  char fullversion[]="$Revision$ $Date$"; 
   for(i=0; i<= lg; i++) {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   if  (s[i] == occ ) j++;  int nvar;
   }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   return j;  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 void cutv(char *u,char *v, char*t, char occ)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   int i,lg,j,p=0;  
   i=0;  int *wav; /* Number of waves for this individuual 0 is possible */
   for(j=0; j<=strlen(t)-1; j++) {  int maxwav; /* Maxim number of waves */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  int jmin, jmax; /* min, max spacing between 2 waves */
   }  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
   lg=strlen(t);  int mle, weightopt;
   for(j=0; j<p; j++) {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     (u[j] = t[j]);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
      u[p]='\0';             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
    for(j=0; j<= lg; j++) {  double **oldm, **newm, **savm; /* Working pointers to matrices */
     if (j>=(p+1))(v[j-p-1] = t[j]);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 /********************** nrerror ********************/  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 void nrerror(char error_text[])  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   fprintf(stderr,"ERREUR ...\n");  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   fprintf(stderr,"%s\n",error_text);  FILE *ficresilk;
   exit(1);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 }  FILE *ficresprobmorprev;
 /*********************** vector *******************/  FILE *fichtm, *fichtmcov; /* Html File */
 double *vector(int nl, int nh)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   double *v;  FILE  *ficresvij;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char fileresv[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in vector");  FILE  *ficresvpl;
   return v-nl+NR_END;  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /************************ free vector ******************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 void free_vector(double*v, int nl, int nh)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 {  char command[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  int  outcmd=0;
 }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  char filelog[FILENAMELENGTH]; /* Log file */
 {  char filerest[FILENAMELENGTH];
   int *v;  char fileregp[FILENAMELENGTH];
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char popfile[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 }  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /******************free ivector **************************/  struct timezone tzp;
 void free_ivector(int *v, long nl, long nh)  extern int gettimeofday();
 {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   free((FREE_ARG)(v+nl-NR_END));  long time_value;
 }  extern long time();
   char strcurr[80], strfor[80];
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define NR_END 1
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  #define NRANSI 
    #define ITMAX 200 
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define TOL 2.0e-4 
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define CGOLD 0.3819660 
   m -= nrl;  #define ZEPS 1.0e-10 
    #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    
   /* allocate rows and set pointers to them */  #define GOLD 1.618034 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define GLIMIT 100.0 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define TINY 1.0e-20 
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  static double maxarg1,maxarg2;
    #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      
   /* return pointer to array of pointers to rows */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   return m;  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
 /****************** free_imatrix *************************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       int **m;  int agegomp= AGEGOMP;
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  int imx; 
 {  int stepm=1;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  /* Stepm, step in month: minimum step interpolation*/
   free((FREE_ARG) (m+nrl-NR_END));  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  int m,nb;
 {  long *num;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **m;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double *ageexmed,*agecens;
   if (!m) nrerror("allocation failure 1 in matrix()");  double dateintmean=0;
   m += NR_END;  
   m -= nrl;  double *weight;
   int **s; /* Status */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double *agedc, **covar, idx;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /*************************free matrix ************************/    char  *ss;                            /* pointer */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    int   l1, l2;                         /* length counters */
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    l1 = strlen(path );                   /* length of path */
   free((FREE_ARG)(m+nrl-NR_END));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
 /******************* ma3x *******************************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      /*    extern  char* getcwd ( char *buf , int len);*/
   double ***m;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      }
   if (!m) nrerror("allocation failure 1 in matrix()");      strcpy( name, path );               /* we've got it */
   m += NR_END;    } else {                              /* strip direcotry from path */
   m -= nrl;      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      strcpy( name, ss );         /* save file name */
   m[nrl] += NR_END;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl] -= ncl;      dirc[l1-l2] = 0;                    /* add zero */
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    l1 = strlen( dirc );                  /* length of directory */
     /*#ifdef windows
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #else
   m[nrl][ncl] += NR_END;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m[nrl][ncl] -= nll;  #endif
   for (j=ncl+1; j<=nch; j++)    */
     m[nrl][j]=m[nrl][j-1]+nlay;    ss = strrchr( name, '.' );            /* find last / */
      ss++;
   for (i=nrl+1; i<=nrh; i++) {    strcpy(ext,ss);                       /* save extension */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    l1= strlen( name);
     for (j=ncl+1; j<=nch; j++)    l2= strlen(ss)+1;
       m[i][j]=m[i][j-1]+nlay;    strncpy( finame, name, l1-l2);
   }    finame[l1-l2]= 0;
   return m;    return( 0 );                          /* we're done */
 }  }
   
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /******************************************/
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  void replace_back_to_slash(char *s, char*t)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    int i;
 }    int lg=0;
     i=0;
 /***************** f1dim *************************/    lg=strlen(t);
 extern int ncom;    for(i=0; i<= lg; i++) {
 extern double *pcom,*xicom;      (s[i] = t[i]);
 extern double (*nrfunc)(double []);      if (t[i]== '\\') s[i]='/';
      }
 double f1dim(double x)  }
 {  
   int j;  int nbocc(char *s, char occ)
   double f;  {
   double *xt;    int i,j=0;
      int lg=20;
   xt=vector(1,ncom);    i=0;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    lg=strlen(s);
   f=(*nrfunc)(xt);    for(i=0; i<= lg; i++) {
   free_vector(xt,1,ncom);    if  (s[i] == occ ) j++;
   return f;    }
 }    return j;
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   int iter;    /* cuts string t into u and v where u is ended by char occ excluding it
   double a,b,d,etemp;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   double fu,fv,fw,fx;       gives u="abcedf" and v="ghi2j" */
   double ftemp;    int i,lg,j,p=0;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    i=0;
   double e=0.0;    for(j=0; j<=strlen(t)-1; j++) {
        if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   a=(ax < cx ? ax : cx);    }
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    lg=strlen(t);
   fw=fv=fx=(*f)(x);    for(j=0; j<p; j++) {
   for (iter=1;iter<=ITMAX;iter++) {      (u[j] = t[j]);
     xm=0.5*(a+b);    }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);       u[p]='\0';
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);     for(j=0; j<= lg; j++) {
 #ifdef DEBUG      if (j>=(p+1))(v[j-p-1] = t[j]);
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  }
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  /********************** nrerror ********************/
       *xmin=x;  
       return fx;  void nrerror(char error_text[])
     }  {
     ftemp=fu;    fprintf(stderr,"ERREUR ...\n");
     if (fabs(e) > tol1) {    fprintf(stderr,"%s\n",error_text);
       r=(x-w)*(fx-fv);    exit(EXIT_FAILURE);
       q=(x-v)*(fx-fw);  }
       p=(x-v)*q-(x-w)*r;  /*********************** vector *******************/
       q=2.0*(q-r);  double *vector(int nl, int nh)
       if (q > 0.0) p = -p;  {
       q=fabs(q);    double *v;
       etemp=e;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       e=d;    if (!v) nrerror("allocation failure in vector");
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    return v-nl+NR_END;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  
         d=p/q;  /************************ free vector ******************/
         u=x+d;  void free_vector(double*v, int nl, int nh)
         if (u-a < tol2 || b-u < tol2)  {
           d=SIGN(tol1,xm-x);    free((FREE_ARG)(v+nl-NR_END));
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  {
     fu=(*f)(u);    int *v;
     if (fu <= fx) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       if (u >= x) a=x; else b=x;    if (!v) nrerror("allocation failure in ivector");
       SHFT(v,w,x,u)    return v-nl+NR_END;
         SHFT(fv,fw,fx,fu)  }
         } else {  
           if (u < x) a=u; else b=u;  /******************free ivector **************************/
           if (fu <= fw || w == x) {  void free_ivector(int *v, long nl, long nh)
             v=w;  {
             w=u;    free((FREE_ARG)(v+nl-NR_END));
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /************************lvector *******************************/
             v=u;  long *lvector(long nl,long nh)
             fv=fu;  {
           }    long *v;
         }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   }    if (!v) nrerror("allocation failure in ivector");
   nrerror("Too many iterations in brent");    return v-nl+NR_END;
   *xmin=x;  }
   return fx;  
 }  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
 /****************** mnbrak ***********************/  {
     free((FREE_ARG)(v+nl-NR_END));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  }
             double (*func)(double))  
 {  /******************* imatrix *******************************/
   double ulim,u,r,q, dum;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double fu;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
    { 
   *fa=(*func)(*ax);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   *fb=(*func)(*bx);    int **m; 
   if (*fb > *fa) {    
     SHFT(dum,*ax,*bx,dum)    /* allocate pointers to rows */ 
       SHFT(dum,*fb,*fa,dum)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   *cx=(*bx)+GOLD*(*bx-*ax);    m += NR_END; 
   *fc=(*func)(*cx);    m -= nrl; 
   while (*fb > *fc) {    
     r=(*bx-*ax)*(*fb-*fc);    
     q=(*bx-*cx)*(*fb-*fa);    /* allocate rows and set pointers to them */ 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m[nrl] += NR_END; 
     if ((*bx-u)*(u-*cx) > 0.0) {    m[nrl] -= ncl; 
       fu=(*func)(u);    
     } else if ((*cx-u)*(u-ulim) > 0.0) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       fu=(*func)(u);    
       if (fu < *fc) {    /* return pointer to array of pointers to rows */ 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    return m; 
           SHFT(*fb,*fc,fu,(*func)(u))  } 
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /****************** free_imatrix *************************/
       u=ulim;  void free_imatrix(m,nrl,nrh,ncl,nch)
       fu=(*func)(u);        int **m;
     } else {        long nch,ncl,nrh,nrl; 
       u=(*cx)+GOLD*(*cx-*bx);       /* free an int matrix allocated by imatrix() */ 
       fu=(*func)(u);  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     SHFT(*ax,*bx,*cx,u)    free((FREE_ARG) (m+nrl-NR_END)); 
       SHFT(*fa,*fb,*fc,fu)  } 
       }  
 }  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
 /*************** linmin ************************/  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 int ncom;    double **m;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      if (!m) nrerror("allocation failure 1 in matrix()");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m += NR_END;
 {    m -= nrl;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double f1dim(double x);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    m[nrl] += NR_END;
               double *fc, double (*func)(double));    m[nrl] -= ncl;
   int j;  
   double xx,xmin,bx,ax;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double fx,fb,fa;    return m;
      /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   ncom=n;     */
   pcom=vector(1,n);  }
   xicom=vector(1,n);  
   nrfunc=func;  /*************************free matrix ************************/
   for (j=1;j<=n;j++) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     pcom[j]=p[j];  {
     xicom[j]=xi[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }    free((FREE_ARG)(m+nrl-NR_END));
   ax=0.0;  }
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /******************* ma3x *******************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 #endif    double ***m;
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     p[j] += xi[j];    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
   free_vector(xicom,1,n);    m -= nrl;
   free_vector(pcom,1,n);  
 }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /*************** powell ************************/    m[nrl] += NR_END;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m[nrl] -= ncl;
             double (*func)(double []))  
 {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   int i,ibig,j;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double del,t,*pt,*ptt,*xit;    m[nrl][ncl] += NR_END;
   double fp,fptt;    m[nrl][ncl] -= nll;
   double *xits;    for (j=ncl+1; j<=nch; j++) 
   pt=vector(1,n);      m[nrl][j]=m[nrl][j-1]+nlay;
   ptt=vector(1,n);    
   xit=vector(1,n);    for (i=nrl+1; i<=nrh; i++) {
   xits=vector(1,n);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   *fret=(*func)(p);      for (j=ncl+1; j<=nch; j++) 
   for (j=1;j<=n;j++) pt[j]=p[j];        m[i][j]=m[i][j-1]+nlay;
   for (*iter=1;;++(*iter)) {    }
     fp=(*fret);    return m; 
     ibig=0;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     del=0.0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    */
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /*************************free ma3x ************************/
     for (i=1;i<=n;i++) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf("fret=%lf \n",*fret);    free((FREE_ARG)(m+nrl-NR_END));
 #endif  }
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  /*************** function subdirf ***********/
       if (fabs(fptt-(*fret)) > del) {  char *subdirf(char fileres[])
         del=fabs(fptt-(*fret));  {
         ibig=i;    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
 #ifdef DEBUG    strcat(tmpout,"/"); /* Add to the right */
       printf("%d %.12e",i,(*fret));    strcat(tmpout,fileres);
       for (j=1;j<=n;j++) {    return tmpout;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  }
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  /*************** function subdirf2 ***********/
       for(j=1;j<=n;j++)  char *subdirf2(char fileres[], char *preop)
         printf(" p=%.12e",p[j]);  {
       printf("\n");    
 #endif    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    strcat(tmpout,"/");
 #ifdef DEBUG    strcat(tmpout,preop);
       int k[2],l;    strcat(tmpout,fileres);
       k[0]=1;    return tmpout;
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /*************** function subdirf3 ***********/
         printf(" %.12e",p[j]);  char *subdirf3(char fileres[], char *preop, char *preop2)
       printf("\n");  {
       for(l=0;l<=1;l++) {    
         for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    strcpy(tmpout,optionfilefiname);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcat(tmpout,"/");
         }    strcat(tmpout,preop);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    strcat(tmpout,preop2);
       }    strcat(tmpout,fileres);
 #endif    return tmpout;
   }
   
       free_vector(xit,1,n);  /***************** f1dim *************************/
       free_vector(xits,1,n);  extern int ncom; 
       free_vector(ptt,1,n);  extern double *pcom,*xicom;
       free_vector(pt,1,n);  extern double (*nrfunc)(double []); 
       return;   
     }  double f1dim(double x) 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  { 
     for (j=1;j<=n;j++) {    int j; 
       ptt[j]=2.0*p[j]-pt[j];    double f;
       xit[j]=p[j]-pt[j];    double *xt; 
       pt[j]=p[j];   
     }    xt=vector(1,ncom); 
     fptt=(*func)(ptt);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     if (fptt < fp) {    f=(*nrfunc)(xt); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    free_vector(xt,1,ncom); 
       if (t < 0.0) {    return f; 
         linmin(p,xit,n,fret,func);  } 
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /*****************brent *************************/
           xi[j][n]=xit[j];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         }  { 
 #ifdef DEBUG    int iter; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double a,b,d,etemp;
         for(j=1;j<=n;j++)    double fu,fv,fw,fx;
           printf(" %.12e",xit[j]);    double ftemp;
         printf("\n");    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 #endif    double e=0.0; 
       }   
     }    a=(ax < cx ? ax : cx); 
   }    b=(ax > cx ? ax : cx); 
 }    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
 /**** Prevalence limit ****************/    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      printf(".");fflush(stdout);
      matrix by transitions matrix until convergence is reached */      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
   int i, ii,j,k;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double min, max, maxmin, maxmax,sumnew=0.;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double **matprod2();      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double **out, cov[NCOVMAX], **pmij();  #endif
   double **newm;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double agefin, delaymax=50 ; /* Max number of years to converge */        *xmin=x; 
         return fx; 
   for (ii=1;ii<=nlstate+ndeath;ii++)      } 
     for (j=1;j<=nlstate+ndeath;j++){      ftemp=fu;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if (fabs(e) > tol1) { 
     }        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
    cov[1]=1.;        p=(x-v)*q-(x-w)*r; 
          q=2.0*(q-r); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        if (q > 0.0) p = -p; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        q=fabs(q); 
     newm=savm;        etemp=e; 
     /* Covariates have to be included here again */        e=d; 
      cov[2]=agefin;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
            d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (k=1; k<=cptcovn;k++) {        else { 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          d=p/q; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          u=x+d; 
       }          if (u-a < tol2 || b-u < tol2) 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            d=SIGN(tol1,xm-x); 
       for (k=1; k<=cptcovprod;k++)        } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      } 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      fu=(*f)(u); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
     savm=oldm;        SHFT(v,w,x,u) 
     oldm=newm;          SHFT(fv,fw,fx,fu) 
     maxmax=0.;          } else { 
     for(j=1;j<=nlstate;j++){            if (u < x) a=u; else b=u; 
       min=1.;            if (fu <= fw || w == x) { 
       max=0.;              v=w; 
       for(i=1; i<=nlstate; i++) {              w=u; 
         sumnew=0;              fv=fw; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];              fw=fu; 
         prlim[i][j]= newm[i][j]/(1-sumnew);            } else if (fu <= fv || v == x || v == w) { 
         max=FMAX(max,prlim[i][j]);              v=u; 
         min=FMIN(min,prlim[i][j]);              fv=fu; 
       }            } 
       maxmin=max-min;          } 
       maxmax=FMAX(maxmax,maxmin);    } 
     }    nrerror("Too many iterations in brent"); 
     if(maxmax < ftolpl){    *xmin=x; 
       return prlim;    return fx; 
     }  } 
   }  
 }  /****************** mnbrak ***********************/
   
 /*************** transition probabilities ***************/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  { 
 {    double ulim,u,r,q, dum;
   double s1, s2;    double fu; 
   /*double t34;*/   
   int i,j,j1, nc, ii, jj;    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
     for(i=1; i<= nlstate; i++){    if (*fb > *fa) { 
     for(j=1; j<i;j++){      SHFT(dum,*ax,*bx,dum) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        SHFT(dum,*fb,*fa,dum) 
         /*s2 += param[i][j][nc]*cov[nc];*/        } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    *cx=(*bx)+GOLD*(*bx-*ax); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    *fc=(*func)(*cx); 
       }    while (*fb > *fc) { 
       ps[i][j]=s2;      r=(*bx-*ax)*(*fb-*fc); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      q=(*bx-*cx)*(*fb-*fa); 
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for(j=i+1; j<=nlstate+ndeath;j++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      if ((*bx-u)*(u-*cx) > 0.0) { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        fu=(*func)(u); 
       }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       ps[i][j]=s2;        fu=(*func)(u); 
     }        if (fu < *fc) { 
   }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     /*ps[3][2]=1;*/            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
   for(i=1; i<= nlstate; i++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
      s1=0;        u=ulim; 
     for(j=1; j<i; j++)        fu=(*func)(u); 
       s1+=exp(ps[i][j]);      } else { 
     for(j=i+1; j<=nlstate+ndeath; j++)        u=(*cx)+GOLD*(*cx-*bx); 
       s1+=exp(ps[i][j]);        fu=(*func)(u); 
     ps[i][i]=1./(s1+1.);      } 
     for(j=1; j<i; j++)      SHFT(*ax,*bx,*cx,u) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        SHFT(*fa,*fb,*fc,fu) 
     for(j=i+1; j<=nlstate+ndeath; j++)        } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  } 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /*************** linmin ************************/
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  int ncom; 
     for(jj=1; jj<= nlstate+ndeath; jj++){  double *pcom,*xicom;
       ps[ii][jj]=0;  double (*nrfunc)(double []); 
       ps[ii][ii]=1;   
     }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   }  { 
     double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double f1dim(double x); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
      printf("%lf ",ps[ii][jj]);                double *fc, double (*func)(double)); 
    }    int j; 
     printf("\n ");    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
     printf("\n ");printf("%lf ",cov[2]);*/   
 /*    ncom=n; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    pcom=vector(1,n); 
   goto end;*/    xicom=vector(1,n); 
     return ps;    nrfunc=func; 
 }    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
 /**************** Product of 2 matrices ******************/      xicom[j]=xi[j]; 
     } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    ax=0.0; 
 {    xx=1.0; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   /* in, b, out are matrice of pointers which should have been initialized  #ifdef DEBUG
      before: only the contents of out is modified. The function returns    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      a pointer to pointers identical to out */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   long i, j, k;  #endif
   for(i=nrl; i<= nrh; i++)    for (j=1;j<=n;j++) { 
     for(k=ncolol; k<=ncoloh; k++)      xi[j] *= xmin; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      p[j] += xi[j]; 
         out[i][k] +=in[i][j]*b[j][k];    } 
     free_vector(xicom,1,n); 
   return out;    free_vector(pcom,1,n); 
 }  } 
   
   char *asc_diff_time(long time_sec, char ascdiff[])
 /************* Higher Matrix Product ***************/  {
     long sec_left, days, hours, minutes;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    days = (time_sec) / (60*60*24);
 {    sec_left = (time_sec) % (60*60*24);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    hours = (sec_left) / (60*60) ;
      duration (i.e. until    sec_left = (sec_left) %(60*60);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    minutes = (sec_left) /60;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    sec_left = (sec_left) % (60);
      (typically every 2 years instead of every month which is too big).    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
      Model is determined by parameters x and covariates have to be    return ascdiff;
      included manually here.  }
   
      */  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   int i, j, d, h, k;              double (*func)(double [])) 
   double **out, cov[NCOVMAX];  { 
   double **newm;    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
   /* Hstepm could be zero and should return the unit matrix */    int i,ibig,j; 
   for (i=1;i<=nlstate+ndeath;i++)    double del,t,*pt,*ptt,*xit;
     for (j=1;j<=nlstate+ndeath;j++){    double fp,fptt;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double *xits;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    int niterf, itmp;
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    pt=vector(1,n); 
   for(h=1; h <=nhstepm; h++){    ptt=vector(1,n); 
     for(d=1; d <=hstepm; d++){    xit=vector(1,n); 
       newm=savm;    xits=vector(1,n); 
       /* Covariates have to be included here again */    *fret=(*func)(p); 
       cov[1]=1.;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    for (*iter=1;;++(*iter)) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      fp=(*fret); 
       for (k=1; k<=cptcovage;k++)      ibig=0; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      del=0.0; 
       for (k=1; k<=cptcovprod;k++)      last_time=curr_time;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,     for (i=1;i<=n;i++) {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        printf(" %d %.12f",i, p[i]);
       savm=oldm;        fprintf(ficlog," %d %.12lf",i, p[i]);
       oldm=newm;        fprintf(ficrespow," %.12lf", p[i]);
     }      }
     for(i=1; i<=nlstate+ndeath; i++)      printf("\n");
       for(j=1;j<=nlstate+ndeath;j++) {      fprintf(ficlog,"\n");
         po[i][j][h]=newm[i][j];      fprintf(ficrespow,"\n");fflush(ficrespow);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      if(*iter <=3){
          */        tm = *localtime(&curr_time.tv_sec);
       }        strcpy(strcurr,asctime(&tmf));
   } /* end h */  /*       asctime_r(&tm,strcurr); */
   return po;        forecast_time=curr_time;
 }        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')
           strcurr[itmp-1]='\0';
 /*************** log-likelihood *************/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 double func( double *x)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {        for(niterf=10;niterf<=30;niterf+=10){
   int i, ii, j, k, mi, d, kk;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          tmf = *localtime(&forecast_time.tv_sec);
   double **out;  /*      asctime_r(&tmf,strfor); */
   double sw; /* Sum of weights */          strcpy(strfor,asctime(&tmf));
   double lli; /* Individual log likelihood */          itmp = strlen(strfor);
   long ipmx;          if(strfor[itmp-1]=='\n')
   /*extern weight */          strfor[itmp-1]='\0';
   /* We are differentiating ll according to initial status */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   /*for(i=1;i<imx;i++)        }
     printf(" %d\n",s[4][i]);      }
   */      for (i=1;i<=n;i++) { 
   cov[1]=1.;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  #ifdef DEBUG
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        printf("fret=%lf \n",*fret);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        fprintf(ficlog,"fret=%lf \n",*fret);
     for(mi=1; mi<= wav[i]-1; mi++){  #endif
       for (ii=1;ii<=nlstate+ndeath;ii++)        printf("%d",i);fflush(stdout);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficlog,"%d",i);fflush(ficlog);
       for(d=0; d<dh[mi][i]; d++){        linmin(p,xit,n,fret,func); 
         newm=savm;        if (fabs(fptt-(*fret)) > del) { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          del=fabs(fptt-(*fret)); 
         for (kk=1; kk<=cptcovage;kk++) {          ibig=i; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        } 
         }  #ifdef DEBUG
                printf("%d %.12e",i,(*fret));
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fprintf(ficlog,"%d %.12e",i,(*fret));
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for (j=1;j<=n;j++) {
         savm=oldm;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         oldm=newm;          printf(" x(%d)=%.12e",j,xit[j]);
                  fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
                }
       } /* end mult */        for(j=1;j<=n;j++) {
                printf(" p=%.12e",p[j]);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          fprintf(ficlog," p=%.12e",p[j]);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        }
       ipmx +=1;        printf("\n");
       sw += weight[i];        fprintf(ficlog,"\n");
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #endif
     } /* end of wave */      } 
   } /* end of individual */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        int k[2],l;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        k[0]=1;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        k[1]=-1;
   return -l;        printf("Max: %.12e",(*func)(p));
 }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
 /*********** Maximum Likelihood Estimation ***************/          fprintf(ficlog," %.12e",p[j]);
         }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        printf("\n");
 {        fprintf(ficlog,"\n");
   int i,j, iter;        for(l=0;l<=1;l++) {
   double **xi,*delti;          for (j=1;j<=n;j++) {
   double fret;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   xi=matrix(1,npar,1,npar);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (i=1;i<=npar;i++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (j=1;j<=npar;j++)          }
       xi[i][j]=(i==j ? 1.0 : 0.0);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   printf("Powell\n");          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   powell(p,xi,npar,ftol,&iter,&fret,func);        }
   #endif
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
         free_vector(xit,1,n); 
 }        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
 /**** Computes Hessian and covariance matrix ***/        free_vector(pt,1,n); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        return; 
 {      } 
   double  **a,**y,*x,pd;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double **hess;      for (j=1;j<=n;j++) { 
   int i, j,jk;        ptt[j]=2.0*p[j]-pt[j]; 
   int *indx;        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
   double hessii(double p[], double delta, int theta, double delti[]);      } 
   double hessij(double p[], double delti[], int i, int j);      fptt=(*func)(ptt); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      if (fptt < fp) { 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
   hess=matrix(1,npar,1,npar);          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
   printf("\nCalculation of the hessian matrix. Wait...\n");            xi[j][ibig]=xi[j][n]; 
   for (i=1;i<=npar;i++){            xi[j][n]=xit[j]; 
     printf("%d",i);fflush(stdout);          }
     hess[i][i]=hessii(p,ftolhess,i,delti);  #ifdef DEBUG
     /*printf(" %f ",p[i]);*/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     /*printf(" %lf ",hess[i][i]);*/          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          for(j=1;j<=n;j++){
              printf(" %.12e",xit[j]);
   for (i=1;i<=npar;i++) {            fprintf(ficlog," %.12e",xit[j]);
     for (j=1;j<=npar;j++)  {          }
       if (j>i) {          printf("\n");
         printf(".%d%d",i,j);fflush(stdout);          fprintf(ficlog,"\n");
         hess[i][j]=hessij(p,delti,i,j);  #endif
         hess[j][i]=hess[i][j];            }
         /*printf(" %lf ",hess[i][j]);*/      } 
       }    } 
     }  } 
   }  
   printf("\n");  /**** Prevalence limit (stable prevalence)  ****************/
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
    {
   a=matrix(1,npar,1,npar);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   y=matrix(1,npar,1,npar);       matrix by transitions matrix until convergence is reached */
   x=vector(1,npar);  
   indx=ivector(1,npar);    int i, ii,j,k;
   for (i=1;i<=npar;i++)    double min, max, maxmin, maxmax,sumnew=0.;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    double **matprod2();
   ludcmp(a,npar,indx,&pd);    double **out, cov[NCOVMAX], **pmij();
     double **newm;
   for (j=1;j<=npar;j++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    for (ii=1;ii<=nlstate+ndeath;ii++)
     lubksb(a,npar,indx,x);      for (j=1;j<=nlstate+ndeath;j++){
     for (i=1;i<=npar;i++){        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       matcov[i][j]=x[i];      }
     }  
   }     cov[1]=1.;
    
   printf("\n#Hessian matrix#\n");   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=npar;i++) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for (j=1;j<=npar;j++) {      newm=savm;
       printf("%.3e ",hess[i][j]);      /* Covariates have to be included here again */
     }       cov[2]=agefin;
     printf("\n");    
   }        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /* Recompute Inverse */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   ludcmp(a,npar,indx,&pd);        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /*  printf("\n#Hessian matrix recomputed#\n");  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   for (j=1;j<=npar;j++) {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     for (i=1;i<=npar;i++) x[i]=0;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     x[j]=1;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){      savm=oldm;
       y[i][j]=x[i];      oldm=newm;
       printf("%.3e ",y[i][j]);      maxmax=0.;
     }      for(j=1;j<=nlstate;j++){
     printf("\n");        min=1.;
   }        max=0.;
   */        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   free_matrix(a,1,npar,1,npar);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   free_matrix(y,1,npar,1,npar);          prlim[i][j]= newm[i][j]/(1-sumnew);
   free_vector(x,1,npar);          max=FMAX(max,prlim[i][j]);
   free_ivector(indx,1,npar);          min=FMIN(min,prlim[i][j]);
   free_matrix(hess,1,npar,1,npar);        }
         maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
 }      }
       if(maxmax < ftolpl){
 /*************** hessian matrix ****************/        return prlim;
 double hessii( double x[], double delta, int theta, double delti[])      }
 {    }
   int i;  }
   int l=1, lmax=20;  
   double k1,k2;  /*************** transition probabilities ***************/ 
   double p2[NPARMAX+1];  
   double res;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  {
   double fx;    double s1, s2;
   int k=0,kmax=10;    /*double t34;*/
   double l1;    int i,j,j1, nc, ii, jj;
   
   fx=func(x);      for(i=1; i<= nlstate; i++){
   for (i=1;i<=npar;i++) p2[i]=x[i];      for(j=1; j<i;j++){
   for(l=0 ; l <=lmax; l++){        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     l1=pow(10,l);          /*s2 += param[i][j][nc]*cov[nc];*/
     delts=delt;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for(k=1 ; k <kmax; k=k+1){          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       delt = delta*(l1*k);        }
       p2[theta]=x[theta] +delt;        ps[i][j]=s2;
       k1=func(p2)-fx;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       p2[theta]=x[theta]-delt;      }
       k2=func(p2)-fx;      for(j=i+1; j<=nlstate+ndeath;j++){
       /*res= (k1-2.0*fx+k2)/delt/delt; */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
 #ifdef DEBUG        }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        ps[i][j]=s2;
 #endif      }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      /*ps[3][2]=1;*/
         k=kmax;  
       }    for(i=1; i<= nlstate; i++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */       s1=0;
         k=kmax; l=lmax*10.;      for(j=1; j<i; j++)
       }        s1+=exp(ps[i][j]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      for(j=i+1; j<=nlstate+ndeath; j++)
         delts=delt;        s1+=exp(ps[i][j]);
       }      ps[i][i]=1./(s1+1.);
     }      for(j=1; j<i; j++)
   }        ps[i][j]= exp(ps[i][j])*ps[i][i];
   delti[theta]=delts;      for(j=i+1; j<=nlstate+ndeath; j++)
   return res;        ps[i][j]= exp(ps[i][j])*ps[i][i];
        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 }    } /* end i */
   
 double hessij( double x[], double delti[], int thetai,int thetaj)    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 {      for(jj=1; jj<= nlstate+ndeath; jj++){
   int i;        ps[ii][jj]=0;
   int l=1, l1, lmax=20;        ps[ii][ii]=1;
   double k1,k2,k3,k4,res,fx;      }
   double p2[NPARMAX+1];    }
   int k;  
   
   fx=func(x);    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   for (k=1; k<=2; k++) {      for(jj=1; jj<= nlstate+ndeath; jj++){
     for (i=1;i<=npar;i++) p2[i]=x[i];       printf("%lf ",ps[ii][jj]);
     p2[thetai]=x[thetai]+delti[thetai]/k;     }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      printf("\n ");
     k1=func(p2)-fx;      }
        printf("\n ");printf("%lf ",cov[2]);*/
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     k2=func(p2)-fx;    goto end;*/
        return ps;
     p2[thetai]=x[thetai]-delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;  /**************** Product of 2 matrices ******************/
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  {
     k4=func(p2)-fx;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 #ifdef DEBUG    /* in, b, out are matrice of pointers which should have been initialized 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);       before: only the contents of out is modified. The function returns
 #endif       a pointer to pointers identical to out */
   }    long i, j, k;
   return res;    for(i=nrl; i<= nrh; i++)
 }      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
 /************** Inverse of matrix **************/          out[i][k] +=in[i][j]*b[j][k];
 void ludcmp(double **a, int n, int *indx, double *d)  
 {    return out;
   int i,imax,j,k;  }
   double big,dum,sum,temp;  
   double *vv;  
    /************* Higher Matrix Product ***************/
   vv=vector(1,n);  
   *d=1.0;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for (i=1;i<=n;i++) {  {
     big=0.0;    /* Computes the transition matrix starting at age 'age' over 
     for (j=1;j<=n;j++)       'nhstepm*hstepm*stepm' months (i.e. until
       if ((temp=fabs(a[i][j])) > big) big=temp;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");       nhstepm*hstepm matrices. 
     vv[i]=1.0/big;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   }       (typically every 2 years instead of every month which is too big 
   for (j=1;j<=n;j++) {       for the memory).
     for (i=1;i<j;i++) {       Model is determined by parameters x and covariates have to be 
       sum=a[i][j];       included manually here. 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;       */
     }  
     big=0.0;    int i, j, d, h, k;
     for (i=j;i<=n;i++) {    double **out, cov[NCOVMAX];
       sum=a[i][j];    double **newm;
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];    /* Hstepm could be zero and should return the unit matrix */
       a[i][j]=sum;    for (i=1;i<=nlstate+ndeath;i++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {      for (j=1;j<=nlstate+ndeath;j++){
         big=dum;        oldm[i][j]=(i==j ? 1.0 : 0.0);
         imax=i;        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }      }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if (j != imax) {    for(h=1; h <=nhstepm; h++){
       for (k=1;k<=n;k++) {      for(d=1; d <=hstepm; d++){
         dum=a[imax][k];        newm=savm;
         a[imax][k]=a[j][k];        /* Covariates have to be included here again */
         a[j][k]=dum;        cov[1]=1.;
       }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       *d = -(*d);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       vv[imax]=vv[j];        for (k=1; k<=cptcovage;k++)
     }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     indx[j]=imax;        for (k=1; k<=cptcovprod;k++)
     if (a[j][j] == 0.0) a[j][j]=TINY;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     if (j != n) {  
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   free_vector(vv,1,n);  /* Doesn't work */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
 ;        savm=oldm;
 }        oldm=newm;
       }
 void lubksb(double **a, int n, int *indx, double b[])      for(i=1; i<=nlstate+ndeath; i++)
 {        for(j=1;j<=nlstate+ndeath;j++) {
   int i,ii=0,ip,j;          po[i][j][h]=newm[i][j];
   double sum;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             */
   for (i=1;i<=n;i++) {        }
     ip=indx[i];    } /* end h */
     sum=b[ip];    return po;
     b[ip]=b[i];  }
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;  /*************** log-likelihood *************/
     b[i]=sum;  double func( double *x)
   }  {
   for (i=n;i>=1;i--) {    int i, ii, j, k, mi, d, kk;
     sum=b[i];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    double **out;
     b[i]=sum/a[i][i];    double sw; /* Sum of weights */
   }    double lli; /* Individual log likelihood */
 }    int s1, s2;
     double bbh, survp;
 /************ Frequencies ********************/    long ipmx;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    /*extern weight */
 {  /* Some frequencies */    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    /*for(i=1;i<imx;i++) 
   double ***freq; /* Frequencies */      printf(" %d\n",s[4][i]);
   double *pp;    */
   double pos, k2, dateintsum=0,k2cpt=0;    cov[1]=1.;
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   pp=vector(1,nlstate);    if(mle==1){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   strcpy(fileresp,"p");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   strcat(fileresp,fileres);        for(mi=1; mi<= wav[i]-1; mi++){
   if((ficresp=fopen(fileresp,"w"))==NULL) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     printf("Problem with prevalence resultfile: %s\n", fileresp);            for (j=1;j<=nlstate+ndeath;j++){
     exit(0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            }
   j1=0;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   j=cptcoveff;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(k1=1; k1<=j;k1++){            }
     for(i1=1; i1<=ncodemax[k1];i1++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       j1++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            savm=oldm;
         scanf("%d", i);*/            oldm=newm;
       for (i=-1; i<=nlstate+ndeath; i++)            } /* end mult */
         for (jk=-1; jk<=nlstate+ndeath; jk++)          
           for(m=agemin; m <= agemax+3; m++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             freq[i][jk][m]=0;          /* But now since version 0.9 we anticipate for bias and large stepm.
                 * If stepm is larger than one month (smallest stepm) and if the exact delay 
       dateintsum=0;           * (in months) between two waves is not a multiple of stepm, we rounded to 
       k2cpt=0;           * the nearest (and in case of equal distance, to the lowest) interval but now
       for (i=1; i<=imx; i++) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         bool=1;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         if  (cptcovn>0) {           * probability in order to take into account the bias as a fraction of the way
           for (z1=1; z1<=cptcoveff; z1++)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           * -stepm/2 to stepm/2 .
               bool=0;           * For stepm=1 the results are the same as for previous versions of Imach.
         }           * For stepm > 1 the results are less biased than in previous versions. 
         if (bool==1) {           */
           for(m=firstpass; m<=lastpass; m++){          s1=s[mw[mi][i]][i];
             k2=anint[m][i]+(mint[m][i]/12.);          s2=s[mw[mi+1][i]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          bbh=(double)bh[mi][i]/(double)stepm; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;          /* bias is positive if real duration
               if(agev[m][i]==1) agev[m][i]=agemax+2;           * is higher than the multiple of stepm and negative otherwise.
               if (m<lastpass) {           */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          if( s2 > nlstate){ 
               }            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                             to the likelihood is the probability to die between last step unit time and current 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {               step unit time, which is also the differences between probability to die before dh 
                 dateintsum=dateintsum+k2;               and probability to die before dh-stepm . 
                 k2cpt++;               In version up to 0.92 likelihood was computed
               }          as if date of death was unknown. Death was treated as any other
             }          health state: the date of the interview describes the actual state
           }          and not the date of a change in health state. The former idea was
         }          to consider that at each interview the state was recorded
       }          (healthy, disable or death) and IMaCh was corrected; but when we
                  introduced the exact date of death then we should have modified
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
       if  (cptcovn>0) {          stepm. It is no more the probability to die between last interview
         fprintf(ficresp, "\n#********** Variable ");          and month of death but the probability to survive from last
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          interview up to one month before death multiplied by the
         fprintf(ficresp, "**********\n#");          probability to die within a month. Thanks to Chris
       }          Jackson for correcting this bug.  Former versions increased
       for(i=1; i<=nlstate;i++)          mortality artificially. The bad side is that we add another loop
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          which slows down the processing. The difference can be up to 10%
       fprintf(ficresp, "\n");          lower mortality.
                  */
       for(i=(int)agemin; i <= (int)agemax+3; i++){            lli=log(out[s1][s2] - savm[s1][s2]);
         if(i==(int)agemax+3)          }else{
           printf("Total");            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         else            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           printf("Age %d", i);          } 
         for(jk=1; jk <=nlstate ; jk++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*if(lli ==000.0)*/
             pp[jk] += freq[jk][m][i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         }          ipmx +=1;
         for(jk=1; jk <=nlstate ; jk++){          sw += weight[i];
           for(m=-1, pos=0; m <=0 ; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             pos += freq[jk][m][i];        } /* end of wave */
           if(pp[jk]>=1.e-10)      } /* end of individual */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    }  else if(mle==2){
           else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
           for(d=0; d<=dh[mi][i]; d++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)            newm=savm;
           pos += pp[jk];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
           if(pos>=1.e-5)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            }
           else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if( i <= (int) agemax){            savm=oldm;
             if(pos>=1.e-5){            oldm=newm;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          } /* end mult */
               probs[i][jk][j1]= pp[jk]/pos;        
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          s1=s[mw[mi][i]][i];
             }          s2=s[mw[mi+1][i]][i];
             else          bbh=(double)bh[mi][i]/(double)stepm; 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           }          ipmx +=1;
         }          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=-1; jk <=nlstate+ndeath; jk++)        } /* end of wave */
           for(m=-1; m <=nlstate+ndeath; m++)      } /* end of individual */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    }  else if(mle==3){  /* exponential inter-extrapolation */
         if(i <= (int) agemax)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           fprintf(ficresp,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         printf("\n");        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dateintmean=dateintsum/k2cpt;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   fclose(ficresp);          for(d=0; d<dh[mi][i]; d++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            newm=savm;
   free_vector(pp,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   /* End of Freq */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Prevalence ********************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            savm=oldm;
 {  /* Some frequencies */            oldm=newm;
            } /* end mult */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        
   double ***freq; /* Frequencies */          s1=s[mw[mi][i]][i];
   double *pp;          s2=s[mw[mi+1][i]][i];
   double pos, k2;          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   pp=vector(1,nlstate);          ipmx +=1;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        } /* end of wave */
   j1=0;      } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
   j=cptcoveff;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   for(k1=1; k1<=j;k1++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i1=1; i1<=ncodemax[k1];i1++){            for (j=1;j<=nlstate+ndeath;j++){
       j1++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)              }
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for(d=0; d<dh[mi][i]; d++){
           for(m=agemin; m <= agemax+3; m++)            newm=savm;
             freq[i][jk][m]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
       for (i=1; i<=imx; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         bool=1;            }
         if  (cptcovn>0) {          
           for (z1=1; z1<=cptcoveff; z1++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               bool=0;            savm=oldm;
         }            oldm=newm;
         if (bool==1) {          } /* end mult */
           for(m=firstpass; m<=lastpass; m++){        
             k2=anint[m][i]+(mint[m][i]/12.);          s1=s[mw[mi][i]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          s2=s[mw[mi+1][i]][i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;          if( s2 > nlstate){ 
               if(agev[m][i]==1) agev[m][i]=agemax+2;            lli=log(out[s1][s2] - savm[s1][s2]);
               if (m<lastpass) {          }else{
                 if (calagedate>0)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          }
                 else          ipmx +=1;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          sw += weight[i];
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             }        } /* end of wave */
           }      } /* end of individual */
         }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1, pos=0; m <=0 ; m++)            }
             pos += freq[jk][m][i];          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
                    cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             pp[jk] += freq[jk][m][i];            }
         }          
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                    savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){                oldm=newm;
           if( i <= (int) agemax){          } /* end mult */
             if(pos>=1.e-5){        
               probs[i][jk][j1]= pp[jk]/pos;          s1=s[mw[mi][i]][i];
             }          s2=s[mw[mi+1][i]][i];
           }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          ipmx +=1;
                  sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   }        } /* end of wave */
       } /* end of individual */
      } /* End of if */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   free_vector(pp,1,nlstate);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 }  /* End of Freq */    return -l;
   }
 /************* Waves Concatenation ***************/  
   /*************** log-likelihood *************/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  double funcone( double *x)
 {  {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    /* Same as likeli but slower because of a lot of printf and if */
      Death is a valid wave (if date is known).    int i, ii, j, k, mi, d, kk;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double **out;
      and mw[mi+1][i]. dh depends on stepm.    double lli; /* Individual log likelihood */
      */    double llt;
     int s1, s2;
   int i, mi, m;    double bbh, survp;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /*extern weight */
      double sum=0., jmean=0.;*/    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int j, k=0,jk, ju, jl;    /*for(i=1;i<imx;i++) 
   double sum=0.;      printf(" %d\n",s[4][i]);
   jmin=1e+5;    */
   jmax=-1;    cov[1]=1.;
   jmean=0.;  
   for(i=1; i<=imx; i++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
     mi=0;  
     m=firstpass;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     while(s[m][i] <= nlstate){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if(s[m][i]>=1)      for(mi=1; mi<= wav[i]-1; mi++){
         mw[++mi][i]=m;        for (ii=1;ii<=nlstate+ndeath;ii++)
       if(m >=lastpass)          for (j=1;j<=nlstate+ndeath;j++){
         break;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         m++;          }
     }/* end while */        for(d=0; d<dh[mi][i]; d++){
     if (s[m][i] > nlstate){          newm=savm;
       mi++;     /* Death is another wave */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /* if(mi==0)  never been interviewed correctly before death */          for (kk=1; kk<=cptcovage;kk++) {
          /* Only death is a correct wave */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       mw[mi][i]=m;          }
     }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     wav[i]=mi;          savm=oldm;
     if(mi==0)          oldm=newm;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        } /* end mult */
   }        
         s1=s[mw[mi][i]][i];
   for(i=1; i<=imx; i++){        s2=s[mw[mi+1][i]][i];
     for(mi=1; mi<wav[i];mi++){        bbh=(double)bh[mi][i]/(double)stepm; 
       if (stepm <=0)        /* bias is positive if real duration
         dh[mi][i]=1;         * is higher than the multiple of stepm and negative otherwise.
       else{         */
         if (s[mw[mi+1][i]][i] > nlstate) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           if (agedc[i] < 2*AGESUP) {          lli=log(out[s1][s2] - savm[s1][s2]);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        } else if (mle==1){
           if(j==0) j=1;  /* Survives at least one month after exam */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           k=k+1;        } else if(mle==2){
           if (j >= jmax) jmax=j;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           if (j <= jmin) jmin=j;        } else if(mle==3){  /* exponential inter-extrapolation */
           sum=sum+j;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           }          lli=log(out[s1][s2]); /* Original formula */
         }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         else{          lli=log(out[s1][s2]); /* Original formula */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        } /* End of if */
           k=k+1;        ipmx +=1;
           if (j >= jmax) jmax=j;        sw += weight[i];
           else if (j <= jmin)jmin=j;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           sum=sum+j;        if(globpr){
         }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         jk= j/stepm;   %10.6f %10.6f %10.6f ", \
         jl= j -jk*stepm;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         ju= j -(jk+1)*stepm;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         if(jl <= -ju)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           dh[mi][i]=jk;            llt +=ll[k]*gipmx/gsw;
         else            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           dh[mi][i]=jk+1;          }
         if(dh[mi][i]==0)          fprintf(ficresilk," %10.6f\n", -llt);
           dh[mi][i]=1; /* At least one step */        }
       }      } /* end of wave */
     }    } /* end of individual */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   jmean=sum/k;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  }    if(globpr==0){ /* First time we count the contributions and weights */
 /*********** Tricode ****************************/      gipmx=ipmx;
 void tricode(int *Tvar, int **nbcode, int imx)      gsw=sw;
 {    }
   int Ndum[20],ij=1, k, j, i;    return -l;
   int cptcode=0;  }
   cptcoveff=0;  
    
   for (k=0; k<19; k++) Ndum[k]=0;  /*************** function likelione ***********/
   for (k=1; k<=7; k++) ncodemax[k]=0;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /* This routine should help understanding what is done with 
     for (i=1; i<=imx; i++) {       the selection of individuals/waves and
       ij=(int)(covar[Tvar[j]][i]);       to check the exact contribution to the likelihood.
       Ndum[ij]++;       Plotting could be done.
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/     */
       if (ij > cptcode) cptcode=ij;    int k;
     }  
     if(*globpri !=0){ /* Just counts and sums, no printings */
     for (i=0; i<=cptcode; i++) {      strcpy(fileresilk,"ilk"); 
       if(Ndum[i]!=0) ncodemax[j]++;      strcat(fileresilk,fileres);
     }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     ij=1;        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
     for (i=1; i<=ncodemax[j]; i++) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       for (k=0; k<=19; k++) {      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         if (Ndum[k] != 0) {      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
           nbcode[Tvar[j]][ij]=k;      for(k=1; k<=nlstate; k++) 
                  fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           ij++;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         }    }
         if (ij > ncodemax[j]) break;  
       }      *fretone=(*funcone)(p);
     }    if(*globpri !=0){
   }        fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
  for (k=0; k<19; k++) Ndum[k]=0;      fflush(fichtm); 
     } 
  for (i=1; i<=ncovmodel-2; i++) {    return;
       ij=Tvar[i];  }
       Ndum[ij]++;  
     }  
   /*********** Maximum Likelihood Estimation ***************/
  ij=1;  
  for (i=1; i<=10; i++) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
    if((Ndum[i]!=0) && (i<=ncovcol)){  {
      Tvaraff[ij]=i;    int i,j, iter;
      ij++;    double **xi;
    }    double fret;
  }    double fretone; /* Only one call to likelihood */
      /*  char filerespow[FILENAMELENGTH];*/
     cptcoveff=ij-1;    xi=matrix(1,npar,1,npar);
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
 /*********** Health Expectancies ****************/        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
 {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   /* Health expectancies */      printf("Problem with resultfile: %s\n", filerespow);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double age, agelim, hf;    }
   double ***p3mat,***varhe;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   double **dnewm,**doldm;    for (i=1;i<=nlstate;i++)
   double *xp;      for(j=1;j<=nlstate+ndeath;j++)
   double **gp, **gm;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   double ***gradg, ***trgradg;    fprintf(ficrespow,"\n");
   int theta;  
     powell(p,xi,npar,ftol,&iter,&fret,func);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);    fclose(ficrespow);
   dnewm=matrix(1,nlstate*2,1,npar);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   doldm=matrix(1,nlstate*2,1,nlstate*2);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  /**** Computes Hessian and covariance matrix ***/
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   fprintf(ficreseij,"\n");  {
     double  **a,**y,*x,pd;
   if(estepm < stepm){    double **hess;
     printf ("Problem %d lower than %d\n",estepm, stepm);    int i, j,jk;
   }    int *indx;
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
    * This is mainly to measure the difference between two models: for example    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
    * if stepm=24 months pijx are given only every 2 years and by summing them    void lubksb(double **a, int npar, int *indx, double b[]) ;
    * we are calculating an estimate of the Life Expectancy assuming a linear    void ludcmp(double **a, int npar, int *indx, double *d) ;
    * progression inbetween and thus overestimating or underestimating according    double gompertz(double p[]);
    * to the curvature of the survival function. If, for the same date, we    hess=matrix(1,npar,1,npar);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear    printf("\nCalculation of the hessian matrix. Wait...\n");
    * hypothesis. A more precise result, taking into account a more precise    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
    * curvature will be obtained if estepm is as small as stepm. */    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   /* For example we decided to compute the life expectancy with the smallest unit */      fprintf(ficlog,"%d",i);fflush(ficlog);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     
      nhstepm is the number of hstepm from age to agelim       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
      nstepm is the number of stepm from age to agelin.      
      Look at hpijx to understand the reason of that which relies in memory size      /*  printf(" %f ",p[i]);
      and note for a fixed period like estepm months */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    }
      survival function given by stepm (the optimization length). Unfortunately it    
      means that if the survival funtion is printed only each two years of age and if    for (i=1;i<=npar;i++) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (j=1;j<=npar;j++)  {
      results. So we changed our mind and took the option of the best precision.        if (j>i) { 
   */          printf(".%d%d",i,j);fflush(stdout);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
   agelim=AGESUP;          
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          hess[j][i]=hess[i][j];    
     /* nhstepm age range expressed in number of stepm */          /*printf(" %lf ",hess[i][j]);*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      }
     /* if (stepm >= YEARM) hstepm=1;*/    }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    printf("\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  
     gp=matrix(0,nhstepm,1,nlstate*2);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     gm=matrix(0,nhstepm,1,nlstate*2);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    a=matrix(1,npar,1,npar);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    y=matrix(1,npar,1,npar);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      x=vector(1,npar);
      indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
     /* Computing Variances of health expectancies */  
     for (j=1;j<=npar;j++) {
      for(theta=1; theta <=npar; theta++){      for (i=1;i<=npar;i++) x[i]=0;
       for(i=1; i<=npar; i++){      x[j]=1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          matcov[i][j]=x[i];
        }
       cptj=0;    }
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){    printf("\n#Hessian matrix#\n");
           cptj=cptj+1;    fprintf(ficlog,"\n#Hessian matrix#\n");
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    for (i=1;i<=npar;i++) { 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for (j=1;j<=npar;j++) { 
           }        printf("%.3e ",hess[i][j]);
         }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }      }
            printf("\n");
            fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++)    }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* Recompute Inverse */
          for (i=1;i<=npar;i++)
       cptj=0;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(j=1; j<= nlstate; j++){    ludcmp(a,npar,indx,&pd);
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;    /*  printf("\n#Hessian matrix recomputed#\n");
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for (j=1;j<=npar;j++) {
           }      for (i=1;i<=npar;i++) x[i]=0;
         }      x[j]=1;
       }      lubksb(a,npar,indx,x);
       for(j=1; j<= nlstate*2; j++)      for (i=1;i<=npar;i++){ 
         for(h=0; h<=nhstepm-1; h++){        y[i][j]=x[i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        printf("%.3e ",y[i][j]);
         }        fprintf(ficlog,"%.3e ",y[i][j]);
      }      }
          printf("\n");
 /* End theta */      fprintf(ficlog,"\n");
     }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    */
   
      for(h=0; h<=nhstepm-1; h++)    free_matrix(a,1,npar,1,npar);
       for(j=1; j<=nlstate*2;j++)    free_matrix(y,1,npar,1,npar);
         for(theta=1; theta <=npar; theta++)    free_vector(x,1,npar);
           trgradg[h][j][theta]=gradg[h][theta][j];    free_ivector(indx,1,npar);
          free_matrix(hess,1,npar,1,npar);
   
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)  }
         varhe[i][j][(int)age] =0.;  
   /*************** hessian matrix ****************/
      printf("%d|",(int)age);fflush(stdout);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
      for(h=0;h<=nhstepm-1;h++){  {
       for(k=0;k<=nhstepm-1;k++){    int i;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    int l=1, lmax=20;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    double k1,k2;
         for(i=1;i<=nlstate*2;i++)    double p2[NPARMAX+1];
           for(j=1;j<=nlstate*2;j++)    double res;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       }    double fx;
     }    int k=0,kmax=10;
     /* Computing expectancies */    double l1;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)    fx=func(x);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    for (i=1;i<=npar;i++) p2[i]=x[i];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    for(l=0 ; l <=lmax; l++){
                l1=pow(10,l);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
         }        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
     fprintf(ficreseij,"%3.0f",age );        k1=func(p2)-fx;
     cptj=0;        p2[theta]=x[theta]-delt;
     for(i=1; i<=nlstate;i++)        k2=func(p2)-fx;
       for(j=1; j<=nlstate;j++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
         cptj++;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        
       }  #ifdef DEBUG
     fprintf(ficreseij,"\n");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
            fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_matrix(gm,0,nhstepm,1,nlstate*2);  #endif
     free_matrix(gp,0,nhstepm,1,nlstate*2);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          k=kmax;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
   }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   printf("\n");          k=kmax; l=lmax*10.;
         }
   free_vector(xp,1,npar);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   free_matrix(dnewm,1,nlstate*2,1,npar);          delts=delt;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      }
 }    }
     delti[theta]=delts;
 /************ Variance ******************/    return res; 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    
 {  }
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   double **newm;  {
   double **dnewm,**doldm;    int i;
   int i, j, nhstepm, hstepm, h, nstepm ;    int l=1, l1, lmax=20;
   int k, cptcode;    double k1,k2,k3,k4,res,fx;
   double *xp;    double p2[NPARMAX+1];
   double **gp, **gm;    int k;
   double ***gradg, ***trgradg;  
   double ***p3mat;    fx=func(x);
   double age,agelim, hf;    for (k=1; k<=2; k++) {
   int theta;      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficresvij,"# Age");      k1=func(p2)-fx;
   for(i=1; i<=nlstate;i++)    
     for(j=1; j<=nlstate;j++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresvij,"\n");      k2=func(p2)-fx;
     
   xp=vector(1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
   dnewm=matrix(1,nlstate,1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   doldm=matrix(1,nlstate,1,nlstate);      k3=func(p2)-fx;
      
   if(estepm < stepm){      p2[thetai]=x[thetai]-delti[thetai]/k;
     printf ("Problem %d lower than %d\n",estepm, stepm);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k4=func(p2)-fx;
   else  hstepm=estepm;        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   /* For example we decided to compute the life expectancy with the smallest unit */  #ifdef DEBUG
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      nhstepm is the number of hstepm from age to agelim      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      nstepm is the number of stepm from age to agelin.  #endif
      Look at hpijx to understand the reason of that which relies in memory size    }
      and note for a fixed period like k years */    return res;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  }
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if  /************** Inverse of matrix **************/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  void ludcmp(double **a, int n, int *indx, double *d) 
      results. So we changed our mind and took the option of the best precision.  { 
   */    int i,imax,j,k; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double big,dum,sum,temp; 
   agelim = AGESUP;    double *vv; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */   
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    vv=vector(1,n); 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    *d=1.0; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=n;i++) { 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      big=0.0; 
     gp=matrix(0,nhstepm,1,nlstate);      for (j=1;j<=n;j++) 
     gm=matrix(0,nhstepm,1,nlstate);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     for(theta=1; theta <=npar; theta++){      vv[i]=1.0/big; 
       for(i=1; i<=npar; i++){ /* Computes gradient */    } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (j=1;j<=n;j++) { 
       }      for (i=1;i<j;i++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          sum=a[i][j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
       if (popbased==1) {      } 
         for(i=1; i<=nlstate;i++)      big=0.0; 
           prlim[i][i]=probs[(int)age][i][ij];      for (i=j;i<=n;i++) { 
       }        sum=a[i][j]; 
          for (k=1;k<j;k++) 
       for(j=1; j<= nlstate; j++){          sum -= a[i][k]*a[k][j]; 
         for(h=0; h<=nhstepm; h++){        a[i][j]=sum; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          big=dum; 
         }          imax=i; 
       }        } 
          } 
       for(i=1; i<=npar; i++) /* Computes gradient */      if (j != imax) { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (k=1;k<=n;k++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            dum=a[imax][k]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
       if (popbased==1) {        } 
         for(i=1; i<=nlstate;i++)        *d = -(*d); 
           prlim[i][i]=probs[(int)age][i][ij];        vv[imax]=vv[j]; 
       }      } 
       indx[j]=imax; 
       for(j=1; j<= nlstate; j++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
         for(h=0; h<=nhstepm; h++){      if (j != n) { 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        dum=1.0/(a[j][j]); 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         }      } 
       }    } 
     free_vector(vv,1,n);  /* Doesn't work */
       for(j=1; j<= nlstate; j++)  ;
         for(h=0; h<=nhstepm; h++){  } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  void lubksb(double **a, int n, int *indx, double b[]) 
     } /* End theta */  { 
     int i,ii=0,ip,j; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double sum; 
    
     for(h=0; h<=nhstepm; h++)    for (i=1;i<=n;i++) { 
       for(j=1; j<=nlstate;j++)      ip=indx[i]; 
         for(theta=1; theta <=npar; theta++)      sum=b[ip]; 
           trgradg[h][j][theta]=gradg[h][theta][j];      b[ip]=b[i]; 
       if (ii) 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     for(i=1;i<=nlstate;i++)      else if (sum) ii=i; 
       for(j=1;j<=nlstate;j++)      b[i]=sum; 
         vareij[i][j][(int)age] =0.;    } 
     for (i=n;i>=1;i--) { 
     for(h=0;h<=nhstepm;h++){      sum=b[i]; 
       for(k=0;k<=nhstepm;k++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      b[i]=sum/a[i][i]; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    } 
         for(i=1;i<=nlstate;i++)  } 
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  /************ Frequencies ********************/
       }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     }  {  /* Some frequencies */
     
     fprintf(ficresvij,"%.0f ",age );    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     for(i=1; i<=nlstate;i++)    int first;
       for(j=1; j<=nlstate;j++){    double ***freq; /* Frequencies */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    double *pp, **prop;
       }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     fprintf(ficresvij,"\n");    FILE *ficresp;
     free_matrix(gp,0,nhstepm,1,nlstate);    char fileresp[FILENAMELENGTH];
     free_matrix(gm,0,nhstepm,1,nlstate);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    pp=vector(1,nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcpy(fileresp,"p");
   } /* End age */    strcat(fileresp,fileres);
      if((ficresp=fopen(fileresp,"w"))==NULL) {
   free_vector(xp,1,npar);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   free_matrix(doldm,1,nlstate,1,npar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   free_matrix(dnewm,1,nlstate,1,nlstate);      exit(0);
     }
 }    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
 /************ Variance of prevlim ******************/    
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    j=cptcoveff;
 {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    first=1;
   double **newm;  
   double **dnewm,**doldm;    for(k1=1; k1<=j;k1++){
   int i, j, nhstepm, hstepm;      for(i1=1; i1<=ncodemax[k1];i1++){
   int k, cptcode;        j1++;
   double *xp;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double *gp, *gm;          scanf("%d", i);*/
   double **gradg, **trgradg;        for (i=-1; i<=nlstate+ndeath; i++)  
   double age,agelim;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   int theta;            for(m=iagemin; m <= iagemax+3; m++)
                  freq[i][jk][m]=0;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");  
   fprintf(ficresvpl,"# Age");      for (i=1; i<=nlstate; i++)  
   for(i=1; i<=nlstate;i++)        for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficresvpl," %1d-%1d",i,i);          prop[i][m]=0;
   fprintf(ficresvpl,"\n");        
         dateintsum=0;
   xp=vector(1,npar);        k2cpt=0;
   dnewm=matrix(1,nlstate,1,npar);        for (i=1; i<=imx; i++) {
   doldm=matrix(1,nlstate,1,nlstate);          bool=1;
            if  (cptcovn>0) {
   hstepm=1*YEARM; /* Every year of age */            for (z1=1; z1<=cptcoveff; z1++) 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   agelim = AGESUP;                bool=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          if (bool==1){
     if (stepm >= YEARM) hstepm=1;            for(m=firstpass; m<=lastpass; m++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              k2=anint[m][i]+(mint[m][i]/12.);
     gradg=matrix(1,npar,1,nlstate);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     gp=vector(1,nlstate);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     gm=vector(1,nlstate);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(theta=1; theta <=npar; theta++){                if (m<lastpass) {
       for(i=1; i<=npar; i++){ /* Computes gradient */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       }                }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                
       for(i=1;i<=nlstate;i++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         gp[i] = prlim[i][i];                  dateintsum=dateintsum+k2;
                      k2cpt++;
       for(i=1; i<=npar; i++) /* Computes gradient */                }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                /*}*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
       for(i=1;i<=nlstate;i++)          }
         gm[i] = prlim[i][i];        }
          
       for(i=1;i<=nlstate;i++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
     trgradg =matrix(1,nlstate,1,npar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
     for(j=1; j<=nlstate;j++)        }
       for(theta=1; theta <=npar; theta++)        for(i=1; i<=nlstate;i++) 
         trgradg[j][theta]=gradg[theta][j];          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
     for(i=1;i<=nlstate;i++)        
       varpl[i][(int)age] =0.;        for(i=iagemin; i <= iagemax+3; i++){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          if(i==iagemax+3){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            fprintf(ficlog,"Total");
     for(i=1;i<=nlstate;i++)          }else{
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            if(first==1){
               first=0;
     fprintf(ficresvpl,"%.0f ",age );              printf("See log file for details...\n");
     for(i=1; i<=nlstate;i++)            }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            fprintf(ficlog,"Age %d", i);
     fprintf(ficresvpl,"\n");          }
     free_vector(gp,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     free_vector(gm,1,nlstate);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     free_matrix(gradg,1,npar,1,nlstate);              pp[jk] += freq[jk][m][i]; 
     free_matrix(trgradg,1,nlstate,1,npar);          }
   } /* End age */          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   free_vector(xp,1,npar);              pos += freq[jk][m][i];
   free_matrix(doldm,1,nlstate,1,npar);            if(pp[jk]>=1.e-10){
   free_matrix(dnewm,1,nlstate,1,nlstate);              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 }              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 /************ Variance of one-step probabilities  ******************/            }else{
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              if(first==1)
 {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int i, j,  i1, k1, l1;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int k2, l2, j1,  z1;            }
   int k=0,l, cptcode;          }
   int first=1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;          for(jk=1; jk <=nlstate ; jk++){
   double **dnewm,**doldm;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double *xp;              pp[jk] += freq[jk][m][i];
   double *gp, *gm;          }       
   double **gradg, **trgradg;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double **mu;            pos += pp[jk];
   double age,agelim, cov[NCOVMAX];            posprop += prop[jk][i];
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          }
   int theta;          for(jk=1; jk <=nlstate ; jk++){
   char fileresprob[FILENAMELENGTH];            if(pos>=1.e-5){
   char fileresprobcov[FILENAMELENGTH];              if(first==1)
   char fileresprobcor[FILENAMELENGTH];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double ***varpij;            }else{
               if(first==1)
   strcpy(fileresprob,"prob");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   strcat(fileresprob,fileres);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            }
     printf("Problem with resultfile: %s\n", fileresprob);            if( i <= iagemax){
   }              if(pos>=1.e-5){
   strcpy(fileresprobcov,"probcov");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   strcat(fileresprobcov,fileres);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     printf("Problem with resultfile: %s\n", fileresprobcov);              }
   }              else
   strcpy(fileresprobcor,"probcor");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   strcat(fileresprobcor,fileres);            }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          }
     printf("Problem with resultfile: %s\n", fileresprobcor);          
   }          for(jk=-1; jk <=nlstate+ndeath; jk++)
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            for(m=-1; m <=nlstate+ndeath; m++)
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);              if(freq[jk][m][i] !=0 ) {
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              if(first==1)
                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   fprintf(ficresprob,"# Age");              }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          if(i <= iagemax)
   fprintf(ficresprobcov,"# Age");            fprintf(ficresp,"\n");
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          if(first==1)
   fprintf(ficresprobcov,"# Age");            printf("Others in log...\n");
           fprintf(ficlog,"\n");
         }
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=(nlstate+ndeath);j++){    }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    dateintmean=dateintsum/k2cpt; 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);   
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    fclose(ficresp);
     }      free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   fprintf(ficresprob,"\n");    free_vector(pp,1,nlstate);
   fprintf(ficresprobcov,"\n");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   fprintf(ficresprobcor,"\n");    /* End of Freq */
   xp=vector(1,npar);  }
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  /************ Prevalence ********************/
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  {  
   first=1;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);       We still use firstpass and lastpass as another selection.
     exit(0);    */
   }   
   else{    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     fprintf(ficgp,"\n# Routine varprob");    double ***freq; /* Frequencies */
   }    double *pp, **prop;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    double pos,posprop; 
     printf("Problem with html file: %s\n", optionfilehtm);    double  y2; /* in fractional years */
     exit(0);    int iagemin, iagemax;
   }  
   else{    iagemin= (int) agemin;
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");    iagemax= (int) agemax;
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    /*pp=vector(1,nlstate);*/
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   }    j1=0;
   cov[1]=1;    
   j=cptcoveff;    j=cptcoveff;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   j1=0;    
   for(k1=1; k1<=1;k1++){    for(k1=1; k1<=j;k1++){
     for(i1=1; i1<=ncodemax[k1];i1++){      for(i1=1; i1<=ncodemax[k1];i1++){
     j1++;        j1++;
         
     if  (cptcovn>0) {        for (i=1; i<=nlstate; i++)  
       fprintf(ficresprob, "\n#********** Variable ");          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficresprobcov, "\n#********** Variable ");            prop[i][m]=0.0;
       fprintf(ficgp, "\n#********** Variable ");       
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");        for (i=1; i<=imx; i++) { /* Each individual */
       fprintf(ficresprobcor, "\n#********** Variable ");          bool=1;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          if  (cptcovn>0) {
       fprintf(ficresprob, "**********\n#");            for (z1=1; z1<=cptcoveff; z1++) 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       fprintf(ficresprobcov, "**********\n#");                bool=0;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          } 
       fprintf(ficgp, "**********\n#");          if (bool==1) { 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       fprintf(ficgp, "**********\n#");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       fprintf(fichtm, "**********\n#");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       for (age=bage; age<=fage; age ++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         cov[2]=age;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         for (k=1; k<=cptcovn;k++) {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];                  prop[s[m][i]][iagemax+3] += weight[i]; 
         }                } 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              }
         for (k=1; k<=cptcovprod;k++)            } /* end selection of waves */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          }
                }
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        for(i=iagemin; i <= iagemax+3; i++){  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          
         gp=vector(1,(nlstate)*(nlstate+ndeath));          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         gm=vector(1,(nlstate)*(nlstate+ndeath));            posprop += prop[jk][i]; 
              } 
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)          for(jk=1; jk <=nlstate ; jk++){     
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            if( i <=  iagemax){ 
                        if(posprop>=1.e-5){ 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                probs[i][jk][j1]= prop[jk][i]/posprop;
                        } 
           k=0;            } 
           for(i=1; i<= (nlstate); i++){          }/* end jk */ 
             for(j=1; j<=(nlstate+ndeath);j++){        }/* end i */ 
               k=k+1;      } /* end i1 */
               gp[k]=pmmij[i][j];    } /* end k1 */
             }    
           }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
              /*free_vector(pp,1,nlstate);*/
           for(i=1; i<=npar; i++)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  }  /* End of prevalence */
      
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  /************* Waves Concatenation ***************/
           k=0;  
           for(i=1; i<=(nlstate); i++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             for(j=1; j<=(nlstate+ndeath);j++){  {
               k=k+1;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
               gm[k]=pmmij[i][j];       Death is a valid wave (if date is known).
             }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             and mw[mi+1][i]. dh depends on stepm.
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)       */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
         }    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)       double sum=0., jmean=0.;*/
           for(theta=1; theta <=npar; theta++)    int first;
             trgradg[j][theta]=gradg[theta][j];    int j, k=0,jk, ju, jl;
            double sum=0.;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    first=0;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    jmin=1e+5;
            jmax=-1;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    jmean=0.;
            for(i=1; i<=imx; i++){
         k=0;      mi=0;
         for(i=1; i<=(nlstate); i++){      m=firstpass;
           for(j=1; j<=(nlstate+ndeath);j++){      while(s[m][i] <= nlstate){
             k=k+1;        if(s[m][i]>=1)
             mu[k][(int) age]=pmmij[i][j];          mw[++mi][i]=m;
           }        if(m >=lastpass)
         }          break;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        else
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          m++;
             varpij[i][j][(int)age] = doldm[i][j];      }/* end while */
       if (s[m][i] > nlstate){
         /*printf("\n%d ",(int)age);        mi++;     /* Death is another wave */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        /* if(mi==0)  never been interviewed correctly before death */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));           /* Only death is a correct wave */
      }*/        mw[mi][i]=m;
       }
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);      wav[i]=mi;
         fprintf(ficresprobcor,"\n%d ",(int)age);      if(mi==0){
         nbwarn++;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        if(first==0){
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          first=1;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        if(first==1){
         }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         i=0;        }
         for (k=1; k<=(nlstate);k++){      } /* end mi==0 */
           for (l=1; l<=(nlstate+ndeath);l++){    } /* End individuals */
             i=i++;  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    for(i=1; i<=imx; i++){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      for(mi=1; mi<wav[i];mi++){
             for (j=1; j<=i;j++){        if (stepm <=0)
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          dh[mi][i]=1;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        else{
             }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           }            if (agedc[i] < 2*AGESUP) {
         }/* end of loop for state */              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       } /* end of loop for age */              if(j==0) j=1;  /* Survives at least one month after exam */
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              else if(j<0){
       for (k1=1; k1<=(nlstate);k1++){                nberr++;
         for (l1=1; l1<=(nlstate+ndeath);l1++){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           if(l1==k1) continue;                j=1; /* Temporary Dangerous patch */
           i=(k1-1)*(nlstate+ndeath)+l1;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
           for (k2=1; k2<=(nlstate);k2++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             for (l2=1; l2<=(nlstate+ndeath);l2++){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
               if(l2==k2) continue;              }
               j=(k2-1)*(nlstate+ndeath)+l2;              k=k+1;
               if(j<=i) continue;              if (j >= jmax) jmax=j;
               for (age=bage; age<=fage; age ++){              if (j <= jmin) jmin=j;
                 if ((int)age %5==0){              sum=sum+j;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            }
                   mu1=mu[i][(int) age]/stepm*YEARM ;          }
                   mu2=mu[j][(int) age]/stepm*YEARM;          else{
                   /* Computing eigen value of matrix of covariance */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            k=k+1;
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);            if (j >= jmax) jmax=j;
                   /* Eigen vectors */            else if (j <= jmin)jmin=j;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                   v21=sqrt(1.-v11*v11);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                   v12=-v21;            if(j<0){
                   v22=v11;              nberr++;
                   /*printf(fignu*/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            }
                   if(first==1){            sum=sum+j;
                     first=0;          }
                     fprintf(ficgp,"\nset parametric;set nolabel");          jk= j/stepm;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);          jl= j -jk*stepm;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          ju= j -(jk+1)*stepm;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);            if(jl==0){
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);              dh[mi][i]=jk;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              bh[mi][i]=0;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            }else{ /* We want a negative bias in order to only have interpolation ie
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\                    * at the price of an extra matrix product in likelihood */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              dh[mi][i]=jk+1;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              bh[mi][i]=ju;
                   }else{            }
                     first=0;          }else{
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            if(jl <= -ju){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              dh[mi][i]=jk;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              bh[mi][i]=jl;       /* bias is positive if real duration
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \                                   * is higher than the multiple of stepm and negative otherwise.
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);                                   */
                   }/* if first */            }
                 } /* age mod 5 */            else{
               } /* end loop age */              dh[mi][i]=jk+1;
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);              bh[mi][i]=ju;
               first=1;            }
             } /*l12 */            if(dh[mi][i]==0){
           } /* k12 */              dh[mi][i]=1; /* At least one step */
         } /*l1 */              bh[mi][i]=ju; /* At least one step */
       }/* k1 */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     } /* loop covariates */            }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          } /* end if mle */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      } /* end wave */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    jmean=sum/k;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   free_vector(xp,1,npar);   }
   fclose(ficresprob);  
   fclose(ficresprobcov);  /*********** Tricode ****************************/
   fclose(ficresprobcor);  void tricode(int *Tvar, int **nbcode, int imx)
   fclose(ficgp);  {
   fclose(fichtm);    
 }    int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
     cptcoveff=0; 
 /******************* Printing html file ***********/   
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    for (k=0; k<maxncov; k++) Ndum[k]=0;
                   int lastpass, int stepm, int weightopt, char model[],\    for (k=1; k<=7; k++) ncodemax[k]=0;
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
                   double jprev1, double mprev1,double anprev1, \      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                   double jprev2, double mprev2,double anprev2){                                 modality*/ 
   int jj1, k1, i1, cpt;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   /*char optionfilehtm[FILENAMELENGTH];*/        Ndum[ij]++; /*store the modality */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   }                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n      }
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n      for (i=0; i<=cptcode; i++) {
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
  - Life expectancies by age and initial health status (estepm=%2d months):      }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n        for (k=0; k<= maxncov; k++) {
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          if (Ndum[k] != 0) {
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            nbcode[Tvar[j]][ij]=k; 
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n            
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            ij++;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          }
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          if (ij > ncodemax[j]) break; 
         }  
  if(popforecast==1) fprintf(fichtm,"\n      } 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    }  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);   for (k=0; k< maxncov; k++) Ndum[k]=0;
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);   for (i=1; i<=ncovmodel-2; i++) { 
 fprintf(fichtm," <li>Graphs</li><p>");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
  m=cptcoveff;     Ndum[ij]++;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   }
   
  jj1=0;   ij=1;
  for(k1=1; k1<=m;k1++){   for (i=1; i<= maxncov; i++) {
    for(i1=1; i1<=ncodemax[k1];i1++){     if((Ndum[i]!=0) && (i<=ncovcol)){
      jj1++;       Tvaraff[ij]=i; /*For printing */
      if (cptcovn > 0) {       ij++;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");     }
        for (cpt=1; cpt<=cptcoveff;cpt++)   }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);   
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");   cptcoveff=ij-1; /*Number of simple covariates*/
      }  }
      /* Pij */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  /*********** Health Expectancies ****************/
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
      /* Quasi-incidences */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  {
        /* Stable prevalence in each health state */    /* Health expectancies */
        for(cpt=1; cpt<nlstate;cpt++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    double age, agelim, hf;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double ***p3mat,***varhe;
        }    double **dnewm,**doldm;
     for(cpt=1; cpt<=nlstate;cpt++) {    double *xp;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    double **gp, **gm;
 interval) in state (%d): v%s%d%d.png <br>    double ***gradg, ***trgradg;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      int theta;
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    xp=vector(1,npar);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    dnewm=matrix(1,nlstate*nlstate,1,npar);
      }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    
 health expectancies in states (1) and (2): e%s%d.png<br>    fprintf(ficreseij,"# Health expectancies\n");
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    fprintf(ficreseij,"# Age");
    }    for(i=1; i<=nlstate;i++)
  }      for(j=1; j<=nlstate;j++)
 fclose(fichtm);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
 }    fprintf(ficreseij,"\n");
   
 /******************* Gnuplot file **************/    if(estepm < stepm){
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    else  hstepm=estepm;   
   int ng;    /* We compute the life expectancy from trapezoids spaced every estepm months
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {     * This is mainly to measure the difference between two models: for example
     printf("Problem with file %s",optionfilegnuplot);     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
 #ifdef windows     * to the curvature of the survival function. If, for the same date, we 
     fprintf(ficgp,"cd \"%s\" \n",pathc);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 #endif     * to compare the new estimate of Life expectancy with the same linear 
 m=pow(2,cptcoveff);     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
    for (k1=1; k1<= m ; k1 ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
 #ifdef windows       nstepm is the number of stepm from age to agelin. 
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       Look at hpijx to understand the reason of that which relies in memory size
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);       and note for a fixed period like estepm months */
 #endif    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 #ifdef unix       survival function given by stepm (the optimization length). Unfortunately it
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       means that if the survival funtion is printed only each two years of age and if
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 #endif       results. So we changed our mind and took the option of the best precision.
     */
 for (i=1; i<= nlstate ; i ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    agelim=AGESUP;
 }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      /* nhstepm age range expressed in number of stepm */
     for (i=1; i<= nlstate ; i ++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* if (stepm >= YEARM) hstepm=1;*/
 }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      for (i=1; i<= nlstate ; i ++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 #ifdef unix         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 #endif   
    }  
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /*2 eme*/  
       /* Computing  Variances of health expectancies */
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);       for(theta=1; theta <=npar; theta++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        for(i=1; i<=npar; i++){ 
              xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for (i=1; i<= nlstate+1 ; i ++) {        }
       k=2*i;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    
       for (j=1; j<= nlstate+1 ; j ++) {        cptj=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1; j<= nlstate; j++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(i=1; i<=nlstate; i++){
 }              cptj=cptj+1;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");       
 }         
       fprintf(ficgp,"\" t\"\" w l 0,");        for(i=1; i<=npar; i++) 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       for (j=1; j<= nlstate+1 ; j ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        
   else fprintf(ficgp," \%%*lf (\%%*lf)");        cptj=0;
 }          for(j=1; j<= nlstate; j++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          for(i=1;i<=nlstate;i++){
       else fprintf(ficgp,"\" t\"\" w l 0,");            cptj=cptj+1;
     }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   }  
                gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   /*3eme*/            }
           }
   for (k1=1; k1<= m ; k1 ++) {        }
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for(j=1; j<= nlstate*nlstate; j++)
       k=2+nlstate*(2*cpt-2);          for(h=0; h<=nhstepm-1; h++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       } 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  /* End theta */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
        for(h=0; h<=nhstepm-1; h++)
 */        for(j=1; j<=nlstate*nlstate;j++)
       for (i=1; i< nlstate ; i ++) {          for(theta=1; theta <=npar; theta++)
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            trgradg[h][j][theta]=gradg[h][theta][j];
        
       }  
     }       for(i=1;i<=nlstate*nlstate;i++)
   }        for(j=1;j<=nlstate*nlstate;j++)
            varhe[i][j][(int)age] =0.;
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {       printf("%d|",(int)age);fflush(stdout);
     for (cpt=1; cpt<nlstate ; cpt ++) {       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       k=3;       for(h=0;h<=nhstepm-1;h++){
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(k=0;k<=nhstepm-1;k++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       for (i=1; i< nlstate ; i ++)          for(i=1;i<=nlstate*nlstate;i++)
         fprintf(ficgp,"+$%d",k+i+1);            for(j=1;j<=nlstate*nlstate;j++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
              }
       l=3+(nlstate+ndeath)*cpt;      }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      /* Computing expectancies */
       for (i=1; i< nlstate ; i ++) {      for(i=1; i<=nlstate;i++)
         l=3+(nlstate+ndeath)*cpt;        for(j=1; j<=nlstate;j++)
         fprintf(ficgp,"+$%d",l+i+1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              
     }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   }    
            }
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficreseij,"%3.0f",age );
     for(k=1; k <=(nlstate+ndeath); k++){      cptj=0;
       if (k != i) {      for(i=1; i<=nlstate;i++)
         for(j=1; j <=ncovmodel; j++){        for(j=1; j<=nlstate;j++){
                  cptj++;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
           jk++;        }
           fprintf(ficgp,"\n");      fprintf(ficreseij,"\n");
         }     
       }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
    }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      for(jk=1; jk <=m; jk++) {    }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    printf("\n");
        if (ng==2)    fprintf(ficlog,"\n");
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else    free_vector(xp,1,npar);
          fprintf(ficgp,"\nset title \"Probability\"\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
        i=1;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
        for(k2=1; k2<=nlstate; k2++) {  }
          k3=i;  
          for(k=1; k<=(nlstate+ndeath); k++) {  /************ Variance ******************/
            if (k != k2){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
              if(ng==2)  {
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    /* Variance of health expectancies */
              else    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /* double **newm;*/
              ij=1;    double **dnewm,**doldm;
              for(j=3; j <=ncovmodel; j++) {    double **dnewmp,**doldmp;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    int i, j, nhstepm, hstepm, h, nstepm ;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    int k, cptcode;
                  ij++;    double *xp;
                }    double **gp, **gm;  /* for var eij */
                else    double ***gradg, ***trgradg; /*for var eij */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double **gradgp, **trgradgp; /* for var p point j */
              }    double *gpp, *gmp; /* for var p point j */
              fprintf(ficgp,")/(1");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                  double ***p3mat;
              for(k1=1; k1 <=nlstate; k1++){      double age,agelim, hf;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    double ***mobaverage;
                ij=1;    int theta;
                for(j=3; j <=ncovmodel; j++){    char digit[4];
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    char digitp[25];
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                    ij++;    char fileresprobmorprev[FILENAMELENGTH];
                  }  
                  else    if(popbased==1){
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      if(mobilav!=0)
                }        strcpy(digitp,"-populbased-mobilav-");
                fprintf(ficgp,")");      else strcpy(digitp,"-populbased-nomobil-");
              }    }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    else 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      strcpy(digitp,"-stablbased-");
              i=i+ncovmodel;  
            }    if (mobilav!=0) {
          }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
      }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
    }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
    fclose(ficgp);      }
 }  /* end gnuplot */    }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
 /*************** Moving average **************/    sprintf(digit,"%-d",ij);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   int i, cpt, cptcod;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    strcat(fileresprobmorprev,fileres);
       for (i=1; i<=nlstate;i++)    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           mobaverage[(int)agedeb][i][cptcod]=0.;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
        }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for (i=1; i<=nlstate;i++){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           for (cpt=0;cpt<=4;cpt++){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           }      fprintf(ficresprobmorprev," p.%-d SE",j);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      for(i=1; i<=nlstate;i++)
         }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       }    }  
     }    fprintf(ficresprobmorprev,"\n");
        fprintf(ficgp,"\n# Routine varevsij");
 }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
 /************** Forecasting ******************/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficresvij,"# Age");
   int *popage;    for(i=1; i<=nlstate;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      for(j=1; j<=nlstate;j++)
   double *popeffectif,*popcount;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   double ***p3mat;    fprintf(ficresvij,"\n");
   char fileresf[FILENAMELENGTH];  
     xp=vector(1,npar);
  agelim=AGESUP;    dnewm=matrix(1,nlstate,1,npar);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   strcpy(fileresf,"f");    gpp=vector(nlstate+1,nlstate+ndeath);
   strcat(fileresf,fileres);    gmp=vector(nlstate+1,nlstate+ndeath);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     printf("Problem with forecast resultfile: %s\n", fileresf);    
   }    if(estepm < stepm){
   printf("Computing forecasting: result on file '%s' \n", fileresf);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
   if (mobilav==1) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       nhstepm is the number of hstepm from age to agelim 
     movingaverage(agedeb, fage, ageminpar, mobaverage);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if (stepm<=12) stepsize=1;       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
   agelim=AGESUP;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   hstepm=1;    */
   hstepm=hstepm/stepm;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   yp1=modf(dateintmean,&yp);    agelim = AGESUP;
   anprojmean=yp;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   yp2=modf((yp1*12),&yp);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   mprojmean=yp;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   yp1=modf((yp2*30.5),&yp);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   jprojmean=yp;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   if(jprojmean==0) jprojmean=1;      gp=matrix(0,nhstepm,1,nlstate);
   if(mprojmean==0) jprojmean=1;      gm=matrix(0,nhstepm,1,nlstate);
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
        for(theta=1; theta <=npar; theta++){
   for(cptcov=1;cptcov<=i2;cptcov++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       k=k+1;        }
       fprintf(ficresf,"\n#******");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(j=1;j<=cptcoveff;j++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }        if (popbased==1) {
       fprintf(ficresf,"******\n");          if(mobilav ==0){
       fprintf(ficresf,"# StartingAge FinalAge");            for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              prlim[i][i]=probs[(int)age][i][ij];
                }else{ /* mobilav */ 
                  for(i=1; i<=nlstate;i++)
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficresf,"\n");          }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          }
     
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(j=1; j<= nlstate; j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(h=0; h<=nhstepm; h++){
           nhstepm = nhstepm/hstepm;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                        gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          /* This for computing probability of death (h=1 means
                   computed over hstepm matrices product = hstepm*stepm months) 
           for (h=0; h<=nhstepm; h++){           as a weighted average of prlim.
             if (h==(int) (calagedate+YEARM*cpt)) {        */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             for(j=1; j<=nlstate+ndeath;j++) {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
               kk1=0.;kk2=0;        }    
               for(i=1; i<=nlstate;i++) {                      /* end probability of death */
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                 else {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                 }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   
               }        if (popbased==1) {
               if (h==(int)(calagedate+12*cpt)){          if(mobilav ==0){
                 fprintf(ficresf," %.3f", kk1);            for(i=1; i<=nlstate;i++)
                                      prlim[i][i]=probs[(int)age][i][ij];
               }          }else{ /* mobilav */ 
             }            for(i=1; i<=nlstate;i++)
           }              prlim[i][i]=mobaverage[(int)age][i][ij];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
         }        }
       }  
     }        for(j=1; j<= nlstate; j++){
   }          for(h=0; h<=nhstepm; h++){
                    for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   fclose(ficresf);        }
 }        /* This for computing probability of death (h=1 means
 /************** Forecasting ******************/           computed over hstepm matrices product = hstepm*stepm months) 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){           as a weighted average of prlim.
          */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   int *popage;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   double *popeffectif,*popcount;        }    
   double ***p3mat,***tabpop,***tabpopprev;        /* end probability of death */
   char filerespop[FILENAMELENGTH];  
         for(j=1; j<= nlstate; j++) /* vareij */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(h=0; h<=nhstepm; h++){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   agelim=AGESUP;          }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
    
   strcpy(filerespop,"pop");      } /* End theta */
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }      for(h=0; h<=nhstepm; h++) /* veij */
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            trgradg[h][j][theta]=gradg[h][theta][j];
   
   if (mobilav==1) {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(theta=1; theta <=npar; theta++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);          trgradgp[j][theta]=gradgp[theta][j];
   }    
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if (stepm<=12) stepsize=1;      for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
   agelim=AGESUP;          vareij[i][j][(int)age] =0.;
    
   hstepm=1;      for(h=0;h<=nhstepm;h++){
   hstepm=hstepm/stepm;        for(k=0;k<=nhstepm;k++){
            matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   if (popforecast==1) {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     if((ficpop=fopen(popfile,"r"))==NULL) {          for(i=1;i<=nlstate;i++)
       printf("Problem with population file : %s\n",popfile);exit(0);            for(j=1;j<=nlstate;j++)
     }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     popage=ivector(0,AGESUP);        }
     popeffectif=vector(0,AGESUP);      }
     popcount=vector(0,AGESUP);    
          /* pptj */
     i=1;        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
          for(j=nlstate+1;j<=nlstate+ndeath;j++)
     imx=i;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          varppt[j][i]=doldmp[j][i];
   }      /* end ppptj */
       /*  x centered again */
   for(cptcov=1;cptcov<=i2;cptcov++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       k=k+1;   
       fprintf(ficrespop,"\n#******");      if (popbased==1) {
       for(j=1;j<=cptcoveff;j++) {        if(mobilav ==0){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(i=1; i<=nlstate;i++)
       }            prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficrespop,"******\n");        }else{ /* mobilav */ 
       fprintf(ficrespop,"# Age");          for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            prlim[i][i]=mobaverage[(int)age][i][ij];
       if (popforecast==1)  fprintf(ficrespop," [Population]");        }
            }
       for (cpt=0; cpt<=0;cpt++) {               
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        /* This for computing probability of death (h=1 means
                 computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){         as a weighted average of prlim.
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      */
           nhstepm = nhstepm/hstepm;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                  for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           oldm=oldms;savm=savms;      }    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /* end probability of death */
          
           for (h=0; h<=nhstepm; h++){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
             if (h==(int) (calagedate+YEARM*cpt)) {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             }        for(i=1; i<=nlstate;i++){
             for(j=1; j<=nlstate+ndeath;j++) {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                    } 
                 if (mobilav==1)      fprintf(ficresprobmorprev,"\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {      fprintf(ficresvij,"%.0f ",age );
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      for(i=1; i<=nlstate;i++)
                 }        for(j=1; j<=nlstate;j++){
               }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
               if (h==(int)(calagedate+12*cpt)){        }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      fprintf(ficresvij,"\n");
                   /*fprintf(ficrespop," %.3f", kk1);      free_matrix(gp,0,nhstepm,1,nlstate);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      free_matrix(gm,0,nhstepm,1,nlstate);
               }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
             }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
             for(i=1; i<=nlstate;i++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               kk1=0.;    } /* End age */
                 for(j=1; j<=nlstate;j++){    free_vector(gpp,nlstate+1,nlstate+ndeath);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    free_vector(gmp,nlstate+1,nlstate+ndeath);
                 }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   /******/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           nhstepm = nhstepm/hstepm;  
              free_vector(xp,1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(doldm,1,nlstate,1,nlstate);
           oldm=oldms;savm=savms;    free_matrix(dnewm,1,nlstate,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for (h=0; h<=nhstepm; h++){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             }    fclose(ficresprobmorprev);
             for(j=1; j<=nlstate+ndeath;j++) {    fflush(ficgp);
               kk1=0.;kk2=0;    fflush(fichtm); 
               for(i=1; i<=nlstate;i++) {                }  /* end varevsij */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }  /************ Variance of prevlim ******************/
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
             }  {
           }    /* Variance of prevalence limit */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         }    double **newm;
       }    double **dnewm,**doldm;
    }    int i, j, nhstepm, hstepm;
   }    int k, cptcode;
      double *xp;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *gp, *gm;
     double **gradg, **trgradg;
   if (popforecast==1) {    double age,agelim;
     free_ivector(popage,0,AGESUP);    int theta;
     free_vector(popeffectif,0,AGESUP);     
     free_vector(popcount,0,AGESUP);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   }    fprintf(ficresvpl,"# Age");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1; i<=nlstate;i++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficresvpl," %1d-%1d",i,i);
   fclose(ficrespop);    fprintf(ficresvpl,"\n");
 }  
     xp=vector(1,npar);
 /***********************************************/    dnewm=matrix(1,nlstate,1,npar);
 /**************** Main Program *****************/    doldm=matrix(1,nlstate,1,nlstate);
 /***********************************************/    
     hstepm=1*YEARM; /* Every year of age */
 int main(int argc, char *argv[])    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 {    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   double agedeb, agefin,hf;      if (stepm >= YEARM) hstepm=1;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
   double fret;      gp=vector(1,nlstate);
   double **xi,tmp,delta;      gm=vector(1,nlstate);
   
   double dum; /* Dummy variable */      for(theta=1; theta <=npar; theta++){
   double ***p3mat;        for(i=1; i<=npar; i++){ /* Computes gradient */
   int *indx;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   char line[MAXLINE], linepar[MAXLINE];        }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int firstobs=1, lastobs=10;        for(i=1;i<=nlstate;i++)
   int sdeb, sfin; /* Status at beginning and end */          gp[i] = prlim[i][i];
   int c,  h , cpt,l;      
   int ju,jl, mi;        for(i=1; i<=npar; i++) /* Computes gradient */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int mobilav=0,popforecast=0;        for(i=1;i<=nlstate;i++)
   int hstepm, nhstepm;          gm[i] = prlim[i][i];
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
         for(i=1;i<=nlstate;i++)
   double bage, fage, age, agelim, agebase;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   double ftolpl=FTOL;      } /* End theta */
   double **prlim;  
   double *severity;      trgradg =matrix(1,nlstate,1,npar);
   double ***param; /* Matrix of parameters */  
   double  *p;      for(j=1; j<=nlstate;j++)
   double **matcov; /* Matrix of covariance */        for(theta=1; theta <=npar; theta++)
   double ***delti3; /* Scale */          trgradg[j][theta]=gradg[theta][j];
   double *delti; /* Scale */  
   double ***eij, ***vareij;      for(i=1;i<=nlstate;i++)
   double **varpl; /* Variances of prevalence limits by age */        varpl[i][(int)age] =0.;
   double *epj, vepp;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   double kk1, kk2;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   char z[1]="c", occ;      fprintf(ficresvpl,"\n");
 #include <sys/time.h>      free_vector(gp,1,nlstate);
 #include <time.h>      free_vector(gm,1,nlstate);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      free_matrix(gradg,1,npar,1,nlstate);
        free_matrix(trgradg,1,nlstate,1,npar);
   /* long total_usecs;    } /* End age */
   struct timeval start_time, end_time;  
      free_vector(xp,1,npar);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    free_matrix(doldm,1,nlstate,1,npar);
   getcwd(pathcd, size);    free_matrix(dnewm,1,nlstate,1,nlstate);
   
   printf("\n%s",version);  }
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");  /************ Variance of one-step probabilities  ******************/
     scanf("%s",pathtot);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   }  {
   else{    int i, j=0,  i1, k1, l1, t, tj;
     strcpy(pathtot,argv[1]);    int k2, l2, j1,  z1;
   }    int k=0,l, cptcode;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    int first=1, first1;
   /*cygwin_split_path(pathtot,path,optionfile);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    double **dnewm,**doldm;
   /* cutv(path,optionfile,pathtot,'\\');*/    double *xp;
     double *gp, *gm;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    double **gradg, **trgradg;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double **mu;
   chdir(path);    double age,agelim, cov[NCOVMAX];
   replace(pathc,path);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
 /*-------- arguments in the command line --------*/    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
   strcpy(fileres,"r");    char fileresprobcor[FILENAMELENGTH];
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */    double ***varpij;
   
   /*---------arguments file --------*/    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     printf("Problem with optionfile %s\n",optionfile);      printf("Problem with resultfile: %s\n", fileresprob);
     goto end;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   }    }
     strcpy(fileresprobcov,"probcov"); 
   strcpy(filereso,"o");    strcat(fileresprobcov,fileres);
   strcat(filereso,fileres);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   if((ficparo=fopen(filereso,"w"))==NULL) {      printf("Problem with resultfile: %s\n", fileresprobcov);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   }    }
     strcpy(fileresprobcor,"probcor"); 
   /* Reads comments: lines beginning with '#' */    strcat(fileresprobcor,fileres);
   while((c=getc(ficpar))=='#' && c!= EOF){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprobcor);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     puts(line);    }
     fputs(line,ficparo);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   ungetc(c,ficpar);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    
 while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     ungetc(c,ficpar);    fprintf(ficresprob,"# Age");
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     puts(line);    fprintf(ficresprobcov,"# Age");
     fputs(line,ficparo);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   }    fprintf(ficresprobcov,"# Age");
   ungetc(c,ficpar);  
    
        for(i=1; i<=nlstate;i++)
   covar=matrix(0,NCOVMAX,1,n);      for(j=1; j<=(nlstate+ndeath);j++){
   cptcovn=0;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
   ncovmodel=2+cptcovn;      }  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */   /* fprintf(ficresprob,"\n");
      fprintf(ficresprobcov,"\n");
   /* Read guess parameters */    fprintf(ficresprobcor,"\n");
   /* Reads comments: lines beginning with '#' */   */
   while((c=getc(ficpar))=='#' && c!= EOF){   xp=vector(1,npar);
     ungetc(c,ficpar);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     fgets(line, MAXLINE, ficpar);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     puts(line);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     fputs(line,ficparo);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   }    first=1;
   ungetc(c,ficpar);    fprintf(ficgp,"\n# Routine varprob");
      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(fichtm,"\n");
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       fprintf(ficparo,"%1d%1d",i1,j1);    file %s<br>\n",optionfilehtmcov);
       printf("%1d%1d",i,j);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       for(k=1; k<=ncovmodel;k++){  and drawn. It helps understanding how is the covariance between two incidences.\
         fscanf(ficpar," %lf",&param[i][j][k]);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         printf(" %lf",param[i][j][k]);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         fprintf(ficparo," %lf",param[i][j][k]);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       fscanf(ficpar,"\n");  standard deviations wide on each axis. <br>\
       printf("\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       fprintf(ficparo,"\n");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    cov[1]=1;
     tj=cptcoveff;
   p=param[1][1];    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      j1=0;
   /* Reads comments: lines beginning with '#' */    for(t=1; t<=tj;t++){
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i1=1; i1<=ncodemax[t];i1++){ 
     ungetc(c,ficpar);        j1++;
     fgets(line, MAXLINE, ficpar);        if  (cptcovn>0) {
     puts(line);          fprintf(ficresprob, "\n#********** Variable "); 
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprob, "**********\n#\n");
   ungetc(c,ficpar);          fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(ficresprobcov, "**********\n#\n");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          
   for(i=1; i <=nlstate; i++){          fprintf(ficgp, "\n#********** Variable "); 
     for(j=1; j <=nlstate+ndeath-1; j++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fscanf(ficpar,"%1d%1d",&i1,&j1);          fprintf(ficgp, "**********\n#\n");
       printf("%1d%1d",i,j);          
       fprintf(ficparo,"%1d%1d",i1,j1);          
       for(k=1; k<=ncovmodel;k++){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         fscanf(ficpar,"%le",&delti3[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         printf(" %le",delti3[i][j][k]);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         fprintf(ficparo," %le",delti3[i][j][k]);          
       }          fprintf(ficresprobcor, "\n#********** Variable ");    
       fscanf(ficpar,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("\n");          fprintf(ficresprobcor, "**********\n#");    
       fprintf(ficparo,"\n");        }
     }        
   }        for (age=bage; age<=fage; age ++){ 
   delti=delti3[1][1];          cov[2]=age;
            for (k=1; k<=cptcovn;k++) {
   /* Reads comments: lines beginning with '#' */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     fgets(line, MAXLINE, ficpar);          for (k=1; k<=cptcovprod;k++)
     puts(line);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     fputs(line,ficparo);          
   }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   ungetc(c,ficpar);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            gp=vector(1,(nlstate)*(nlstate+ndeath));
   matcov=matrix(1,npar,1,npar);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   for(i=1; i <=npar; i++){      
     fscanf(ficpar,"%s",&str);          for(theta=1; theta <=npar; theta++){
     printf("%s",str);            for(i=1; i<=npar; i++)
     fprintf(ficparo,"%s",str);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     for(j=1; j <=i; j++){            
       fscanf(ficpar," %le",&matcov[i][j]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       printf(" %.5le",matcov[i][j]);            
       fprintf(ficparo," %.5le",matcov[i][j]);            k=0;
     }            for(i=1; i<= (nlstate); i++){
     fscanf(ficpar,"\n");              for(j=1; j<=(nlstate+ndeath);j++){
     printf("\n");                k=k+1;
     fprintf(ficparo,"\n");                gp[k]=pmmij[i][j];
   }              }
   for(i=1; i <=npar; i++)            }
     for(j=i+1;j<=npar;j++)            
       matcov[i][j]=matcov[j][i];            for(i=1; i<=npar; i++)
                  xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   printf("\n");      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
     /*-------- Rewriting paramater file ----------*/            for(i=1; i<=(nlstate); i++){
      strcpy(rfileres,"r");    /* "Rparameterfile */              for(j=1; j<=(nlstate+ndeath);j++){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                k=k+1;
      strcat(rfileres,".");    /* */                gm[k]=pmmij[i][j];
      strcat(rfileres,optionfilext);    /* Other files have txt extension */              }
     if((ficres =fopen(rfileres,"w"))==NULL) {            }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;       
     }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     fprintf(ficres,"#%s\n",version);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
              }
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       printf("Problem with datafile: %s\n", datafile);goto end;            for(theta=1; theta <=npar; theta++)
     }              trgradg[j][theta]=gradg[theta][j];
           
     n= lastobs;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     severity = vector(1,maxwav);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     outcome=imatrix(1,maxwav+1,1,n);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     num=ivector(1,n);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     moisnais=vector(1,n);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     annais=vector(1,n);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     moisdc=vector(1,n);  
     andc=vector(1,n);          pmij(pmmij,cov,ncovmodel,x,nlstate);
     agedc=vector(1,n);          
     cod=ivector(1,n);          k=0;
     weight=vector(1,n);          for(i=1; i<=(nlstate); i++){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            for(j=1; j<=(nlstate+ndeath);j++){
     mint=matrix(1,maxwav,1,n);              k=k+1;
     anint=matrix(1,maxwav,1,n);              mu[k][(int) age]=pmmij[i][j];
     s=imatrix(1,maxwav+1,1,n);            }
     adl=imatrix(1,maxwav+1,1,n);              }
     tab=ivector(1,NCOVMAX);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     ncodemax=ivector(1,8);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {          /*printf("\n%d ",(int)age);
       if ((i >= firstobs) && (i <=lastobs)) {            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                    printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         for (j=maxwav;j>=1;j--){            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            }*/
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprob,"\n%d ",(int)age);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcov,"\n%d ",(int)age);
         }          fprintf(ficresprobcor,"\n%d ",(int)age);
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          i=0;
         for (j=ncovcol;j>=1;j--){          for (k=1; k<=(nlstate);k++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for (l=1; l<=(nlstate+ndeath);l++){ 
         }              i=i++;
         num[i]=atol(stra);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                      fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){              for (j=1; j<=i;j++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         i=i+1;              }
       }            }
     }          }/* end of loop for state */
     /* printf("ii=%d", ij);        } /* end of loop for age */
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */        /* Confidence intervalle of pij  */
         /*
   /* for (i=1; i<=imx; i++){          fprintf(ficgp,"\nset noparametric;unset label");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     }*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
    /*  for (i=1; i<=imx; i++){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
      if (s[4][i]==9)  s[4][i]=-1;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        */
    
          /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   /* Calculation of the number of parameter from char model*/        first1=1;
   Tvar=ivector(1,15);        for (k2=1; k2<=(nlstate);k2++){
   Tprod=ivector(1,15);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   Tvaraff=ivector(1,15);            if(l2==k2) continue;
   Tvard=imatrix(1,15,1,2);            j=(k2-1)*(nlstate+ndeath)+l2;
   Tage=ivector(1,15);                  for (k1=1; k1<=(nlstate);k1++){
                  for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   if (strlen(model) >1){                if(l1==k1) continue;
     j=0, j1=0, k1=1, k2=1;                i=(k1-1)*(nlstate+ndeath)+l1;
     j=nbocc(model,'+');                if(i<=j) continue;
     j1=nbocc(model,'*');                for (age=bage; age<=fage; age ++){ 
     cptcovn=j+1;                  if ((int)age %5==0){
     cptcovprod=j1;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                        v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     strcpy(modelsav,model);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                    mu1=mu[i][(int) age]/stepm*YEARM ;
       printf("Error. Non available option model=%s ",model);                    mu2=mu[j][(int) age]/stepm*YEARM;
       goto end;                    c12=cv12/sqrt(v1*v2);
     }                    /* Computing eigen value of matrix of covariance */
                        lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     for(i=(j+1); i>=1;i--){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       cutv(stra,strb,modelsav,'+');                    /* Eigen vectors */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                    /*v21=sqrt(1.-v11*v11); *//* error */
       /*scanf("%d",i);*/                    v21=(lc1-v1)/cv12*v11;
       if (strchr(strb,'*')) {                    v12=-v21;
         cutv(strd,strc,strb,'*');                    v22=v11;
         if (strcmp(strc,"age")==0) {                    tnalp=v21/v11;
           cptcovprod--;                    if(first1==1){
           cutv(strb,stre,strd,'V');                      first1=0;
           Tvar[i]=atoi(stre);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           cptcovage++;                    }
             Tage[cptcovage]=i;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             /*printf("stre=%s ", stre);*/                    /*printf(fignu*/
         }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         else if (strcmp(strd,"age")==0) {                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           cptcovprod--;                    if(first==1){
           cutv(strb,stre,strc,'V');                      first=0;
           Tvar[i]=atoi(stre);                      fprintf(ficgp,"\nset parametric;unset label");
           cptcovage++;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           Tage[cptcovage]=i;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         }                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         else {   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           cutv(strb,stre,strc,'V');  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           Tvar[i]=ncovcol+k1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           cutv(strb,strc,strd,'V');                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           Tprod[k1]=i;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           Tvard[k1][1]=atoi(strc);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
           Tvard[k1][2]=atoi(stre);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           Tvar[cptcovn+k2]=Tvard[k1][1];                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           for (k=1; k<=lastobs;k++)                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           k1++;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           k2=k2+2;                    }else{
         }                      first=0;
       }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       else {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
        /*  scanf("%d",i);*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       cutv(strd,strc,strb,'V');                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       Tvar[i]=atoi(strc);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }                    }/* if first */
       strcpy(modelsav,stra);                    } /* age mod 5 */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                } /* end loop age */
         scanf("%d",i);*/                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                first=1;
 }              } /*l12 */
              } /* k12 */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          } /*l1 */
   printf("cptcovprod=%d ", cptcovprod);        }/* k1 */
   scanf("%d ",i);*/      } /* loop covariates */
     fclose(fic);    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     /*  if(mle==1){*/    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     if (weightopt != 1) { /* Maximisation without weights*/    free_vector(xp,1,npar);
       for(i=1;i<=n;i++) weight[i]=1.0;    fclose(ficresprob);
     }    fclose(ficresprobcov);
     /*-calculation of age at interview from date of interview and age at death -*/    fclose(ficresprobcor);
     agev=matrix(1,maxwav,1,imx);    fflush(ficgp);
     fflush(fichtmcov);
     for (i=1; i<=imx; i++) {  }
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;  /******************* Printing html file ***********/
          s[m][i]=-1;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
        }                    int lastpass, int stepm, int weightopt, char model[],\
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       }                    int popforecast, int estepm ,\
     }                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     for (i=1; i<=imx; i++)  {    int jj1, k1, i1, cpt;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
         if(s[m][i] >0){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
           if (s[m][i] >= nlstate+1) {             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
             if(agedc[i]>0)     fprintf(fichtm,"\
               if(moisdc[i]!=99 && andc[i]!=9999)   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                 agev[m][i]=agedc[i];             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/     fprintf(fichtm,"\
            else {   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
               if (andc[i]!=9999){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
               printf("Warning negative age at death: %d line:%d\n",num[i],i);     fprintf(fichtm,"\
               agev[m][i]=-1;   - Life expectancies by age and initial health status (estepm=%2d months): \
               }     <a href=\"%s\">%s</a> <br>\n</li>",
             }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
           }  
           else if(s[m][i] !=9){ /* Should no more exist */  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)   m=cptcoveff;
               agev[m][i]=1;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];   jj1=0;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/   for(k1=1; k1<=m;k1++){
             }     for(i1=1; i1<=ncodemax[k1];i1++){
             else if(agev[m][i] >agemax){       jj1++;
               agemax=agev[m][i];       if (cptcovn > 0) {
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             }         for (cpt=1; cpt<=cptcoveff;cpt++) 
             /*agev[m][i]=anint[m][i]-annais[i];*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             /*   agev[m][i] = age[i]+2*m;*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           }       }
           else { /* =9 */       /* Pij */
             agev[m][i]=1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
             s[m][i]=-1;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           }       /* Quasi-incidences */
         }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         else /*= 0 Unknown */   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
           agev[m][i]=1;  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       }         /* Stable prevalence in each health state */
             for(cpt=1; cpt<nlstate;cpt++){
     }           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     for (i=1; i<=imx; i++)  {  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       for(m=1; (m<= maxwav); m++){         }
         if (s[m][i] > (nlstate+ndeath)) {       for(cpt=1; cpt<=nlstate;cpt++) {
           printf("Error: Wrong value in nlstate or ndeath\n");            fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
           goto end;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         }       }
       }     } /* end i1 */
     }   }/* End k1 */
    fprintf(fichtm,"</ul>");
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
   
     free_vector(severity,1,maxwav);   fprintf(fichtm,"\
     free_imatrix(outcome,1,maxwav+1,1,n);  \n<br><li><h4> Result files (second order: variances)</h4>\n\
     free_vector(moisnais,1,n);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
        free_matrix(anint,1,maxwav,1,n);*/           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     free_vector(moisdc,1,n);   fprintf(fichtm,"\
     free_vector(andc,1,n);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
      
     wav=ivector(1,imx);   fprintf(fichtm,"\
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     mw=imatrix(1,lastpass-firstpass+1,1,imx);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       fprintf(fichtm,"\
     /* Concatenates waves */   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
       Tcode=ivector(1,100);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   fprintf(fichtm,"\
       ncodemax[1]=1;   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
        
    codtab=imatrix(1,100,1,10);  /*  if(popforecast==1) fprintf(fichtm,"\n */
    h=0;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
    m=pow(2,cptcoveff);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
    /*      <br>",fileres,fileres,fileres,fileres); */
    for(k=1;k<=cptcoveff; k++){  /*  else  */
      for(i=1; i <=(m/pow(2,k));i++){  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
        for(j=1; j <= ncodemax[k]; j++){   fflush(fichtm);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;   m=cptcoveff;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
          }  
        }   jj1=0;
      }   for(k1=1; k1<=m;k1++){
    }     for(i1=1; i1<=ncodemax[k1];i1++){
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       jj1++;
       codtab[1][2]=1;codtab[2][2]=2; */       if (cptcovn > 0) {
    /* for(i=1; i <=m ;i++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       for(k=1; k <=cptcovn; k++){         for (cpt=1; cpt<=cptcoveff;cpt++) 
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       printf("\n");       }
       }       for(cpt=1; cpt<=nlstate;cpt++) {
       scanf("%d",i);*/         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
      prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
    /* Calculates basic frequencies. Computes observed prevalence at single age  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        and prints on file fileres'p'. */       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
      health expectancies in states (1) and (2): %s%d.png<br>\
      <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     } /* end i1 */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   }/* End k1 */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   fprintf(fichtm,"</ul>");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   fflush(fichtm);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  }
        
     /* For Powell, parameters are in a vector p[] starting at p[1]  /******************* Gnuplot file **************/
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
     char dirfileres[132],optfileres[132];
     if(mle==1){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    int ng;
     }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
      /*     printf("Problem with file %s",optionfilegnuplot); */
     /*--------- results files --------------*/  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  /*   } */
    
     /*#ifdef windows */
    jk=1;    fprintf(ficgp,"cd \"%s\" \n",pathc);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /*#endif */
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    m=pow(2,cptcoveff);
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){    strcpy(dirfileres,optionfilefiname);
        if (k != i)    strcpy(optfileres,"vpl");
          {   /* 1eme*/
            printf("%d%d ",i,k);    for (cpt=1; cpt<= nlstate ; cpt ++) {
            fprintf(ficres,"%1d%1d ",i,k);     for (k1=1; k1<= m ; k1 ++) {
            for(j=1; j <=ncovmodel; j++){       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
              printf("%f ",p[jk]);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
              fprintf(ficres,"%f ",p[jk]);       fprintf(ficgp,"set xlabel \"Age\" \n\
              jk++;  set ylabel \"Probability\" \n\
            }  set ter png small\n\
            printf("\n");  set size 0.65,0.65\n\
            fprintf(ficres,"\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
          }  
      }       for (i=1; i<= nlstate ; i ++) {
    }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  if(mle==1){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     /* Computing hessian and covariance matrix */       }
     ftolhess=ftol; /* Usually correct */       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     hesscov(matcov, p, npar, delti, ftolhess, func);       for (i=1; i<= nlstate ; i ++) {
  }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("# Scales (for hessian or gradient estimation)\n");       } 
      for(i=1,jk=1; i <=nlstate; i++){       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
       for(j=1; j <=nlstate+ndeath; j++){       for (i=1; i<= nlstate ; i ++) {
         if (j!=i) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficres,"%1d%1d",i,j);         else fprintf(ficgp," \%%*lf (\%%*lf)");
           printf("%1d%1d",i,j);       }  
           for(k=1; k<=ncovmodel;k++){       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
             printf(" %.5e",delti[jk]);     }
             fprintf(ficres," %.5e",delti[jk]);    }
             jk++;    /*2 eme*/
           }    
           printf("\n");    for (k1=1; k1<= m ; k1 ++) { 
           fprintf(ficres,"\n");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       }      
      }      for (i=1; i<= nlstate+1 ; i ++) {
            k=2*i;
     k=1;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        for (j=1; j<= nlstate+1 ; j ++) {
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     for(i=1;i<=npar;i++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
       /*  if (k>nlstate) k=1;        }   
       i1=(i-1)/(ncovmodel*nlstate)+1;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       printf("%s%d%d",alph[k],i1,tab[i]);*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficres,"%3d",i);        for (j=1; j<= nlstate+1 ; j ++) {
       printf("%3d",i);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       for(j=1; j<=i;j++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficres," %.5e",matcov[i][j]);        }   
         printf(" %.5e",matcov[i][j]);        fprintf(ficgp,"\" t\"\" w l 0,");
       }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficres,"\n");        for (j=1; j<= nlstate+1 ; j ++) {
       printf("\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       k++;          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }        }   
            if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     while((c=getc(ficpar))=='#' && c!= EOF){        else fprintf(ficgp,"\" t\"\" w l 0,");
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);    }
       puts(line);    
       fputs(line,ficparo);    /*3eme*/
     }    
     ungetc(c,ficpar);    for (k1=1; k1<= m ; k1 ++) { 
     estepm=0;      for (cpt=1; cpt<= nlstate ; cpt ++) {
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        k=2+nlstate*(2*cpt-2);
     if (estepm==0 || estepm < stepm) estepm=stepm;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     if (fage <= 2) {        fprintf(ficgp,"set ter png small\n\
       bage = ageminpar;  set size 0.65,0.65\n\
       fage = agemaxpar;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
              for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);        */
     fgets(line, MAXLINE, ficpar);        for (i=1; i< nlstate ; i ++) {
     puts(line);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
     fputs(line,ficparo);          
   }        } 
   ungetc(c,ficpar);      }
      }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /* CV preval stable (period) */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    for (k1=1; k1<= m ; k1 ++) { 
            for (cpt=1; cpt<=nlstate ; cpt ++) {
   while((c=getc(ficpar))=='#' && c!= EOF){        k=3;
     ungetc(c,ficpar);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
     puts(line);  set ter png small\nset size 0.65,0.65\n\
     fputs(line,ficparo);  unset log y\n\
   }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   ungetc(c,ficpar);        
          for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        
         l=3+(nlstate+ndeath)*cpt;
   fscanf(ficpar,"pop_based=%d\n",&popbased);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   fprintf(ficparo,"pop_based=%d\n",popbased);          for (i=1; i< nlstate ; i ++) {
   fprintf(ficres,"pop_based=%d\n",popbased);            l=3+(nlstate+ndeath)*cpt;
            fprintf(ficgp,"+$%d",l+i+1);
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     fgets(line, MAXLINE, ficpar);      } 
     puts(line);    }  
     fputs(line,ficparo);    
   }    /* proba elementaires */
   ungetc(c,ficpar);    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        if (k != i) {
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          for(j=1; j <=ncovmodel; j++){
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
 while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      }
     puts(line);     }
     fputs(line,ficparo);  
   }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   ungetc(c,ficpar);       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);         if (ng==2)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
 /*------------ gnuplot -------------*/         for(k2=1; k2<=nlstate; k2++) {
   strcpy(optionfilegnuplot,optionfilefiname);           k3=i;
   strcat(optionfilegnuplot,".gp");           for(k=1; k<=(nlstate+ndeath); k++) {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {             if (k != k2){
     printf("Problem with file %s",optionfilegnuplot);               if(ng==2)
   }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   fclose(ficgp);               else
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 /*--------- index.htm --------*/               ij=1;
                for(j=3; j <=ncovmodel; j++) {
   strcpy(optionfilehtm,optionfile);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   strcat(optionfilehtm,".htm");                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                   ij++;
     printf("Problem with %s \n",optionfilehtm), exit(0);                 }
   }                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n               }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n               fprintf(ficgp,")/(1");
 \n               
 Total number of observations=%d <br>\n               for(k1=1; k1 <=nlstate; k1++){   
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 <hr  size=\"2\" color=\"#EC5E5E\">                 ij=1;
  <ul><li>Parameter files<br>\n                 for(j=3; j <=ncovmodel; j++){
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   fclose(fichtm);                     ij++;
                    }
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                   else
                       fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 /*------------ free_vector  -------------*/                 }
  chdir(path);                 fprintf(ficgp,")");
                 }
  free_ivector(wav,1,imx);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                 i=i+ncovmodel;
  free_ivector(num,1,n);             }
  free_vector(agedc,1,n);           } /* end k */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/         } /* end k2 */
  fclose(ficparo);       } /* end jk */
  fclose(ficres);     } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   /*--------------- Prevalence limit --------------*/  
    
   strcpy(filerespl,"pl");  /*************** Moving average **************/
   strcat(filerespl,fileres);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    int i, cpt, cptcod;
   }    int modcovmax =1;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    int mobilavrange, mob;
   fprintf(ficrespl,"#Prevalence limit\n");    double age;
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   fprintf(ficrespl,"\n");                             a covariate has 2 modalities */
      if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if(mobilav==1) mobilavrange=5; /* default */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      else mobilavrange=mobilav;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (age=bage; age<=fage; age++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for (i=1; i<=nlstate;i++)
   k=0;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   agebase=ageminpar;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   agelim=agemaxpar;      /* We keep the original values on the extreme ages bage, fage and for 
   ftolpl=1.e-10;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   i1=cptcoveff;         we use a 5 terms etc. until the borders are no more concerned. 
   if (cptcovn < 1){i1=1;}      */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
   for(cptcov=1;cptcov<=i1;cptcov++){        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (i=1; i<=nlstate;i++){
         k=k+1;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         fprintf(ficrespl,"\n#******");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
         for(j=1;j<=cptcoveff;j++)                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         fprintf(ficrespl,"******\n");                }
                      mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
         for (age=agebase; age<=agelim; age++){            }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          }
           fprintf(ficrespl,"%.0f",age );        }/* end age */
           for(i=1; i<=nlstate;i++)      }/* end mob */
           fprintf(ficrespl," %.5f", prlim[i][i]);    }else return -1;
           fprintf(ficrespl,"\n");    return 0;
         }  }/* End movingaverage */
       }  
     }  
   fclose(ficrespl);  /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   /*------------- h Pij x at various ages ------------*/    /* proj1, year, month, day of starting projection 
         agemin, agemax range of age
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);       dateprev1 dateprev2 range of dates during which prevalence is computed
   if((ficrespij=fopen(filerespij,"w"))==NULL) {       anproj2 year of en of projection (same day and month as proj1).
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    */
   }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   printf("Computing pij: result on file '%s' \n", filerespij);    int *popage;
      double agec; /* generic age */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   /*if (stepm<=24) stepsize=2;*/    double *popeffectif,*popcount;
     double ***p3mat;
   agelim=AGESUP;    double ***mobaverage;
   hstepm=stepsize*YEARM; /* Every year of age */    char fileresf[FILENAMELENGTH];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
      agelim=AGESUP;
   k=0;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   for(cptcov=1;cptcov<=i1;cptcov++){   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    strcpy(fileresf,"f"); 
       k=k+1;    strcat(fileresf,fileres);
         fprintf(ficrespij,"\n#****** ");    if((ficresf=fopen(fileresf,"w"))==NULL) {
         for(j=1;j<=cptcoveff;j++)      printf("Problem with forecast resultfile: %s\n", fileresf);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         fprintf(ficrespij,"******\n");    }
            printf("Computing forecasting: result on file '%s' \n", fileresf);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    if (mobilav!=0) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespij,"# Age");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           for(i=1; i<=nlstate;i++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             for(j=1; j<=nlstate+ndeath;j++)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               fprintf(ficrespij," %1d-%1d",i,j);      }
           fprintf(ficrespij,"\n");    }
            for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    stepsize=(int) (stepm+YEARM-1)/YEARM;
             for(i=1; i<=nlstate;i++)    if (stepm<=12) stepsize=1;
               for(j=1; j<=nlstate+ndeath;j++)    if(estepm < stepm){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      printf ("Problem %d lower than %d\n",estepm, stepm);
             fprintf(ficrespij,"\n");    }
              }    else  hstepm=estepm;   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");    hstepm=hstepm/stepm; 
         }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     }                                 fractional in yp1 */
   }    anprojmean=yp;
     yp2=modf((yp1*12),&yp);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
   fclose(ficrespij);    jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){    i1=cptcoveff;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    if (cptcovn < 1){i1=1;}
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    
   }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   else{    
     erreur=108;    fprintf(ficresf,"#****** Routine prevforecast **\n");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }  /*            if (h==(int)(YEARM*yearp)){ */
      for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   /*---------- Health expectancies and variances ------------*/        k=k+1;
         fprintf(ficresf,"\n#******");
   strcpy(filerest,"t");        for(j=1;j<=cptcoveff;j++) {
   strcat(filerest,fileres);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   if((ficrest=fopen(filerest,"w"))==NULL) {        }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        fprintf(ficresf,"******\n");
   }        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
   strcpy(filerese,"e");          fprintf(ficresf," p.%d",j);
   strcat(filerese,fileres);        }
   if((ficreseij=fopen(filerese,"w"))==NULL) {        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          fprintf(ficresf,"\n");
   }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
  strcpy(fileresv,"v");            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   strcat(fileresv,fileres);            nhstepm = nhstepm/hstepm; 
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            oldm=oldms;savm=savms;
   }            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          
   calagedate=-1;            for (h=0; h<=nhstepm; h++){
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
   k=0;                for(j=1;j<=cptcoveff;j++) 
   for(cptcov=1;cptcov<=i1;cptcov++){                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       k=k+1;              } 
       fprintf(ficrest,"\n#****** ");              for(j=1; j<=nlstate+ndeath;j++) {
       for(j=1;j<=cptcoveff;j++)                ppij=0.;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                for(i=1; i<=nlstate;i++) {
       fprintf(ficrest,"******\n");                  if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       fprintf(ficreseij,"\n#****** ");                  else {
       for(j=1;j<=cptcoveff;j++)                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  }
       fprintf(ficreseij,"******\n");                  if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
       fprintf(ficresvij,"\n#****** ");                  }
       for(j=1;j<=cptcoveff;j++)                } /* end i */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if (h*hstepm/YEARM*stepm==yearp) {
       fprintf(ficresvij,"******\n");                  fprintf(ficresf," %.3f", ppij);
                 }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              }/* end j */
       oldm=oldms;savm=savms;            } /* end h */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            } /* end agec */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        } /* end yearp */
       oldm=oldms;savm=savms;      } /* end cptcod */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    } /* end  cptcov */
             
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fclose(ficresf);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  }
       fprintf(ficrest,"\n");  
   /************** Forecasting *****not tested NB*************/
       epj=vector(1,nlstate+1);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       for(age=bage; age <=fage ;age++){    
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
         if (popbased==1) {    int *popage;
           for(i=1; i<=nlstate;i++)    double calagedatem, agelim, kk1, kk2;
             prlim[i][i]=probs[(int)age][i][k];    double *popeffectif,*popcount;
         }    double ***p3mat,***tabpop,***tabpopprev;
            double ***mobaverage;
         fprintf(ficrest," %4.0f",age);    char filerespop[FILENAMELENGTH];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    agelim=AGESUP;
           }    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
           epj[nlstate+1] +=epj[j];    
         }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
         for(i=1, vepp=0.;i <=nlstate;i++)    
           for(j=1;j <=nlstate;j++)    strcpy(filerespop,"pop"); 
             vepp += vareij[i][j][(int)age];    strcat(filerespop,fileres);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    if((ficrespop=fopen(filerespop,"w"))==NULL) {
         for(j=1;j <=nlstate;j++){      printf("Problem with forecast resultfile: %s\n", filerespop);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
         }    }
         fprintf(ficrest,"\n");    printf("Computing forecasting: result on file '%s' \n", filerespop);
       }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
     }  
   }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    if (mobilav!=0) {
     free_vector(weight,1,n);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficreseij);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   fclose(ficresvij);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficrest);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficpar);      }
   free_vector(epj,1,nlstate+1);    }
    
   /*------- Variance limit prevalence------*/      stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
   strcpy(fileresvpl,"vpl");    
   strcat(fileresvpl,fileres);    agelim=AGESUP;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    hstepm=1;
     exit(0);    hstepm=hstepm/stepm; 
   }    
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
   k=0;        printf("Problem with population file : %s\n",popfile);exit(0);
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } 
       k=k+1;      popage=ivector(0,AGESUP);
       fprintf(ficresvpl,"\n#****** ");      popeffectif=vector(0,AGESUP);
       for(j=1;j<=cptcoveff;j++)      popcount=vector(0,AGESUP);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
       fprintf(ficresvpl,"******\n");      i=1;   
            while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);     
       oldm=oldms;savm=savms;      imx=i;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }    }
  }  
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   fclose(ficresvpl);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   /*---------- End : free ----------------*/        fprintf(ficrespop,"\n#******");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        for(j=1;j<=cptcoveff;j++) {
            fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficrespop,"******\n");
          fprintf(ficrespop,"# Age");
          for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        if (popforecast==1)  fprintf(ficrespop," [Population]");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        for (cpt=0; cpt<=0;cpt++) { 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
            
   free_matrix(matcov,1,npar,1,npar);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   free_vector(delti,1,npar);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   free_matrix(agev,1,maxwav,1,imx);            nhstepm = nhstepm/hstepm; 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(fichtm,"\n</body>");            oldm=oldms;savm=savms;
   fclose(fichtm);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   fclose(ficgp);          
              for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
   if(erreur >0)                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     printf("End of Imach with error or warning %d\n",erreur);              } 
   else   printf("End of Imach\n");              for(j=1; j<=nlstate+ndeath;j++) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                kk1=0.;kk2=0;
                  for(i=1; i<=nlstate;i++) {              
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                  if (mobilav==1) 
   /*printf("Total time was %d uSec.\n", total_usecs);*/                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   /*------ End -----------*/                  else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
  end:                }
 #ifdef windows                if (h==(int)(calagedatem+12*cpt)){
   /* chdir(pathcd);*/                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
 #endif                    /*fprintf(ficrespop," %.3f", kk1);
  /*system("wgnuplot graph.plt");*/                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
  /*system("../gp37mgw/wgnuplot graph.plt");*/                }
  /*system("cd ../gp37mgw");*/              }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/              for(i=1; i<=nlstate;i++){
  strcpy(plotcmd,GNUPLOTPROGRAM);                kk1=0.;
  strcat(plotcmd," ");                  for(j=1; j<=nlstate;j++){
  strcat(plotcmd,optionfilegnuplot);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
  system(plotcmd);                  }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 #ifdef windows              }
   while (z[0] != 'q') {  
     /* chdir(path); */              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
     scanf("%s",z);            }
     if (z[0] == 'c') system("./imach");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     else if (z[0] == 'e') system(optionfilehtm);          }
     else if (z[0] == 'g') system(plotcmd);        }
     else if (z[0] == 'q') exit(0);   
   }    /******/
 #endif  
 }        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.47  
changed lines
  Added in v.1.98


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>