Diff for /imach/src/imach.c between versions 1.48 and 1.103

version 1.48, 2002/06/10 13:12:49 version 1.103, 2005/09/30 15:54:49
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.103  2005/09/30 15:54:49  lievre
      (Module): sump fixed, loop imx fixed, and simplifications.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.102  2004/09/15 17:31:30  brouard
   first survey ("cross") where individuals from different ages are    Add the possibility to read data file including tab characters.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.101  2004/09/15 10:38:38  brouard
   second wave of interviews ("longitudinal") which measure each change    Fix on curr_time
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.100  2004/07/12 18:29:06  brouard
   model. More health states you consider, more time is necessary to reach the    Add version for Mac OS X. Just define UNIX in Makefile
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.99  2004/06/05 08:57:40  brouard
   probability to be observed in state j at the second wave    *** empty log message ***
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.98  2004/05/16 15:05:56  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    New version 0.97 . First attempt to estimate force of mortality
   complex model than "constant and age", you should modify the program    directly from the data i.e. without the need of knowing the health
   where the markup *Covariates have to be included here again* invites    state at each age, but using a Gompertz model: log u =a + b*age .
   you to do it.  More covariates you add, slower the    This is the basic analysis of mortality and should be done before any
   convergence.    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
   The advantage of this computer programme, compared to a simple    from other sources like vital statistic data.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    The same imach parameter file can be used but the option for mle should be -3.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    The output is very simple: only an estimate of the intercept and of
   split into an exact number (nh*stepm) of unobserved intermediate    the slope with 95% confident intervals.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Current limitations:
   matrix is simply the matrix product of nh*stepm elementary matrices    A) Even if you enter covariates, i.e. with the
   and the contribution of each individual to the likelihood is simply    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   hPijx.    B) There is no computation of Life Expectancy nor Life Table.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.97  2004/02/20 13:25:42  lievre
   of the life expectancies. It also computes the prevalence limits.    Version 0.96d. Population forecasting command line is (temporarily)
      suppressed.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.96  2003/07/15 15:38:55  brouard
   This software have been partly granted by Euro-REVES, a concerted action    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   from the European Union.    rewritten within the same printf. Workaround: many printfs.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.95  2003/07/08 07:54:34  brouard
   can be accessed at http://euroreves.ined.fr/imach .    * imach.c (Repository):
   **********************************************************************/    (Repository): Using imachwizard code to output a more meaningful covariance
      matrix (cov(a12,c31) instead of numbers.
 #include <math.h>  
 #include <stdio.h>    Revision 1.94  2003/06/27 13:00:02  brouard
 #include <stdlib.h>    Just cleaning
 #include <unistd.h>  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define MAXLINE 256    (Module): On windows (cygwin) function asctime_r doesn't
 #define GNUPLOTPROGRAM "gnuplot"    exist so I changed back to asctime which exists.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): Version 0.96b
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.92  2003/06/25 16:30:45  brouard
 #define windows    (Module): On windows (cygwin) function asctime_r doesn't
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    exist so I changed back to asctime which exists.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    * imach.c (Repository): Duplicated warning errors corrected.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define NINTERVMAX 8    is stamped in powell.  We created a new html file for the graphs
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    concerning matrix of covariance. It has extension -cov.htm.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.90  2003/06/24 12:34:15  brouard
 #define MAXN 20000    (Module): Some bugs corrected for windows. Also, when
 #define YEARM 12. /* Number of months per year */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define AGESUP 130    of the covariance matrix to be input.
 #define AGEBASE 40  
 #ifdef windows    Revision 1.89  2003/06/24 12:30:52  brouard
 #define DIRSEPARATOR '\\'    (Module): Some bugs corrected for windows. Also, when
 #else    mle=-1 a template is output in file "or"mypar.txt with the design
 #define DIRSEPARATOR '/'    of the covariance matrix to be input.
 #endif  
     Revision 1.88  2003/06/23 17:54:56  brouard
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int erreur; /* Error number */  
 int nvar;    Revision 1.87  2003/06/18 12:26:01  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Version 0.96
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.86  2003/06/17 20:04:08  brouard
 int ndeath=1; /* Number of dead states */    (Module): Change position of html and gnuplot routines and added
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    routine fileappend.
 int popbased=0;  
     Revision 1.85  2003/06/17 13:12:43  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    * imach.c (Repository): Check when date of death was earlier that
 int maxwav; /* Maxim number of waves */    current date of interview. It may happen when the death was just
 int jmin, jmax; /* min, max spacing between 2 waves */    prior to the death. In this case, dh was negative and likelihood
 int mle, weightopt;    was wrong (infinity). We still send an "Error" but patch by
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    assuming that the date of death was just one stepm after the
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    interview.
 double jmean; /* Mean space between 2 waves */    (Repository): Because some people have very long ID (first column)
 double **oldm, **newm, **savm; /* Working pointers to matrices */    we changed int to long in num[] and we added a new lvector for
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    memory allocation. But we also truncated to 8 characters (left
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    truncation)
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (Repository): No more line truncation errors.
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.84  2003/06/13 21:44:43  brouard
 char filerese[FILENAMELENGTH];    * imach.c (Repository): Replace "freqsummary" at a correct
 FILE  *ficresvij;    place. It differs from routine "prevalence" which may be called
 char fileresv[FILENAMELENGTH];    many times. Probs is memory consuming and must be used with
 FILE  *ficresvpl;    parcimony.
 char fileresvpl[FILENAMELENGTH];    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.83  2003/06/10 13:39:11  lievre
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    *** empty log message ***
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];  */
 char popfile[FILENAMELENGTH];  /*
      Interpolated Markov Chain
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Short summary of the programme:
 #define NR_END 1    
 #define FREE_ARG char*    This program computes Healthy Life Expectancies from
 #define FTOL 1.0e-10    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 #define NRANSI    interviewed on their health status or degree of disability (in the
 #define ITMAX 200    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 #define TOL 2.0e-4    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 #define CGOLD 0.3819660    model. More health states you consider, more time is necessary to reach the
 #define ZEPS 1.0e-10    Maximum Likelihood of the parameters involved in the model.  The
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 #define GOLD 1.618034    conditional to be observed in state i at the first wave. Therefore
 #define GLIMIT 100.0    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define TINY 1.0e-20    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 static double maxarg1,maxarg2;    where the markup *Covariates have to be included here again* invites
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    you to do it.  More covariates you add, slower the
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    convergence.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    The advantage of this computer programme, compared to a simple
 #define rint(a) floor(a+0.5)    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 static double sqrarg;    intermediate interview, the information is lost, but taken into
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    account using an interpolation or extrapolation.  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     hPijx is the probability to be observed in state i at age x+h
 int imx;    conditional to the observed state i at age x. The delay 'h' can be
 int stepm;    split into an exact number (nh*stepm) of unobserved intermediate
 /* Stepm, step in month: minimum step interpolation*/    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 int estepm;    matrix is simply the matrix product of nh*stepm elementary matrices
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    and the contribution of each individual to the likelihood is simply
     hPijx.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Also this programme outputs the covariance matrix of the parameters but also
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    of the life expectancies. It also computes the stable prevalence. 
 double **pmmij, ***probs, ***mobaverage;    
 double dateintmean=0;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 double *weight;    This software have been partly granted by Euro-REVES, a concerted action
 int **s; /* Status */    from the European Union.
 double *agedc, **covar, idx;    It is copyrighted identically to a GNU software product, ie programme and
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /**************** split *************************/    
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    **********************************************************************/
 {  /*
    char *s;                             /* pointer */    main
    int  l1, l2;                         /* length counters */    read parameterfile
     read datafile
    l1 = strlen( path );                 /* length of path */    concatwav
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    freqsummary
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    if (mle >= 1)
    if ( s == NULL ) {                   /* no directory, so use current */      mlikeli
 #if     defined(__bsd__)                /* get current working directory */    print results files
       extern char       *getwd( );    if mle==1 
        computes hessian
       if ( getwd( dirc ) == NULL ) {    read end of parameter file: agemin, agemax, bage, fage, estepm
 #else        begin-prev-date,...
       extern char       *getcwd( );    open gnuplot file
     open html file
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    stable prevalence
 #endif     for age prevalim()
          return( GLOCK_ERROR_GETCWD );    h Pij x
       }    variance of p varprob
       strcpy( name, path );             /* we've got it */    forecasting if prevfcast==1 prevforecast call prevalence()
    } else {                             /* strip direcotry from path */    health expectancies
       s++;                              /* after this, the filename */    Variance-covariance of DFLE
       l2 = strlen( s );                 /* length of filename */    prevalence()
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );     movingaverage()
       strcpy( name, s );                /* save file name */    varevsij() 
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    if popbased==1 varevsij(,popbased)
       dirc[l1-l2] = 0;                  /* add zero */    total life expectancies
    }    Variance of stable prevalence
    l1 = strlen( dirc );                 /* length of directory */   end
 #ifdef windows  */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif   
    s = strrchr( name, '.' );            /* find last / */  #include <math.h>
    s++;  #include <stdio.h>
    strcpy(ext,s);                       /* save extension */  #include <stdlib.h>
    l1= strlen( name);  #include <unistd.h>
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);  /* #include <sys/time.h> */
    finame[l1-l2]= 0;  #include <time.h>
    return( 0 );                         /* we're done */  #include "timeval.h"
 }  
   /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /******************************************/  
   #define MAXLINE 256
 void replace(char *s, char*t)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   int i;  #define FILENAMELENGTH 132
   int lg=20;  /*#define DEBUG*/
   i=0;  /*#define windows*/
   lg=strlen(t);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   for(i=0; i<= lg; i++) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
 int nbocc(char *s, char occ)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   int i,j=0;  #define NCOVMAX 8 /* Maximum number of covariates */
   int lg=20;  #define MAXN 20000
   i=0;  #define YEARM 12. /* Number of months per year */
   lg=strlen(s);  #define AGESUP 130
   for(i=0; i<= lg; i++) {  #define AGEBASE 40
   if  (s[i] == occ ) j++;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   }  #ifdef UNIX
   return j;  #define DIRSEPARATOR '/'
 }  #define ODIRSEPARATOR '\\'
   #else
 void cutv(char *u,char *v, char*t, char occ)  #define DIRSEPARATOR '\\'
 {  #define ODIRSEPARATOR '/'
   int i,lg,j,p=0;  #endif
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  /* $Id$ */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  /* $State$ */
   }  
   char version[]="Imach version 0.97c, September 2004, INED-EUROREVES ";
   lg=strlen(t);  char fullversion[]="$Revision$ $Date$"; 
   for(j=0; j<p; j++) {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     (u[j] = t[j]);  int nvar;
   }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
      u[p]='\0';  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
    for(j=0; j<= lg; j++) {  int ndeath=1; /* Number of dead states */
     if (j>=(p+1))(v[j-p-1] = t[j]);  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   }  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
 /********************** nrerror ********************/  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 void nrerror(char error_text[])  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   fprintf(stderr,"ERREUR ...\n");  int mle, weightopt;
   fprintf(stderr,"%s\n",error_text);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   exit(1);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /*********************** vector *******************/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double *vector(int nl, int nh)  double jmean; /* Mean space between 2 waves */
 {  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double *v;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   if (!v) nrerror("allocation failure in vector");  FILE *ficlog, *ficrespow;
   return v-nl+NR_END;  int globpr; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 /************************ free vector ******************/  double sw; /* Sum of weights */
 void free_vector(double*v, int nl, int nh)  char filerespow[FILENAMELENGTH];
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free((FREE_ARG)(v+nl-NR_END));  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /************************ivector *******************************/  FILE *fichtm, *fichtmcov; /* Html File */
 int *ivector(long nl,long nh)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   int *v;  FILE  *ficresvij;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char fileresv[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  FILE  *ficresvpl;
   return v-nl+NR_END;  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /******************free ivector **************************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 void free_ivector(int *v, long nl, long nh)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 {  char command[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  int  outcmd=0;
 }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char filelog[FILENAMELENGTH]; /* Log file */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char popfile[FILENAMELENGTH];
   int **m;  
    char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (!m) nrerror("allocation failure 1 in matrix()");  struct timezone tzp;
   m += NR_END;  extern int gettimeofday();
   m -= nrl;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
    long time_value;
    extern long time();
   /* allocate rows and set pointers to them */  char strcurr[80], strfor[80];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NR_END 1
   m[nrl] += NR_END;  #define FREE_ARG char*
   m[nrl] -= ncl;  #define FTOL 1.0e-10
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define NRANSI 
    #define ITMAX 200 
   /* return pointer to array of pointers to rows */  
   return m;  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /****************** free_imatrix *************************/  #define ZEPS 1.0e-10 
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       int **m;  
       long nch,ncl,nrh,nrl;  #define GOLD 1.618034 
      /* free an int matrix allocated by imatrix() */  #define GLIMIT 100.0 
 {  #define TINY 1.0e-20 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /******************* matrix *******************************/    
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   if (!m) nrerror("allocation failure 1 in matrix()");  int agegomp= AGEGOMP;
   m += NR_END;  
   m -= nrl;  int imx; 
   int stepm=1;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* Stepm, step in month: minimum step interpolation*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  int estepm;
   m[nrl] -= ncl;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int m,nb;
   return m;  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /*************************free matrix ************************/  double **pmmij, ***probs;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double *ageexmed,*agecens;
 {  double dateintmean=0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 /******************* ma3x *******************************/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double ftolhess; /* Tolerance for computing hessian */
   double ***m;  
   /**************** split *************************/
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   m -= nrl;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    char  *ss;                            /* pointer */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int   l1, l2;                         /* length counters */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m[nrl][ncl] += NR_END;      /* get current working directory */
   m[nrl][ncl] -= nll;      /*    extern  char* getcwd ( char *buf , int len);*/
   for (j=ncl+1; j<=nch; j++)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     m[nrl][j]=m[nrl][j-1]+nlay;        return( GLOCK_ERROR_GETCWD );
        }
   for (i=nrl+1; i<=nrh; i++) {      strcpy( name, path );               /* we've got it */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    } else {                              /* strip direcotry from path */
     for (j=ncl+1; j<=nch; j++)      ss++;                               /* after this, the filename */
       m[i][j]=m[i][j-1]+nlay;      l2 = strlen( ss );                  /* length of filename */
   }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   return m;      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /*************************free ma3x ************************/    }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    l1 = strlen( dirc );                  /* length of directory */
 {    /*#ifdef windows
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #else
   free((FREE_ARG)(m+nrl-NR_END));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 }  #endif
     */
 /***************** f1dim *************************/    ss = strrchr( name, '.' );            /* find last / */
 extern int ncom;    if (ss >0){
 extern double *pcom,*xicom;      ss++;
 extern double (*nrfunc)(double []);      strcpy(ext,ss);                     /* save extension */
        l1= strlen( name);
 double f1dim(double x)      l2= strlen(ss)+1;
 {      strncpy( finame, name, l1-l2);
   int j;      finame[l1-l2]= 0;
   double f;    }
   double *xt;    return( 0 );                          /* we're done */
    }
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /******************************************/
   free_vector(xt,1,ncom);  
   return f;  void replace_back_to_slash(char *s, char*t)
 }  {
     int i;
 /*****************brent *************************/    int lg=0;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    i=0;
 {    lg=strlen(t);
   int iter;    for(i=0; i<= lg; i++) {
   double a,b,d,etemp;      (s[i] = t[i]);
   double fu,fv,fw,fx;      if (t[i]== '\\') s[i]='/';
   double ftemp;    }
   double p,q,r,tol1,tol2,u,v,w,x,xm;  }
   double e=0.0;  
    int nbocc(char *s, char occ)
   a=(ax < cx ? ax : cx);  {
   b=(ax > cx ? ax : cx);    int i,j=0;
   x=w=v=bx;    int lg=20;
   fw=fv=fx=(*f)(x);    i=0;
   for (iter=1;iter<=ITMAX;iter++) {    lg=strlen(s);
     xm=0.5*(a+b);    for(i=0; i<= lg; i++) {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if  (s[i] == occ ) j++;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    }
     printf(".");fflush(stdout);    return j;
 #ifdef DEBUG  }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  void cutv(char *u,char *v, char*t, char occ)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       *xmin=x;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       return fx;       gives u="abcedf" and v="ghi2j" */
     }    int i,lg,j,p=0;
     ftemp=fu;    i=0;
     if (fabs(e) > tol1) {    for(j=0; j<=strlen(t)-1; j++) {
       r=(x-w)*(fx-fv);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       q=(x-v)*(fx-fw);    }
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);    lg=strlen(t);
       if (q > 0.0) p = -p;    for(j=0; j<p; j++) {
       q=fabs(q);      (u[j] = t[j]);
       etemp=e;    }
       e=d;       u[p]='\0';
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     for(j=0; j<= lg; j++) {
       else {      if (j>=(p+1))(v[j-p-1] = t[j]);
         d=p/q;    }
         u=x+d;  }
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  /********************** nrerror ********************/
       }  
     } else {  void nrerror(char error_text[])
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
     }    fprintf(stderr,"ERREUR ...\n");
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    fprintf(stderr,"%s\n",error_text);
     fu=(*f)(u);    exit(EXIT_FAILURE);
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  /*********************** vector *******************/
       SHFT(v,w,x,u)  double *vector(int nl, int nh)
         SHFT(fv,fw,fx,fu)  {
         } else {    double *v;
           if (u < x) a=u; else b=u;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
           if (fu <= fw || w == x) {    if (!v) nrerror("allocation failure in vector");
             v=w;    return v-nl+NR_END;
             w=u;  }
             fv=fw;  
             fw=fu;  /************************ free vector ******************/
           } else if (fu <= fv || v == x || v == w) {  void free_vector(double*v, int nl, int nh)
             v=u;  {
             fv=fu;    free((FREE_ARG)(v+nl-NR_END));
           }  }
         }  
   }  /************************ivector *******************************/
   nrerror("Too many iterations in brent");  int *ivector(long nl,long nh)
   *xmin=x;  {
   return fx;    int *v;
 }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 /****************** mnbrak ***********************/    return v-nl+NR_END;
   }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  /******************free ivector **************************/
 {  void free_ivector(int *v, long nl, long nh)
   double ulim,u,r,q, dum;  {
   double fu;    free((FREE_ARG)(v+nl-NR_END));
    }
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  /************************lvector *******************************/
   if (*fb > *fa) {  long *lvector(long nl,long nh)
     SHFT(dum,*ax,*bx,dum)  {
       SHFT(dum,*fb,*fa,dum)    long *v;
       }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   *cx=(*bx)+GOLD*(*bx-*ax);    if (!v) nrerror("allocation failure in ivector");
   *fc=(*func)(*cx);    return v-nl+NR_END;
   while (*fb > *fc) {  }
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  /******************free lvector **************************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  void free_lvector(long *v, long nl, long nh)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  {
     ulim=(*bx)+GLIMIT*(*cx-*bx);    free((FREE_ARG)(v+nl-NR_END));
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /******************* imatrix *******************************/
       fu=(*func)(u);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       if (fu < *fc) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  { 
           SHFT(*fb,*fc,fu,(*func)(u))    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           }    int **m; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    
       u=ulim;    /* allocate pointers to rows */ 
       fu=(*func)(u);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     } else {    if (!m) nrerror("allocation failure 1 in matrix()"); 
       u=(*cx)+GOLD*(*cx-*bx);    m += NR_END; 
       fu=(*func)(u);    m -= nrl; 
     }    
     SHFT(*ax,*bx,*cx,u)    
       SHFT(*fa,*fb,*fc,fu)    /* allocate rows and set pointers to them */ 
       }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
 /*************** linmin ************************/    m[nrl] -= ncl; 
     
 int ncom;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 double *pcom,*xicom;    
 double (*nrfunc)(double []);    /* return pointer to array of pointers to rows */ 
      return m; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  } 
 {  
   double brent(double ax, double bx, double cx,  /****************** free_imatrix *************************/
                double (*f)(double), double tol, double *xmin);  void free_imatrix(m,nrl,nrh,ncl,nch)
   double f1dim(double x);        int **m;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,        long nch,ncl,nrh,nrl; 
               double *fc, double (*func)(double));       /* free an int matrix allocated by imatrix() */ 
   int j;  { 
   double xx,xmin,bx,ax;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double fx,fb,fa;    free((FREE_ARG) (m+nrl-NR_END)); 
    } 
   ncom=n;  
   pcom=vector(1,n);  /******************* matrix *******************************/
   xicom=vector(1,n);  double **matrix(long nrl, long nrh, long ncl, long nch)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     pcom[j]=p[j];    double **m;
     xicom[j]=xi[j];  
   }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   ax=0.0;    if (!m) nrerror("allocation failure 1 in matrix()");
   xx=1.0;    m += NR_END;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m -= nrl;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
   for (j=1;j<=n;j++) {    m[nrl] -= ncl;
     xi[j] *= xmin;  
     p[j] += xi[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   }    return m;
   free_vector(xicom,1,n);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   free_vector(pcom,1,n);     */
 }  }
   
 /*************** powell ************************/  /*************************free matrix ************************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
             double (*func)(double []))  {
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   void linmin(double p[], double xi[], int n, double *fret,    free((FREE_ARG)(m+nrl-NR_END));
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /******************* ma3x *******************************/
   double fp,fptt;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double *xits;  {
   pt=vector(1,n);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   ptt=vector(1,n);    double ***m;
   xit=vector(1,n);  
   xits=vector(1,n);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *fret=(*func)(p);    if (!m) nrerror("allocation failure 1 in matrix()");
   for (j=1;j<=n;j++) pt[j]=p[j];    m += NR_END;
   for (*iter=1;;++(*iter)) {    m -= nrl;
     fp=(*fret);  
     ibig=0;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     del=0.0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m[nrl] += NR_END;
     for (i=1;i<=n;i++)    m[nrl] -= ncl;
       printf(" %d %.12f",i, p[i]);  
     printf("\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       fptt=(*fret);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 #ifdef DEBUG    m[nrl][ncl] += NR_END;
       printf("fret=%lf \n",*fret);    m[nrl][ncl] -= nll;
 #endif    for (j=ncl+1; j<=nch; j++) 
       printf("%d",i);fflush(stdout);      m[nrl][j]=m[nrl][j-1]+nlay;
       linmin(p,xit,n,fret,func);    
       if (fabs(fptt-(*fret)) > del) {    for (i=nrl+1; i<=nrh; i++) {
         del=fabs(fptt-(*fret));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         ibig=i;      for (j=ncl+1; j<=nch; j++) 
       }        m[i][j]=m[i][j-1]+nlay;
 #ifdef DEBUG    }
       printf("%d %.12e",i,(*fret));    return m; 
       for (j=1;j<=n;j++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         printf(" x(%d)=%.12e",j,xit[j]);    */
       }  }
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  /*************************free ma3x ************************/
       printf("\n");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #endif  {
     }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /*************** function subdirf ***********/
       printf("Max: %.12e",(*func)(p));  char *subdirf(char fileres[])
       for (j=1;j<=n;j++)  {
         printf(" %.12e",p[j]);    /* Caution optionfilefiname is hidden */
       printf("\n");    strcpy(tmpout,optionfilefiname);
       for(l=0;l<=1;l++) {    strcat(tmpout,"/"); /* Add to the right */
         for (j=1;j<=n;j++) {    strcat(tmpout,fileres);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    return tmpout;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /*************** function subdirf2 ***********/
       }  char *subdirf2(char fileres[], char *preop)
 #endif  {
     
     /* Caution optionfilefiname is hidden */
       free_vector(xit,1,n);    strcpy(tmpout,optionfilefiname);
       free_vector(xits,1,n);    strcat(tmpout,"/");
       free_vector(ptt,1,n);    strcat(tmpout,preop);
       free_vector(pt,1,n);    strcat(tmpout,fileres);
       return;    return tmpout;
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /*************** function subdirf3 ***********/
       ptt[j]=2.0*p[j]-pt[j];  char *subdirf3(char fileres[], char *preop, char *preop2)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    
     }    /* Caution optionfilefiname is hidden */
     fptt=(*func)(ptt);    strcpy(tmpout,optionfilefiname);
     if (fptt < fp) {    strcat(tmpout,"/");
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    strcat(tmpout,preop);
       if (t < 0.0) {    strcat(tmpout,preop2);
         linmin(p,xit,n,fret,func);    strcat(tmpout,fileres);
         for (j=1;j<=n;j++) {    return tmpout;
           xi[j][ibig]=xi[j][n];  }
           xi[j][n]=xit[j];  
         }  /***************** f1dim *************************/
 #ifdef DEBUG  extern int ncom; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  extern double *pcom,*xicom;
         for(j=1;j<=n;j++)  extern double (*nrfunc)(double []); 
           printf(" %.12e",xit[j]);   
         printf("\n");  double f1dim(double x) 
 #endif  { 
       }    int j; 
     }    double f;
   }    double *xt; 
 }   
     xt=vector(1,ncom); 
 /**** Prevalence limit ****************/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    free_vector(xt,1,ncom); 
 {    return f; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  } 
      matrix by transitions matrix until convergence is reached */  
   /*****************brent *************************/
   int i, ii,j,k;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double min, max, maxmin, maxmax,sumnew=0.;  { 
   double **matprod2();    int iter; 
   double **out, cov[NCOVMAX], **pmij();    double a,b,d,etemp;
   double **newm;    double fu,fv,fw,fx;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for (ii=1;ii<=nlstate+ndeath;ii++)    double e=0.0; 
     for (j=1;j<=nlstate+ndeath;j++){   
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    a=(ax < cx ? ax : cx); 
     }    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
    cov[1]=1.;    fw=fv=fx=(*f)(x); 
      for (iter=1;iter<=ITMAX;iter++) { 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      xm=0.5*(a+b); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     newm=savm;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     /* Covariates have to be included here again */      printf(".");fflush(stdout);
      cov[2]=agefin;      fprintf(ficlog,".");fflush(ficlog);
    #ifdef DEBUG
       for (k=1; k<=cptcovn;k++) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for (k=1; k<=cptcovprod;k++)        *xmin=x; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        return fx; 
       } 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      ftemp=fu;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      if (fabs(e) > tol1) { 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        r=(x-w)*(fx-fv); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
     savm=oldm;        q=2.0*(q-r); 
     oldm=newm;        if (q > 0.0) p = -p; 
     maxmax=0.;        q=fabs(q); 
     for(j=1;j<=nlstate;j++){        etemp=e; 
       min=1.;        e=d; 
       max=0.;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for(i=1; i<=nlstate; i++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         sumnew=0;        else { 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          d=p/q; 
         prlim[i][j]= newm[i][j]/(1-sumnew);          u=x+d; 
         max=FMAX(max,prlim[i][j]);          if (u-a < tol2 || b-u < tol2) 
         min=FMIN(min,prlim[i][j]);            d=SIGN(tol1,xm-x); 
       }        } 
       maxmin=max-min;      } else { 
       maxmax=FMAX(maxmax,maxmin);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
     if(maxmax < ftolpl){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       return prlim;      fu=(*f)(u); 
     }      if (fu <= fx) { 
   }        if (u >= x) a=x; else b=x; 
 }        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
 /*************** transition probabilities ***************/          } else { 
             if (u < x) a=u; else b=u; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            if (fu <= fw || w == x) { 
 {              v=w; 
   double s1, s2;              w=u; 
   /*double t34;*/              fv=fw; 
   int i,j,j1, nc, ii, jj;              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
     for(i=1; i<= nlstate; i++){              v=u; 
     for(j=1; j<i;j++){              fv=fu; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){            } 
         /*s2 += param[i][j][nc]*cov[nc];*/          } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    nrerror("Too many iterations in brent"); 
       }    *xmin=x; 
       ps[i][j]=s2;    return fx; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  } 
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  /****************** mnbrak ***********************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/              double (*func)(double)) 
       }  { 
       ps[i][j]=s2;    double ulim,u,r,q, dum;
     }    double fu; 
   }   
     /*ps[3][2]=1;*/    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
   for(i=1; i<= nlstate; i++){    if (*fb > *fa) { 
      s1=0;      SHFT(dum,*ax,*bx,dum) 
     for(j=1; j<i; j++)        SHFT(dum,*fb,*fa,dum) 
       s1+=exp(ps[i][j]);        } 
     for(j=i+1; j<=nlstate+ndeath; j++)    *cx=(*bx)+GOLD*(*bx-*ax); 
       s1+=exp(ps[i][j]);    *fc=(*func)(*cx); 
     ps[i][i]=1./(s1+1.);    while (*fb > *fc) { 
     for(j=1; j<i; j++)      r=(*bx-*ax)*(*fb-*fc); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      q=(*bx-*cx)*(*fb-*fa); 
     for(j=i+1; j<=nlstate+ndeath; j++)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   } /* end i */      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        fu=(*func)(u); 
       ps[ii][jj]=0;        if (fu < *fc) { 
       ps[ii][ii]=1;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     }            SHFT(*fb,*fc,fu,(*func)(u)) 
   }            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        fu=(*func)(u); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } else { 
      printf("%lf ",ps[ii][jj]);        u=(*cx)+GOLD*(*cx-*bx); 
    }        fu=(*func)(u); 
     printf("\n ");      } 
     }      SHFT(*ax,*bx,*cx,u) 
     printf("\n ");printf("%lf ",cov[2]);*/        SHFT(*fa,*fb,*fc,fu) 
 /*        } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  } 
   goto end;*/  
     return ps;  /*************** linmin ************************/
 }  
   int ncom; 
 /**************** Product of 2 matrices ******************/  double *pcom,*xicom;
   double (*nrfunc)(double []); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)   
 {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  { 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double brent(double ax, double bx, double cx, 
   /* in, b, out are matrice of pointers which should have been initialized                 double (*f)(double), double tol, double *xmin); 
      before: only the contents of out is modified. The function returns    double f1dim(double x); 
      a pointer to pointers identical to out */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   long i, j, k;                double *fc, double (*func)(double)); 
   for(i=nrl; i<= nrh; i++)    int j; 
     for(k=ncolol; k<=ncoloh; k++)    double xx,xmin,bx,ax; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double fx,fb,fa;
         out[i][k] +=in[i][j]*b[j][k];   
     ncom=n; 
   return out;    pcom=vector(1,n); 
 }    xicom=vector(1,n); 
     nrfunc=func; 
     for (j=1;j<=n;j++) { 
 /************* Higher Matrix Product ***************/      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    } 
 {    ax=0.0; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    xx=1.0; 
      duration (i.e. until    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #ifdef DEBUG
      (typically every 2 years instead of every month which is too big).    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      Model is determined by parameters x and covariates have to be    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      included manually here.  #endif
     for (j=1;j<=n;j++) { 
      */      xi[j] *= xmin; 
       p[j] += xi[j]; 
   int i, j, d, h, k;    } 
   double **out, cov[NCOVMAX];    free_vector(xicom,1,n); 
   double **newm;    free_vector(pcom,1,n); 
   } 
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  char *asc_diff_time(long time_sec, char ascdiff[])
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[i][j]=(i==j ? 1.0 : 0.0);    long sec_left, days, hours, minutes;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    days = (time_sec) / (60*60*24);
     }    sec_left = (time_sec) % (60*60*24);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    hours = (sec_left) / (60*60) ;
   for(h=1; h <=nhstepm; h++){    sec_left = (sec_left) %(60*60);
     for(d=1; d <=hstepm; d++){    minutes = (sec_left) /60;
       newm=savm;    sec_left = (sec_left) % (60);
       /* Covariates have to be included here again */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       cov[1]=1.;    return ascdiff;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  /*************** powell ************************/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (k=1; k<=cptcovprod;k++)              double (*func)(double [])) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  { 
     void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    int i,ibig,j; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double del,t,*pt,*ptt,*xit;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double fp,fptt;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double *xits;
       savm=oldm;    int niterf, itmp;
       oldm=newm;  
     }    pt=vector(1,n); 
     for(i=1; i<=nlstate+ndeath; i++)    ptt=vector(1,n); 
       for(j=1;j<=nlstate+ndeath;j++) {    xit=vector(1,n); 
         po[i][j][h]=newm[i][j];    xits=vector(1,n); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    *fret=(*func)(p); 
          */    for (j=1;j<=n;j++) pt[j]=p[j]; 
       }    for (*iter=1;;++(*iter)) { 
   } /* end h */      fp=(*fret); 
   return po;      ibig=0; 
 }      del=0.0; 
       last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
 /*************** log-likelihood *************/      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 double func( double *x)      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
 {      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   int i, ii, j, k, mi, d, kk;      */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];     for (i=1;i<=n;i++) {
   double **out;        printf(" %d %.12f",i, p[i]);
   double sw; /* Sum of weights */        fprintf(ficlog," %d %.12lf",i, p[i]);
   double lli; /* Individual log likelihood */        fprintf(ficrespow," %.12lf", p[i]);
   long ipmx;      }
   /*extern weight */      printf("\n");
   /* We are differentiating ll according to initial status */      fprintf(ficlog,"\n");
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      fprintf(ficrespow,"\n");fflush(ficrespow);
   /*for(i=1;i<imx;i++)      if(*iter <=3){
     printf(" %d\n",s[4][i]);        tm = *localtime(&curr_time.tv_sec);
   */        strcpy(strcurr,asctime(&tm));
   cov[1]=1.;  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        itmp = strlen(strcurr);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          strcurr[itmp-1]='\0';
     for(mi=1; mi<= wav[i]-1; mi++){        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for(niterf=10;niterf<=30;niterf+=10){
       for(d=0; d<dh[mi][i]; d++){          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         newm=savm;          tmf = *localtime(&forecast_time.tv_sec);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*      asctime_r(&tmf,strfor); */
         for (kk=1; kk<=cptcovage;kk++) {          strcpy(strfor,asctime(&tmf));
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          itmp = strlen(strfor);
         }          if(strfor[itmp-1]=='\n')
                  strfor[itmp-1]='\0';
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         savm=oldm;        }
         oldm=newm;      }
              for (i=1;i<=n;i++) { 
                for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       } /* end mult */        fptt=(*fret); 
        #ifdef DEBUG
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        printf("fret=%lf \n",*fret);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        fprintf(ficlog,"fret=%lf \n",*fret);
       ipmx +=1;  #endif
       sw += weight[i];        printf("%d",i);fflush(stdout);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        fprintf(ficlog,"%d",i);fflush(ficlog);
     } /* end of wave */        linmin(p,xit,n,fret,func); 
   } /* end of individual */        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          ibig=i; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        } 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  #ifdef DEBUG
   return -l;        printf("%d %.12e",i,(*fret));
 }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 /*********** Maximum Likelihood Estimation ***************/          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        }
 {        for(j=1;j<=n;j++) {
   int i,j, iter;          printf(" p=%.12e",p[j]);
   double **xi,*delti;          fprintf(ficlog," p=%.12e",p[j]);
   double fret;        }
   xi=matrix(1,npar,1,npar);        printf("\n");
   for (i=1;i<=npar;i++)        fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++)  #endif
       xi[i][j]=(i==j ? 1.0 : 0.0);      } 
   printf("Powell\n");      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   powell(p,xi,npar,ftol,&iter,&fret,func);  #ifdef DEBUG
         int k[2],l;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        k[0]=1;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
 /**** Computes Hessian and covariance matrix ***/          printf(" %.12e",p[j]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          fprintf(ficlog," %.12e",p[j]);
 {        }
   double  **a,**y,*x,pd;        printf("\n");
   double **hess;        fprintf(ficlog,"\n");
   int i, j,jk;        for(l=0;l<=1;l++) {
   int *indx;          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   double hessii(double p[], double delta, int theta, double delti[]);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double hessij(double p[], double delti[], int i, int j);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          }
   void ludcmp(double **a, int npar, int *indx, double *d) ;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   hess=matrix(1,npar,1,npar);        }
   #endif
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);        free_vector(xit,1,n); 
     hess[i][i]=hessii(p,ftolhess,i,delti);        free_vector(xits,1,n); 
     /*printf(" %f ",p[i]);*/        free_vector(ptt,1,n); 
     /*printf(" %lf ",hess[i][i]);*/        free_vector(pt,1,n); 
   }        return; 
        } 
   for (i=1;i<=npar;i++) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (j=1;j<=npar;j++)  {      for (j=1;j<=n;j++) { 
       if (j>i) {        ptt[j]=2.0*p[j]-pt[j]; 
         printf(".%d%d",i,j);fflush(stdout);        xit[j]=p[j]-pt[j]; 
         hess[i][j]=hessij(p,delti,i,j);        pt[j]=p[j]; 
         hess[j][i]=hess[i][j];          } 
         /*printf(" %lf ",hess[i][j]);*/      fptt=(*func)(ptt); 
       }      if (fptt < fp) { 
     }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   }        if (t < 0.0) { 
   printf("\n");          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");            xi[j][ibig]=xi[j][n]; 
              xi[j][n]=xit[j]; 
   a=matrix(1,npar,1,npar);          }
   y=matrix(1,npar,1,npar);  #ifdef DEBUG
   x=vector(1,npar);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   indx=ivector(1,npar);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=npar;i++)          for(j=1;j<=n;j++){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];            printf(" %.12e",xit[j]);
   ludcmp(a,npar,indx,&pd);            fprintf(ficlog," %.12e",xit[j]);
           }
   for (j=1;j<=npar;j++) {          printf("\n");
     for (i=1;i<=npar;i++) x[i]=0;          fprintf(ficlog,"\n");
     x[j]=1;  #endif
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){      } 
       matcov[i][j]=x[i];    } 
     }  } 
   }  
   /**** Prevalence limit (stable prevalence)  ****************/
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for (j=1;j<=npar;j++) {  {
       printf("%.3e ",hess[i][j]);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
     printf("\n");  
   }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
   /* Recompute Inverse */    double **matprod2();
   for (i=1;i<=npar;i++)    double **out, cov[NCOVMAX], **pmij();
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double **newm;
   ludcmp(a,npar,indx,&pd);    double agefin, delaymax=50 ; /* Max number of years to converge */
   
   /*  printf("\n#Hessian matrix recomputed#\n");    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
   for (j=1;j<=npar;j++) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++) x[i]=0;      }
     x[j]=1;  
     lubksb(a,npar,indx,x);     cov[1]=1.;
     for (i=1;i<=npar;i++){   
       y[i][j]=x[i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       printf("%.3e ",y[i][j]);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     }      newm=savm;
     printf("\n");      /* Covariates have to be included here again */
   }       cov[2]=agefin;
   */    
         for (k=1; k<=cptcovn;k++) {
   free_matrix(a,1,npar,1,npar);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_matrix(y,1,npar,1,npar);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   free_vector(x,1,npar);        }
   free_ivector(indx,1,npar);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   free_matrix(hess,1,npar,1,npar);        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 /*************** hessian matrix ****************/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 double hessii( double x[], double delta, int theta, double delti[])      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 {  
   int i;      savm=oldm;
   int l=1, lmax=20;      oldm=newm;
   double k1,k2;      maxmax=0.;
   double p2[NPARMAX+1];      for(j=1;j<=nlstate;j++){
   double res;        min=1.;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        max=0.;
   double fx;        for(i=1; i<=nlstate; i++) {
   int k=0,kmax=10;          sumnew=0;
   double l1;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   fx=func(x);          max=FMAX(max,prlim[i][j]);
   for (i=1;i<=npar;i++) p2[i]=x[i];          min=FMIN(min,prlim[i][j]);
   for(l=0 ; l <=lmax; l++){        }
     l1=pow(10,l);        maxmin=max-min;
     delts=delt;        maxmax=FMAX(maxmax,maxmin);
     for(k=1 ; k <kmax; k=k+1){      }
       delt = delta*(l1*k);      if(maxmax < ftolpl){
       p2[theta]=x[theta] +delt;        return prlim;
       k1=func(p2)-fx;      }
       p2[theta]=x[theta]-delt;    }
       k2=func(p2)-fx;  }
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /*************** transition probabilities ***************/ 
        
 #ifdef DEBUG  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  {
 #endif    double s1, s2;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    /*double t34;*/
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    int i,j,j1, nc, ii, jj;
         k=kmax;  
       }      for(i=1; i<= nlstate; i++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for(j=1; j<i;j++){
         k=kmax; l=lmax*10.;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       }            /*s2 += param[i][j][nc]*cov[nc];*/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         delts=delt;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       }          }
     }          ps[i][j]=s2;
   }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   delti[theta]=delts;        }
   return res;        for(j=i+1; j<=nlstate+ndeath;j++){
            for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 double hessij( double x[], double delti[], int thetai,int thetaj)          }
 {          ps[i][j]=s2;
   int i;        }
   int l=1, l1, lmax=20;      }
   double k1,k2,k3,k4,res,fx;      /*ps[3][2]=1;*/
   double p2[NPARMAX+1];      
   int k;      for(i=1; i<= nlstate; i++){
         s1=0;
   fx=func(x);        for(j=1; j<i; j++)
   for (k=1; k<=2; k++) {          s1+=exp(ps[i][j]);
     for (i=1;i<=npar;i++) p2[i]=x[i];        for(j=i+1; j<=nlstate+ndeath; j++)
     p2[thetai]=x[thetai]+delti[thetai]/k;          s1+=exp(ps[i][j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        ps[i][i]=1./(s1+1.);
     k1=func(p2)-fx;        for(j=1; j<i; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=i+1; j<=nlstate+ndeath; j++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     k2=func(p2)-fx;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
        } /* end i */
     p2[thetai]=x[thetai]-delti[thetai]/k;      
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     k3=func(p2)-fx;        for(jj=1; jj<= nlstate+ndeath; jj++){
            ps[ii][jj]=0;
     p2[thetai]=x[thetai]-delti[thetai]/k;          ps[ii][ii]=1;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        }
     k4=func(p2)-fx;      }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 #endif  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   }  /*         printf("ddd %lf ",ps[ii][jj]); */
   return res;  /*       } */
 }  /*       printf("\n "); */
   /*        } */
 /************** Inverse of matrix **************/  /*        printf("\n ");printf("%lf ",cov[2]); */
 void ludcmp(double **a, int n, int *indx, double *d)         /*
 {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   int i,imax,j,k;        goto end;*/
   double big,dum,sum,temp;      return ps;
   double *vv;  }
    
   vv=vector(1,n);  /**************** Product of 2 matrices ******************/
   *d=1.0;  
   for (i=1;i<=n;i++) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     big=0.0;  {
     for (j=1;j<=n;j++)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       if ((temp=fabs(a[i][j])) > big) big=temp;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    /* in, b, out are matrice of pointers which should have been initialized 
     vv[i]=1.0/big;       before: only the contents of out is modified. The function returns
   }       a pointer to pointers identical to out */
   for (j=1;j<=n;j++) {    long i, j, k;
     for (i=1;i<j;i++) {    for(i=nrl; i<= nrh; i++)
       sum=a[i][j];      for(k=ncolol; k<=ncoloh; k++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       a[i][j]=sum;          out[i][k] +=in[i][j]*b[j][k];
     }  
     big=0.0;    return out;
     for (i=j;i<=n;i++) {  }
       sum=a[i][j];  
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  /************* Higher Matrix Product ***************/
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         big=dum;  {
         imax=i;    /* Computes the transition matrix starting at age 'age' over 
       }       'nhstepm*hstepm*stepm' months (i.e. until
     }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     if (j != imax) {       nhstepm*hstepm matrices. 
       for (k=1;k<=n;k++) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         dum=a[imax][k];       (typically every 2 years instead of every month which is too big 
         a[imax][k]=a[j][k];       for the memory).
         a[j][k]=dum;       Model is determined by parameters x and covariates have to be 
       }       included manually here. 
       *d = -(*d);  
       vv[imax]=vv[j];       */
     }  
     indx[j]=imax;    int i, j, d, h, k;
     if (a[j][j] == 0.0) a[j][j]=TINY;    double **out, cov[NCOVMAX];
     if (j != n) {    double **newm;
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    /* Hstepm could be zero and should return the unit matrix */
     }    for (i=1;i<=nlstate+ndeath;i++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   free_vector(vv,1,n);  /* Doesn't work */        oldm[i][j]=(i==j ? 1.0 : 0.0);
 ;        po[i][j][0]=(i==j ? 1.0 : 0.0);
 }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 void lubksb(double **a, int n, int *indx, double b[])    for(h=1; h <=nhstepm; h++){
 {      for(d=1; d <=hstepm; d++){
   int i,ii=0,ip,j;        newm=savm;
   double sum;        /* Covariates have to be included here again */
          cov[1]=1.;
   for (i=1;i<=n;i++) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     ip=indx[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     sum=b[ip];        for (k=1; k<=cptcovage;k++)
     b[ip]=b[i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     if (ii)        for (k=1; k<=cptcovprod;k++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     else if (sum) ii=i;  
     b[i]=sum;  
   }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for (i=n;i>=1;i--) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     sum=b[i];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     b[i]=sum/a[i][i];        savm=oldm;
   }        oldm=newm;
 }      }
       for(i=1; i<=nlstate+ndeath; i++)
 /************ Frequencies ********************/        for(j=1;j<=nlstate+ndeath;j++) {
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          po[i][j][h]=newm[i][j];
 {  /* Some frequencies */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        }
   double ***freq; /* Frequencies */    } /* end h */
   double *pp;    return po;
   double pos, k2, dateintsum=0,k2cpt=0;  }
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];  
    /*************** log-likelihood *************/
   pp=vector(1,nlstate);  double func( double *x)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
   strcpy(fileresp,"p");    int i, ii, j, k, mi, d, kk;
   strcat(fileresp,fileres);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double **out;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double sw; /* Sum of weights */
     exit(0);    double lli; /* Individual log likelihood */
   }    int s1, s2;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double bbh, survp;
   j1=0;    long ipmx;
      /*extern weight */
   j=cptcoveff;    /* We are differentiating ll according to initial status */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
   for(k1=1; k1<=j;k1++){      printf(" %d\n",s[4][i]);
     for(i1=1; i1<=ncodemax[k1];i1++){    */
       j1++;    cov[1]=1.;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)      if(mle==1){
           for(m=agemin; m <= agemax+3; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             freq[i][jk][m]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
       dateintsum=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
       k2cpt=0;            for (j=1;j<=nlstate+ndeath;j++){
       for (i=1; i<=imx; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         bool=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {            }
           for (z1=1; z1<=cptcoveff; z1++)          for(d=0; d<dh[mi][i]; d++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            newm=savm;
               bool=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         if (bool==1) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=firstpass; m<=lastpass; m++){            }
             k2=anint[m][i]+(mint[m][i]/12.);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if ((k2>=dateprev1) && (k2<=dateprev2)) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if(agev[m][i]==0) agev[m][i]=agemax+1;            savm=oldm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;            oldm=newm;
               if (m<lastpass) {          } /* end mult */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
               }          /* But now since version 0.9 we anticipate for bias at large stepm.
                         * If stepm is larger than one month (smallest stepm) and if the exact delay 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
                 dateintsum=dateintsum+k2;           * the nearest (and in case of equal distance, to the lowest) interval but now
                 k2cpt++;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
               }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             }           * probability in order to take into account the bias as a fraction of the way
           }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
       }           * For stepm=1 the results are the same as for previous versions of Imach.
                   * For stepm > 1 the results are less biased than in previous versions. 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           */
           s1=s[mw[mi][i]][i];
       if  (cptcovn>0) {          s2=s[mw[mi+1][i]][i];
         fprintf(ficresp, "\n#********** Variable ");          bbh=(double)bh[mi][i]/(double)stepm; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /* bias bh is positive if real duration
         fprintf(ficresp, "**********\n#");           * is higher than the multiple of stepm and negative otherwise.
       }           */
       for(i=1; i<=nlstate;i++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          if( s2 > nlstate){ 
       fprintf(ficresp, "\n");            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                     to the likelihood is the probability to die between last step unit time and current 
       for(i=(int)agemin; i <= (int)agemax+3; i++){               step unit time, which is also equal to probability to die before dh 
         if(i==(int)agemax+3)               minus probability to die before dh-stepm . 
           printf("Total");               In version up to 0.92 likelihood was computed
         else          as if date of death was unknown. Death was treated as any other
           printf("Age %d", i);          health state: the date of the interview describes the actual state
         for(jk=1; jk <=nlstate ; jk++){          and not the date of a change in health state. The former idea was
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          to consider that at each interview the state was recorded
             pp[jk] += freq[jk][m][i];          (healthy, disable or death) and IMaCh was corrected; but when we
         }          introduced the exact date of death then we should have modified
         for(jk=1; jk <=nlstate ; jk++){          the contribution of an exact death to the likelihood. This new
           for(m=-1, pos=0; m <=0 ; m++)          contribution is smaller and very dependent of the step unit
             pos += freq[jk][m][i];          stepm. It is no more the probability to die between last interview
           if(pp[jk]>=1.e-10)          and month of death but the probability to survive from last
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          interview up to one month before death multiplied by the
           else          probability to die within a month. Thanks to Chris
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          Jackson for correcting this bug.  Former versions increased
         }          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
         for(jk=1; jk <=nlstate ; jk++){          lower mortality.
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            */
             pp[jk] += freq[jk][m][i];            lli=log(out[s1][s2] - savm[s1][s2]);
         }          }else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(jk=1,pos=0; jk <=nlstate ; jk++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           pos += pp[jk];          } 
         for(jk=1; jk <=nlstate ; jk++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           if(pos>=1.e-5)          /*if(lli ==000.0)*/
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           else          ipmx +=1;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          sw += weight[i];
           if( i <= (int) agemax){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if(pos>=1.e-5){        } /* end of wave */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      } /* end of individual */
               probs[i][jk][j1]= pp[jk]/pos;    }  else if(mle==2){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             else        for(mi=1; mi<= wav[i]-1; mi++){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
           }            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=-1; jk <=nlstate+ndeath; jk++)            }
           for(m=-1; m <=nlstate+ndeath; m++)          for(d=0; d<=dh[mi][i]; d++){
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            newm=savm;
         if(i <= (int) agemax)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           fprintf(ficresp,"\n");            for (kk=1; kk<=cptcovage;kk++) {
         printf("\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   dateintmean=dateintsum/k2cpt;            savm=oldm;
              oldm=newm;
   fclose(ficresp);          } /* end mult */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        
   free_vector(pp,1,nlstate);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   /* End of Freq */          bbh=(double)bh[mi][i]/(double)stepm; 
 }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
 /************ Prevalence ********************/          sw += weight[i];
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {  /* Some frequencies */        } /* end of wave */
        } /* end of individual */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    }  else if(mle==3){  /* exponential inter-extrapolation */
   double ***freq; /* Frequencies */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *pp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double pos, k2;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   pp=vector(1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            }
   j1=0;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   j=cptcoveff;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(k1=1; k1<=j;k1++){            }
     for(i1=1; i1<=ncodemax[k1];i1++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       j1++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                  savm=oldm;
       for (i=-1; i<=nlstate+ndeath; i++)              oldm=newm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)            } /* end mult */
           for(m=agemin; m <= agemax+3; m++)        
             freq[i][jk][m]=0;          s1=s[mw[mi][i]][i];
                s2=s[mw[mi+1][i]][i];
       for (i=1; i<=imx; i++) {          bbh=(double)bh[mi][i]/(double)stepm; 
         bool=1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         if  (cptcovn>0) {          ipmx +=1;
           for (z1=1; z1<=cptcoveff; z1++)          sw += weight[i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               bool=0;        } /* end of wave */
         }      } /* end of individual */
         if (bool==1) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           for(m=firstpass; m<=lastpass; m++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             k2=anint[m][i]+(mint[m][i]/12.);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(mi=1; mi<= wav[i]-1; mi++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
               if(agev[m][i]==1) agev[m][i]=agemax+2;            for (j=1;j<=nlstate+ndeath;j++){
               if (m<lastpass) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 if (calagedate>0)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            }
                 else          for(d=0; d<dh[mi][i]; d++){
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            newm=savm;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               }            for (kk=1; kk<=cptcovage;kk++) {
             }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
         }          
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=(int)agemin; i <= (int)agemax+3; i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){            savm=oldm;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            oldm=newm;
             pp[jk] += freq[jk][m][i];          } /* end mult */
         }        
         for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
           for(m=-1, pos=0; m <=0 ; m++)          s2=s[mw[mi+1][i]][i];
             pos += freq[jk][m][i];          if( s2 > nlstate){ 
         }            lli=log(out[s1][s2] - savm[s1][s2]);
                  }else{
         for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          }
             pp[jk] += freq[jk][m][i];          ipmx +=1;
         }          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){          } /* end of individual */
           if( i <= (int) agemax){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             if(pos>=1.e-5){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               probs[i][jk][j1]= pp[jk]/pos;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
                      oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
   }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (kk=1; kk<=cptcovage;kk++) {
   free_vector(pp,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
 }  /* End of Freq */          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************* Waves Concatenation ***************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            oldm=newm;
 {          } /* end mult */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        
      Death is a valid wave (if date is known).          s1=s[mw[mi][i]][i];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          s2=s[mw[mi+1][i]][i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      and mw[mi+1][i]. dh depends on stepm.          ipmx +=1;
      */          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, mi, m;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        } /* end of wave */
      double sum=0., jmean=0.;*/      } /* end of individual */
     } /* End of if */
   int j, k=0,jk, ju, jl;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double sum=0.;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   jmin=1e+5;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   jmax=-1;    return -l;
   jmean=0.;  }
   for(i=1; i<=imx; i++){  
     mi=0;  /*************** log-likelihood *************/
     m=firstpass;  double funcone( double *x)
     while(s[m][i] <= nlstate){  {
       if(s[m][i]>=1)    /* Same as likeli but slower because of a lot of printf and if */
         mw[++mi][i]=m;    int i, ii, j, k, mi, d, kk;
       if(m >=lastpass)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         break;    double **out;
       else    double lli; /* Individual log likelihood */
         m++;    double llt;
     }/* end while */    int s1, s2;
     if (s[m][i] > nlstate){    double bbh, survp;
       mi++;     /* Death is another wave */    /*extern weight */
       /* if(mi==0)  never been interviewed correctly before death */    /* We are differentiating ll according to initial status */
          /* Only death is a correct wave */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       mw[mi][i]=m;    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     */
     wav[i]=mi;    cov[1]=1.;
     if(mi==0)  
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=imx; i++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(mi=1; mi<wav[i];mi++){      for(mi=1; mi<= wav[i]-1; mi++){
       if (stepm <=0)        for (ii=1;ii<=nlstate+ndeath;ii++)
         dh[mi][i]=1;          for (j=1;j<=nlstate+ndeath;j++){
       else{            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (s[mw[mi+1][i]][i] > nlstate) {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (agedc[i] < 2*AGESUP) {          }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for(d=0; d<dh[mi][i]; d++){
           if(j==0) j=1;  /* Survives at least one month after exam */          newm=savm;
           k=k+1;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if (j >= jmax) jmax=j;          for (kk=1; kk<=cptcovage;kk++) {
           if (j <= jmin) jmin=j;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           sum=sum+j;          }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }          savm=oldm;
         else{          oldm=newm;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        } /* end mult */
           k=k+1;        
           if (j >= jmax) jmax=j;        s1=s[mw[mi][i]][i];
           else if (j <= jmin)jmin=j;        s2=s[mw[mi+1][i]][i];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        bbh=(double)bh[mi][i]/(double)stepm; 
           sum=sum+j;        /* bias is positive if real duration
         }         * is higher than the multiple of stepm and negative otherwise.
         jk= j/stepm;         */
         jl= j -jk*stepm;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         ju= j -(jk+1)*stepm;          lli=log(out[s1][s2] - savm[s1][s2]);
         if(jl <= -ju)        } else if (mle==1){
           dh[mi][i]=jk;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         else        } else if(mle==2){
           dh[mi][i]=jk+1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         if(dh[mi][i]==0)        } else if(mle==3){  /* exponential inter-extrapolation */
           dh[mi][i]=1; /* At least one step */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     }          lli=log(out[s1][s2]); /* Original formula */
   }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   jmean=sum/k;          lli=log(out[s1][s2]); /* Original formula */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } /* End of if */
  }        ipmx +=1;
 /*********** Tricode ****************************/        sw += weight[i];
 void tricode(int *Tvar, int **nbcode, int imx)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   int Ndum[20],ij=1, k, j, i;        if(globpr){
   int cptcode=0;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   cptcoveff=0;   %10.6f %10.6f %10.6f ", \
                    num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   for (k=0; k<19; k++) Ndum[k]=0;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   for (k=1; k<=7; k++) ncodemax[k]=0;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     for (i=1; i<=imx; i++) {          }
       ij=(int)(covar[Tvar[j]][i]);          fprintf(ficresilk," %10.6f\n", -llt);
       Ndum[ij]++;        }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      } /* end of wave */
       if (ij > cptcode) cptcode=ij;    } /* end of individual */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for (i=0; i<=cptcode; i++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       if(Ndum[i]!=0) ncodemax[j]++;    if(globpr==0){ /* First time we count the contributions and weights */
     }      gipmx=ipmx;
     ij=1;      gsw=sw;
     }
     return -l;
     for (i=1; i<=ncodemax[j]; i++) {  }
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;  /*************** function likelione ***********/
            void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           ij++;  {
         }    /* This routine should help understanding what is done with 
         if (ij > ncodemax[j]) break;       the selection of individuals/waves and
       }         to check the exact contribution to the likelihood.
     }       Plotting could be done.
   }       */
     int k;
  for (k=0; k<19; k++) Ndum[k]=0;  
     if(*globpri !=0){ /* Just counts and sums, no printings */
  for (i=1; i<=ncovmodel-2; i++) {      strcpy(fileresilk,"ilk"); 
       ij=Tvar[i];      strcat(fileresilk,fileres);
       Ndum[ij]++;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     }        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
  ij=1;      }
  for (i=1; i<=10; i++) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
    if((Ndum[i]!=0) && (i<=ncovcol)){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      Tvaraff[ij]=i;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      ij++;      for(k=1; k<=nlstate; k++) 
    }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
  }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      }
     cptcoveff=ij-1;  
 }    *fretone=(*funcone)(p);
     if(*globpri !=0){
 /*********** Health Expectancies ****************/      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      fflush(fichtm); 
     } 
 {    return;
   /* Health expectancies */  }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  
   double age, agelim, hf;  
   double ***p3mat,***varhe;  /*********** Maximum Likelihood Estimation ***************/
   double **dnewm,**doldm;  
   double *xp;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double **gp, **gm;  {
   double ***gradg, ***trgradg;    int i,j, iter;
   int theta;    double **xi;
     double fret;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    double fretone; /* Only one call to likelihood */
   xp=vector(1,npar);    /*  char filerespow[FILENAMELENGTH];*/
   dnewm=matrix(1,nlstate*2,1,npar);    xi=matrix(1,npar,1,npar);
   doldm=matrix(1,nlstate*2,1,nlstate*2);    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++)
   fprintf(ficreseij,"# Health expectancies\n");        xi[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Age");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   for(i=1; i<=nlstate;i++)    strcpy(filerespow,"pow"); 
     for(j=1; j<=nlstate;j++)    strcat(filerespow,fileres);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   fprintf(ficreseij,"\n");      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   if(estepm < stepm){    }
     printf ("Problem %d lower than %d\n",estepm, stepm);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   }    for (i=1;i<=nlstate;i++)
   else  hstepm=estepm;        for(j=1;j<=nlstate+ndeath;j++)
   /* We compute the life expectancy from trapezoids spaced every estepm months        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
    * This is mainly to measure the difference between two models: for example    fprintf(ficrespow,"\n");
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear    powell(p,xi,npar,ftol,&iter,&fret,func);
    * progression inbetween and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we    fclose(ficrespow);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
    * to compare the new estimate of Life expectancy with the same linear    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    * hypothesis. A more precise result, taking into account a more precise    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
    * curvature will be obtained if estepm is as small as stepm. */  
   }
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  /**** Computes Hessian and covariance matrix ***/
      nhstepm is the number of hstepm from age to agelim  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      nstepm is the number of stepm from age to agelin.  {
      Look at hpijx to understand the reason of that which relies in memory size    double  **a,**y,*x,pd;
      and note for a fixed period like estepm months */    double **hess;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    int i, j,jk;
      survival function given by stepm (the optimization length). Unfortunately it    int *indx;
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      results. So we changed our mind and took the option of the best precision.    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   */    void lubksb(double **a, int npar, int *indx, double b[]) ;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
   agelim=AGESUP;    hess=matrix(1,npar,1,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */    printf("\nCalculation of the hessian matrix. Wait...\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    for (i=1;i<=npar;i++){
     /* if (stepm >= YEARM) hstepm=1;*/      printf("%d",i);fflush(stdout);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      fprintf(ficlog,"%d",i);fflush(ficlog);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     gp=matrix(0,nhstepm,1,nlstate*2);      
     gm=matrix(0,nhstepm,1,nlstate*2);      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for (i=1;i<=npar;i++) {
        for (j=1;j<=npar;j++)  {
         if (j>i) { 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     /* Computing Variances of health expectancies */          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
      for(theta=1; theta <=npar; theta++){          hess[j][i]=hess[i][j];    
       for(i=1; i<=npar; i++){          /*printf(" %lf ",hess[i][j]);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
       }      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
      printf("\n");
       cptj=0;    fprintf(ficlog,"\n");
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           cptj=cptj+1;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    a=matrix(1,npar,1,npar);
           }    y=matrix(1,npar,1,npar);
         }    x=vector(1,npar);
       }    indx=ivector(1,npar);
          for (i=1;i<=npar;i++)
            for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for(i=1; i<=npar; i++)    ludcmp(a,npar,indx,&pd);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (j=1;j<=npar;j++) {
            for (i=1;i<=npar;i++) x[i]=0;
       cptj=0;      x[j]=1;
       for(j=1; j<= nlstate; j++){      lubksb(a,npar,indx,x);
         for(i=1;i<=nlstate;i++){      for (i=1;i<=npar;i++){ 
           cptj=cptj+1;        matcov[i][j]=x[i];
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    }
           }  
         }    printf("\n#Hessian matrix#\n");
       }    fprintf(ficlog,"\n#Hessian matrix#\n");
       for(j=1; j<= nlstate*2; j++)    for (i=1;i<=npar;i++) { 
         for(h=0; h<=nhstepm-1; h++){      for (j=1;j<=npar;j++) { 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        printf("%.3e ",hess[i][j]);
         }        fprintf(ficlog,"%.3e ",hess[i][j]);
      }      }
          printf("\n");
 /* End theta */      fprintf(ficlog,"\n");
     }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  
     /* Recompute Inverse */
      for(h=0; h<=nhstepm-1; h++)    for (i=1;i<=npar;i++)
       for(j=1; j<=nlstate*2;j++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         for(theta=1; theta <=npar; theta++)    ludcmp(a,npar,indx,&pd);
           trgradg[h][j][theta]=gradg[h][theta][j];  
          /*  printf("\n#Hessian matrix recomputed#\n");
   
      for(i=1;i<=nlstate*2;i++)    for (j=1;j<=npar;j++) {
       for(j=1;j<=nlstate*2;j++)      for (i=1;i<=npar;i++) x[i]=0;
         varhe[i][j][(int)age] =0.;      x[j]=1;
       lubksb(a,npar,indx,x);
      printf("%d|",(int)age);fflush(stdout);      for (i=1;i<=npar;i++){ 
      for(h=0;h<=nhstepm-1;h++){        y[i][j]=x[i];
       for(k=0;k<=nhstepm-1;k++){        printf("%.3e ",y[i][j]);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        fprintf(ficlog,"%.3e ",y[i][j]);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      }
         for(i=1;i<=nlstate*2;i++)      printf("\n");
           for(j=1;j<=nlstate*2;j++)      fprintf(ficlog,"\n");
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    }
       }    */
     }  
     /* Computing expectancies */    free_matrix(a,1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
       for(j=1; j<=nlstate;j++)    free_vector(x,1,npar);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    free_ivector(indx,1,npar);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    free_matrix(hess,1,npar,1,npar);
            
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
   }
         }  
   /*************** hessian matrix ****************/
     fprintf(ficreseij,"%3.0f",age );  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     cptj=0;  {
     for(i=1; i<=nlstate;i++)    int i;
       for(j=1; j<=nlstate;j++){    int l=1, lmax=20;
         cptj++;    double k1,k2;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    double p2[NPARMAX+1];
       }    double res;
     fprintf(ficreseij,"\n");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
        double fx;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    int k=0,kmax=10;
     free_matrix(gp,0,nhstepm,1,nlstate*2);    double l1;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    fx=func(x);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++) p2[i]=x[i];
   }    for(l=0 ; l <=lmax; l++){
   printf("\n");      l1=pow(10,l);
       delts=delt;
   free_vector(xp,1,npar);      for(k=1 ; k <kmax; k=k+1){
   free_matrix(dnewm,1,nlstate*2,1,npar);        delt = delta*(l1*k);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        p2[theta]=x[theta] +delt;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        k1=func(p2)-fx;
 }        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
 /************ Variance ******************/        /*res= (k1-2.0*fx+k2)/delt/delt; */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 {        
   /* Variance of health expectancies */  #ifdef DEBUG
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double **newm;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double **dnewm,**doldm;  #endif
   int i, j, nhstepm, hstepm, h, nstepm ;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   int k, cptcode;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double *xp;          k=kmax;
   double **gp, **gm;        }
   double ***gradg, ***trgradg;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double ***p3mat;          k=kmax; l=lmax*10.;
   double age,agelim, hf;        }
   int theta;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        }
   fprintf(ficresvij,"# Age");      }
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)    delti[theta]=delts;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    return res; 
   fprintf(ficresvij,"\n");    
   }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   doldm=matrix(1,nlstate,1,nlstate);  {
      int i;
   if(estepm < stepm){    int l=1, l1, lmax=20;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double k1,k2,k3,k4,res,fx;
   }    double p2[NPARMAX+1];
   else  hstepm=estepm;      int k;
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    fx=func(x);
      nhstepm is the number of hstepm from age to agelim    for (k=1; k<=2; k++) {
      nstepm is the number of stepm from age to agelin.      for (i=1;i<=npar;i++) p2[i]=x[i];
      Look at hpijx to understand the reason of that which relies in memory size      p2[thetai]=x[thetai]+delti[thetai]/k;
      and note for a fixed period like k years */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      k1=func(p2)-fx;
      survival function given by stepm (the optimization length). Unfortunately it    
      means that if the survival funtion is printed only each two years of age and if      p2[thetai]=x[thetai]+delti[thetai]/k;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      results. So we changed our mind and took the option of the best precision.      k2=func(p2)-fx;
   */    
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      p2[thetai]=x[thetai]-delti[thetai]/k;
   agelim = AGESUP;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      k3=func(p2)-fx;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      p2[thetai]=x[thetai]-delti[thetai]/k;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      k4=func(p2)-fx;
     gp=matrix(0,nhstepm,1,nlstate);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     gm=matrix(0,nhstepm,1,nlstate);  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(theta=1; theta <=npar; theta++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(i=1; i<=npar; i++){ /* Computes gradient */  #endif
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }
       }    return res;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   /************** Inverse of matrix **************/
       if (popbased==1) {  void ludcmp(double **a, int n, int *indx, double *d) 
         for(i=1; i<=nlstate;i++)  { 
           prlim[i][i]=probs[(int)age][i][ij];    int i,imax,j,k; 
       }    double big,dum,sum,temp; 
      double *vv; 
       for(j=1; j<= nlstate; j++){   
         for(h=0; h<=nhstepm; h++){    vv=vector(1,n); 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    *d=1.0; 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (i=1;i<=n;i++) { 
         }      big=0.0; 
       }      for (j=1;j<=n;j++) 
            if ((temp=fabs(a[i][j])) > big) big=temp; 
       for(i=1; i<=npar; i++) /* Computes gradient */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      vv[i]=1.0/big; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (j=1;j<=n;j++) { 
        for (i=1;i<j;i++) { 
       if (popbased==1) {        sum=a[i][j]; 
         for(i=1; i<=nlstate;i++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           prlim[i][i]=probs[(int)age][i][ij];        a[i][j]=sum; 
       }      } 
       big=0.0; 
       for(j=1; j<= nlstate; j++){      for (i=j;i<=n;i++) { 
         for(h=0; h<=nhstepm; h++){        sum=a[i][j]; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        for (k=1;k<j;k++) 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          sum -= a[i][k]*a[k][j]; 
         }        a[i][j]=sum; 
       }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
       for(j=1; j<= nlstate; j++)          imax=i; 
         for(h=0; h<=nhstepm; h++){        } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      } 
         }      if (j != imax) { 
     } /* End theta */        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
     for(h=0; h<=nhstepm; h++)        } 
       for(j=1; j<=nlstate;j++)        *d = -(*d); 
         for(theta=1; theta <=npar; theta++)        vv[imax]=vv[j]; 
           trgradg[h][j][theta]=gradg[h][theta][j];      } 
       indx[j]=imax; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      if (a[j][j] == 0.0) a[j][j]=TINY; 
     for(i=1;i<=nlstate;i++)      if (j != n) { 
       for(j=1;j<=nlstate;j++)        dum=1.0/(a[j][j]); 
         vareij[i][j][(int)age] =0.;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     for(h=0;h<=nhstepm;h++){    } 
       for(k=0;k<=nhstepm;k++){    free_vector(vv,1,n);  /* Doesn't work */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  ;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  } 
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)  void lubksb(double **a, int n, int *indx, double b[]) 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  { 
       }    int i,ii=0,ip,j; 
     }    double sum; 
    
     fprintf(ficresvij,"%.0f ",age );    for (i=1;i<=n;i++) { 
     for(i=1; i<=nlstate;i++)      ip=indx[i]; 
       for(j=1; j<=nlstate;j++){      sum=b[ip]; 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      b[ip]=b[i]; 
       }      if (ii) 
     fprintf(ficresvij,"\n");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     free_matrix(gp,0,nhstepm,1,nlstate);      else if (sum) ii=i; 
     free_matrix(gm,0,nhstepm,1,nlstate);      b[i]=sum; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    } 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    for (i=n;i>=1;i--) { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      sum=b[i]; 
   } /* End age */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        b[i]=sum/a[i][i]; 
   free_vector(xp,1,npar);    } 
   free_matrix(doldm,1,nlstate,1,npar);  } 
   free_matrix(dnewm,1,nlstate,1,nlstate);  
   /************ Frequencies ********************/
 }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   {  /* Some frequencies */
 /************ Variance of prevlim ******************/    
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 {    int first;
   /* Variance of prevalence limit */    double ***freq; /* Frequencies */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double *pp, **prop;
   double **newm;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double **dnewm,**doldm;    FILE *ficresp;
   int i, j, nhstepm, hstepm;    char fileresp[FILENAMELENGTH];
   int k, cptcode;    
   double *xp;    pp=vector(1,nlstate);
   double *gp, *gm;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   double **gradg, **trgradg;    strcpy(fileresp,"p");
   double age,agelim;    strcat(fileresp,fileres);
   int theta;    if((ficresp=fopen(fileresp,"w"))==NULL) {
          printf("Problem with prevalence resultfile: %s\n", fileresp);
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   fprintf(ficresvpl,"# Age");      exit(0);
   for(i=1; i<=nlstate;i++)    }
       fprintf(ficresvpl," %1d-%1d",i,i);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   fprintf(ficresvpl,"\n");    j1=0;
     
   xp=vector(1,npar);    j=cptcoveff;
   dnewm=matrix(1,nlstate,1,npar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   doldm=matrix(1,nlstate,1,nlstate);  
      first=1;
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for(k1=1; k1<=j;k1++){
   agelim = AGESUP;      for(i1=1; i1<=ncodemax[k1];i1++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        j1++;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     if (stepm >= YEARM) hstepm=1;          scanf("%d", i);*/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for (i=-1; i<=nlstate+ndeath; i++)  
     gradg=matrix(1,npar,1,nlstate);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     gp=vector(1,nlstate);            for(m=iagemin; m <= iagemax+3; m++)
     gm=vector(1,nlstate);              freq[i][jk][m]=0;
   
     for(theta=1; theta <=npar; theta++){      for (i=1; i<=nlstate; i++)  
       for(i=1; i<=npar; i++){ /* Computes gradient */        for(m=iagemin; m <= iagemax+3; m++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          prop[i][m]=0;
       }        
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        dateintsum=0;
       for(i=1;i<=nlstate;i++)        k2cpt=0;
         gp[i] = prlim[i][i];        for (i=1; i<=imx; i++) {
              bool=1;
       for(i=1; i<=npar; i++) /* Computes gradient */          if  (cptcovn>0) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for (z1=1; z1<=cptcoveff; z1++) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       for(i=1;i<=nlstate;i++)                bool=0;
         gm[i] = prlim[i][i];          }
           if (bool==1){
       for(i=1;i<=nlstate;i++)            for(m=firstpass; m<=lastpass; m++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              k2=anint[m][i]+(mint[m][i]/12.);
     } /* End theta */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
     trgradg =matrix(1,nlstate,1,npar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(j=1; j<=nlstate;j++)                if (m<lastpass) {
       for(theta=1; theta <=npar; theta++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         trgradg[j][theta]=gradg[theta][j];                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
     for(i=1;i<=nlstate;i++)                
       varpl[i][(int)age] =0.;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                  dateintsum=dateintsum+k2;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                  k2cpt++;
     for(i=1;i<=nlstate;i++)                }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */                /*}*/
             }
     fprintf(ficresvpl,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)        }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));         
     fprintf(ficresvpl,"\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);        if  (cptcovn>0) {
     free_matrix(gradg,1,npar,1,nlstate);          fprintf(ficresp, "\n#********** Variable "); 
     free_matrix(trgradg,1,nlstate,1,npar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   } /* End age */          fprintf(ficresp, "**********\n#");
         }
   free_vector(xp,1,npar);        for(i=1; i<=nlstate;i++) 
   free_matrix(doldm,1,nlstate,1,npar);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   free_matrix(dnewm,1,nlstate,1,nlstate);        fprintf(ficresp, "\n");
         
 }        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
 /************ Variance of one-step probabilities  ******************/            fprintf(ficlog,"Total");
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          }else{
 {            if(first==1){
   int i, j,  i1, k1, l1;              first=0;
   int k2, l2, j1,  z1;              printf("See log file for details...\n");
   int k=0,l, cptcode;            }
   int first=1;            fprintf(ficlog,"Age %d", i);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;          }
   double **dnewm,**doldm;          for(jk=1; jk <=nlstate ; jk++){
   double *xp;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double *gp, *gm;              pp[jk] += freq[jk][m][i]; 
   double **gradg, **trgradg;          }
   double **mu;          for(jk=1; jk <=nlstate ; jk++){
   double age,agelim, cov[NCOVMAX];            for(m=-1, pos=0; m <=0 ; m++)
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */              pos += freq[jk][m][i];
   int theta;            if(pp[jk]>=1.e-10){
   char fileresprob[FILENAMELENGTH];              if(first==1){
   char fileresprobcov[FILENAMELENGTH];              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   char fileresprobcor[FILENAMELENGTH];              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double ***varpij;            }else{
               if(first==1)
   strcpy(fileresprob,"prob");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   strcat(fileresprob,fileres);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            }
     printf("Problem with resultfile: %s\n", fileresprob);          }
   }  
   strcpy(fileresprobcov,"probcov");          for(jk=1; jk <=nlstate ; jk++){
   strcat(fileresprobcov,fileres);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {              pp[jk] += freq[jk][m][i];
     printf("Problem with resultfile: %s\n", fileresprobcov);          }       
   }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   strcpy(fileresprobcor,"probcor");            pos += pp[jk];
   strcat(fileresprobcor,fileres);            posprop += prop[jk][i];
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          }
     printf("Problem with resultfile: %s\n", fileresprobcor);          for(jk=1; jk <=nlstate ; jk++){
   }            if(pos>=1.e-5){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              if(first==1)
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              }else{
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");              if(first==1)
   fprintf(ficresprob,"# Age");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficresprobcov,"# Age");            }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");            if( i <= iagemax){
   fprintf(ficresprobcov,"# Age");              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
   for(i=1; i<=nlstate;i++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     for(j=1; j<=(nlstate+ndeath);j++){              }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);              else
       fprintf(ficresprobcov," p%1d-%1d ",i,j);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);            }
     }            }
   fprintf(ficresprob,"\n");          
   fprintf(ficresprobcov,"\n");          for(jk=-1; jk <=nlstate+ndeath; jk++)
   fprintf(ficresprobcor,"\n");            for(m=-1; m <=nlstate+ndeath; m++)
   xp=vector(1,npar);              if(freq[jk][m][i] !=0 ) {
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              if(first==1)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);              }
   first=1;          if(i <= iagemax)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            fprintf(ficresp,"\n");
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          if(first==1)
     exit(0);            printf("Others in log...\n");
   }          fprintf(ficlog,"\n");
   else{        }
     fprintf(ficgp,"\n# Routine varprob");      }
   }    }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    dateintmean=dateintsum/k2cpt; 
     printf("Problem with html file: %s\n", optionfilehtm);   
     exit(0);    fclose(ficresp);
   }    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   else{    free_vector(pp,1,nlstate);
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    /* End of Freq */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");  }
   
   }  /************ Prevalence ********************/
   cov[1]=1;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   j=cptcoveff;  {  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   j1=0;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   for(k1=1; k1<=1;k1++){       We still use firstpass and lastpass as another selection.
     for(i1=1; i1<=ncodemax[k1];i1++){    */
     j1++;   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     if  (cptcovn>0) {    double ***freq; /* Frequencies */
       fprintf(ficresprob, "\n#********** Variable ");    double *pp, **prop;
       fprintf(ficresprobcov, "\n#********** Variable ");    double pos,posprop; 
       fprintf(ficgp, "\n#********** Variable ");    double  y2; /* in fractional years */
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");    int iagemin, iagemax;
       fprintf(ficresprobcor, "\n#********** Variable ");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    iagemin= (int) agemin;
       fprintf(ficresprob, "**********\n#");    iagemax= (int) agemax;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /*pp=vector(1,nlstate);*/
       fprintf(ficresprobcov, "**********\n#");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       fprintf(ficgp, "**********\n#");    j1=0;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
       fprintf(ficgp, "**********\n#");    j=cptcoveff;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(fichtm, "**********\n#");    
     }    for(k1=1; k1<=j;k1++){
          for(i1=1; i1<=ncodemax[k1];i1++){
       for (age=bage; age<=fage; age ++){        j1++;
         cov[2]=age;        
         for (k=1; k<=cptcovn;k++) {        for (i=1; i<=nlstate; i++)  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          for(m=iagemin; m <= iagemax+3; m++)
         }            prop[i][m]=0.0;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];       
         for (k=1; k<=cptcovprod;k++)        for (i=1; i<=imx; i++) { /* Each individual */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          bool=1;
                  if  (cptcovn>0) {
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));            for (z1=1; z1<=cptcoveff; z1++) 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         gp=vector(1,(nlstate)*(nlstate+ndeath));                bool=0;
         gm=vector(1,(nlstate)*(nlstate+ndeath));          } 
              if (bool==1) { 
         for(theta=1; theta <=npar; theta++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           for(i=1; i<=npar; i++)              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                          if(agev[m][i]==0) agev[m][i]=iagemax+1;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                          if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           k=0;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           for(i=1; i<= (nlstate); i++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             for(j=1; j<=(nlstate+ndeath);j++){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
               k=k+1;                  prop[s[m][i]][iagemax+3] += weight[i]; 
               gp[k]=pmmij[i][j];                } 
             }              }
           }            } /* end selection of waves */
                    }
           for(i=1; i<=npar; i++)        }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(i=iagemin; i <= iagemax+3; i++){  
              
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           k=0;            posprop += prop[jk][i]; 
           for(i=1; i<=(nlstate); i++){          } 
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;          for(jk=1; jk <=nlstate ; jk++){     
               gm[k]=pmmij[i][j];            if( i <=  iagemax){ 
             }              if(posprop>=1.e-5){ 
           }                probs[i][jk][j1]= prop[jk][i]/posprop;
                    } 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            } 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            }/* end jk */ 
         }        }/* end i */ 
       } /* end i1 */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    } /* end k1 */
           for(theta=1; theta <=npar; theta++)    
             trgradg[j][theta]=gradg[theta][j];    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
            /*free_vector(pp,1,nlstate);*/
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  }  /* End of prevalence */
          
         pmij(pmmij,cov,ncovmodel,x,nlstate);  /************* Waves Concatenation ***************/
          
         k=0;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         for(i=1; i<=(nlstate); i++){  {
           for(j=1; j<=(nlstate+ndeath);j++){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             k=k+1;       Death is a valid wave (if date is known).
             mu[k][(int) age]=pmmij[i][j];       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         }       and mw[mi+1][i]. dh depends on stepm.
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)       */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  
             varpij[i][j][(int)age] = doldm[i][j];    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         /*printf("\n%d ",(int)age);       double sum=0., jmean=0.;*/
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    int first;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    int j, k=0,jk, ju, jl;
      }*/    double sum=0.;
     first=0;
         fprintf(ficresprob,"\n%d ",(int)age);    jmin=1e+5;
         fprintf(ficresprobcov,"\n%d ",(int)age);    jmax=-1;
         fprintf(ficresprobcor,"\n%d ",(int)age);    jmean=0.;
     for(i=1; i<=imx; i++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      mi=0;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      m=firstpass;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      while(s[m][i] <= nlstate){
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        if(s[m][i]>=1)
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          mw[++mi][i]=m;
         }        if(m >=lastpass)
         i=0;          break;
         for (k=1; k<=(nlstate);k++){        else
           for (l=1; l<=(nlstate+ndeath);l++){          m++;
             i=i++;      }/* end while */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      if (s[m][i] > nlstate){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        mi++;     /* Death is another wave */
             for (j=1; j<=i;j++){        /* if(mi==0)  never been interviewed correctly before death */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);           /* Only death is a correct wave */
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        mw[mi][i]=m;
             }      }
           }  
         }/* end of loop for state */      wav[i]=mi;
       } /* end of loop for age */      if(mi==0){
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        nbwarn++;
       for (k1=1; k1<=(nlstate);k1++){        if(first==0){
         for (l1=1; l1<=(nlstate+ndeath);l1++){          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           if(l1==k1) continue;          first=1;
           i=(k1-1)*(nlstate+ndeath)+l1;        }
           for (k2=1; k2<=(nlstate);k2++){        if(first==1){
             for (l2=1; l2<=(nlstate+ndeath);l2++){          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
               if(l2==k2) continue;        }
               j=(k2-1)*(nlstate+ndeath)+l2;      } /* end mi==0 */
               if(j<=i) continue;    } /* End individuals */
               for (age=bage; age<=fage; age ++){  
                 if ((int)age %5==0){    for(i=1; i<=imx; i++){
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      for(mi=1; mi<wav[i];mi++){
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        if (stepm <=0)
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          dh[mi][i]=1;
                   mu1=mu[i][(int) age]/stepm*YEARM ;        else{
                   mu2=mu[j][(int) age]/stepm*YEARM;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                   /* Computing eigen value of matrix of covariance */            if (agedc[i] < 2*AGESUP) {
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              if(j==0) j=1;  /* Survives at least one month after exam */
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);              else if(j<0){
                   /* Eigen vectors */                nberr++;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   v21=sqrt(1.-v11*v11);                j=1; /* Temporary Dangerous patch */
                   v12=-v21;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                   v22=v11;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   /*printf(fignu*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              }
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */              k=k+1;
                   if(first==1){              if (j >= jmax) jmax=j;
                     first=0;              if (j <= jmin) jmin=j;
                     fprintf(ficgp,"\nset parametric;set nolabel");              sum=sum+j;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);            }
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);          }
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);          else{
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            k=k+1;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            if (j >= jmax) jmax=j;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);            else if (j <= jmin)jmin=j;
                   }else{            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                     first=0;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            if(j<0){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              nberr++;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);            }
                   }/* if first */            sum=sum+j;
                 } /* age mod 5 */          }
               } /* end loop age */          jk= j/stepm;
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);          jl= j -jk*stepm;
               first=1;          ju= j -(jk+1)*stepm;
             } /*l12 */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           } /* k12 */            if(jl==0){
         } /*l1 */              dh[mi][i]=jk;
       }/* k1 */              bh[mi][i]=0;
     } /* loop covariates */            }else{ /* We want a negative bias in order to only have interpolation ie
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                    * at the price of an extra matrix product in likelihood */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              dh[mi][i]=jk+1;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              bh[mi][i]=ju;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);            }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }else{
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            if(jl <= -ju){
   }              dh[mi][i]=jk;
   free_vector(xp,1,npar);              bh[mi][i]=jl;       /* bias is positive if real duration
   fclose(ficresprob);                                   * is higher than the multiple of stepm and negative otherwise.
   fclose(ficresprobcov);                                   */
   fclose(ficresprobcor);            }
   fclose(ficgp);            else{
   fclose(fichtm);              dh[mi][i]=jk+1;
 }              bh[mi][i]=ju;
             }
             if(dh[mi][i]==0){
 /******************* Printing html file ***********/              dh[mi][i]=1; /* At least one step */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              bh[mi][i]=ju; /* At least one step */
                   int lastpass, int stepm, int weightopt, char model[],\              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            }
                   int popforecast, int estepm ,\          } /* end if mle */
                   double jprev1, double mprev1,double anprev1, \        }
                   double jprev2, double mprev2,double anprev2){      } /* end wave */
   int jj1, k1, i1, cpt;    }
   /*char optionfilehtm[FILENAMELENGTH];*/    jmean=sum/k;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     printf("Problem with %s \n",optionfilehtm), exit(0);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   }   }
   
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n  /*********** Tricode ****************************/
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  void tricode(int *Tvar, int **nbcode, int imx)
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  {
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    
  - Life expectancies by age and initial health status (estepm=%2d months):    int Ndum[20],ij=1, k, j, i, maxncov=19;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    int cptcode=0;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    cptcoveff=0; 
    
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    for (k=0; k<maxncov; k++) Ndum[k]=0;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    for (k=1; k<=7; k++) ncodemax[k]=0;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                                 modality*/ 
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
  if(popforecast==1) fprintf(fichtm,"\n        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                                         Tvar[j]. If V=sex and male is 0 and 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                                         female is 1, then  cptcode=1.*/
         <br>",fileres,fileres,fileres,fileres);      }
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      for (i=0; i<=cptcode; i++) {
 fprintf(fichtm," <li>Graphs</li><p>");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
  jj1=0;        for (k=0; k<= maxncov; k++) {
  for(k1=1; k1<=m;k1++){          if (Ndum[k] != 0) {
    for(i1=1; i1<=ncodemax[k1];i1++){            nbcode[Tvar[j]][ij]=k; 
      jj1++;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      if (cptcovn > 0) {            
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            ij++;
        for (cpt=1; cpt<=cptcoveff;cpt++)          }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          if (ij > ncodemax[j]) break; 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        }  
      }      } 
      /* Pij */    }  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);       for (k=0; k< maxncov; k++) Ndum[k]=0;
      /* Quasi-incidences */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>   for (i=1; i<=ncovmodel-2; i++) { 
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
        /* Stable prevalence in each health state */     ij=Tvar[i];
        for(cpt=1; cpt<nlstate;cpt++){     Ndum[ij]++;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>   }
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }   ij=1;
     for(cpt=1; cpt<=nlstate;cpt++) {   for (i=1; i<= maxncov; i++) {
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident     if((Ndum[i]!=0) && (i<=ncovcol)){
 interval) in state (%d): v%s%d%d.png <br>       Tvaraff[ij]=i; /*For printing */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);         ij++;
      }     }
      for(cpt=1; cpt<=nlstate;cpt++) {   }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>   
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);   cptcoveff=ij-1; /*Number of simple covariates*/
      }  }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.png<br>  /*********** Health Expectancies ****************/
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
    }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
  }  
 fclose(fichtm);  {
 }    /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 /******************* Gnuplot file **************/    double age, agelim, hf;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double ***p3mat,***varhe;
     double **dnewm,**doldm;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    double *xp;
   int ng;    double **gp, **gm;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double ***gradg, ***trgradg;
     printf("Problem with file %s",optionfilegnuplot);    int theta;
   }  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 #ifdef windows    xp=vector(1,npar);
     fprintf(ficgp,"cd \"%s\" \n",pathc);    dnewm=matrix(1,nlstate*nlstate,1,npar);
 #endif    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 m=pow(2,cptcoveff);    
      fprintf(ficreseij,"# Health expectancies\n");
  /* 1eme*/    fprintf(ficreseij,"# Age");
   for (cpt=1; cpt<= nlstate ; cpt ++) {    for(i=1; i<=nlstate;i++)
    for (k1=1; k1<= m ; k1 ++) {      for(j=1; j<=nlstate;j++)
         fprintf(ficreseij," %1d-%1d (SE)",i,j);
 #ifdef windows    fprintf(ficreseij,"\n");
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    if(estepm < stepm){
 #endif      printf ("Problem %d lower than %d\n",estepm, stepm);
 #ifdef unix    }
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    else  hstepm=estepm;   
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    /* We compute the life expectancy from trapezoids spaced every estepm months
 #endif     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
 for (i=1; i<= nlstate ; i ++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     * progression in between and thus overestimating or underestimating according
   else fprintf(ficgp," \%%*lf (\%%*lf)");     * to the curvature of the survival function. If, for the same date, we 
 }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);     * to compare the new estimate of Life expectancy with the same linear 
     for (i=1; i<= nlstate ; i ++) {     * hypothesis. A more precise result, taking into account a more precise
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     * curvature will be obtained if estepm is as small as stepm. */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      for (i=1; i<= nlstate ; i ++) {       nhstepm is the number of hstepm from age to agelim 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       nstepm is the number of stepm from age to agelin. 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       Look at hpijx to understand the reason of that which relies in memory size
 }         and note for a fixed period like estepm months */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 #ifdef unix       survival function given by stepm (the optimization length). Unfortunately it
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");       means that if the survival funtion is printed only each two years of age and if
 #endif       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    }       results. So we changed our mind and took the option of the best precision.
   }    */
   /*2 eme*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   for (k1=1; k1<= m ; k1 ++) {    agelim=AGESUP;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      /* nhstepm age range expressed in number of stepm */
          nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     for (i=1; i<= nlstate+1 ; i ++) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       k=2*i;      /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for (j=1; j<= nlstate+1 ; j ++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
 }        gm=matrix(0,nhstepm,1,nlstate*nlstate);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       for (j=1; j<= nlstate+1 ; j ++) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      /* Computing  Variances of health expectancies */
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       for(theta=1; theta <=npar; theta++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1; i<=npar; i++){ 
 }            xp[i] = x[i] + (i==theta ?delti[theta]:0);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        }
       else fprintf(ficgp,"\" t\"\" w l 0,");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }    
   }        cptj=0;
          for(j=1; j<= nlstate; j++){
   /*3eme*/          for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
   for (k1=1; k1<= m ; k1 ++) {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       k=2+nlstate*(2*cpt-2);            }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          }
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for(i=1; i<=npar; i++) 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        
         cptj=0;
 */        for(j=1; j<= nlstate; j++){
       for (i=1; i< nlstate ; i ++) {          for(i=1;i<=nlstate;i++){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       }  
     }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   }            }
            }
   /* CV preval stat */        }
     for (k1=1; k1<= m ; k1 ++) {        for(j=1; j<= nlstate*nlstate; j++)
     for (cpt=1; cpt<nlstate ; cpt ++) {          for(h=0; h<=nhstepm-1; h++){
       k=3;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);       } 
      
       for (i=1; i< nlstate ; i ++)  /* End theta */
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
        
       l=3+(nlstate+ndeath)*cpt;       for(h=0; h<=nhstepm-1; h++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        for(j=1; j<=nlstate*nlstate;j++)
       for (i=1; i< nlstate ; i ++) {          for(theta=1; theta <=npar; theta++)
         l=3+(nlstate+ndeath)*cpt;            trgradg[h][j][theta]=gradg[h][theta][j];
         fprintf(ficgp,"+$%d",l+i+1);       
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);         for(i=1;i<=nlstate*nlstate;i++)
     }        for(j=1;j<=nlstate*nlstate;j++)
   }            varhe[i][j][(int)age] =0.;
    
   /* proba elementaires */       printf("%d|",(int)age);fflush(stdout);
    for(i=1,jk=1; i <=nlstate; i++){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for(k=1; k <=(nlstate+ndeath); k++){       for(h=0;h<=nhstepm-1;h++){
       if (k != i) {        for(k=0;k<=nhstepm-1;k++){
         for(j=1; j <=ncovmodel; j++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                  matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for(i=1;i<=nlstate*nlstate;i++)
           jk++;            for(j=1;j<=nlstate*nlstate;j++)
           fprintf(ficgp,"\n");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }        }
       }      }
     }      /* Computing expectancies */
    }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      for(jk=1; jk <=m; jk++) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);            
        if (ng==2)  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else          }
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      fprintf(ficreseij,"%3.0f",age );
        i=1;      cptj=0;
        for(k2=1; k2<=nlstate; k2++) {      for(i=1; i<=nlstate;i++)
          k3=i;        for(j=1; j<=nlstate;j++){
          for(k=1; k<=(nlstate+ndeath); k++) {          cptj++;
            if (k != k2){          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
              if(ng==2)        }
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      fprintf(ficreseij,"\n");
              else     
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
              ij=1;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
              for(j=3; j <=ncovmodel; j++) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                  ij++;    }
                }    printf("\n");
                else    fprintf(ficlog,"\n");
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
              }    free_vector(xp,1,npar);
              fprintf(ficgp,")/(1");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                  free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
              for(k1=1; k1 <=nlstate; k1++){      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  }
                ij=1;  
                for(j=3; j <=ncovmodel; j++){  /************ Variance ******************/
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  {
                    ij++;    /* Variance of health expectancies */
                  }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                  else    /* double **newm;*/
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double **dnewm,**doldm;
                }    double **dnewmp,**doldmp;
                fprintf(ficgp,")");    int i, j, nhstepm, hstepm, h, nstepm ;
              }    int k, cptcode;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double *xp;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    double **gp, **gm;  /* for var eij */
              i=i+ncovmodel;    double ***gradg, ***trgradg; /*for var eij */
            }    double **gradgp, **trgradgp; /* for var p point j */
          }    double *gpp, *gmp; /* for var p point j */
        }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      }    double ***p3mat;
    }    double age,agelim, hf;
    fclose(ficgp);    double ***mobaverage;
 }  /* end gnuplot */    int theta;
     char digit[4];
     char digitp[25];
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    char fileresprobmorprev[FILENAMELENGTH];
   
   int i, cpt, cptcod;    if(popbased==1){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      if(mobilav!=0)
       for (i=1; i<=nlstate;i++)        strcpy(digitp,"-populbased-mobilav-");
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      else strcpy(digitp,"-populbased-nomobil-");
           mobaverage[(int)agedeb][i][cptcod]=0.;    }
        else 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      strcpy(digitp,"-stablbased-");
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    if (mobilav!=0) {
           for (cpt=0;cpt<=4;cpt++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }      }
       }    }
     }  
        strcpy(fileresprobmorprev,"prmorprev"); 
 }    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
 /************** Forecasting ******************/    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    strcat(fileresprobmorprev,fileres);
      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   int *popage;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    }
   double *popeffectif,*popcount;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double ***p3mat;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   char fileresf[FILENAMELENGTH];    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
  agelim=AGESUP;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
      fprintf(ficresprobmorprev,"\n");
   strcpy(fileresf,"f");    fprintf(ficgp,"\n# Routine varevsij");
   strcat(fileresf,fileres);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     printf("Problem with forecast resultfile: %s\n", fileresf);  /*   } */
   }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
   if (mobilav==1) {      for(j=1; j<=nlstate;j++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    fprintf(ficresvij,"\n");
   }  
     xp=vector(1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    dnewm=matrix(1,nlstate,1,npar);
   if (stepm<=12) stepsize=1;    doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   agelim=AGESUP;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   hstepm=1;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm;    gpp=vector(nlstate+1,nlstate+ndeath);
   yp1=modf(dateintmean,&yp);    gmp=vector(nlstate+1,nlstate+ndeath);
   anprojmean=yp;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   yp2=modf((yp1*12),&yp);    
   mprojmean=yp;    if(estepm < stepm){
   yp1=modf((yp2*30.5),&yp);      printf ("Problem %d lower than %d\n",estepm, stepm);
   jprojmean=yp;    }
   if(jprojmean==0) jprojmean=1;    else  hstepm=estepm;   
   if(mprojmean==0) jprojmean=1;    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   for(cptcov=1;cptcov<=i2;cptcov++){       Look at hpijx to understand the reason of that which relies in memory size
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       and note for a fixed period like k years */
       k=k+1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficresf,"\n#******");       survival function given by stepm (the optimization length). Unfortunately it
       for(j=1;j<=cptcoveff;j++) {       means that if the survival funtion is printed every two years of age and if
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
       fprintf(ficresf,"******\n");    */
       fprintf(ficresf,"# StartingAge FinalAge");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    agelim = AGESUP;
          for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
            nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficresf,"\n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      gm=matrix(0,nhstepm,1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  
                for(theta=1; theta <=npar; theta++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           oldm=oldms;savm=savms;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
                hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           for (h=0; h<=nhstepm; h++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        if (popbased==1) {
             }          if(mobilav ==0){
             for(j=1; j<=nlstate+ndeath;j++) {            for(i=1; i<=nlstate;i++)
               kk1=0.;kk2=0;              prlim[i][i]=probs[(int)age][i][ij];
               for(i=1; i<=nlstate;i++) {                        }else{ /* mobilav */ 
                 if (mobilav==1)            for(i=1; i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              prlim[i][i]=mobaverage[(int)age][i][ij];
                 else {          }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        }
                 }    
                        for(j=1; j<= nlstate; j++){
               }          for(h=0; h<=nhstepm; h++){
               if (h==(int)(calagedate+12*cpt)){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                 fprintf(ficresf," %.3f", kk1);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                                  }
               }        }
             }        /* This for computing probability of death (h=1 means
           }           computed over hstepm matrices product = hstepm*stepm months) 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           as a weighted average of prlim.
         }        */
       }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
                }    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* end probability of death */
   
   fclose(ficresf);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 /************** Forecasting ******************/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        if (popbased==1) {
   int *popage;          if(mobilav ==0){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            for(i=1; i<=nlstate;i++)
   double *popeffectif,*popcount;              prlim[i][i]=probs[(int)age][i][ij];
   double ***p3mat,***tabpop,***tabpopprev;          }else{ /* mobilav */ 
   char filerespop[FILENAMELENGTH];            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   agelim=AGESUP;  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   strcpy(filerespop,"pop");        }
   strcat(filerespop,fileres);        /* This for computing probability of death (h=1 means
   if((ficrespop=fopen(filerespop,"w"))==NULL) {           computed over hstepm matrices product = hstepm*stepm months) 
     printf("Problem with forecast resultfile: %s\n", filerespop);           as a weighted average of prlim.
   }        */
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   if (mobilav==1) {        /* end probability of death */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);        for(j=1; j<= nlstate; j++) /* vareij */
   }          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   if (stepm<=12) stepsize=1;  
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   agelim=AGESUP;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
   hstepm=1;  
   hstepm=hstepm/stepm;      } /* End theta */
    
   if (popforecast==1) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);      for(h=0; h<=nhstepm; h++) /* veij */
     }        for(j=1; j<=nlstate;j++)
     popage=ivector(0,AGESUP);          for(theta=1; theta <=npar; theta++)
     popeffectif=vector(0,AGESUP);            trgradg[h][j][theta]=gradg[h][theta][j];
     popcount=vector(0,AGESUP);  
          for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     i=1;          for(theta=1; theta <=npar; theta++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          trgradgp[j][theta]=gradgp[theta][j];
        
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
   for(cptcov=1;cptcov<=i2;cptcov++){          vareij[i][j][(int)age] =0.;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;      for(h=0;h<=nhstepm;h++){
       fprintf(ficrespop,"\n#******");        for(k=0;k<=nhstepm;k++){
       for(j=1;j<=cptcoveff;j++) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }          for(i=1;i<=nlstate;i++)
       fprintf(ficrespop,"******\n");            for(j=1;j<=nlstate;j++)
       fprintf(ficrespop,"# Age");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        }
       if (popforecast==1)  fprintf(ficrespop," [Population]");      }
          
       for (cpt=0; cpt<=0;cpt++) {      /* pptj */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
              matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           nhstepm = nhstepm/hstepm;          varppt[j][i]=doldmp[j][i];
                /* end ppptj */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*  x centered again */
           oldm=oldms;savm=savms;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           
           for (h=0; h<=nhstepm; h++){      if (popbased==1) {
             if (h==(int) (calagedate+YEARM*cpt)) {        if(mobilav ==0){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          for(i=1; i<=nlstate;i++)
             }            prlim[i][i]=probs[(int)age][i][ij];
             for(j=1; j<=nlstate+ndeath;j++) {        }else{ /* mobilav */ 
               kk1=0.;kk2=0;          for(i=1; i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                          prlim[i][i]=mobaverage[(int)age][i][ij];
                 if (mobilav==1)        }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      }
                 else {               
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      /* This for computing probability of death (h=1 means
                 }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
               }         as a weighted average of prlim.
               if (h==(int)(calagedate+12*cpt)){      */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   /*fprintf(ficrespop," %.3f", kk1);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
               }      }    
             }      /* end probability of death */
             for(i=1; i<=nlstate;i++){  
               kk1=0.;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                 for(j=1; j<=nlstate;j++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                 }        for(i=1; i<=nlstate;i++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             }        }
       } 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      fprintf(ficresprobmorprev,"\n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }      fprintf(ficresvij,"%.0f ",age );
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++){
       }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
   /******/      fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      free_matrix(gm,0,nhstepm,1,nlstate);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           nhstepm = nhstepm/hstepm;    } /* End age */
              free_vector(gpp,nlstate+1,nlstate+ndeath);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_vector(gmp,nlstate+1,nlstate+ndeath);
           oldm=oldms;savm=savms;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           for (h=0; h<=nhstepm; h++){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
             if (h==(int) (calagedate+YEARM*cpt)) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
             }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
             for(j=1; j<=nlstate+ndeath;j++) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
               kk1=0.;kk2=0;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
               for(i=1; i<=nlstate;i++) {                  fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
               }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
             }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  */
         }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    }  
   }    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if (popforecast==1) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_ivector(popage,0,AGESUP);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_vector(popeffectif,0,AGESUP);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_vector(popcount,0,AGESUP);    fclose(ficresprobmorprev);
   }    fflush(ficgp);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fflush(fichtm); 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }  /* end varevsij */
   fclose(ficrespop);  
 }  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 /***********************************************/  {
 /**************** Main Program *****************/    /* Variance of prevalence limit */
 /***********************************************/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
 int main(int argc, char *argv[])    double **dnewm,**doldm;
 {    int i, j, nhstepm, hstepm;
     int k, cptcode;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    double *xp;
   double agedeb, agefin,hf;    double *gp, *gm;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    double **gradg, **trgradg;
     double age,agelim;
   double fret;    int theta;
   double **xi,tmp,delta;     
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   double dum; /* Dummy variable */    fprintf(ficresvpl,"# Age");
   double ***p3mat;    for(i=1; i<=nlstate;i++)
   int *indx;        fprintf(ficresvpl," %1d-%1d",i,i);
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficresvpl,"\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;    xp=vector(1,npar);
   int sdeb, sfin; /* Status at beginning and end */    dnewm=matrix(1,nlstate,1,npar);
   int c,  h , cpt,l;    doldm=matrix(1,nlstate,1,nlstate);
   int ju,jl, mi;    
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    hstepm=1*YEARM; /* Every year of age */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   int mobilav=0,popforecast=0;    agelim = AGESUP;
   int hstepm, nhstepm;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
   double bage, fage, age, agelim, agebase;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   double ftolpl=FTOL;      gradg=matrix(1,npar,1,nlstate);
   double **prlim;      gp=vector(1,nlstate);
   double *severity;      gm=vector(1,nlstate);
   double ***param; /* Matrix of parameters */  
   double  *p;      for(theta=1; theta <=npar; theta++){
   double **matcov; /* Matrix of covariance */        for(i=1; i<=npar; i++){ /* Computes gradient */
   double ***delti3; /* Scale */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double *delti; /* Scale */        }
   double ***eij, ***vareij;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double **varpl; /* Variances of prevalence limits by age */        for(i=1;i<=nlstate;i++)
   double *epj, vepp;          gp[i] = prlim[i][i];
   double kk1, kk2;      
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        for(i=1; i<=npar; i++) /* Computes gradient */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
   char z[1]="c", occ;        for(i=1;i<=nlstate;i++)
 #include <sys/time.h>          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 #include <time.h>      } /* End theta */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
        trgradg =matrix(1,nlstate,1,npar);
   /* long total_usecs;  
   struct timeval start_time, end_time;      for(j=1; j<=nlstate;j++)
          for(theta=1; theta <=npar; theta++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          trgradg[j][theta]=gradg[theta][j];
   getcwd(pathcd, size);  
       for(i=1;i<=nlstate;i++)
   printf("\n%s",version);        varpl[i][(int)age] =0.;
   if(argc <=1){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     printf("\nEnter the parameter file name: ");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     scanf("%s",pathtot);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   else{  
     strcpy(pathtot,argv[1]);      fprintf(ficresvpl,"%.0f ",age );
   }      for(i=1; i<=nlstate;i++)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   /*cygwin_split_path(pathtot,path,optionfile);      fprintf(ficresvpl,"\n");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      free_vector(gp,1,nlstate);
   /* cutv(path,optionfile,pathtot,'\\');*/      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      free_matrix(trgradg,1,nlstate,1,npar);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    } /* End age */
   chdir(path);  
   replace(pathc,path);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
 /*-------- arguments in the command line --------*/    free_matrix(dnewm,1,nlstate,1,nlstate);
   
   strcpy(fileres,"r");  }
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   /*---------arguments file --------*/  {
     int i, j=0,  i1, k1, l1, t, tj;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    int k2, l2, j1,  z1;
     printf("Problem with optionfile %s\n",optionfile);    int k=0,l, cptcode;
     goto end;    int first=1, first1;
   }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
   strcpy(filereso,"o");    double *xp;
   strcat(filereso,fileres);    double *gp, *gm;
   if((ficparo=fopen(filereso,"w"))==NULL) {    double **gradg, **trgradg;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    double **mu;
   }    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   /* Reads comments: lines beginning with '#' */    int theta;
   while((c=getc(ficpar))=='#' && c!= EOF){    char fileresprob[FILENAMELENGTH];
     ungetc(c,ficpar);    char fileresprobcov[FILENAMELENGTH];
     fgets(line, MAXLINE, ficpar);    char fileresprobcor[FILENAMELENGTH];
     puts(line);  
     fputs(line,ficparo);    double ***varpij;
   }  
   ungetc(c,ficpar);    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      printf("Problem with resultfile: %s\n", fileresprob);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    strcpy(fileresprobcov,"probcov"); 
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobcov,fileres);
     puts(line);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     fputs(line,ficparo);      printf("Problem with resultfile: %s\n", fileresprobcov);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   ungetc(c,ficpar);    }
      strcpy(fileresprobcor,"probcor"); 
        strcat(fileresprobcor,fileres);
   covar=matrix(0,NCOVMAX,1,n);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   cptcovn=0;      printf("Problem with resultfile: %s\n", fileresprobcor);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   ncovmodel=2+cptcovn;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /* Read guess parameters */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /* Reads comments: lines beginning with '#' */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     puts(line);    fprintf(ficresprob,"# Age");
     fputs(line,ficparo);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   }    fprintf(ficresprobcov,"# Age");
   ungetc(c,ficpar);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
      fprintf(ficresprobcov,"# Age");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){    for(i=1; i<=nlstate;i++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficparo,"%1d%1d",i1,j1);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       printf("%1d%1d",i,j);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       for(k=1; k<=ncovmodel;k++){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         fscanf(ficpar," %lf",&param[i][j][k]);      }  
         printf(" %lf",param[i][j][k]);   /* fprintf(ficresprob,"\n");
         fprintf(ficparo," %lf",param[i][j][k]);    fprintf(ficresprobcov,"\n");
       }    fprintf(ficresprobcor,"\n");
       fscanf(ficpar,"\n");   */
       printf("\n");   xp=vector(1,npar);
       fprintf(ficparo,"\n");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
   p=param[1][1];    fprintf(ficgp,"\n# Routine varprob");
      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   /* Reads comments: lines beginning with '#' */    fprintf(fichtm,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fgets(line, MAXLINE, ficpar);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     puts(line);    file %s<br>\n",optionfilehtmcov);
     fputs(line,ficparo);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   }  and drawn. It helps understanding how is the covariance between two incidences.\
   ungetc(c,ficpar);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   for(i=1; i <=nlstate; i++){  standard deviations wide on each axis. <br>\
     for(j=1; j <=nlstate+ndeath-1; j++){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       fscanf(ficpar,"%1d%1d",&i1,&j1);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       printf("%1d%1d",i,j);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){    cov[1]=1;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    tj=cptcoveff;
         printf(" %le",delti3[i][j][k]);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         fprintf(ficparo," %le",delti3[i][j][k]);    j1=0;
       }    for(t=1; t<=tj;t++){
       fscanf(ficpar,"\n");      for(i1=1; i1<=ncodemax[t];i1++){ 
       printf("\n");        j1++;
       fprintf(ficparo,"\n");        if  (cptcovn>0) {
     }          fprintf(ficresprob, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   delti=delti3[1][1];          fprintf(ficresprob, "**********\n#\n");
            fprintf(ficresprobcov, "\n#********** Variable "); 
   /* Reads comments: lines beginning with '#' */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcov, "**********\n#\n");
     ungetc(c,ficpar);          
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp, "\n#********** Variable "); 
     puts(line);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fputs(line,ficparo);          fprintf(ficgp, "**********\n#\n");
   }          
   ungetc(c,ficpar);          
            fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   matcov=matrix(1,npar,1,npar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(i=1; i <=npar; i++){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     fscanf(ficpar,"%s",&str);          
     printf("%s",str);          fprintf(ficresprobcor, "\n#********** Variable ");    
     fprintf(ficparo,"%s",str);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(j=1; j <=i; j++){          fprintf(ficresprobcor, "**********\n#");    
       fscanf(ficpar," %le",&matcov[i][j]);        }
       printf(" %.5le",matcov[i][j]);        
       fprintf(ficparo," %.5le",matcov[i][j]);        for (age=bage; age<=fage; age ++){ 
     }          cov[2]=age;
     fscanf(ficpar,"\n");          for (k=1; k<=cptcovn;k++) {
     printf("\n");            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     fprintf(ficparo,"\n");          }
   }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for(i=1; i <=npar; i++)          for (k=1; k<=cptcovprod;k++)
     for(j=i+1;j<=npar;j++)            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       matcov[i][j]=matcov[j][i];          
              gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   printf("\n");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
     /*-------- Rewriting paramater file ----------*/      
      strcpy(rfileres,"r");    /* "Rparameterfile */          for(theta=1; theta <=npar; theta++){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            for(i=1; i<=npar; i++)
      strcat(rfileres,".");    /* */              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            
     if((ficres =fopen(rfileres,"w"))==NULL) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            
     }            k=0;
     fprintf(ficres,"#%s\n",version);            for(i=1; i<= (nlstate); i++){
                  for(j=1; j<=(nlstate+ndeath);j++){
     /*-------- data file ----------*/                k=k+1;
     if((fic=fopen(datafile,"r"))==NULL)    {                gp[k]=pmmij[i][j];
       printf("Problem with datafile: %s\n", datafile);goto end;              }
     }            }
             
     n= lastobs;            for(i=1; i<=npar; i++)
     severity = vector(1,maxwav);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     outcome=imatrix(1,maxwav+1,1,n);      
     num=ivector(1,n);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     moisnais=vector(1,n);            k=0;
     annais=vector(1,n);            for(i=1; i<=(nlstate); i++){
     moisdc=vector(1,n);              for(j=1; j<=(nlstate+ndeath);j++){
     andc=vector(1,n);                k=k+1;
     agedc=vector(1,n);                gm[k]=pmmij[i][j];
     cod=ivector(1,n);              }
     weight=vector(1,n);            }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */       
     mint=matrix(1,maxwav,1,n);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     anint=matrix(1,maxwav,1,n);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     s=imatrix(1,maxwav+1,1,n);          }
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     ncodemax=ivector(1,8);            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
     i=1;          
     while (fgets(line, MAXLINE, fic) != NULL)    {          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       if ((i >= firstobs) && (i <=lastobs)) {          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                  free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         for (j=maxwav;j>=1;j--){          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           strcpy(line,stra);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          pmij(pmmij,cov,ncovmodel,x,nlstate);
         }          
                  k=0;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1; i<=(nlstate); i++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              mu[k][(int) age]=pmmij[i][j];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            }
           }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         for (j=ncovcol;j>=1;j--){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);              varpij[i][j][(int)age] = doldm[i][j];
         }  
         num[i]=atol(stra);          /*printf("\n%d ",(int)age);
                    for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
         i=i+1;  
       }          fprintf(ficresprob,"\n%d ",(int)age);
     }          fprintf(ficresprobcov,"\n%d ",(int)age);
     /* printf("ii=%d", ij);          fprintf(ficresprobcor,"\n%d ",(int)age);
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   /* for (i=1; i<=imx; i++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          }
     }*/          i=0;
    /*  for (i=1; i<=imx; i++){          for (k=1; k<=(nlstate);k++){
      if (s[4][i]==9)  s[4][i]=-1;            for (l=1; l<=(nlstate+ndeath);l++){ 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/              i=i++;
                fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   /* Calculation of the number of parameter from char model*/              for (j=1; j<=i;j++){
   Tvar=ivector(1,15);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   Tprod=ivector(1,15);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   Tvaraff=ivector(1,15);              }
   Tvard=imatrix(1,15,1,2);            }
   Tage=ivector(1,15);                }/* end of loop for state */
            } /* end of loop for age */
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;        /* Confidence intervalle of pij  */
     j=nbocc(model,'+');        /*
     j1=nbocc(model,'*');          fprintf(ficgp,"\nset noparametric;unset label");
     cptcovn=j+1;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     cptcovprod=j1;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
              fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     strcpy(modelsav,model);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       printf("Error. Non available option model=%s ",model);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       goto end;        */
     }  
            /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     for(i=(j+1); i>=1;i--){        first1=1;
       cutv(stra,strb,modelsav,'+');        for (k2=1; k2<=(nlstate);k2++){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            if(l2==k2) continue;
       /*scanf("%d",i);*/            j=(k2-1)*(nlstate+ndeath)+l2;
       if (strchr(strb,'*')) {            for (k1=1; k1<=(nlstate);k1++){
         cutv(strd,strc,strb,'*');              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         if (strcmp(strc,"age")==0) {                if(l1==k1) continue;
           cptcovprod--;                i=(k1-1)*(nlstate+ndeath)+l1;
           cutv(strb,stre,strd,'V');                if(i<=j) continue;
           Tvar[i]=atoi(stre);                for (age=bage; age<=fage; age ++){ 
           cptcovage++;                  if ((int)age %5==0){
             Tage[cptcovage]=i;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
             /*printf("stre=%s ", stre);*/                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         else if (strcmp(strd,"age")==0) {                    mu1=mu[i][(int) age]/stepm*YEARM ;
           cptcovprod--;                    mu2=mu[j][(int) age]/stepm*YEARM;
           cutv(strb,stre,strc,'V');                    c12=cv12/sqrt(v1*v2);
           Tvar[i]=atoi(stre);                    /* Computing eigen value of matrix of covariance */
           cptcovage++;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           Tage[cptcovage]=i;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         }                    /* Eigen vectors */
         else {                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           cutv(strb,stre,strc,'V');                    /*v21=sqrt(1.-v11*v11); *//* error */
           Tvar[i]=ncovcol+k1;                    v21=(lc1-v1)/cv12*v11;
           cutv(strb,strc,strd,'V');                    v12=-v21;
           Tprod[k1]=i;                    v22=v11;
           Tvard[k1][1]=atoi(strc);                    tnalp=v21/v11;
           Tvard[k1][2]=atoi(stre);                    if(first1==1){
           Tvar[cptcovn+k2]=Tvard[k1][1];                      first1=0;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           for (k=1; k<=lastobs;k++)                    }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           k1++;                    /*printf(fignu*/
           k2=k2+2;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       }                    if(first==1){
       else {                      first=0;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                      fprintf(ficgp,"\nset parametric;unset label");
        /*  scanf("%d",i);*/                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       cutv(strd,strc,strb,'V');                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       Tvar[i]=atoi(strc);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       strcpy(modelsav,stra);    %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         scanf("%d",i);*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   printf("cptcovprod=%d ", cptcovprod);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   scanf("%d ",i);*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     fclose(fic);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     /*  if(mle==1){*/                    }else{
     if (weightopt != 1) { /* Maximisation without weights*/                      first=0;
       for(i=1;i<=n;i++) weight[i]=1.0;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     /*-calculation of age at interview from date of interview and age at death -*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     agev=matrix(1,maxwav,1,imx);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     for (i=1; i<=imx; i++) {                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       for(m=2; (m<= maxwav); m++) {                    }/* if first */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                  } /* age mod 5 */
          anint[m][i]=9999;                } /* end loop age */
          s[m][i]=-1;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        }                first=1;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;              } /*l12 */
       }            } /* k12 */
     }          } /*l1 */
         }/* k1 */
     for (i=1; i<=imx; i++)  {      } /* loop covariates */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    }
       for(m=1; (m<= maxwav); m++){    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         if(s[m][i] >0){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           if (s[m][i] >= nlstate+1) {    free_vector(xp,1,npar);
             if(agedc[i]>0)    fclose(ficresprob);
               if(moisdc[i]!=99 && andc[i]!=9999)    fclose(ficresprobcov);
                 agev[m][i]=agedc[i];    fclose(ficresprobcor);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    fflush(ficgp);
            else {    fflush(fichtmcov);
               if (andc[i]!=9999){  }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;  
               }  /******************* Printing html file ***********/
             }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           }                    int lastpass, int stepm, int weightopt, char model[],\
           else if(s[m][i] !=9){ /* Should no more exist */                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                    int popforecast, int estepm ,\
             if(mint[m][i]==99 || anint[m][i]==9999)                    double jprev1, double mprev1,double anprev1, \
               agev[m][i]=1;                    double jprev2, double mprev2,double anprev2){
             else if(agev[m][i] <agemin){    int jj1, k1, i1, cpt;
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
             }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
             else if(agev[m][i] >agemax){             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
               agemax=agev[m][i];     fprintf(fichtm,"\
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
             }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
             /*agev[m][i]=anint[m][i]-annais[i];*/     fprintf(fichtm,"\
             /*   agev[m][i] = age[i]+2*m;*/   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
           }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
           else { /* =9 */     fprintf(fichtm,"\
             agev[m][i]=1;   - Life expectancies by age and initial health status (estepm=%2d months): \
             s[m][i]=-1;     <a href=\"%s\">%s</a> <br>\n</li>",
           }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
         }  
         else /*= 0 Unknown */  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
           agev[m][i]=1;  
       }   m=cptcoveff;
       if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     }  
     for (i=1; i<=imx; i++)  {   jj1=0;
       for(m=1; (m<= maxwav); m++){   for(k1=1; k1<=m;k1++){
         if (s[m][i] > (nlstate+ndeath)) {     for(i1=1; i1<=ncodemax[k1];i1++){
           printf("Error: Wrong value in nlstate or ndeath\n");         jj1++;
           goto end;       if (cptcovn > 0) {
         }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       }         for (cpt=1; cpt<=cptcoveff;cpt++) 
     }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       }
        /* Pij */
     free_vector(severity,1,maxwav);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     free_imatrix(outcome,1,maxwav+1,1,n);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     free_vector(moisnais,1,n);       /* Quasi-incidences */
     free_vector(annais,1,n);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     /* free_matrix(mint,1,maxwav,1,n);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
        free_matrix(anint,1,maxwav,1,n);*/  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     free_vector(moisdc,1,n);         /* Stable prevalence in each health state */
     free_vector(andc,1,n);         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
      <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     wav=ivector(1,imx);         }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);       for(cpt=1; cpt<=nlstate;cpt++) {
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
      <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     /* Concatenates waves */       }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);     } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;   fprintf(fichtm,"\
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  \n<br><li><h4> Result files (second order: variances)</h4>\n\
         - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
    codtab=imatrix(1,100,1,10);  
    h=0;   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    m=pow(2,cptcoveff);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     fprintf(fichtm,"\
    for(k=1;k<=cptcoveff; k++){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
      for(i=1; i <=(m/pow(2,k));i++){           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   fprintf(fichtm,"\
            h++;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   fprintf(fichtm,"\
          }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
        }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
      }   fprintf(fichtm,"\
    }   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       codtab[1][2]=1;codtab[2][2]=2; */   fprintf(fichtm,"\
    /* for(i=1; i <=m ;i++){   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
       for(k=1; k <=cptcovn; k++){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }  /*  if(popforecast==1) fprintf(fichtm,"\n */
       printf("\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       scanf("%d",i);*/  /*      <br>",fileres,fileres,fileres,fileres); */
      /*  else  */
    /* Calculates basic frequencies. Computes observed prevalence at single age  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
        and prints on file fileres'p'. */   fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
      
       m=cptcoveff;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   jj1=0;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   for(k1=1; k1<=m;k1++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     for(i1=1; i1<=ncodemax[k1];i1++){
             jj1++;
     /* For Powell, parameters are in a vector p[] starting at p[1]       if (cptcovn > 0) {
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     if(mle==1){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       }
     }       for(cpt=1; cpt<=nlstate;cpt++) {
             fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     /*--------- results files --------------*/  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    jk=1;  health expectancies in states (1) and (2): %s%d.png<br>\
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     } /* end i1 */
    for(i=1,jk=1; i <=nlstate; i++){   }/* End k1 */
      for(k=1; k <=(nlstate+ndeath); k++){   fprintf(fichtm,"</ul>");
        if (k != i)   fflush(fichtm);
          {  }
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);  /******************* Gnuplot file **************/
            for(j=1; j <=ncovmodel; j++){  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);    char dirfileres[132],optfileres[132];
              jk++;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
            }    int ng;
            printf("\n");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
            fprintf(ficres,"\n");  /*     printf("Problem with file %s",optionfilegnuplot); */
          }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
      }  /*   } */
    }  
  if(mle==1){    /*#ifdef windows */
     /* Computing hessian and covariance matrix */    fprintf(ficgp,"cd \"%s\" \n",pathc);
     ftolhess=ftol; /* Usually correct */      /*#endif */
     hesscov(matcov, p, npar, delti, ftolhess, func);    m=pow(2,cptcoveff);
  }  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    strcpy(dirfileres,optionfilefiname);
     printf("# Scales (for hessian or gradient estimation)\n");    strcpy(optfileres,"vpl");
      for(i=1,jk=1; i <=nlstate; i++){   /* 1eme*/
       for(j=1; j <=nlstate+ndeath; j++){    for (cpt=1; cpt<= nlstate ; cpt ++) {
         if (j!=i) {     for (k1=1; k1<= m ; k1 ++) {
           fprintf(ficres,"%1d%1d",i,j);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
           printf("%1d%1d",i,j);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
           for(k=1; k<=ncovmodel;k++){       fprintf(ficgp,"set xlabel \"Age\" \n\
             printf(" %.5e",delti[jk]);  set ylabel \"Probability\" \n\
             fprintf(ficres," %.5e",delti[jk]);  set ter png small\n\
             jk++;  set size 0.65,0.65\n\
           }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
           printf("\n");  
           fprintf(ficres,"\n");       for (i=1; i<= nlstate ; i ++) {
         }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }         else fprintf(ficgp," \%%*lf (\%%*lf)");
      }       }
           fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     k=1;       for (i=1; i<= nlstate ; i ++) {
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(i=1;i<=npar;i++){       } 
       /*  if (k>nlstate) k=1;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
       i1=(i-1)/(ncovmodel*nlstate)+1;       for (i=1; i<= nlstate ; i ++) {
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       printf("%s%d%d",alph[k],i1,tab[i]);*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficres,"%3d",i);       }  
       printf("%3d",i);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       for(j=1; j<=i;j++){     }
         fprintf(ficres," %.5e",matcov[i][j]);    }
         printf(" %.5e",matcov[i][j]);    /*2 eme*/
       }    
       fprintf(ficres,"\n");    for (k1=1; k1<= m ; k1 ++) { 
       printf("\n");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       k++;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     }      
          for (i=1; i<= nlstate+1 ; i ++) {
     while((c=getc(ficpar))=='#' && c!= EOF){        k=2*i;
       ungetc(c,ficpar);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fgets(line, MAXLINE, ficpar);        for (j=1; j<= nlstate+1 ; j ++) {
       puts(line);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fputs(line,ficparo);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }        }   
     ungetc(c,ficpar);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     estepm=0;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     if (estepm==0 || estepm < stepm) estepm=stepm;        for (j=1; j<= nlstate+1 ; j ++) {
     if (fage <= 2) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       bage = ageminpar;          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fage = agemaxpar;        }   
     }        fprintf(ficgp,"\" t\"\" w l 0,");
            fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        for (j=1; j<= nlstate+1 ; j ++) {
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
     while((c=getc(ficpar))=='#' && c!= EOF){        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     ungetc(c,ficpar);        else fprintf(ficgp,"\" t\"\" w l 0,");
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    }
     fputs(line,ficparo);    
   }    /*3eme*/
   ungetc(c,ficpar);    
      for (k1=1; k1<= m ; k1 ++) { 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        k=2+nlstate*(2*cpt-2);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
              fprintf(ficgp,"set ter png small\n\
   while((c=getc(ficpar))=='#' && c!= EOF){  set size 0.65,0.65\n\
     ungetc(c,ficpar);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     fgets(line, MAXLINE, ficpar);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     puts(line);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     fputs(line,ficparo);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   ungetc(c,ficpar);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   fscanf(ficpar,"pop_based=%d\n",&popbased);          
   fprintf(ficparo,"pop_based=%d\n",popbased);          } 
   fprintf(ficres,"pop_based=%d\n",popbased);        }
      }
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    /* CV preval stable (period) */
     fgets(line, MAXLINE, ficpar);    for (k1=1; k1<= m ; k1 ++) { 
     puts(line);      for (cpt=1; cpt<=nlstate ; cpt ++) {
     fputs(line,ficparo);        k=3;
   }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   ungetc(c,ficpar);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  unset log y\n\
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
 while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     ungetc(c,ficpar);        
     fgets(line, MAXLINE, ficpar);        l=3+(nlstate+ndeath)*cpt;
     puts(line);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     fputs(line,ficparo);        for (i=1; i< nlstate ; i ++) {
   }          l=3+(nlstate+ndeath)*cpt;
   ungetc(c,ficpar);          fprintf(ficgp,"+$%d",l+i+1);
         }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      } 
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    }  
     
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
 /*------------ gnuplot -------------*/      for(k=1; k <=(nlstate+ndeath); k++){
   strcpy(optionfilegnuplot,optionfilefiname);        if (k != i) {
   strcat(optionfilegnuplot,".gp");          for(j=1; j <=ncovmodel; j++){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     printf("Problem with file %s",optionfilegnuplot);            jk++; 
   }            fprintf(ficgp,"\n");
   fclose(ficgp);          }
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        }
 /*--------- index.htm --------*/      }
      }
   strcpy(optionfilehtm,optionfile);  
   strcat(optionfilehtm,".htm");     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {       for(jk=1; jk <=m; jk++) {
     printf("Problem with %s \n",optionfilehtm), exit(0);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   }         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n         else
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n           fprintf(ficgp,"\nset title \"Probability\"\n");
 \n         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 Total number of observations=%d <br>\n         i=1;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n         for(k2=1; k2<=nlstate; k2++) {
 <hr  size=\"2\" color=\"#EC5E5E\">           k3=i;
  <ul><li>Parameter files<br>\n           for(k=1; k<=(nlstate+ndeath); k++) {
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n             if (k != k2){
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);               if(ng==2)
   fclose(fichtm);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                 ij=1;
 /*------------ free_vector  -------------*/               for(j=3; j <=ncovmodel; j++) {
  chdir(path);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                     fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
  free_ivector(wav,1,imx);                   ij++;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                 }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                   else
  free_ivector(num,1,n);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  free_vector(agedc,1,n);               }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/               fprintf(ficgp,")/(1");
  fclose(ficparo);               
  fclose(ficres);               for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
   /*--------------- Prevalence limit --------------*/                 for(j=3; j <=ncovmodel; j++){
                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   strcpy(filerespl,"pl");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   strcat(filerespl,fileres);                     ij++;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                   }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                   else
   }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                 }
   fprintf(ficrespl,"#Prevalence limit\n");                 fprintf(ficgp,")");
   fprintf(ficrespl,"#Age ");               }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   fprintf(ficrespl,"\n");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                 i=i+ncovmodel;
   prlim=matrix(1,nlstate,1,nlstate);             }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           } /* end k */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         } /* end k2 */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       } /* end jk */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     } /* end ng */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     fflush(ficgp); 
   k=0;  }  /* end gnuplot */
   agebase=ageminpar;  
   agelim=agemaxpar;  
   ftolpl=1.e-10;  /*************** Moving average **************/
   i1=cptcoveff;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   if (cptcovn < 1){i1=1;}  
     int i, cpt, cptcod;
   for(cptcov=1;cptcov<=i1;cptcov++){    int modcovmax =1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int mobilavrange, mob;
         k=k+1;    double age;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
         for(j=1;j<=cptcoveff;j++)                             a covariate has 2 modalities */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
         fprintf(ficrespl,"******\n");  
            if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
         for (age=agebase; age<=agelim; age++){      if(mobilav==1) mobilavrange=5; /* default */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      else mobilavrange=mobilav;
           fprintf(ficrespl,"%.0f",age );      for (age=bage; age<=fage; age++)
           for(i=1; i<=nlstate;i++)        for (i=1; i<=nlstate;i++)
           fprintf(ficrespl," %.5f", prlim[i][i]);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           fprintf(ficrespl,"\n");            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
         }      /* We keep the original values on the extreme ages bage, fage and for 
       }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     }         we use a 5 terms etc. until the borders are no more concerned. 
   fclose(ficrespl);      */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
   /*------------- h Pij x at various ages ------------*/        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
            for (i=1; i<=nlstate;i++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   printf("Computing pij: result on file '%s' \n", filerespij);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                  }
   stepsize=(int) (stepm+YEARM-1)/YEARM;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   /*if (stepm<=24) stepsize=2;*/            }
           }
   agelim=AGESUP;        }/* end age */
   hstepm=stepsize*YEARM; /* Every year of age */      }/* end mob */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    }else return -1;
      return 0;
   k=0;  }/* End movingaverage */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  /************** Forecasting ******************/
         fprintf(ficrespij,"\n#****** ");  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
         for(j=1;j<=cptcoveff;j++)    /* proj1, year, month, day of starting projection 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       agemin, agemax range of age
         fprintf(ficrespij,"******\n");       dateprev1 dateprev2 range of dates during which prevalence is computed
               anproj2 year of en of projection (same day and month as proj1).
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int *popage;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double agec; /* generic age */
           oldm=oldms;savm=savms;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double *popeffectif,*popcount;
           fprintf(ficrespij,"# Age");    double ***p3mat;
           for(i=1; i<=nlstate;i++)    double ***mobaverage;
             for(j=1; j<=nlstate+ndeath;j++)    char fileresf[FILENAMELENGTH];
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");    agelim=AGESUP;
            for (h=0; h<=nhstepm; h++){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   
             for(i=1; i<=nlstate;i++)    strcpy(fileresf,"f"); 
               for(j=1; j<=nlstate+ndeath;j++)    strcat(fileresf,fileres);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    if((ficresf=fopen(fileresf,"w"))==NULL) {
             fprintf(ficrespij,"\n");      printf("Problem with forecast resultfile: %s\n", fileresf);
              }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           fprintf(ficrespij,"\n");    printf("Computing forecasting: result on file '%s' \n", fileresf);
         }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     }  
   }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficrespij);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /*---------- Forecasting ------------------*/      }
   if((stepm == 1) && (strcmp(model,".")==0)){    }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   }    if (stepm<=12) stepsize=1;
   else{    if(estepm < stepm){
     erreur=108;      printf ("Problem %d lower than %d\n",estepm, stepm);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    }
   }    else  hstepm=estepm;   
    
     hstepm=hstepm/stepm; 
   /*---------- Health expectancies and variances ------------*/    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
   strcpy(filerest,"t");    anprojmean=yp;
   strcat(filerest,fileres);    yp2=modf((yp1*12),&yp);
   if((ficrest=fopen(filerest,"w"))==NULL) {    mprojmean=yp;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    yp1=modf((yp2*30.5),&yp);
   }    jprojmean=yp;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
   strcpy(filerese,"e");    i1=cptcoveff;
   strcat(filerese,fileres);    if (cptcovn < 1){i1=1;}
   if((ficreseij=fopen(filerese,"w"))==NULL) {    
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   }    
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(ficresf,"#****** Routine prevforecast **\n");
   
  strcpy(fileresv,"v");  /*            if (h==(int)(YEARM*yearp)){ */
   strcat(fileresv,fileres);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        k=k+1;
   }        fprintf(ficresf,"\n#******");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for(j=1;j<=cptcoveff;j++) {
   calagedate=-1;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }
         fprintf(ficresf,"******\n");
   k=0;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   for(cptcov=1;cptcov<=i1;cptcov++){        for(j=1; j<=nlstate+ndeath;j++){ 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(i=1; i<=nlstate;i++)              
       k=k+1;            fprintf(ficresf," p%d%d",i,j);
       fprintf(ficrest,"\n#****** ");          fprintf(ficresf," p.%d",j);
       for(j=1;j<=cptcoveff;j++)        }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       fprintf(ficrest,"******\n");          fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)          for (agec=fage; agec>=(ageminpar-1); agec--){ 
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
       fprintf(ficreseij,"******\n");            nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresvij,"\n#****** ");            oldm=oldms;savm=savms;
       for(j=1;j<=cptcoveff;j++)            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       fprintf(ficresvij,"******\n");            for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                fprintf(ficresf,"\n");
       oldm=oldms;savm=savms;                for(j=1;j<=cptcoveff;j++) 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                    fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                  fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              } 
       oldm=oldms;savm=savms;              for(j=1; j<=nlstate+ndeath;j++) {
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);                ppij=0.;
                    for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                  else {
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
       fprintf(ficrest,"\n");                  }
                   if (h*hstepm/YEARM*stepm== yearp) {
       epj=vector(1,nlstate+1);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
       for(age=bage; age <=fage ;age++){                  }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                } /* end i */
         if (popbased==1) {                if (h*hstepm/YEARM*stepm==yearp) {
           for(i=1; i<=nlstate;i++)                  fprintf(ficresf," %.3f", ppij);
             prlim[i][i]=probs[(int)age][i][k];                }
         }              }/* end j */
                    } /* end h */
         fprintf(ficrest," %4.0f",age);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          } /* end agec */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        } /* end yearp */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      } /* end cptcod */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    } /* end  cptcov */
           }         
           epj[nlstate+1] +=epj[j];    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }  
     fclose(ficresf);
         for(i=1, vepp=0.;i <=nlstate;i++)  }
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];  /************** Forecasting *****not tested NB*************/
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
         for(j=1;j <=nlstate;j++){    
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
         }    int *popage;
         fprintf(ficrest,"\n");    double calagedatem, agelim, kk1, kk2;
       }    double *popeffectif,*popcount;
     }    double ***p3mat,***tabpop,***tabpopprev;
   }    double ***mobaverage;
 free_matrix(mint,1,maxwav,1,n);    char filerespop[FILENAMELENGTH];
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficreseij);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficresvij);    agelim=AGESUP;
   fclose(ficrest);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   fclose(ficpar);    
   free_vector(epj,1,nlstate+1);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
      
   /*------- Variance limit prevalence------*/      
     strcpy(filerespop,"pop"); 
   strcpy(fileresvpl,"vpl");    strcat(filerespop,fileres);
   strcat(fileresvpl,fileres);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      printf("Problem with forecast resultfile: %s\n", filerespop);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     exit(0);    }
   }    printf("Computing forecasting: result on file '%s' \n", filerespop);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
   k=0;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if (mobilav!=0) {
       k=k+1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficresvpl,"\n#****** ");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       for(j=1;j<=cptcoveff;j++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficresvpl,"******\n");      }
          }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    stepsize=(int) (stepm+YEARM-1)/YEARM;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    if (stepm<=12) stepsize=1;
     }    
  }    agelim=AGESUP;
     
   fclose(ficresvpl);    hstepm=1;
     hstepm=hstepm/stepm; 
   /*---------- End : free ----------------*/    
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    if (popforecast==1) {
        if((ficpop=fopen(popfile,"r"))==NULL) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        printf("Problem with population file : %s\n",popfile);exit(0);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
        } 
        popage=ivector(0,AGESUP);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      popeffectif=vector(0,AGESUP);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      popcount=vector(0,AGESUP);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      i=1;   
        while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   free_matrix(matcov,1,npar,1,npar);     
   free_vector(delti,1,npar);      imx=i;
   free_matrix(agev,1,maxwav,1,imx);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    }
   
   fprintf(fichtm,"\n</body>");    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   fclose(fichtm);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   fclose(ficgp);        k=k+1;
          fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
   if(erreur >0)          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     printf("End of Imach with error or warning %d\n",erreur);        }
   else   printf("End of Imach\n");        fprintf(ficrespop,"******\n");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        fprintf(ficrespop,"# Age");
          for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        if (popforecast==1)  fprintf(ficrespop," [Population]");
   /*printf("Total time was %d uSec.\n", total_usecs);*/        
   /*------ End -----------*/        for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
  end:          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 #ifdef windows            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   /* chdir(pathcd);*/            nhstepm = nhstepm/hstepm; 
 #endif            
  /*system("wgnuplot graph.plt");*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  /*system("../gp37mgw/wgnuplot graph.plt");*/            oldm=oldms;savm=savms;
  /*system("cd ../gp37mgw");*/            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          
  strcpy(plotcmd,GNUPLOTPROGRAM);            for (h=0; h<=nhstepm; h++){
  strcat(plotcmd," ");              if (h==(int) (calagedatem+YEARM*cpt)) {
  strcat(plotcmd,optionfilegnuplot);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
  system(plotcmd);              } 
               for(j=1; j<=nlstate+ndeath;j++) {
 #ifdef windows                kk1=0.;kk2=0;
   while (z[0] != 'q') {                for(i=1; i<=nlstate;i++) {              
     /* chdir(path); */                  if (mobilav==1) 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     scanf("%s",z);                  else {
     if (z[0] == 'c') system("./imach");                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     else if (z[0] == 'e') system(optionfilehtm);                  }
     else if (z[0] == 'g') system(plotcmd);                }
     else if (z[0] == 'q') exit(0);                if (h==(int)(calagedatem+12*cpt)){
   }                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
 #endif                    /*fprintf(ficrespop," %.3f", kk1);
 }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.103


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>