Diff for /imach/src/imach.c between versions 1.48 and 1.107

version 1.48, 2002/06/10 13:12:49 version 1.107, 2006/01/19 16:20:37
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.107  2006/01/19 16:20:37  brouard
      Test existence of gnuplot in imach path
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.106  2006/01/19 13:24:36  brouard
   first survey ("cross") where individuals from different ages are    Some cleaning and links added in html output
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.105  2006/01/05 20:23:19  lievre
   second wave of interviews ("longitudinal") which measure each change    *** empty log message ***
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.104  2005/09/30 16:11:43  lievre
   model. More health states you consider, more time is necessary to reach the    (Module): sump fixed, loop imx fixed, and simplifications.
   Maximum Likelihood of the parameters involved in the model.  The    (Module): If the status is missing at the last wave but we know
   simplest model is the multinomial logistic model where pij is the    that the person is alive, then we can code his/her status as -2
   probability to be observed in state j at the second wave    (instead of missing=-1 in earlier versions) and his/her
   conditional to be observed in state i at the first wave. Therefore    contributions to the likelihood is 1 - Prob of dying from last
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   'age' is age and 'sex' is a covariate. If you want to have a more    the healthy state at last known wave). Version is 0.98
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.103  2005/09/30 15:54:49  lievre
   you to do it.  More covariates you add, slower the    (Module): sump fixed, loop imx fixed, and simplifications.
   convergence.  
     Revision 1.102  2004/09/15 17:31:30  brouard
   The advantage of this computer programme, compared to a simple    Add the possibility to read data file including tab characters.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.101  2004/09/15 10:38:38  brouard
   intermediate interview, the information is lost, but taken into    Fix on curr_time
   account using an interpolation or extrapolation.    
     Revision 1.100  2004/07/12 18:29:06  brouard
   hPijx is the probability to be observed in state i at age x+h    Add version for Mac OS X. Just define UNIX in Makefile
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.99  2004/06/05 08:57:40  brouard
   states. This elementary transition (by month or quarter trimester,    *** empty log message ***
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.98  2004/05/16 15:05:56  brouard
   and the contribution of each individual to the likelihood is simply    New version 0.97 . First attempt to estimate force of mortality
   hPijx.    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
   Also this programme outputs the covariance matrix of the parameters but also    This is the basic analysis of mortality and should be done before any
   of the life expectancies. It also computes the prevalence limits.    other analysis, in order to test if the mortality estimated from the
      cross-longitudinal survey is different from the mortality estimated
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    from other sources like vital statistic data.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    The same imach parameter file can be used but the option for mle should be -3.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Agnès, who wrote this part of the code, tried to keep most of the
   software can be distributed freely for non commercial use. Latest version    former routines in order to include the new code within the former code.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    The output is very simple: only an estimate of the intercept and of
      the slope with 95% confident intervals.
 #include <math.h>  
 #include <stdio.h>    Current limitations:
 #include <stdlib.h>    A) Even if you enter covariates, i.e. with the
 #include <unistd.h>    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.97  2004/02/20 13:25:42  lievre
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Version 0.96d. Population forecasting command line is (temporarily)
 #define FILENAMELENGTH 80    suppressed.
 /*#define DEBUG*/  
 #define windows    Revision 1.96  2003/07/15 15:38:55  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    rewritten within the same printf. Workaround: many printfs.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.95  2003/07/08 07:54:34  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 #define NINTERVMAX 8    matrix (cov(a12,c31) instead of numbers.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.94  2003/06/27 13:00:02  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Just cleaning
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.93  2003/06/25 16:33:55  brouard
 #define AGESUP 130    (Module): On windows (cygwin) function asctime_r doesn't
 #define AGEBASE 40    exist so I changed back to asctime which exists.
 #ifdef windows    (Module): Version 0.96b
 #define DIRSEPARATOR '\\'  
 #else    Revision 1.92  2003/06/25 16:30:45  brouard
 #define DIRSEPARATOR '/'    (Module): On windows (cygwin) function asctime_r doesn't
 #endif    exist so I changed back to asctime which exists.
   
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Revision 1.91  2003/06/25 15:30:29  brouard
 int erreur; /* Error number */    * imach.c (Repository): Duplicated warning errors corrected.
 int nvar;    (Repository): Elapsed time after each iteration is now output. It
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    helps to forecast when convergence will be reached. Elapsed time
 int npar=NPARMAX;    is stamped in powell.  We created a new html file for the graphs
 int nlstate=2; /* Number of live states */    concerning matrix of covariance. It has extension -cov.htm.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.90  2003/06/24 12:34:15  brouard
 int popbased=0;    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int *wav; /* Number of waves for this individuual 0 is possible */    of the covariance matrix to be input.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.89  2003/06/24 12:30:52  brouard
 int mle, weightopt;    (Module): Some bugs corrected for windows. Also, when
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    mle=-1 a template is output in file "or"mypar.txt with the design
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    of the covariance matrix to be input.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.88  2003/06/23 17:54:56  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.87  2003/06/18 12:26:01  brouard
 FILE *fichtm; /* Html File */    Version 0.96
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.86  2003/06/17 20:04:08  brouard
 FILE  *ficresvij;    (Module): Change position of html and gnuplot routines and added
 char fileresv[FILENAMELENGTH];    routine fileappend.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.85  2003/06/17 13:12:43  brouard
 char title[MAXLINE];    * imach.c (Repository): Check when date of death was earlier that
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    current date of interview. It may happen when the death was just
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    assuming that the date of death was just one stepm after the
     interview.
 char filerest[FILENAMELENGTH];    (Repository): Because some people have very long ID (first column)
 char fileregp[FILENAMELENGTH];    we changed int to long in num[] and we added a new lvector for
 char popfile[FILENAMELENGTH];    memory allocation. But we also truncated to 8 characters (left
     truncation)
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    (Repository): No more line truncation errors.
   
 #define NR_END 1    Revision 1.84  2003/06/13 21:44:43  brouard
 #define FREE_ARG char*    * imach.c (Repository): Replace "freqsummary" at a correct
 #define FTOL 1.0e-10    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 #define NRANSI    parcimony.
 #define ITMAX 200    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 #define TOL 2.0e-4    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.82  2003/06/05 15:57:20  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Add log in  imach.c and  fullversion number is now printed.
   
 #define GOLD 1.618034  */
 #define GLIMIT 100.0  /*
 #define TINY 1.0e-20     Interpolated Markov Chain
   
 static double maxarg1,maxarg2;    Short summary of the programme:
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    first survey ("cross") where individuals from different ages are
 #define rint(a) floor(a+0.5)    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 static double sqrarg;    second wave of interviews ("longitudinal") which measure each change
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (if any) in individual health status.  Health expectancies are
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 int imx;    Maximum Likelihood of the parameters involved in the model.  The
 int stepm;    simplest model is the multinomial logistic model where pij is the
 /* Stepm, step in month: minimum step interpolation*/    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 int estepm;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 int m,nb;    where the markup *Covariates have to be included here again* invites
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    you to do it.  More covariates you add, slower the
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    convergence.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 double *weight;    identical for each individual. Also, if a individual missed an
 int **s; /* Status */    intermediate interview, the information is lost, but taken into
 double *agedc, **covar, idx;    account using an interpolation or extrapolation.  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     hPijx is the probability to be observed in state i at age x+h
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    conditional to the observed state i at age x. The delay 'h' can be
 double ftolhess; /* Tolerance for computing hessian */    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 /**************** split *************************/    semester or year) is modelled as a multinomial logistic.  The hPx
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
    char *s;                             /* pointer */    hPijx.
    int  l1, l2;                         /* length counters */  
     Also this programme outputs the covariance matrix of the parameters but also
    l1 = strlen( path );                 /* length of path */    of the life expectancies. It also computes the stable prevalence. 
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    if ( s == NULL ) {                   /* no directory, so use current */             Institut national d'études démographiques, Paris.
 #if     defined(__bsd__)                /* get current working directory */    This software have been partly granted by Euro-REVES, a concerted action
       extern char       *getwd( );    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
       if ( getwd( dirc ) == NULL ) {    software can be distributed freely for non commercial use. Latest version
 #else    can be accessed at http://euroreves.ined.fr/imach .
       extern char       *getcwd( );  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #endif    
          return( GLOCK_ERROR_GETCWD );    **********************************************************************/
       }  /*
       strcpy( name, path );             /* we've got it */    main
    } else {                             /* strip direcotry from path */    read parameterfile
       s++;                              /* after this, the filename */    read datafile
       l2 = strlen( s );                 /* length of filename */    concatwav
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    freqsummary
       strcpy( name, s );                /* save file name */    if (mle >= 1)
       strncpy( dirc, path, l1 - l2 );   /* now the directory */      mlikeli
       dirc[l1-l2] = 0;                  /* add zero */    print results files
    }    if mle==1 
    l1 = strlen( dirc );                 /* length of directory */       computes hessian
 #ifdef windows    read end of parameter file: agemin, agemax, bage, fage, estepm
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }        begin-prev-date,...
 #else    open gnuplot file
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    open html file
 #endif    stable prevalence
    s = strrchr( name, '.' );            /* find last / */     for age prevalim()
    s++;    h Pij x
    strcpy(ext,s);                       /* save extension */    variance of p varprob
    l1= strlen( name);    forecasting if prevfcast==1 prevforecast call prevalence()
    l2= strlen( s)+1;    health expectancies
    strncpy( finame, name, l1-l2);    Variance-covariance of DFLE
    finame[l1-l2]= 0;    prevalence()
    return( 0 );                         /* we're done */     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
     total life expectancies
 /******************************************/    Variance of stable prevalence
    end
 void replace(char *s, char*t)  */
 {  
   int i;  
   int lg=20;  
   i=0;   
   lg=strlen(t);  #include <math.h>
   for(i=0; i<= lg; i++) {  #include <stdio.h>
     (s[i] = t[i]);  #include <stdlib.h>
     if (t[i]== '\\') s[i]='/';  #include <string.h>
   }  #include <unistd.h>
 }  
   #include <sys/types.h>
 int nbocc(char *s, char occ)  #include <sys/stat.h>
 {  #include <errno.h>
   int i,j=0;  extern int errno;
   int lg=20;  
   i=0;  /* #include <sys/time.h> */
   lg=strlen(s);  #include <time.h>
   for(i=0; i<= lg; i++) {  #include "timeval.h"
   if  (s[i] == occ ) j++;  
   }  /* #include <libintl.h> */
   return j;  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
 void cutv(char *u,char *v, char*t, char occ)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   int i,lg,j,p=0;  #define FILENAMELENGTH 132
   i=0;  /*#define DEBUG*/
   for(j=0; j<=strlen(t)-1; j++) {  /*#define windows*/
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
   lg=strlen(t);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for(j=0; j<p; j++) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     (u[j] = t[j]);  
   }  #define NINTERVMAX 8
      u[p]='\0';  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    for(j=0; j<= lg; j++) {  #define NCOVMAX 8 /* Maximum number of covariates */
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define MAXN 20000
   }  #define YEARM 12. /* Number of months per year */
 }  #define AGESUP 130
   #define AGEBASE 40
 /********************** nrerror ********************/  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 void nrerror(char error_text[])  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   fprintf(stderr,"ERREUR ...\n");  #define ODIRSEPARATOR '\\'
   fprintf(stderr,"%s\n",error_text);  #else
   exit(1);  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
 /*********************** vector *******************/  #define ODIRSEPARATOR '/'
 double *vector(int nl, int nh)  #endif
 {  
   double *v;  /* $Id$ */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /* $State$ */
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
 }  char fullversion[]="$Revision$ $Date$"; 
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 /************************ free vector ******************/  int nvar;
 void free_vector(double*v, int nl, int nh)  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 {  int npar=NPARMAX;
   free((FREE_ARG)(v+nl-NR_END));  int nlstate=2; /* Number of live states */
 }  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 /************************ivector *******************************/  int popbased=0;
 int *ivector(long nl,long nh)  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   int *v;  int maxwav; /* Maxim number of waves */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int jmin, jmax; /* min, max spacing between 2 waves */
   if (!v) nrerror("allocation failure in ivector");  int gipmx, gsw; /* Global variables on the number of contributions 
   return v-nl+NR_END;                     to the likelihood and the sum of weights (done by funcone)*/
 }  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 /******************free ivector **************************/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 void free_ivector(int *v, long nl, long nh)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   free((FREE_ARG)(v+nl-NR_END));  double jmean; /* Mean space between 2 waves */
 }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /******************* imatrix *******************************/  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  FILE *ficlog, *ficrespow;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  long ipmx; /* Number of contributions */
   int **m;  double sw; /* Sum of weights */
    char filerespow[FILENAMELENGTH];
   /* allocate pointers to rows */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  FILE *ficresilk;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m += NR_END;  FILE *ficresprobmorprev;
   m -= nrl;  FILE *fichtm, *fichtmcov; /* Html File */
    FILE *ficreseij;
    char filerese[FILENAMELENGTH];
   /* allocate rows and set pointers to them */  FILE  *ficresvij;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  char fileresv[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE  *ficresvpl;
   m[nrl] += NR_END;  char fileresvpl[FILENAMELENGTH];
   m[nrl] -= ncl;  char title[MAXLINE];
    char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
    char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   /* return pointer to array of pointers to rows */  char command[FILENAMELENGTH];
   return m;  int  outcmd=0;
 }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  char filelog[FILENAMELENGTH]; /* Log file */
       int **m;  char filerest[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  char fileregp[FILENAMELENGTH];
      /* free an int matrix allocated by imatrix() */  char popfile[FILENAMELENGTH];
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   free((FREE_ARG) (m+nrl-NR_END));  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /******************* matrix *******************************/  extern int gettimeofday();
 double **matrix(long nrl, long nrh, long ncl, long nch)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  extern long time();
   double **m;  char strcurr[80], strfor[80];
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NR_END 1
   if (!m) nrerror("allocation failure 1 in matrix()");  #define FREE_ARG char*
   m += NR_END;  #define FTOL 1.0e-10
   m -= nrl;  
   #define NRANSI 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define ITMAX 200 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define TOL 2.0e-4 
   m[nrl] -= ncl;  
   #define CGOLD 0.3819660 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define ZEPS 1.0e-10 
   return m;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 }  
   #define GOLD 1.618034 
 /*************************free matrix ************************/  #define GLIMIT 100.0 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define TINY 1.0e-20 
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  static double maxarg1,maxarg2;
   free((FREE_ARG)(m+nrl-NR_END));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /******************* ma3x *******************************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define rint(a) floor(a+0.5)
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  static double sqrarg;
   double ***m;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int agegomp= AGEGOMP;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  int imx; 
   m -= nrl;  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int estepm;
   m[nrl] += NR_END;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m[nrl] -= ncl;  
   int m,nb;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  double **pmmij, ***probs;
   m[nrl][ncl] += NR_END;  double *ageexmed,*agecens;
   m[nrl][ncl] -= nll;  double dateintmean=0;
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  double *weight;
    int **s; /* Status */
   for (i=nrl+1; i<=nrh; i++) {  double *agedc, **covar, idx;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     for (j=ncl+1; j<=nch; j++)  double *lsurv, *lpop, *tpop;
       m[i][j]=m[i][j-1]+nlay;  
   }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   return m;  double ftolhess; /* Tolerance for computing hessian */
 }  
   /**************** split *************************/
 /*************************free ma3x ************************/  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  {
 {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    */ 
   free((FREE_ARG)(m+nrl-NR_END));    char  *ss;                            /* pointer */
 }    int   l1, l2;                         /* length counters */
   
 /***************** f1dim *************************/    l1 = strlen(path );                   /* length of path */
 extern int ncom;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 extern double *pcom,*xicom;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 extern double (*nrfunc)(double []);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
        strcpy( name, path );               /* we got the fullname name because no directory */
 double f1dim(double x)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   int j;      /* get current working directory */
   double f;      /*    extern  char* getcwd ( char *buf , int len);*/
   double *xt;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
          return( GLOCK_ERROR_GETCWD );
   xt=vector(1,ncom);      }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      /* got dirc from getcwd*/
   f=(*nrfunc)(xt);      printf(" DIRC = %s \n",dirc);
   free_vector(xt,1,ncom);    } else {                              /* strip direcotry from path */
   return f;      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 /*****************brent *************************/      strcpy( name, ss );         /* save file name */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {      dirc[l1-l2] = 0;                    /* add zero */
   int iter;      printf(" DIRC2 = %s \n",dirc);
   double a,b,d,etemp;    }
   double fu,fv,fw,fx;    /* We add a separator at the end of dirc if not exists */
   double ftemp;    l1 = strlen( dirc );                  /* length of directory */
   double p,q,r,tol1,tol2,u,v,w,x,xm;    if( dirc[l1-1] != DIRSEPARATOR ){
   double e=0.0;      dirc[l1] =  DIRSEPARATOR;
        dirc[l1+1] = 0; 
   a=(ax < cx ? ax : cx);      printf(" DIRC3 = %s \n",dirc);
   b=(ax > cx ? ax : cx);    }
   x=w=v=bx;    ss = strrchr( name, '.' );            /* find last / */
   fw=fv=fx=(*f)(x);    if (ss >0){
   for (iter=1;iter<=ITMAX;iter++) {      ss++;
     xm=0.5*(a+b);      strcpy(ext,ss);                     /* save extension */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      l1= strlen( name);
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      l2= strlen(ss)+1;
     printf(".");fflush(stdout);      strncpy( finame, name, l1-l2);
 #ifdef DEBUG      finame[l1-l2]= 0;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    return( 0 );                          /* we're done */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  }
       *xmin=x;  
       return fx;  
     }  /******************************************/
     ftemp=fu;  
     if (fabs(e) > tol1) {  void replace_back_to_slash(char *s, char*t)
       r=(x-w)*(fx-fv);  {
       q=(x-v)*(fx-fw);    int i;
       p=(x-v)*q-(x-w)*r;    int lg=0;
       q=2.0*(q-r);    i=0;
       if (q > 0.0) p = -p;    lg=strlen(t);
       q=fabs(q);    for(i=0; i<= lg; i++) {
       etemp=e;      (s[i] = t[i]);
       e=d;      if (t[i]== '\\') s[i]='/';
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  
         d=p/q;  int nbocc(char *s, char occ)
         u=x+d;  {
         if (u-a < tol2 || b-u < tol2)    int i,j=0;
           d=SIGN(tol1,xm-x);    int lg=20;
       }    i=0;
     } else {    lg=strlen(s);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    for(i=0; i<= lg; i++) {
     }    if  (s[i] == occ ) j++;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    }
     fu=(*f)(u);    return j;
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  void cutv(char *u,char *v, char*t, char occ)
         SHFT(fv,fw,fx,fu)  {
         } else {    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
           if (u < x) a=u; else b=u;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
           if (fu <= fw || w == x) {       gives u="abcedf" and v="ghi2j" */
             v=w;    int i,lg,j,p=0;
             w=u;    i=0;
             fv=fw;    for(j=0; j<=strlen(t)-1; j++) {
             fw=fu;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
           } else if (fu <= fv || v == x || v == w) {    }
             v=u;  
             fv=fu;    lg=strlen(t);
           }    for(j=0; j<p; j++) {
         }      (u[j] = t[j]);
   }    }
   nrerror("Too many iterations in brent");       u[p]='\0';
   *xmin=x;  
   return fx;     for(j=0; j<= lg; j++) {
 }      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
 /****************** mnbrak ***********************/  }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /********************** nrerror ********************/
             double (*func)(double))  
 {  void nrerror(char error_text[])
   double ulim,u,r,q, dum;  {
   double fu;    fprintf(stderr,"ERREUR ...\n");
      fprintf(stderr,"%s\n",error_text);
   *fa=(*func)(*ax);    exit(EXIT_FAILURE);
   *fb=(*func)(*bx);  }
   if (*fb > *fa) {  /*********************** vector *******************/
     SHFT(dum,*ax,*bx,dum)  double *vector(int nl, int nh)
       SHFT(dum,*fb,*fa,dum)  {
       }    double *v;
   *cx=(*bx)+GOLD*(*bx-*ax);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   *fc=(*func)(*cx);    if (!v) nrerror("allocation failure in vector");
   while (*fb > *fc) {    return v-nl+NR_END;
     r=(*bx-*ax)*(*fb-*fc);  }
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /************************ free vector ******************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  void free_vector(double*v, int nl, int nh)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    free((FREE_ARG)(v+nl-NR_END));
       fu=(*func)(u);  }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /************************ivector *******************************/
       if (fu < *fc) {  int *ivector(long nl,long nh)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  {
           SHFT(*fb,*fc,fu,(*func)(u))    int *v;
           }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    if (!v) nrerror("allocation failure in ivector");
       u=ulim;    return v-nl+NR_END;
       fu=(*func)(u);  }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /******************free ivector **************************/
       fu=(*func)(u);  void free_ivector(int *v, long nl, long nh)
     }  {
     SHFT(*ax,*bx,*cx,u)    free((FREE_ARG)(v+nl-NR_END));
       SHFT(*fa,*fb,*fc,fu)  }
       }  
 }  /************************lvector *******************************/
   long *lvector(long nl,long nh)
 /*************** linmin ************************/  {
     long *v;
 int ncom;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 double *pcom,*xicom;    if (!v) nrerror("allocation failure in ivector");
 double (*nrfunc)(double []);    return v-nl+NR_END;
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /******************free lvector **************************/
   double brent(double ax, double bx, double cx,  void free_lvector(long *v, long nl, long nh)
                double (*f)(double), double tol, double *xmin);  {
   double f1dim(double x);    free((FREE_ARG)(v+nl-NR_END));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  }
               double *fc, double (*func)(double));  
   int j;  /******************* imatrix *******************************/
   double xx,xmin,bx,ax;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double fx,fb,fa;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
    { 
   ncom=n;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   pcom=vector(1,n);    int **m; 
   xicom=vector(1,n);    
   nrfunc=func;    /* allocate pointers to rows */ 
   for (j=1;j<=n;j++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     pcom[j]=p[j];    if (!m) nrerror("allocation failure 1 in matrix()"); 
     xicom[j]=xi[j];    m += NR_END; 
   }    m -= nrl; 
   ax=0.0;    
   xx=1.0;    
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    /* allocate rows and set pointers to them */ 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m[nrl] += NR_END; 
 #endif    m[nrl] -= ncl; 
   for (j=1;j<=n;j++) {    
     xi[j] *= xmin;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     p[j] += xi[j];    
   }    /* return pointer to array of pointers to rows */ 
   free_vector(xicom,1,n);    return m; 
   free_vector(pcom,1,n);  } 
 }  
   /****************** free_imatrix *************************/
 /*************** powell ************************/  void free_imatrix(m,nrl,nrh,ncl,nch)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        int **m;
             double (*func)(double []))        long nch,ncl,nrh,nrl; 
 {       /* free an int matrix allocated by imatrix() */ 
   void linmin(double p[], double xi[], int n, double *fret,  { 
               double (*func)(double []));    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   int i,ibig,j;    free((FREE_ARG) (m+nrl-NR_END)); 
   double del,t,*pt,*ptt,*xit;  } 
   double fp,fptt;  
   double *xits;  /******************* matrix *******************************/
   pt=vector(1,n);  double **matrix(long nrl, long nrh, long ncl, long nch)
   ptt=vector(1,n);  {
   xit=vector(1,n);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   xits=vector(1,n);    double **m;
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (*iter=1;;++(*iter)) {    if (!m) nrerror("allocation failure 1 in matrix()");
     fp=(*fret);    m += NR_END;
     ibig=0;    m -= nrl;
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (i=1;i<=n;i++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       printf(" %d %.12f",i, p[i]);    m[nrl] += NR_END;
     printf("\n");    m[nrl] -= ncl;
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fptt=(*fret);    return m;
 #ifdef DEBUG    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       printf("fret=%lf \n",*fret);     */
 #endif  }
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  /*************************free matrix ************************/
       if (fabs(fptt-(*fret)) > del) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         del=fabs(fptt-(*fret));  {
         ibig=i;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /******************* ma3x *******************************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         printf(" x(%d)=%.12e",j,xit[j]);  {
       }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       for(j=1;j<=n;j++)    double ***m;
         printf(" p=%.12e",p[j]);  
       printf("\n");    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #endif    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m -= nrl;
 #ifdef DEBUG  
       int k[2],l;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       k[0]=1;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       k[1]=-1;    m[nrl] += NR_END;
       printf("Max: %.12e",(*func)(p));    m[nrl] -= ncl;
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       printf("\n");  
       for(l=0;l<=1;l++) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         for (j=1;j<=n;j++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m[nrl][ncl] += NR_END;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl][ncl] -= nll;
         }    for (j=ncl+1; j<=nch; j++) 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      m[nrl][j]=m[nrl][j-1]+nlay;
       }    
 #endif    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
       free_vector(xit,1,n);        m[i][j]=m[i][j-1]+nlay;
       free_vector(xits,1,n);    }
       free_vector(ptt,1,n);    return m; 
       free_vector(pt,1,n);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       return;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     }    */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /*************************free ma3x ************************/
       xit[j]=p[j]-pt[j];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       pt[j]=p[j];  {
     }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     fptt=(*func)(ptt);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     if (fptt < fp) {    free((FREE_ARG)(m+nrl-NR_END));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /*************** function subdirf ***********/
         for (j=1;j<=n;j++) {  char *subdirf(char fileres[])
           xi[j][ibig]=xi[j][n];  {
           xi[j][n]=xit[j];    /* Caution optionfilefiname is hidden */
         }    strcpy(tmpout,optionfilefiname);
 #ifdef DEBUG    strcat(tmpout,"/"); /* Add to the right */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    strcat(tmpout,fileres);
         for(j=1;j<=n;j++)    return tmpout;
           printf(" %.12e",xit[j]);  }
         printf("\n");  
 #endif  /*************** function subdirf2 ***********/
       }  char *subdirf2(char fileres[], char *preop)
     }  {
   }    
 }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 /**** Prevalence limit ****************/    strcat(tmpout,"/");
     strcat(tmpout,preop);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    strcat(tmpout,fileres);
 {    return tmpout;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  }
      matrix by transitions matrix until convergence is reached */  
   /*************** function subdirf3 ***********/
   int i, ii,j,k;  char *subdirf3(char fileres[], char *preop, char *preop2)
   double min, max, maxmin, maxmax,sumnew=0.;  {
   double **matprod2();    
   double **out, cov[NCOVMAX], **pmij();    /* Caution optionfilefiname is hidden */
   double **newm;    strcpy(tmpout,optionfilefiname);
   double agefin, delaymax=50 ; /* Max number of years to converge */    strcat(tmpout,"/");
     strcat(tmpout,preop);
   for (ii=1;ii<=nlstate+ndeath;ii++)    strcat(tmpout,preop2);
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,fileres);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return tmpout;
     }  }
   
    cov[1]=1.;  /***************** f1dim *************************/
    extern int ncom; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  extern double *pcom,*xicom;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  extern double (*nrfunc)(double []); 
     newm=savm;   
     /* Covariates have to be included here again */  double f1dim(double x) 
      cov[2]=agefin;  { 
      int j; 
       for (k=1; k<=cptcovn;k++) {    double f;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double *xt; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/   
       }    xt=vector(1,ncom); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for (k=1; k<=cptcovprod;k++)    f=(*nrfunc)(xt); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    free_vector(xt,1,ncom); 
     return f; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  } 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /*****************brent *************************/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
     savm=oldm;    int iter; 
     oldm=newm;    double a,b,d,etemp;
     maxmax=0.;    double fu,fv,fw,fx;
     for(j=1;j<=nlstate;j++){    double ftemp;
       min=1.;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       max=0.;    double e=0.0; 
       for(i=1; i<=nlstate; i++) {   
         sumnew=0;    a=(ax < cx ? ax : cx); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    b=(ax > cx ? ax : cx); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    x=w=v=bx; 
         max=FMAX(max,prlim[i][j]);    fw=fv=fx=(*f)(x); 
         min=FMIN(min,prlim[i][j]);    for (iter=1;iter<=ITMAX;iter++) { 
       }      xm=0.5*(a+b); 
       maxmin=max-min;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       maxmax=FMAX(maxmax,maxmin);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
     if(maxmax < ftolpl){      fprintf(ficlog,".");fflush(ficlog);
       return prlim;  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
 /*************** transition probabilities ***************/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        return fx; 
 {      } 
   double s1, s2;      ftemp=fu;
   /*double t34;*/      if (fabs(e) > tol1) { 
   int i,j,j1, nc, ii, jj;        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
     for(i=1; i<= nlstate; i++){        p=(x-v)*q-(x-w)*r; 
     for(j=1; j<i;j++){        q=2.0*(q-r); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        if (q > 0.0) p = -p; 
         /*s2 += param[i][j][nc]*cov[nc];*/        q=fabs(q); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        etemp=e; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        e=d; 
       }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       ps[i][j]=s2;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        else { 
     }          d=p/q; 
     for(j=i+1; j<=nlstate+ndeath;j++){          u=x+d; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          if (u-a < tol2 || b-u < tol2) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            d=SIGN(tol1,xm-x); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        } 
       }      } else { 
       ps[i][j]=s2;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
   }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     /*ps[3][2]=1;*/      fu=(*f)(u); 
       if (fu <= fx) { 
   for(i=1; i<= nlstate; i++){        if (u >= x) a=x; else b=x; 
      s1=0;        SHFT(v,w,x,u) 
     for(j=1; j<i; j++)          SHFT(fv,fw,fx,fu) 
       s1+=exp(ps[i][j]);          } else { 
     for(j=i+1; j<=nlstate+ndeath; j++)            if (u < x) a=u; else b=u; 
       s1+=exp(ps[i][j]);            if (fu <= fw || w == x) { 
     ps[i][i]=1./(s1+1.);              v=w; 
     for(j=1; j<i; j++)              w=u; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];              fv=fw; 
     for(j=i+1; j<=nlstate+ndeath; j++)              fw=fu; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            } else if (fu <= fv || v == x || v == w) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */              v=u; 
   } /* end i */              fv=fu; 
             } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          } 
     for(jj=1; jj<= nlstate+ndeath; jj++){    } 
       ps[ii][jj]=0;    nrerror("Too many iterations in brent"); 
       ps[ii][ii]=1;    *xmin=x; 
     }    return fx; 
   }  } 
   
   /****************** mnbrak ***********************/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
      printf("%lf ",ps[ii][jj]);              double (*func)(double)) 
    }  { 
     printf("\n ");    double ulim,u,r,q, dum;
     }    double fu; 
     printf("\n ");printf("%lf ",cov[2]);*/   
 /*    *fa=(*func)(*ax); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    *fb=(*func)(*bx); 
   goto end;*/    if (*fb > *fa) { 
     return ps;      SHFT(dum,*ax,*bx,dum) 
 }        SHFT(dum,*fb,*fa,dum) 
         } 
 /**************** Product of 2 matrices ******************/    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    while (*fb > *fc) { 
 {      r=(*bx-*ax)*(*fb-*fc); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      q=(*bx-*cx)*(*fb-*fa); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   /* in, b, out are matrice of pointers which should have been initialized        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
      before: only the contents of out is modified. The function returns      ulim=(*bx)+GLIMIT*(*cx-*bx); 
      a pointer to pointers identical to out */      if ((*bx-u)*(u-*cx) > 0.0) { 
   long i, j, k;        fu=(*func)(u); 
   for(i=nrl; i<= nrh; i++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(k=ncolol; k<=ncoloh; k++)        fu=(*func)(u); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        if (fu < *fc) { 
         out[i][k] +=in[i][j]*b[j][k];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
   return out;            } 
 }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
         fu=(*func)(u); 
 /************* Higher Matrix Product ***************/      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        fu=(*func)(u); 
 {      } 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      SHFT(*ax,*bx,*cx,u) 
      duration (i.e. until        SHFT(*fa,*fb,*fc,fu) 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  } 
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  /*************** linmin ************************/
      included manually here.  
   int ncom; 
      */  double *pcom,*xicom;
   double (*nrfunc)(double []); 
   int i, j, d, h, k;   
   double **out, cov[NCOVMAX];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double **newm;  { 
     double brent(double ax, double bx, double cx, 
   /* Hstepm could be zero and should return the unit matrix */                 double (*f)(double), double tol, double *xmin); 
   for (i=1;i<=nlstate+ndeath;i++)    double f1dim(double x); 
     for (j=1;j<=nlstate+ndeath;j++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       oldm[i][j]=(i==j ? 1.0 : 0.0);                double *fc, double (*func)(double)); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    int j; 
     }    double xx,xmin,bx,ax; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double fx,fb,fa;
   for(h=1; h <=nhstepm; h++){   
     for(d=1; d <=hstepm; d++){    ncom=n; 
       newm=savm;    pcom=vector(1,n); 
       /* Covariates have to be included here again */    xicom=vector(1,n); 
       cov[1]=1.;    nrfunc=func; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    for (j=1;j<=n;j++) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      pcom[j]=p[j]; 
       for (k=1; k<=cptcovage;k++)      xicom[j]=xi[j]; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    } 
       for (k=1; k<=cptcovprod;k++)    ax=0.0; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  #ifdef DEBUG
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
       savm=oldm;    for (j=1;j<=n;j++) { 
       oldm=newm;      xi[j] *= xmin; 
     }      p[j] += xi[j]; 
     for(i=1; i<=nlstate+ndeath; i++)    } 
       for(j=1;j<=nlstate+ndeath;j++) {    free_vector(xicom,1,n); 
         po[i][j][h]=newm[i][j];    free_vector(pcom,1,n); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  } 
          */  
       }  char *asc_diff_time(long time_sec, char ascdiff[])
   } /* end h */  {
   return po;    long sec_left, days, hours, minutes;
 }    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
 /*************** log-likelihood *************/    sec_left = (sec_left) %(60*60);
 double func( double *x)    minutes = (sec_left) /60;
 {    sec_left = (sec_left) % (60);
   int i, ii, j, k, mi, d, kk;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    return ascdiff;
   double **out;  }
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  /*************** powell ************************/
   long ipmx;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   /*extern weight */              double (*func)(double [])) 
   /* We are differentiating ll according to initial status */  { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    void linmin(double p[], double xi[], int n, double *fret, 
   /*for(i=1;i<imx;i++)                double (*func)(double [])); 
     printf(" %d\n",s[4][i]);    int i,ibig,j; 
   */    double del,t,*pt,*ptt,*xit;
   cov[1]=1.;    double fp,fptt;
     double *xits;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    int niterf, itmp;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    pt=vector(1,n); 
     for(mi=1; mi<= wav[i]-1; mi++){    ptt=vector(1,n); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    xit=vector(1,n); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    xits=vector(1,n); 
       for(d=0; d<dh[mi][i]; d++){    *fret=(*func)(p); 
         newm=savm;    for (j=1;j<=n;j++) pt[j]=p[j]; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    for (*iter=1;;++(*iter)) { 
         for (kk=1; kk<=cptcovage;kk++) {      fp=(*fret); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      ibig=0; 
         }      del=0.0; 
              last_time=curr_time;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      (void) gettimeofday(&curr_time,&tzp);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         savm=oldm;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
         oldm=newm;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
              */
             for (i=1;i<=n;i++) {
       } /* end mult */        printf(" %d %.12f",i, p[i]);
              fprintf(ficlog," %d %.12lf",i, p[i]);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        fprintf(ficrespow," %.12lf", p[i]);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      }
       ipmx +=1;      printf("\n");
       sw += weight[i];      fprintf(ficlog,"\n");
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      fprintf(ficrespow,"\n");fflush(ficrespow);
     } /* end of wave */      if(*iter <=3){
   } /* end of individual */        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /*       asctime_r(&tm,strcurr); */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        forecast_time=curr_time; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        itmp = strlen(strcurr);
   return -l;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 /*********** Maximum Likelihood Estimation ***************/        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          tmf = *localtime(&forecast_time.tv_sec);
 {  /*      asctime_r(&tmf,strfor); */
   int i,j, iter;          strcpy(strfor,asctime(&tmf));
   double **xi,*delti;          itmp = strlen(strfor);
   double fret;          if(strfor[itmp-1]=='\n')
   xi=matrix(1,npar,1,npar);          strfor[itmp-1]='\0';
   for (i=1;i<=npar;i++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (j=1;j<=npar;j++)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       xi[i][j]=(i==j ? 1.0 : 0.0);        }
   printf("Powell\n");      }
   powell(p,xi,npar,ftol,&iter,&fret,func);      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        fptt=(*fret); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
 }        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
 /**** Computes Hessian and covariance matrix ***/        printf("%d",i);fflush(stdout);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        fprintf(ficlog,"%d",i);fflush(ficlog);
 {        linmin(p,xit,n,fret,func); 
   double  **a,**y,*x,pd;        if (fabs(fptt-(*fret)) > del) { 
   double **hess;          del=fabs(fptt-(*fret)); 
   int i, j,jk;          ibig=i; 
   int *indx;        } 
   #ifdef DEBUG
   double hessii(double p[], double delta, int theta, double delti[]);        printf("%d %.12e",i,(*fret));
   double hessij(double p[], double delti[], int i, int j);        fprintf(ficlog,"%d %.12e",i,(*fret));
   void lubksb(double **a, int npar, int *indx, double b[]) ;        for (j=1;j<=n;j++) {
   void ludcmp(double **a, int npar, int *indx, double *d) ;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   hess=matrix(1,npar,1,npar);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   printf("\nCalculation of the hessian matrix. Wait...\n");        for(j=1;j<=n;j++) {
   for (i=1;i<=npar;i++){          printf(" p=%.12e",p[j]);
     printf("%d",i);fflush(stdout);          fprintf(ficlog," p=%.12e",p[j]);
     hess[i][i]=hessii(p,ftolhess,i,delti);        }
     /*printf(" %f ",p[i]);*/        printf("\n");
     /*printf(" %lf ",hess[i][i]);*/        fprintf(ficlog,"\n");
   }  #endif
        } 
   for (i=1;i<=npar;i++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (j=1;j<=npar;j++)  {  #ifdef DEBUG
       if (j>i) {        int k[2],l;
         printf(".%d%d",i,j);fflush(stdout);        k[0]=1;
         hess[i][j]=hessij(p,delti,i,j);        k[1]=-1;
         hess[j][i]=hess[i][j];            printf("Max: %.12e",(*func)(p));
         /*printf(" %lf ",hess[i][j]);*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
       }        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
   printf("\n");        }
         printf("\n");
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        fprintf(ficlog,"\n");
          for(l=0;l<=1;l++) {
   a=matrix(1,npar,1,npar);          for (j=1;j<=n;j++) {
   y=matrix(1,npar,1,npar);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   x=vector(1,npar);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   indx=ivector(1,npar);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (i=1;i<=npar;i++)          }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   for (j=1;j<=npar;j++) {  #endif
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  
     lubksb(a,npar,indx,x);        free_vector(xit,1,n); 
     for (i=1;i<=npar;i++){        free_vector(xits,1,n); 
       matcov[i][j]=x[i];        free_vector(ptt,1,n); 
     }        free_vector(pt,1,n); 
   }        return; 
       } 
   printf("\n#Hessian matrix#\n");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for (i=1;i<=npar;i++) {      for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++) {        ptt[j]=2.0*p[j]-pt[j]; 
       printf("%.3e ",hess[i][j]);        xit[j]=p[j]-pt[j]; 
     }        pt[j]=p[j]; 
     printf("\n");      } 
   }      fptt=(*func)(ptt); 
       if (fptt < fp) { 
   /* Recompute Inverse */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for (i=1;i<=npar;i++)        if (t < 0.0) { 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          linmin(p,xit,n,fret,func); 
   ludcmp(a,npar,indx,&pd);          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
   /*  printf("\n#Hessian matrix recomputed#\n");            xi[j][n]=xit[j]; 
           }
   for (j=1;j<=npar;j++) {  #ifdef DEBUG
     for (i=1;i<=npar;i++) x[i]=0;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     x[j]=1;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     lubksb(a,npar,indx,x);          for(j=1;j<=n;j++){
     for (i=1;i<=npar;i++){            printf(" %.12e",xit[j]);
       y[i][j]=x[i];            fprintf(ficlog," %.12e",xit[j]);
       printf("%.3e ",y[i][j]);          }
     }          printf("\n");
     printf("\n");          fprintf(ficlog,"\n");
   }  #endif
   */        }
       } 
   free_matrix(a,1,npar,1,npar);    } 
   free_matrix(y,1,npar,1,npar);  } 
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  /**** Prevalence limit (stable prevalence)  ****************/
   free_matrix(hess,1,npar,1,npar);  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
 }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])    int i, ii,j,k;
 {    double min, max, maxmin, maxmax,sumnew=0.;
   int i;    double **matprod2();
   int l=1, lmax=20;    double **out, cov[NCOVMAX], **pmij();
   double k1,k2;    double **newm;
   double p2[NPARMAX+1];    double agefin, delaymax=50 ; /* Max number of years to converge */
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    for (ii=1;ii<=nlstate+ndeath;ii++)
   double fx;      for (j=1;j<=nlstate+ndeath;j++){
   int k=0,kmax=10;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double l1;      }
   
   fx=func(x);     cov[1]=1.;
   for (i=1;i<=npar;i++) p2[i]=x[i];   
   for(l=0 ; l <=lmax; l++){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     l1=pow(10,l);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     delts=delt;      newm=savm;
     for(k=1 ; k <kmax; k=k+1){      /* Covariates have to be included here again */
       delt = delta*(l1*k);       cov[2]=agefin;
       p2[theta]=x[theta] +delt;    
       k1=func(p2)-fx;        for (k=1; k<=cptcovn;k++) {
       p2[theta]=x[theta]-delt;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       k2=func(p2)-fx;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       /*res= (k1-2.0*fx+k2)/delt/delt; */        }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              for (k=1; k<=cptcovprod;k++)
 #ifdef DEBUG          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         k=kmax;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      savm=oldm;
         k=kmax; l=lmax*10.;      oldm=newm;
       }      maxmax=0.;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      for(j=1;j<=nlstate;j++){
         delts=delt;        min=1.;
       }        max=0.;
     }        for(i=1; i<=nlstate; i++) {
   }          sumnew=0;
   delti[theta]=delts;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   return res;          prlim[i][j]= newm[i][j]/(1-sumnew);
            max=FMAX(max,prlim[i][j]);
 }          min=FMIN(min,prlim[i][j]);
         }
 double hessij( double x[], double delti[], int thetai,int thetaj)        maxmin=max-min;
 {        maxmax=FMAX(maxmax,maxmin);
   int i;      }
   int l=1, l1, lmax=20;      if(maxmax < ftolpl){
   double k1,k2,k3,k4,res,fx;        return prlim;
   double p2[NPARMAX+1];      }
   int k;    }
   }
   fx=func(x);  
   for (k=1; k<=2; k++) {  /*************** transition probabilities ***************/ 
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  {
     k1=func(p2)-fx;    double s1, s2;
      /*double t34;*/
     p2[thetai]=x[thetai]+delti[thetai]/k;    int i,j,j1, nc, ii, jj;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;      for(i=1; i<= nlstate; i++){
          for(j=1; j<i;j++){
     p2[thetai]=x[thetai]-delti[thetai]/k;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            /*s2 += param[i][j][nc]*cov[nc];*/
     k3=func(p2)-fx;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
    /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     p2[thetai]=x[thetai]-delti[thetai]/k;          }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          ps[i][j]=s2;
     k4=func(p2)-fx;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        }
 #ifdef DEBUG        for(j=i+1; j<=nlstate+ndeath;j++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 #endif            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   return res;          }
 }          ps[i][j]=s2;
         }
 /************** Inverse of matrix **************/      }
 void ludcmp(double **a, int n, int *indx, double *d)      /*ps[3][2]=1;*/
 {      
   int i,imax,j,k;      for(i=1; i<= nlstate; i++){
   double big,dum,sum,temp;        s1=0;
   double *vv;        for(j=1; j<i; j++)
            s1+=exp(ps[i][j]);
   vv=vector(1,n);        for(j=i+1; j<=nlstate+ndeath; j++)
   *d=1.0;          s1+=exp(ps[i][j]);
   for (i=1;i<=n;i++) {        ps[i][i]=1./(s1+1.);
     big=0.0;        for(j=1; j<i; j++)
     for (j=1;j<=n;j++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(j=i+1; j<=nlstate+ndeath; j++)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          ps[i][j]= exp(ps[i][j])*ps[i][i];
     vv[i]=1.0/big;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   }      } /* end i */
   for (j=1;j<=n;j++) {      
     for (i=1;i<j;i++) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       sum=a[i][j];        for(jj=1; jj<= nlstate+ndeath; jj++){
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          ps[ii][jj]=0;
       a[i][j]=sum;          ps[ii][ii]=1;
     }        }
     big=0.0;      }
     for (i=j;i<=n;i++) {      
       sum=a[i][j];  
       for (k=1;k<j;k++)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         sum -= a[i][k]*a[k][j];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       a[i][j]=sum;  /*         printf("ddd %lf ",ps[ii][jj]); */
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /*       } */
         big=dum;  /*       printf("\n "); */
         imax=i;  /*        } */
       }  /*        printf("\n ");printf("%lf ",cov[2]); */
     }         /*
     if (j != imax) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       for (k=1;k<=n;k++) {        goto end;*/
         dum=a[imax][k];      return ps;
         a[imax][k]=a[j][k];  }
         a[j][k]=dum;  
       }  /**************** Product of 2 matrices ******************/
       *d = -(*d);  
       vv[imax]=vv[j];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     }  {
     indx[j]=imax;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     if (a[j][j] == 0.0) a[j][j]=TINY;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     if (j != n) {    /* in, b, out are matrice of pointers which should have been initialized 
       dum=1.0/(a[j][j]);       before: only the contents of out is modified. The function returns
       for (i=j+1;i<=n;i++) a[i][j] *= dum;       a pointer to pointers identical to out */
     }    long i, j, k;
   }    for(i=nrl; i<= nrh; i++)
   free_vector(vv,1,n);  /* Doesn't work */      for(k=ncolol; k<=ncoloh; k++)
 ;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
 }          out[i][k] +=in[i][j]*b[j][k];
   
 void lubksb(double **a, int n, int *indx, double b[])    return out;
 {  }
   int i,ii=0,ip,j;  
   double sum;  
    /************* Higher Matrix Product ***************/
   for (i=1;i<=n;i++) {  
     ip=indx[i];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     sum=b[ip];  {
     b[ip]=b[i];    /* Computes the transition matrix starting at age 'age' over 
     if (ii)       'nhstepm*hstepm*stepm' months (i.e. until
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     else if (sum) ii=i;       nhstepm*hstepm matrices. 
     b[i]=sum;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   }       (typically every 2 years instead of every month which is too big 
   for (i=n;i>=1;i--) {       for the memory).
     sum=b[i];       Model is determined by parameters x and covariates have to be 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       included manually here. 
     b[i]=sum/a[i][i];  
   }       */
 }  
     int i, j, d, h, k;
 /************ Frequencies ********************/    double **out, cov[NCOVMAX];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    double **newm;
 {  /* Some frequencies */  
      /* Hstepm could be zero and should return the unit matrix */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    for (i=1;i<=nlstate+ndeath;i++)
   double ***freq; /* Frequencies */      for (j=1;j<=nlstate+ndeath;j++){
   double *pp;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double pos, k2, dateintsum=0,k2cpt=0;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   FILE *ficresp;      }
   char fileresp[FILENAMELENGTH];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(h=1; h <=nhstepm; h++){
   pp=vector(1,nlstate);      for(d=1; d <=hstepm; d++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        newm=savm;
   strcpy(fileresp,"p");        /* Covariates have to be included here again */
   strcat(fileresp,fileres);        cov[1]=1.;
   if((ficresp=fopen(fileresp,"w"))==NULL) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     printf("Problem with prevalence resultfile: %s\n", fileresp);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     exit(0);        for (k=1; k<=cptcovage;k++)
   }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for (k=1; k<=cptcovprod;k++)
   j1=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for(k1=1; k1<=j;k1++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for(i1=1; i1<=ncodemax[k1];i1++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       j1++;        savm=oldm;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        oldm=newm;
         scanf("%d", i);*/      }
       for (i=-1; i<=nlstate+ndeath; i++)        for(i=1; i<=nlstate+ndeath; i++)
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for(j=1;j<=nlstate+ndeath;j++) {
           for(m=agemin; m <= agemax+3; m++)          po[i][j][h]=newm[i][j];
             freq[i][jk][m]=0;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
                 */
       dateintsum=0;        }
       k2cpt=0;    } /* end h */
       for (i=1; i<=imx; i++) {    return po;
         bool=1;  }
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*************** log-likelihood *************/
               bool=0;  double func( double *x)
         }  {
         if (bool==1) {    int i, ii, j, k, mi, d, kk;
           for(m=firstpass; m<=lastpass; m++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             k2=anint[m][i]+(mint[m][i]/12.);    double **out;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    double sw; /* Sum of weights */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double lli; /* Individual log likelihood */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    int s1, s2;
               if (m<lastpass) {    double bbh, survp;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    long ipmx;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    /*extern weight */
               }    /* We are differentiating ll according to initial status */
                  /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    /*for(i=1;i<imx;i++) 
                 dateintsum=dateintsum+k2;      printf(" %d\n",s[4][i]);
                 k2cpt++;    */
               }    cov[1]=1.;
             }  
           }    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
       }    if(mle==1){
              for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
       if  (cptcovn>0) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficresp, "\n#********** Variable ");            for (j=1;j<=nlstate+ndeath;j++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresp, "**********\n#");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
       for(i=1; i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            newm=savm;
       fprintf(ficresp, "\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
       for(i=(int)agemin; i <= (int)agemax+3; i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(i==(int)agemax+3)            }
           printf("Total");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           printf("Age %d", i);            savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          } /* end mult */
             pp[jk] += freq[jk][m][i];        
         }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         for(jk=1; jk <=nlstate ; jk++){          /* But now since version 0.9 we anticipate for bias at large stepm.
           for(m=-1, pos=0; m <=0 ; m++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             pos += freq[jk][m][i];           * (in months) between two waves is not a multiple of stepm, we rounded to 
           if(pp[jk]>=1.e-10)           * the nearest (and in case of equal distance, to the lowest) interval but now
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           else           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * probability in order to take into account the bias as a fraction of the way
         }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
         for(jk=1; jk <=nlstate ; jk++){           * For stepm=1 the results are the same as for previous versions of Imach.
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           * For stepm > 1 the results are less biased than in previous versions. 
             pp[jk] += freq[jk][m][i];           */
         }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
         for(jk=1,pos=0; jk <=nlstate ; jk++)          bbh=(double)bh[mi][i]/(double)stepm; 
           pos += pp[jk];          /* bias bh is positive if real duration
         for(jk=1; jk <=nlstate ; jk++){           * is higher than the multiple of stepm and negative otherwise.
           if(pos>=1.e-5)           */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           else          if( s2 > nlstate){ 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            /* i.e. if s2 is a death state and if the date of death is known 
           if( i <= (int) agemax){               then the contribution to the likelihood is the probability to 
             if(pos>=1.e-5){               die between last step unit time and current  step unit time, 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);               which is also equal to probability to die before dh 
               probs[i][jk][j1]= pp[jk]/pos;               minus probability to die before dh-stepm . 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/               In version up to 0.92 likelihood was computed
             }          as if date of death was unknown. Death was treated as any other
             else          health state: the date of the interview describes the actual state
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          and not the date of a change in health state. The former idea was
           }          to consider that at each interview the state was recorded
         }          (healthy, disable or death) and IMaCh was corrected; but when we
                  introduced the exact date of death then we should have modified
         for(jk=-1; jk <=nlstate+ndeath; jk++)          the contribution of an exact death to the likelihood. This new
           for(m=-1; m <=nlstate+ndeath; m++)          contribution is smaller and very dependent of the step unit
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          stepm. It is no more the probability to die between last interview
         if(i <= (int) agemax)          and month of death but the probability to survive from last
           fprintf(ficresp,"\n");          interview up to one month before death multiplied by the
         printf("\n");          probability to die within a month. Thanks to Chris
       }          Jackson for correcting this bug.  Former versions increased
     }          mortality artificially. The bad side is that we add another loop
   }          which slows down the processing. The difference can be up to 10%
   dateintmean=dateintsum/k2cpt;          lower mortality.
              */
   fclose(ficresp);            lli=log(out[s1][s2] - savm[s1][s2]);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);  
            } else if  (s2==-2) {
   /* End of Freq */            for (j=1,survp=0. ; j<=nlstate; j++) 
 }              survp += out[s1][j];
             lli= survp;
 /************ Prevalence ********************/          }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          
 {  /* Some frequencies */          else if  (s2==-4) {
              for (j=3,survp=0. ; j<=nlstate; j++) 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;              survp += out[s1][j];
   double ***freq; /* Frequencies */            lli= survp;
   double *pp;          }
   double pos, k2;          
           else if  (s2==-5) {
   pp=vector(1,nlstate);            for (j=1,survp=0. ; j<=2; j++) 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              survp += out[s1][j];
              lli= survp;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          }
   j1=0;  
    
   j=cptcoveff;          else{
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   for(k1=1; k1<=j;k1++){          } 
     for(i1=1; i1<=ncodemax[k1];i1++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       j1++;          /*if(lli ==000.0)*/
                /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for (i=-1; i<=nlstate+ndeath; i++)            ipmx +=1;
         for (jk=-1; jk<=nlstate+ndeath; jk++)            sw += weight[i];
           for(m=agemin; m <= agemax+3; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             freq[i][jk][m]=0;        } /* end of wave */
            } /* end of individual */
       for (i=1; i<=imx; i++) {    }  else if(mle==2){
         bool=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if  (cptcovn>0) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for (z1=1; z1<=cptcoveff; z1++)        for(mi=1; mi<= wav[i]-1; mi++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for (ii=1;ii<=nlstate+ndeath;ii++)
               bool=0;            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (bool==1) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=firstpass; m<=lastpass; m++){            }
             k2=anint[m][i]+(mint[m][i]/12.);          for(d=0; d<=dh[mi][i]; d++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            newm=savm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if(agev[m][i]==1) agev[m][i]=agemax+2;            for (kk=1; kk<=cptcovage;kk++) {
               if (m<lastpass) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 if (calagedate>0)            }
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                 else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            savm=oldm;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            oldm=newm;
               }          } /* end mult */
             }        
           }          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          sw += weight[i];
             pp[jk] += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
           for(m=-1, pos=0; m <=0 ; m++)    }  else if(mle==3){  /* exponential inter-extrapolation */
             pos += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for (j=1;j<=nlstate+ndeath;j++){
             pp[jk] += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                    }
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          for(d=0; d<dh[mi][i]; d++){
                    newm=savm;
         for(jk=1; jk <=nlstate ; jk++){                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if( i <= (int) agemax){            for (kk=1; kk<=cptcovage;kk++) {
             if(pos>=1.e-5){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               probs[i][jk][j1]= pp[jk]/pos;            }
             }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
                    oldm=newm;
       }          } /* end mult */
     }        
   }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   free_vector(pp,1,nlstate);          ipmx +=1;
            sw += weight[i];
 }  /* End of Freq */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 /************* Waves Concatenation ***************/      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for(mi=1; mi<= wav[i]-1; mi++){
      Death is a valid wave (if date is known).          for (ii=1;ii<=nlstate+ndeath;ii++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            for (j=1;j<=nlstate+ndeath;j++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      and mw[mi+1][i]. dh depends on stepm.              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      */            }
           for(d=0; d<dh[mi][i]; d++){
   int i, mi, m;            newm=savm;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      double sum=0., jmean=0.;*/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int j, k=0,jk, ju, jl;            }
   double sum=0.;          
   jmin=1e+5;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   jmax=-1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmean=0.;            savm=oldm;
   for(i=1; i<=imx; i++){            oldm=newm;
     mi=0;          } /* end mult */
     m=firstpass;        
     while(s[m][i] <= nlstate){          s1=s[mw[mi][i]][i];
       if(s[m][i]>=1)          s2=s[mw[mi+1][i]][i];
         mw[++mi][i]=m;          if( s2 > nlstate){ 
       if(m >=lastpass)            lli=log(out[s1][s2] - savm[s1][s2]);
         break;          }else{
       else            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         m++;          }
     }/* end while */          ipmx +=1;
     if (s[m][i] > nlstate){          sw += weight[i];
       mi++;     /* Death is another wave */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /* if(mi==0)  never been interviewed correctly before death */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          /* Only death is a correct wave */        } /* end of wave */
       mw[mi][i]=m;      } /* end of individual */
     }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     wav[i]=mi;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if(mi==0)        for(mi=1; mi<= wav[i]-1; mi++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(mi=1; mi<wav[i];mi++){            }
       if (stepm <=0)          for(d=0; d<dh[mi][i]; d++){
         dh[mi][i]=1;            newm=savm;
       else{            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (s[mw[mi+1][i]][i] > nlstate) {            for (kk=1; kk<=cptcovage;kk++) {
           if (agedc[i] < 2*AGESUP) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            }
           if(j==0) j=1;  /* Survives at least one month after exam */          
           k=k+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (j >= jmax) jmax=j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (j <= jmin) jmin=j;            savm=oldm;
           sum=sum+j;            oldm=newm;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          } /* end mult */
           }        
         }          s1=s[mw[mi][i]][i];
         else{          s2=s[mw[mi+1][i]][i];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           k=k+1;          ipmx +=1;
           if (j >= jmax) jmax=j;          sw += weight[i];
           else if (j <= jmin)jmin=j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           sum=sum+j;        } /* end of wave */
         }      } /* end of individual */
         jk= j/stepm;    } /* End of if */
         jl= j -jk*stepm;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         ju= j -(jk+1)*stepm;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         if(jl <= -ju)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           dh[mi][i]=jk;    return -l;
         else  }
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)  /*************** log-likelihood *************/
           dh[mi][i]=1; /* At least one step */  double funcone( double *x)
       }  {
     }    /* Same as likeli but slower because of a lot of printf and if */
   }    int i, ii, j, k, mi, d, kk;
   jmean=sum/k;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    double **out;
  }    double lli; /* Individual log likelihood */
 /*********** Tricode ****************************/    double llt;
 void tricode(int *Tvar, int **nbcode, int imx)    int s1, s2;
 {    double bbh, survp;
   int Ndum[20],ij=1, k, j, i;    /*extern weight */
   int cptcode=0;    /* We are differentiating ll according to initial status */
   cptcoveff=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
   for (k=0; k<19; k++) Ndum[k]=0;      printf(" %d\n",s[4][i]);
   for (k=1; k<=7; k++) ncodemax[k]=0;    */
     cov[1]=1.;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if (ij > cptcode) cptcode=ij;      for(mi=1; mi<= wav[i]-1; mi++){
     }        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
     for (i=0; i<=cptcode; i++) {            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(Ndum[i]!=0) ncodemax[j]++;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }          }
     ij=1;        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1; i<=ncodemax[j]; i++) {          for (kk=1; kk<=cptcovage;kk++) {
       for (k=0; k<=19; k++) {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (Ndum[k] != 0) {          }
           nbcode[Tvar[j]][ij]=k;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           ij++;          savm=oldm;
         }          oldm=newm;
         if (ij > ncodemax[j]) break;        } /* end mult */
       }          
     }        s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
  for (k=0; k<19; k++) Ndum[k]=0;        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
  for (i=1; i<=ncovmodel-2; i++) {         */
       ij=Tvar[i];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       Ndum[ij]++;          lli=log(out[s1][s2] - savm[s1][s2]);
     }        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
  ij=1;        } else if(mle==2){
  for (i=1; i<=10; i++) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
    if((Ndum[i]!=0) && (i<=ncovcol)){        } else if(mle==3){  /* exponential inter-extrapolation */
      Tvaraff[ij]=i;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      ij++;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
    }          lli=log(out[s1][s2]); /* Original formula */
  }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
            lli=log(out[s1][s2]); /* Original formula */
     cptcoveff=ij-1;        } /* End of if */
 }        ipmx +=1;
         sw += weight[i];
 /*********** Health Expectancies ****************/        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        if(globpr){
           fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 {   %10.6f %10.6f %10.6f ", \
   /* Health expectancies */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   double age, agelim, hf;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double ***p3mat,***varhe;            llt +=ll[k]*gipmx/gsw;
   double **dnewm,**doldm;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   double *xp;          }
   double **gp, **gm;          fprintf(ficresilk," %10.6f\n", -llt);
   double ***gradg, ***trgradg;        }
   int theta;      } /* end of wave */
     } /* end of individual */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   xp=vector(1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   dnewm=matrix(1,nlstate*2,1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   doldm=matrix(1,nlstate*2,1,nlstate*2);    if(globpr==0){ /* First time we count the contributions and weights */
        gipmx=ipmx;
   fprintf(ficreseij,"# Health expectancies\n");      gsw=sw;
   fprintf(ficreseij,"# Age");    }
   for(i=1; i<=nlstate;i++)    return -l;
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");  
   /*************** function likelione ***********/
   if(estepm < stepm){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     printf ("Problem %d lower than %d\n",estepm, stepm);  {
   }    /* This routine should help understanding what is done with 
   else  hstepm=estepm;         the selection of individuals/waves and
   /* We compute the life expectancy from trapezoids spaced every estepm months       to check the exact contribution to the likelihood.
    * This is mainly to measure the difference between two models: for example       Plotting could be done.
    * if stepm=24 months pijx are given only every 2 years and by summing them     */
    * we are calculating an estimate of the Life Expectancy assuming a linear    int k;
    * progression inbetween and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we    if(*globpri !=0){ /* Just counts and sums, no printings */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      strcpy(fileresilk,"ilk"); 
    * to compare the new estimate of Life expectancy with the same linear      strcat(fileresilk,fileres);
    * hypothesis. A more precise result, taking into account a more precise      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
    * curvature will be obtained if estepm is as small as stepm. */        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   /* For example we decided to compute the life expectancy with the smallest unit */      }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
      nhstepm is the number of hstepm from age to agelim      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      nstepm is the number of stepm from age to agelin.      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      Look at hpijx to understand the reason of that which relies in memory size      for(k=1; k<=nlstate; k++) 
      and note for a fixed period like estepm months */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      survival function given by stepm (the optimization length). Unfortunately it    }
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    *fretone=(*funcone)(p);
      results. So we changed our mind and took the option of the best precision.    if(*globpri !=0){
   */      fclose(ficresilk);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
   agelim=AGESUP;    } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    return;
     /* nhstepm age range expressed in number of stepm */  }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  
     /* if (stepm >= YEARM) hstepm=1;*/  /*********** Maximum Likelihood Estimation ***************/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  {
     gp=matrix(0,nhstepm,1,nlstate*2);    int i,j, iter;
     gm=matrix(0,nhstepm,1,nlstate*2);    double **xi;
     double fret;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double fretone; /* Only one call to likelihood */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    /*  char filerespow[FILENAMELENGTH];*/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      xi=matrix(1,npar,1,npar);
      for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     /* Computing Variances of health expectancies */    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
      for(theta=1; theta <=npar; theta++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(i=1; i<=npar; i++){      printf("Problem with resultfile: %s\n", filerespow);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
      for (i=1;i<=nlstate;i++)
       cptj=0;      for(j=1;j<=nlstate+ndeath;j++)
       for(j=1; j<= nlstate; j++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         for(i=1; i<=nlstate; i++){    fprintf(ficrespow,"\n");
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    powell(p,xi,npar,ftol,&iter,&fret,func);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    fclose(ficrespow);
         }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
          fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
        
       for(i=1; i<=npar; i++)  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /**** Computes Hessian and covariance matrix ***/
        void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       cptj=0;  {
       for(j=1; j<= nlstate; j++){    double  **a,**y,*x,pd;
         for(i=1;i<=nlstate;i++){    double **hess;
           cptj=cptj+1;    int i, j,jk;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    int *indx;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       }    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(j=1; j<= nlstate*2; j++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
         for(h=0; h<=nhstepm-1; h++){    double gompertz(double p[]);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    hess=matrix(1,npar,1,npar);
         }  
      }    printf("\nCalculation of the hessian matrix. Wait...\n");
        fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 /* End theta */    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
      
      for(h=0; h<=nhstepm-1; h++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       for(j=1; j<=nlstate*2;j++)      
         for(theta=1; theta <=npar; theta++)      /*  printf(" %f ",p[i]);
           trgradg[h][j][theta]=gradg[h][theta][j];          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
          }
     
      for(i=1;i<=nlstate*2;i++)    for (i=1;i<=npar;i++) {
       for(j=1;j<=nlstate*2;j++)      for (j=1;j<=npar;j++)  {
         varhe[i][j][(int)age] =0.;        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
      printf("%d|",(int)age);fflush(stdout);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      for(h=0;h<=nhstepm-1;h++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
       for(k=0;k<=nhstepm-1;k++){          
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          hess[j][i]=hess[i][j];    
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          /*printf(" %lf ",hess[i][j]);*/
         for(i=1;i<=nlstate*2;i++)        }
           for(j=1;j<=nlstate*2;j++)      }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    }
       }    printf("\n");
     }    fprintf(ficlog,"\n");
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    a=matrix(1,npar,1,npar);
              y=matrix(1,npar,1,npar);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    x=vector(1,npar);
     indx=ivector(1,npar);
         }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     fprintf(ficreseij,"%3.0f",age );    ludcmp(a,npar,indx,&pd);
     cptj=0;  
     for(i=1; i<=nlstate;i++)    for (j=1;j<=npar;j++) {
       for(j=1; j<=nlstate;j++){      for (i=1;i<=npar;i++) x[i]=0;
         cptj++;      x[j]=1;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
     fprintf(ficreseij,"\n");        matcov[i][j]=x[i];
          }
     free_matrix(gm,0,nhstepm,1,nlstate*2);    }
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    printf("\n#Hessian matrix#\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++) { 
   }      for (j=1;j<=npar;j++) { 
   printf("\n");        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
   free_vector(xp,1,npar);      }
   free_matrix(dnewm,1,nlstate*2,1,npar);      printf("\n");
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      fprintf(ficlog,"\n");
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    }
 }  
     /* Recompute Inverse */
 /************ Variance ******************/    for (i=1;i<=npar;i++)
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 {    ludcmp(a,npar,indx,&pd);
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    /*  printf("\n#Hessian matrix recomputed#\n");
   double **newm;  
   double **dnewm,**doldm;    for (j=1;j<=npar;j++) {
   int i, j, nhstepm, hstepm, h, nstepm ;      for (i=1;i<=npar;i++) x[i]=0;
   int k, cptcode;      x[j]=1;
   double *xp;      lubksb(a,npar,indx,x);
   double **gp, **gm;      for (i=1;i<=npar;i++){ 
   double ***gradg, ***trgradg;        y[i][j]=x[i];
   double ***p3mat;        printf("%.3e ",y[i][j]);
   double age,agelim, hf;        fprintf(ficlog,"%.3e ",y[i][j]);
   int theta;      }
       printf("\n");
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      fprintf(ficlog,"\n");
   fprintf(ficresvij,"# Age");    }
   for(i=1; i<=nlstate;i++)    */
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    free_matrix(a,1,npar,1,npar);
   fprintf(ficresvij,"\n");    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
   xp=vector(1,npar);    free_ivector(indx,1,npar);
   dnewm=matrix(1,nlstate,1,npar);    free_matrix(hess,1,npar,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);  
    
   if(estepm < stepm){  }
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  /*************** hessian matrix ****************/
   else  hstepm=estepm;    double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   /* For example we decided to compute the life expectancy with the smallest unit */  {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int i;
      nhstepm is the number of hstepm from age to agelim    int l=1, lmax=20;
      nstepm is the number of stepm from age to agelin.    double k1,k2;
      Look at hpijx to understand the reason of that which relies in memory size    double p2[NPARMAX+1];
      and note for a fixed period like k years */    double res;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      survival function given by stepm (the optimization length). Unfortunately it    double fx;
      means that if the survival funtion is printed only each two years of age and if    int k=0,kmax=10;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double l1;
      results. So we changed our mind and took the option of the best precision.  
   */    fx=func(x);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (i=1;i<=npar;i++) p2[i]=x[i];
   agelim = AGESUP;    for(l=0 ; l <=lmax; l++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      l1=pow(10,l);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      delts=delt;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      for(k=1 ; k <kmax; k=k+1){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        delt = delta*(l1*k);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        p2[theta]=x[theta] +delt;
     gp=matrix(0,nhstepm,1,nlstate);        k1=func(p2)-fx;
     gm=matrix(0,nhstepm,1,nlstate);        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
     for(theta=1; theta <=npar; theta++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
       for(i=1; i<=npar; i++){ /* Computes gradient */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        
       }  #ifdef DEBUG
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
       if (popbased==1) {        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         for(i=1; i<=nlstate;i++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           prlim[i][i]=probs[(int)age][i][ij];          k=kmax;
       }        }
          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       for(j=1; j<= nlstate; j++){          k=kmax; l=lmax*10.;
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          delts=delt;
         }        }
       }      }
        }
       for(i=1; i<=npar; i++) /* Computes gradient */    delti[theta]=delts;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    return res; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
    
       if (popbased==1) {  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         for(i=1; i<=nlstate;i++)  {
           prlim[i][i]=probs[(int)age][i][ij];    int i;
       }    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
       for(j=1; j<= nlstate; j++){    double p2[NPARMAX+1];
         for(h=0; h<=nhstepm; h++){    int k;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    fx=func(x);
         }    for (k=1; k<=2; k++) {
       }      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1; j<= nlstate; j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for(h=0; h<=nhstepm; h++){      k1=func(p2)-fx;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
     } /* End theta */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     for(h=0; h<=nhstepm; h++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(j=1; j<=nlstate;j++)      k3=func(p2)-fx;
         for(theta=1; theta <=npar; theta++)    
           trgradg[h][j][theta]=gradg[h][theta][j];      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      k4=func(p2)-fx;
     for(i=1;i<=nlstate;i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(j=1;j<=nlstate;j++)  #ifdef DEBUG
         vareij[i][j][(int)age] =0.;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(h=0;h<=nhstepm;h++){  #endif
       for(k=0;k<=nhstepm;k++){    }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    return res;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  }
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)  /************** Inverse of matrix **************/
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  void ludcmp(double **a, int n, int *indx, double *d) 
       }  { 
     }    int i,imax,j,k; 
     double big,dum,sum,temp; 
     fprintf(ficresvij,"%.0f ",age );    double *vv; 
     for(i=1; i<=nlstate;i++)   
       for(j=1; j<=nlstate;j++){    vv=vector(1,n); 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    *d=1.0; 
       }    for (i=1;i<=n;i++) { 
     fprintf(ficresvij,"\n");      big=0.0; 
     free_matrix(gp,0,nhstepm,1,nlstate);      for (j=1;j<=n;j++) 
     free_matrix(gm,0,nhstepm,1,nlstate);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      vv[i]=1.0/big; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
   } /* End age */    for (j=1;j<=n;j++) { 
        for (i=1;i<j;i++) { 
   free_vector(xp,1,npar);        sum=a[i][j]; 
   free_matrix(doldm,1,nlstate,1,npar);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   free_matrix(dnewm,1,nlstate,1,nlstate);        a[i][j]=sum; 
       } 
 }      big=0.0; 
       for (i=j;i<=n;i++) { 
 /************ Variance of prevlim ******************/        sum=a[i][j]; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        for (k=1;k<j;k++) 
 {          sum -= a[i][k]*a[k][j]; 
   /* Variance of prevalence limit */        a[i][j]=sum; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double **newm;          big=dum; 
   double **dnewm,**doldm;          imax=i; 
   int i, j, nhstepm, hstepm;        } 
   int k, cptcode;      } 
   double *xp;      if (j != imax) { 
   double *gp, *gm;        for (k=1;k<=n;k++) { 
   double **gradg, **trgradg;          dum=a[imax][k]; 
   double age,agelim;          a[imax][k]=a[j][k]; 
   int theta;          a[j][k]=dum; 
            } 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        *d = -(*d); 
   fprintf(ficresvpl,"# Age");        vv[imax]=vv[j]; 
   for(i=1; i<=nlstate;i++)      } 
       fprintf(ficresvpl," %1d-%1d",i,i);      indx[j]=imax; 
   fprintf(ficresvpl,"\n");      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
   xp=vector(1,npar);        dum=1.0/(a[j][j]); 
   dnewm=matrix(1,nlstate,1,npar);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   doldm=matrix(1,nlstate,1,nlstate);      } 
      } 
   hstepm=1*YEARM; /* Every year of age */    free_vector(vv,1,n);  /* Doesn't work */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  ;
   agelim = AGESUP;  } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  void lubksb(double **a, int n, int *indx, double b[]) 
     if (stepm >= YEARM) hstepm=1;  { 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int i,ii=0,ip,j; 
     gradg=matrix(1,npar,1,nlstate);    double sum; 
     gp=vector(1,nlstate);   
     gm=vector(1,nlstate);    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
     for(theta=1; theta <=npar; theta++){      sum=b[ip]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      b[ip]=b[i]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      if (ii) 
       }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      else if (sum) ii=i; 
       for(i=1;i<=nlstate;i++)      b[i]=sum; 
         gp[i] = prlim[i][i];    } 
        for (i=n;i>=1;i--) { 
       for(i=1; i<=npar; i++) /* Computes gradient */      sum=b[i]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      b[i]=sum/a[i][i]; 
       for(i=1;i<=nlstate;i++)    } 
         gm[i] = prlim[i][i];  } 
   
       for(i=1;i<=nlstate;i++)  /************ Frequencies ********************/
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     } /* End theta */  {  /* Some frequencies */
     
     trgradg =matrix(1,nlstate,1,npar);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
     for(j=1; j<=nlstate;j++)    double ***freq; /* Frequencies */
       for(theta=1; theta <=npar; theta++)    double *pp, **prop;
         trgradg[j][theta]=gradg[theta][j];    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
     for(i=1;i<=nlstate;i++)    char fileresp[FILENAMELENGTH];
       varpl[i][(int)age] =0.;    
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    pp=vector(1,nlstate);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     for(i=1;i<=nlstate;i++)    strcpy(fileresp,"p");
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(ficresvpl,"%.0f ",age );      printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      exit(0);
     fprintf(ficresvpl,"\n");    }
     free_vector(gp,1,nlstate);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     free_vector(gm,1,nlstate);    j1=0;
     free_matrix(gradg,1,npar,1,nlstate);    
     free_matrix(trgradg,1,nlstate,1,npar);    j=cptcoveff;
   } /* End age */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
   free_vector(xp,1,npar);    first=1;
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
 }        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 /************ Variance of one-step probabilities  ******************/          scanf("%d", i);*/
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        for (i=-5; i<=nlstate+ndeath; i++)  
 {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   int i, j,  i1, k1, l1;            for(m=iagemin; m <= iagemax+3; m++)
   int k2, l2, j1,  z1;              freq[i][jk][m]=0;
   int k=0,l, cptcode;  
   int first=1;      for (i=1; i<=nlstate; i++)  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;        for(m=iagemin; m <= iagemax+3; m++)
   double **dnewm,**doldm;          prop[i][m]=0;
   double *xp;        
   double *gp, *gm;        dateintsum=0;
   double **gradg, **trgradg;        k2cpt=0;
   double **mu;        for (i=1; i<=imx; i++) {
   double age,agelim, cov[NCOVMAX];          bool=1;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          if  (cptcovn>0) {
   int theta;            for (z1=1; z1<=cptcoveff; z1++) 
   char fileresprob[FILENAMELENGTH];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   char fileresprobcov[FILENAMELENGTH];                bool=0;
   char fileresprobcor[FILENAMELENGTH];          }
           if (bool==1){
   double ***varpij;            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
   strcpy(fileresprob,"prob");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   strcat(fileresprob,fileres);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     printf("Problem with resultfile: %s\n", fileresprob);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                if (m<lastpass) {
   strcpy(fileresprobcov,"probcov");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   strcat(fileresprobcov,fileres);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {                }
     printf("Problem with resultfile: %s\n", fileresprobcov);                
   }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   strcpy(fileresprobcor,"probcor");                  dateintsum=dateintsum+k2;
   strcat(fileresprobcor,fileres);                  k2cpt++;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {                }
     printf("Problem with resultfile: %s\n", fileresprobcor);                /*}*/
   }            }
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);         
          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  fprintf(ficresp, "#Local time at start: %s", strstart);
   fprintf(ficresprob,"# Age");        if  (cptcovn>0) {
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          fprintf(ficresp, "\n#********** Variable "); 
   fprintf(ficresprobcov,"# Age");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          fprintf(ficresp, "**********\n#");
   fprintf(ficresprobcov,"# Age");        }
         for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   for(i=1; i<=nlstate;i++)        fprintf(ficresp, "\n");
     for(j=1; j<=(nlstate+ndeath);j++){        
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        for(i=iagemin; i <= iagemax+3; i++){
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          if(i==iagemax+3){
       fprintf(ficresprobcor," p%1d-%1d ",i,j);            fprintf(ficlog,"Total");
     }            }else{
   fprintf(ficresprob,"\n");            if(first==1){
   fprintf(ficresprobcov,"\n");              first=0;
   fprintf(ficresprobcor,"\n");              printf("See log file for details...\n");
   xp=vector(1,npar);            }
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            fprintf(ficlog,"Age %d", i);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          }
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          for(jk=1; jk <=nlstate ; jk++){
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   first=1;              pp[jk] += freq[jk][m][i]; 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          for(jk=1; jk <=nlstate ; jk++){
     exit(0);            for(m=-1, pos=0; m <=0 ; m++)
   }              pos += freq[jk][m][i];
   else{            if(pp[jk]>=1.e-10){
     fprintf(ficgp,"\n# Routine varprob");              if(first==1){
   }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {              }
     printf("Problem with html file: %s\n", optionfilehtm);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     exit(0);            }else{
   }              if(first==1)
   else{                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");            }
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          }
   
   }          for(jk=1; jk <=nlstate ; jk++){
   cov[1]=1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   j=cptcoveff;              pp[jk] += freq[jk][m][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          }       
   j1=0;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   for(k1=1; k1<=1;k1++){            pos += pp[jk];
     for(i1=1; i1<=ncodemax[k1];i1++){            posprop += prop[jk][i];
     j1++;          }
           for(jk=1; jk <=nlstate ; jk++){
     if  (cptcovn>0) {            if(pos>=1.e-5){
       fprintf(ficresprob, "\n#********** Variable ");              if(first==1)
       fprintf(ficresprobcov, "\n#********** Variable ");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficgp, "\n#********** Variable ");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");            }else{
       fprintf(ficresprobcor, "\n#********** Variable ");              if(first==1)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresprob, "**********\n#");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
       fprintf(ficresprobcov, "**********\n#");            if( i <= iagemax){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              if(pos>=1.e-5){
       fprintf(ficgp, "**********\n#");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                /*probs[i][jk][j1]= pp[jk]/pos;*/
       fprintf(ficgp, "**********\n#");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              }
       fprintf(fichtm, "**********\n#");              else
     }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                }
       for (age=bage; age<=fage; age ++){          }
         cov[2]=age;          
         for (k=1; k<=cptcovn;k++) {          for(jk=-1; jk <=nlstate+ndeath; jk++)
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            for(m=-1; m <=nlstate+ndeath; m++)
         }              if(freq[jk][m][i] !=0 ) {
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              if(first==1)
         for (k=1; k<=cptcovprod;k++)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                      }
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          if(i <= iagemax)
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            fprintf(ficresp,"\n");
         gp=vector(1,(nlstate)*(nlstate+ndeath));          if(first==1)
         gm=vector(1,(nlstate)*(nlstate+ndeath));            printf("Others in log...\n");
              fprintf(ficlog,"\n");
         for(theta=1; theta <=npar; theta++){        }
           for(i=1; i<=npar; i++)      }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    }
              dateintmean=dateintsum/k2cpt; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);   
              fclose(ficresp);
           k=0;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           for(i=1; i<= (nlstate); i++){    free_vector(pp,1,nlstate);
             for(j=1; j<=(nlstate+ndeath);j++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
               k=k+1;    /* End of Freq */
               gp[k]=pmmij[i][j];  }
             }  
           }  /************ Prevalence ********************/
            void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           for(i=1; i<=npar; i++)  {  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           in each health status at the date of interview (if between dateprev1 and dateprev2).
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       We still use firstpass and lastpass as another selection.
           k=0;    */
           for(i=1; i<=(nlstate); i++){   
             for(j=1; j<=(nlstate+ndeath);j++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
               k=k+1;    double ***freq; /* Frequencies */
               gm[k]=pmmij[i][j];    double *pp, **prop;
             }    double pos,posprop; 
           }    double  y2; /* in fractional years */
          int iagemin, iagemax;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      iagemin= (int) agemin;
         }    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           for(theta=1; theta <=npar; theta++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
             trgradg[j][theta]=gradg[theta][j];    j1=0;
            
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    j=cptcoveff;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
            
         pmij(pmmij,cov,ncovmodel,x,nlstate);    for(k1=1; k1<=j;k1++){
              for(i1=1; i1<=ncodemax[k1];i1++){
         k=0;        j1++;
         for(i=1; i<=(nlstate); i++){        
           for(j=1; j<=(nlstate+ndeath);j++){        for (i=1; i<=nlstate; i++)  
             k=k+1;          for(m=iagemin; m <= iagemax+3; m++)
             mu[k][(int) age]=pmmij[i][j];            prop[i][m]=0.0;
           }       
         }        for (i=1; i<=imx; i++) { /* Each individual */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          bool=1;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          if  (cptcovn>0) {
             varpij[i][j][(int)age] = doldm[i][j];            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         /*printf("\n%d ",(int)age);                bool=0;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          } 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          if (bool==1) { 
      }*/            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         fprintf(ficresprob,"\n%d ",(int)age);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         fprintf(ficresprobcov,"\n%d ",(int)age);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficresprobcor,"\n%d ",(int)age);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);                  prop[s[m][i]][iagemax+3] += weight[i]; 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);                } 
         }              }
         i=0;            } /* end selection of waves */
         for (k=1; k<=(nlstate);k++){          }
           for (l=1; l<=(nlstate+ndeath);l++){        }
             i=i++;        for(i=iagemin; i <= iagemax+3; i++){  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             for (j=1; j<=i;j++){            posprop += prop[jk][i]; 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          } 
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  
             }          for(jk=1; jk <=nlstate ; jk++){     
           }            if( i <=  iagemax){ 
         }/* end of loop for state */              if(posprop>=1.e-5){ 
       } /* end of loop for age */                probs[i][jk][j1]= prop[jk][i]/posprop;
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              } 
       for (k1=1; k1<=(nlstate);k1++){            } 
         for (l1=1; l1<=(nlstate+ndeath);l1++){          }/* end jk */ 
           if(l1==k1) continue;        }/* end i */ 
           i=(k1-1)*(nlstate+ndeath)+l1;      } /* end i1 */
           for (k2=1; k2<=(nlstate);k2++){    } /* end k1 */
             for (l2=1; l2<=(nlstate+ndeath);l2++){    
               if(l2==k2) continue;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
               j=(k2-1)*(nlstate+ndeath)+l2;    /*free_vector(pp,1,nlstate);*/
               if(j<=i) continue;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
               for (age=bage; age<=fage; age ++){  }  /* End of prevalence */
                 if ((int)age %5==0){  
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  /************* Waves Concatenation ***************/
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                   mu1=mu[i][(int) age]/stepm*YEARM ;  {
                   mu2=mu[j][(int) age]/stepm*YEARM;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   /* Computing eigen value of matrix of covariance */       Death is a valid wave (if date is known).
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);       and mw[mi+1][i]. dh depends on stepm.
                   /* Eigen vectors */       */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  
                   v21=sqrt(1.-v11*v11);    int i, mi, m;
                   v12=-v21;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                   v22=v11;       double sum=0., jmean=0.;*/
                   /*printf(fignu*/    int first;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    int j, k=0,jk, ju, jl;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */    double sum=0.;
                   if(first==1){    first=0;
                     first=0;    jmin=1e+5;
                     fprintf(ficgp,"\nset parametric;set nolabel");    jmax=-1;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);    jmean=0.;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    for(i=1; i<=imx; i++){
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);      mi=0;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);      m=firstpass;
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);      while(s[m][i] <= nlstate){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          mw[++mi][i]=m;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        if(m >=lastpass)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          break;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);        else
                   }else{          m++;
                     first=0;      }/* end while */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      if (s[m][i] > nlstate){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);        mi++;     /* Death is another wave */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        /* if(mi==0)  never been interviewed correctly before death */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \           /* Only death is a correct wave */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);        mw[mi][i]=m;
                   }/* if first */      }
                 } /* age mod 5 */  
               } /* end loop age */      wav[i]=mi;
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);      if(mi==0){
               first=1;        nbwarn++;
             } /*l12 */        if(first==0){
           } /* k12 */          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         } /*l1 */          first=1;
       }/* k1 */        }
     } /* loop covariates */        if(first==1){
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      } /* end mi==0 */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    } /* End individuals */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for(i=1; i<=imx; i++){
   }      for(mi=1; mi<wav[i];mi++){
   free_vector(xp,1,npar);        if (stepm <=0)
   fclose(ficresprob);          dh[mi][i]=1;
   fclose(ficresprobcov);        else{
   fclose(ficresprobcor);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   fclose(ficgp);            if (agedc[i] < 2*AGESUP) {
   fclose(fichtm);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 }              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
                 nberr++;
 /******************* Printing html file ***********/                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                j=1; /* Temporary Dangerous patch */
                   int lastpass, int stepm, int weightopt, char model[],\                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   int popforecast, int estepm ,\                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   double jprev1, double mprev1,double anprev1, \              }
                   double jprev2, double mprev2,double anprev2){              k=k+1;
   int jj1, k1, i1, cpt;              if (j >= jmax) jmax=j;
   /*char optionfilehtm[FILENAMELENGTH];*/              if (j <= jmin) jmin=j;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {              sum=sum+j;
     printf("Problem with %s \n",optionfilehtm), exit(0);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n          }
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          else{
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
  - Life expectancies by age and initial health status (estepm=%2d months):  
    <a href=\"e%s\">e%s</a> <br>\n</li>", \            k=k+1;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            if (j >= jmax) jmax=j;
             else if (j <= jmin)jmin=j;
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            if(j<0){
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n              nberr++;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n            }
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            sum=sum+j;
           }
  if(popforecast==1) fprintf(fichtm,"\n          jk= j/stepm;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          jl= j -jk*stepm;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          ju= j -(jk+1)*stepm;
         <br>",fileres,fileres,fileres,fileres);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
  else            if(jl==0){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              dh[mi][i]=jk;
 fprintf(fichtm," <li>Graphs</li><p>");              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
  m=cptcoveff;                    * at the price of an extra matrix product in likelihood */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
  jj1=0;            }
  for(k1=1; k1<=m;k1++){          }else{
    for(i1=1; i1<=ncodemax[k1];i1++){            if(jl <= -ju){
      jj1++;              dh[mi][i]=jk;
      if (cptcovn > 0) {              bh[mi][i]=jl;       /* bias is positive if real duration
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                                   * is higher than the multiple of stepm and negative otherwise.
        for (cpt=1; cpt<=cptcoveff;cpt++)                                   */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            else{
      }              dh[mi][i]=jk+1;
      /* Pij */              bh[mi][i]=ju;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>            }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                if(dh[mi][i]==0){
      /* Quasi-incidences */              dh[mi][i]=1; /* At least one step */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>              bh[mi][i]=ju; /* At least one step */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
        /* Stable prevalence in each health state */            }
        for(cpt=1; cpt<nlstate;cpt++){          } /* end if mle */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        }
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      } /* end wave */
        }    }
     for(cpt=1; cpt<=nlstate;cpt++) {    jmean=sum/k;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 interval) in state (%d): v%s%d%d.png <br>    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     }
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {  /*********** Tricode ****************************/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  void tricode(int *Tvar, int **nbcode, int imx)
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  {
      }    
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    int Ndum[20],ij=1, k, j, i, maxncov=19;
 health expectancies in states (1) and (2): e%s%d.png<br>    int cptcode=0;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    cptcoveff=0; 
    }   
  }    for (k=0; k<maxncov; k++) Ndum[k]=0;
 fclose(fichtm);    for (k=1; k<=7; k++) ncodemax[k]=0;
 }  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 /******************* Gnuplot file **************/      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        Ndum[ij]++; /*store the modality */
   int ng;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     printf("Problem with file %s",optionfilegnuplot);                                         Tvar[j]. If V=sex and male is 0 and 
   }                                         female is 1, then  cptcode=1.*/
       }
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);      for (i=0; i<=cptcode; i++) {
 #endif        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 m=pow(2,cptcoveff);      }
    
  /* 1eme*/      ij=1; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {      for (i=1; i<=ncodemax[j]; i++) {
    for (k1=1; k1<= m ; k1 ++) {        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
 #ifdef windows            nbcode[Tvar[j]][ij]=k; 
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            
 #endif            ij++;
 #ifdef unix          }
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          if (ij > ncodemax[j]) break; 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        }  
 #endif      } 
     }  
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   for (k=0; k< maxncov; k++) Ndum[k]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }   for (i=1; i<=ncovmodel-2; i++) { 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     for (i=1; i<= nlstate ; i ++) {     ij=Tvar[i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     Ndum[ij]++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");   }
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);   ij=1;
      for (i=1; i<= nlstate ; i ++) {   for (i=1; i<= maxncov; i++) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     if((Ndum[i]!=0) && (i<=ncovcol)){
   else fprintf(ficgp," \%%*lf (\%%*lf)");       Tvaraff[ij]=i; /*For printing */
 }         ij++;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));     }
 #ifdef unix   }
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");   
 #endif   cptcoveff=ij-1; /*Number of simple covariates*/
    }  }
   }  
   /*2 eme*/  /*********** Health Expectancies ****************/
   
   for (k1=1; k1<= m ; k1 ++) {  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  {
        /* Health expectancies */
     for (i=1; i<= nlstate+1 ; i ++) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       k=2*i;    double age, agelim, hf;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    double ***p3mat,***varhe;
       for (j=1; j<= nlstate+1 ; j ++) {    double **dnewm,**doldm;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double *xp;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double **gp, **gm;
 }      double ***gradg, ***trgradg;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    int theta;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       for (j=1; j<= nlstate+1 ; j ++) {    xp=vector(1,npar);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    dnewm=matrix(1,nlstate*nlstate,1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 }      
       fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficreseij,"# Local time at start: %s", strstart);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficreseij,"# Health expectancies\n");
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficreseij,"# Age");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for(i=1; i<=nlstate;i++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(j=1; j<=nlstate;j++)
 }          fprintf(ficreseij," %1d-%1d (SE)",i,j);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    fprintf(ficreseij,"\n");
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   /*3eme*/    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   for (k1=1; k1<= m ; k1 ++) {     * This is mainly to measure the difference between two models: for example
     for (cpt=1; cpt<= nlstate ; cpt ++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
       k=2+nlstate*(2*cpt-2);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     * progression in between and thus overestimating or underestimating according
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);     * to the curvature of the survival function. If, for the same date, we 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     * to compare the new estimate of Life expectancy with the same linear 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     * hypothesis. A more precise result, taking into account a more precise
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);     * curvature will be obtained if estepm is as small as stepm. */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 */       nhstepm is the number of hstepm from age to agelim 
       for (i=1; i< nlstate ; i ++) {       nstepm is the number of stepm from age to agelin. 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /* CV preval stat */       results. So we changed our mind and took the option of the best precision.
     for (k1=1; k1<= m ; k1 ++) {    */
     for (cpt=1; cpt<nlstate ; cpt ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       k=3;  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    agelim=AGESUP;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* nhstepm age range expressed in number of stepm */
       for (i=1; i< nlstate ; i ++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         fprintf(ficgp,"+$%d",k+i+1);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      /* if (stepm >= YEARM) hstepm=1;*/
            nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       l=3+(nlstate+ndeath)*cpt;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       for (i=1; i< nlstate ; i ++) {      gp=matrix(0,nhstepm,1,nlstate*nlstate);
         l=3+(nlstate+ndeath)*cpt;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(ficgp,"+$%d",l+i+1);  
       }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   }     
    
   /* proba elementaires */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){      /* Computing  Variances of health expectancies */
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){       for(theta=1; theta <=npar; theta++){
                for(i=1; i<=npar; i++){ 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           jk++;        }
           fprintf(ficgp,"\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         }    
       }        cptj=0;
     }        for(j=1; j<= nlstate; j++){
    }          for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
      for(jk=1; jk <=m; jk++) {              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);            }
        if (ng==2)          }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        }
        else       
          fprintf(ficgp,"\nset title \"Probability\"\n");       
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for(i=1; i<=npar; i++) 
        i=1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        for(k2=1; k2<=nlstate; k2++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          k3=i;        
          for(k=1; k<=(nlstate+ndeath); k++) {        cptj=0;
            if (k != k2){        for(j=1; j<= nlstate; j++){
              if(ng==2)          for(i=1;i<=nlstate;i++){
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);            cptj=cptj+1;
              else            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              for(j=3; j <=ncovmodel; j++) {            }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
                  ij++;        for(j=1; j<= nlstate*nlstate; j++)
                }          for(h=0; h<=nhstepm-1; h++){
                else            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
              }       } 
              fprintf(ficgp,")/(1");     
                /* End theta */
              for(k1=1; k1 <=nlstate; k1++){    
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                ij=1;  
                for(j=3; j <=ncovmodel; j++){       for(h=0; h<=nhstepm-1; h++)
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(j=1; j<=nlstate*nlstate;j++)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(theta=1; theta <=npar; theta++)
                    ij++;            trgradg[h][j][theta]=gradg[h][theta][j];
                  }       
                  else  
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       for(i=1;i<=nlstate*nlstate;i++)
                }        for(j=1;j<=nlstate*nlstate;j++)
                fprintf(ficgp,")");          varhe[i][j][(int)age] =0.;
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);       printf("%d|",(int)age);fflush(stdout);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
              i=i+ncovmodel;       for(h=0;h<=nhstepm-1;h++){
            }        for(k=0;k<=nhstepm-1;k++){
          }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
        }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
      }          for(i=1;i<=nlstate*nlstate;i++)
    }            for(j=1;j<=nlstate*nlstate;j++)
    fclose(ficgp);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 }  /* end gnuplot */        }
       }
       /* Computing expectancies */
 /*************** Moving average **************/      for(i=1; i<=nlstate;i++)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   int i, cpt, cptcod;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            
       for (i=1; i<=nlstate;i++)  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;          }
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      fprintf(ficreseij,"%3.0f",age );
       for (i=1; i<=nlstate;i++){      cptj=0;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(i=1; i<=nlstate;i++)
           for (cpt=0;cpt<=4;cpt++){        for(j=1; j<=nlstate;j++){
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          cptj++;
           }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        }
         }      fprintf(ficreseij,"\n");
       }     
     }      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
          free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /************** Forecasting ******************/    }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    printf("\n");
      fprintf(ficlog,"\n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;    free_vector(xp,1,npar);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   double *popeffectif,*popcount;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   double ***p3mat;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   char fileresf[FILENAMELENGTH];  }
   
  agelim=AGESUP;  /************ Variance ******************/
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
   strcpy(fileresf,"f");    double **dnewm,**doldm;
   strcat(fileresf,fileres);    double **dnewmp,**doldmp;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    int i, j, nhstepm, hstepm, h, nstepm ;
     printf("Problem with forecast resultfile: %s\n", fileresf);    int k, cptcode;
   }    double *xp;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
   if (mobilav==1) {    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ***p3mat;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double age,agelim, hf;
   }    double ***mobaverage;
     int theta;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    char digit[4];
   if (stepm<=12) stepsize=1;    char digitp[25];
    
   agelim=AGESUP;    char fileresprobmorprev[FILENAMELENGTH];
    
   hstepm=1;    if(popbased==1){
   hstepm=hstepm/stepm;      if(mobilav!=0)
   yp1=modf(dateintmean,&yp);        strcpy(digitp,"-populbased-mobilav-");
   anprojmean=yp;      else strcpy(digitp,"-populbased-nomobil-");
   yp2=modf((yp1*12),&yp);    }
   mprojmean=yp;    else 
   yp1=modf((yp2*30.5),&yp);      strcpy(digitp,"-stablbased-");
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;    if (mobilav!=0) {
   if(mprojmean==0) jprojmean=1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   for(cptcov=1;cptcov<=i2;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
       k=k+1;  
       fprintf(ficresf,"\n#******");    strcpy(fileresprobmorprev,"prmorprev"); 
       for(j=1;j<=cptcoveff;j++) {    sprintf(digit,"%-d",ij);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       fprintf(ficresf,"******\n");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       fprintf(ficresf,"# StartingAge FinalAge");    strcat(fileresprobmorprev,fileres);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", fileresprobmorprev);
            fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    }
         fprintf(ficresf,"\n");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);     
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           nhstepm = nhstepm/hstepm;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
              for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresprobmorprev," p.%-d SE",j);
           oldm=oldms;savm=savms;      for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
            }  
           for (h=0; h<=nhstepm; h++){    fprintf(ficresprobmorprev,"\n");
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficgp,"\n# Routine varevsij");
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
             }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
               kk1=0.;kk2=0;  /*   } */
               for(i=1; i<=nlstate;i++) {                  varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 if (mobilav==1)   fprintf(ficresvij, "#Local time at start: %s", strstart);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                 else {    fprintf(ficresvij,"# Age");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    for(i=1; i<=nlstate;i++)
                 }      for(j=1; j<=nlstate;j++)
                        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
               }    fprintf(ficresvij,"\n");
               if (h==(int)(calagedate+12*cpt)){  
                 fprintf(ficresf," %.3f", kk1);    xp=vector(1,npar);
                            dnewm=matrix(1,nlstate,1,npar);
               }    doldm=matrix(1,nlstate,1,nlstate);
             }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       }    gpp=vector(nlstate+1,nlstate+ndeath);
     }    gmp=vector(nlstate+1,nlstate+ndeath);
   }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
            
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   fclose(ficresf);    }
 }    else  hstepm=estepm;   
 /************** Forecasting ******************/    /* For example we decided to compute the life expectancy with the smallest unit */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       nstepm is the number of stepm from age to agelin. 
   int *popage;       Look at hpijx to understand the reason of that which relies in memory size
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       and note for a fixed period like k years */
   double *popeffectif,*popcount;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double ***p3mat,***tabpop,***tabpopprev;       survival function given by stepm (the optimization length). Unfortunately it
   char filerespop[FILENAMELENGTH];       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       results. So we changed our mind and took the option of the best precision.
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    */
   agelim=AGESUP;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(filerespop,"pop");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   strcat(filerespop,fileres);      gp=matrix(0,nhstepm,1,nlstate);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      gm=matrix(0,nhstepm,1,nlstate);
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   if (mobilav==1) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }        if (popbased==1) {
           if(mobilav ==0){
   stepsize=(int) (stepm+YEARM-1)/YEARM;            for(i=1; i<=nlstate;i++)
   if (stepm<=12) stepsize=1;              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   agelim=AGESUP;            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   hstepm=1;          }
   hstepm=hstepm/stepm;        }
      
   if (popforecast==1) {        for(j=1; j<= nlstate; j++){
     if((ficpop=fopen(popfile,"r"))==NULL) {          for(h=0; h<=nhstepm; h++){
       printf("Problem with population file : %s\n",popfile);exit(0);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     popage=ivector(0,AGESUP);          }
     popeffectif=vector(0,AGESUP);        }
     popcount=vector(0,AGESUP);        /* This for computing probability of death (h=1 means
               computed over hstepm matrices product = hstepm*stepm months) 
     i=1;             as a weighted average of prlim.
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        */
            for(j=nlstate+1;j<=nlstate+ndeath;j++){
     imx=i;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
         /* end probability of death */
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       k=k+1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficrespop,"\n#******");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(j=1;j<=cptcoveff;j++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
       }        if (popbased==1) {
       fprintf(ficrespop,"******\n");          if(mobilav ==0){
       fprintf(ficrespop,"# Age");            for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);              prlim[i][i]=probs[(int)age][i][ij];
       if (popforecast==1)  fprintf(ficrespop," [Population]");          }else{ /* mobilav */ 
                  for(i=1; i<=nlstate;i++)
       for (cpt=0; cpt<=0;cpt++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            }
                }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(j=1; j<= nlstate; j++){
           nhstepm = nhstepm/hstepm;          for(h=0; h<=nhstepm; h++){
                      for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
                /* This for computing probability of death (h=1 means
           for (h=0; h<=nhstepm; h++){           computed over hstepm matrices product = hstepm*stepm months) 
             if (h==(int) (calagedate+YEARM*cpt)) {           as a weighted average of prlim.
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        */
             }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             for(j=1; j<=nlstate+ndeath;j++) {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
               kk1=0.;kk2=0;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
               for(i=1; i<=nlstate;i++) {                      }    
                 if (mobilav==1)        /* end probability of death */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {        for(j=1; j<= nlstate; j++) /* vareij */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          for(h=0; h<=nhstepm; h++){
                 }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
               }          }
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                   /*fprintf(ficrespop," %.3f", kk1);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        }
               }  
             }      } /* End theta */
             for(i=1; i<=nlstate;i++){  
               kk1=0.;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      for(h=0; h<=nhstepm; h++) /* veij */
                 }        for(j=1; j<=nlstate;j++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          for(theta=1; theta <=npar; theta++)
             }            trgradg[h][j][theta]=gradg[h][theta][j];
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        for(theta=1; theta <=npar; theta++)
           }          trgradgp[j][theta]=gradgp[theta][j];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }  
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(i=1;i<=nlstate;i++)
   /******/        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for(h=0;h<=nhstepm;h++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(k=0;k<=nhstepm;k++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           nhstepm = nhstepm/hstepm;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                    for(i=1;i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(j=1;j<=nlstate;j++)
           oldm=oldms;savm=savms;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
           for (h=0; h<=nhstepm; h++){      }
             if (h==(int) (calagedate+YEARM*cpt)) {    
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      /* pptj */
             }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
             for(j=1; j<=nlstate+ndeath;j++) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
               kk1=0.;kk2=0;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
               for(i=1; i<=nlstate;i++) {                      for(i=nlstate+1;i<=nlstate+ndeath;i++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              varppt[j][i]=doldmp[j][i];
               }      /* end ppptj */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      /*  x centered again */
             }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
         }      if (popbased==1) {
       }        if(mobilav ==0){
    }          for(i=1; i<=nlstate;i++)
   }            prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
   if (popforecast==1) {        }
     free_ivector(popage,0,AGESUP);      }
     free_vector(popeffectif,0,AGESUP);               
     free_vector(popcount,0,AGESUP);      /* This for computing probability of death (h=1 means
   }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         as a weighted average of prlim.
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      */
   fclose(ficrespop);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
 }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 /***********************************************/      }    
 /**************** Main Program *****************/      /* end probability of death */
 /***********************************************/  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 int main(int argc, char *argv[])      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   double agedeb, agefin,hf;        }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      } 
       fprintf(ficresprobmorprev,"\n");
   double fret;  
   double **xi,tmp,delta;      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   double dum; /* Dummy variable */        for(j=1; j<=nlstate;j++){
   double ***p3mat;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   int *indx;        }
   char line[MAXLINE], linepar[MAXLINE];      fprintf(ficresvij,"\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      free_matrix(gp,0,nhstepm,1,nlstate);
   int firstobs=1, lastobs=10;      free_matrix(gm,0,nhstepm,1,nlstate);
   int sdeb, sfin; /* Status at beginning and end */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   int c,  h , cpt,l;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   int ju,jl, mi;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    } /* End age */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   int mobilav=0,popforecast=0;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   int hstepm, nhstepm;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   double bage, fage, age, agelim, agebase;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   double ftolpl=FTOL;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   double **prlim;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   double *severity;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   double ***param; /* Matrix of parameters */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   double  *p;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   double **matcov; /* Matrix of covariance */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   double ***delti3; /* Scale */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   double *delti; /* Scale */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   double ***eij, ***vareij;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   double **varpl; /* Variances of prevalence limits by age */    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   double *epj, vepp;  */
   double kk1, kk2;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    
     free_vector(xp,1,npar);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   char z[1]="c", occ;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 #include <sys/time.h>    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 #include <time.h>    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fclose(ficresprobmorprev);
      fflush(ficgp);
   /* long total_usecs;    fflush(fichtm); 
   struct timeval start_time, end_time;  }  /* end varevsij */
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  /************ Variance of prevlim ******************/
   getcwd(pathcd, size);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
   printf("\n%s",version);    /* Variance of prevalence limit */
   if(argc <=1){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     printf("\nEnter the parameter file name: ");    double **newm;
     scanf("%s",pathtot);    double **dnewm,**doldm;
   }    int i, j, nhstepm, hstepm;
   else{    int k, cptcode;
     strcpy(pathtot,argv[1]);    double *xp;
   }    double *gp, *gm;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    double **gradg, **trgradg;
   /*cygwin_split_path(pathtot,path,optionfile);    double age,agelim;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    int theta;
   /* cutv(path,optionfile,pathtot,'\\');*/    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficresvpl,"# Age");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    for(i=1; i<=nlstate;i++)
   chdir(path);        fprintf(ficresvpl," %1d-%1d",i,i);
   replace(pathc,path);    fprintf(ficresvpl,"\n");
   
 /*-------- arguments in the command line --------*/    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   strcpy(fileres,"r");    doldm=matrix(1,nlstate,1,nlstate);
   strcat(fileres, optionfilefiname);    
   strcat(fileres,".txt");    /* Other files have txt extension */    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   /*---------arguments file --------*/    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     printf("Problem with optionfile %s\n",optionfile);      if (stepm >= YEARM) hstepm=1;
     goto end;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   }      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   strcpy(filereso,"o");      gm=vector(1,nlstate);
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {      for(theta=1; theta <=npar; theta++){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        for(i=1; i<=npar; i++){ /* Computes gradient */
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   /* Reads comments: lines beginning with '#' */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);          gp[i] = prlim[i][i];
     fgets(line, MAXLINE, ficpar);      
     puts(line);        for(i=1; i<=npar; i++) /* Computes gradient */
     fputs(line,ficparo);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        for(i=1;i<=nlstate;i++)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 while((c=getc(ficpar))=='#' && c!= EOF){      } /* End theta */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      trgradg =matrix(1,nlstate,1,npar);
     puts(line);  
     fputs(line,ficparo);      for(j=1; j<=nlstate;j++)
   }        for(theta=1; theta <=npar; theta++)
   ungetc(c,ficpar);          trgradg[j][theta]=gradg[theta][j];
    
          for(i=1;i<=nlstate;i++)
   covar=matrix(0,NCOVMAX,1,n);        varpl[i][(int)age] =0.;
   cptcovn=0;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   ncovmodel=2+cptcovn;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
        fprintf(ficresvpl,"%.0f ",age );
   /* Read guess parameters */      for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresvpl,"\n");
     ungetc(c,ficpar);      free_vector(gp,1,nlstate);
     fgets(line, MAXLINE, ficpar);      free_vector(gm,1,nlstate);
     puts(line);      free_matrix(gradg,1,npar,1,nlstate);
     fputs(line,ficparo);      free_matrix(trgradg,1,nlstate,1,npar);
   }    } /* End age */
   ungetc(c,ficpar);  
      free_vector(xp,1,npar);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_matrix(doldm,1,nlstate,1,npar);
     for(i=1; i <=nlstate; i++)    free_matrix(dnewm,1,nlstate,1,nlstate);
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  }
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);  /************ Variance of one-step probabilities  ******************/
       for(k=1; k<=ncovmodel;k++){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
         fscanf(ficpar," %lf",&param[i][j][k]);  {
         printf(" %lf",param[i][j][k]);    int i, j=0,  i1, k1, l1, t, tj;
         fprintf(ficparo," %lf",param[i][j][k]);    int k2, l2, j1,  z1;
       }    int k=0,l, cptcode;
       fscanf(ficpar,"\n");    int first=1, first1;
       printf("\n");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       fprintf(ficparo,"\n");    double **dnewm,**doldm;
     }    double *xp;
      double *gp, *gm;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double **gradg, **trgradg;
     double **mu;
   p=param[1][1];    double age,agelim, cov[NCOVMAX];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   /* Reads comments: lines beginning with '#' */    int theta;
   while((c=getc(ficpar))=='#' && c!= EOF){    char fileresprob[FILENAMELENGTH];
     ungetc(c,ficpar);    char fileresprobcov[FILENAMELENGTH];
     fgets(line, MAXLINE, ficpar);    char fileresprobcor[FILENAMELENGTH];
     puts(line);  
     fputs(line,ficparo);    double ***varpij;
   }  
   ungetc(c,ficpar);    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      printf("Problem with resultfile: %s\n", fileresprob);
   for(i=1; i <=nlstate; i++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     for(j=1; j <=nlstate+ndeath-1; j++){    }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    strcpy(fileresprobcov,"probcov"); 
       printf("%1d%1d",i,j);    strcat(fileresprobcov,fileres);
       fprintf(ficparo,"%1d%1d",i1,j1);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       for(k=1; k<=ncovmodel;k++){      printf("Problem with resultfile: %s\n", fileresprobcov);
         fscanf(ficpar,"%le",&delti3[i][j][k]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         printf(" %le",delti3[i][j][k]);    }
         fprintf(ficparo," %le",delti3[i][j][k]);    strcpy(fileresprobcor,"probcor"); 
       }    strcat(fileresprobcor,fileres);
       fscanf(ficpar,"\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficparo,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }    }
   }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   delti=delti3[1][1];    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /* Reads comments: lines beginning with '#' */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   while((c=getc(ficpar))=='#' && c!= EOF){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     ungetc(c,ficpar);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprob, "#Local time at start: %s", strstart);
     puts(line);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fputs(line,ficparo);    fprintf(ficresprob,"# Age");
   }    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
   ungetc(c,ficpar);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      fprintf(ficresprobcov,"# Age");
   matcov=matrix(1,npar,1,npar);    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
   for(i=1; i <=npar; i++){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fscanf(ficpar,"%s",&str);    fprintf(ficresprobcov,"# Age");
     printf("%s",str);  
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){    for(i=1; i<=nlstate;i++)
       fscanf(ficpar," %le",&matcov[i][j]);      for(j=1; j<=(nlstate+ndeath);j++){
       printf(" %.5le",matcov[i][j]);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       fprintf(ficparo," %.5le",matcov[i][j]);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     fscanf(ficpar,"\n");      }  
     printf("\n");   /* fprintf(ficresprob,"\n");
     fprintf(ficparo,"\n");    fprintf(ficresprobcov,"\n");
   }    fprintf(ficresprobcor,"\n");
   for(i=1; i <=npar; i++)   */
     for(j=i+1;j<=npar;j++)   xp=vector(1,npar);
       matcov[i][j]=matcov[j][i];    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   printf("\n");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     /*-------- Rewriting paramater file ----------*/    fprintf(ficgp,"\n# Routine varprob");
      strcpy(rfileres,"r");    /* "Rparameterfile */    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    fprintf(fichtm,"\n");
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    file %s<br>\n",optionfilehtmcov);
     }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     fprintf(ficres,"#%s\n",version);  and drawn. It helps understanding how is the covariance between two incidences.\
       They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     /*-------- data file ----------*/    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     if((fic=fopen(datafile,"r"))==NULL)    {  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       printf("Problem with datafile: %s\n", datafile);goto end;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     }  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     n= lastobs;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     severity = vector(1,maxwav);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);    cov[1]=1;
     moisnais=vector(1,n);    tj=cptcoveff;
     annais=vector(1,n);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     moisdc=vector(1,n);    j1=0;
     andc=vector(1,n);    for(t=1; t<=tj;t++){
     agedc=vector(1,n);      for(i1=1; i1<=ncodemax[t];i1++){ 
     cod=ivector(1,n);        j1++;
     weight=vector(1,n);        if  (cptcovn>0) {
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          fprintf(ficresprob, "\n#********** Variable "); 
     mint=matrix(1,maxwav,1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     anint=matrix(1,maxwav,1,n);          fprintf(ficresprob, "**********\n#\n");
     s=imatrix(1,maxwav+1,1,n);          fprintf(ficresprobcov, "\n#********** Variable "); 
     adl=imatrix(1,maxwav+1,1,n);              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     tab=ivector(1,NCOVMAX);          fprintf(ficresprobcov, "**********\n#\n");
     ncodemax=ivector(1,8);          
           fprintf(ficgp, "\n#********** Variable "); 
     i=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     while (fgets(line, MAXLINE, fic) != NULL)    {          fprintf(ficgp, "**********\n#\n");
       if ((i >= firstobs) && (i <=lastobs)) {          
                  
         for (j=maxwav;j>=1;j--){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           strcpy(line,stra);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcor, "\n#********** Variable ");    
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  fprintf(ficresprobcor, "**********\n#");    
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        
         for (age=bage; age<=fage; age ++){ 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          cov[2]=age;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         for (j=ncovcol;j>=1;j--){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (k=1; k<=cptcovprod;k++)
         }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         num[i]=atol(stra);          
                  gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
         i=i+1;      
       }          for(theta=1; theta <=npar; theta++){
     }            for(i=1; i<=npar; i++)
     /* printf("ii=%d", ij);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
        scanf("%d",i);*/            
   imx=i-1; /* Number of individuals */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   /* for (i=1; i<=imx; i++){            k=0;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            for(i=1; i<= (nlstate); i++){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              for(j=1; j<=(nlstate+ndeath);j++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                k=k+1;
     }*/                gp[k]=pmmij[i][j];
    /*  for (i=1; i<=imx; i++){              }
      if (s[4][i]==9)  s[4][i]=-1;            }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            
              for(i=1; i<=npar; i++)
                xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   /* Calculation of the number of parameter from char model*/      
   Tvar=ivector(1,15);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   Tprod=ivector(1,15);            k=0;
   Tvaraff=ivector(1,15);            for(i=1; i<=(nlstate); i++){
   Tvard=imatrix(1,15,1,2);              for(j=1; j<=(nlstate+ndeath);j++){
   Tage=ivector(1,15);                      k=k+1;
                    gm[k]=pmmij[i][j];
   if (strlen(model) >1){              }
     j=0, j1=0, k1=1, k2=1;            }
     j=nbocc(model,'+');       
     j1=nbocc(model,'*');            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     cptcovn=j+1;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     cptcovprod=j1;          }
      
     strcpy(modelsav,model);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            for(theta=1; theta <=npar; theta++)
       printf("Error. Non available option model=%s ",model);              trgradg[j][theta]=gradg[theta][j];
       goto end;          
     }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
              matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     for(i=(j+1); i>=1;i--){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       cutv(stra,strb,modelsav,'+');          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {          pmij(pmmij,cov,ncovmodel,x,nlstate);
         cutv(strd,strc,strb,'*');          
         if (strcmp(strc,"age")==0) {          k=0;
           cptcovprod--;          for(i=1; i<=(nlstate); i++){
           cutv(strb,stre,strd,'V');            for(j=1; j<=(nlstate+ndeath);j++){
           Tvar[i]=atoi(stre);              k=k+1;
           cptcovage++;              mu[k][(int) age]=pmmij[i][j];
             Tage[cptcovage]=i;            }
             /*printf("stre=%s ", stre);*/          }
         }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         else if (strcmp(strd,"age")==0) {            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           cptcovprod--;              varpij[i][j][(int)age] = doldm[i][j];
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);          /*printf("\n%d ",(int)age);
           cptcovage++;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           Tage[cptcovage]=i;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         else {            }*/
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncovcol+k1;          fprintf(ficresprob,"\n%d ",(int)age);
           cutv(strb,strc,strd,'V');          fprintf(ficresprobcov,"\n%d ",(int)age);
           Tprod[k1]=i;          fprintf(ficresprobcor,"\n%d ",(int)age);
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           Tvar[cptcovn+k2]=Tvard[k1][1];            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           for (k=1; k<=lastobs;k++)            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           k1++;          }
           k2=k2+2;          i=0;
         }          for (k=1; k<=(nlstate);k++){
       }            for (l=1; l<=(nlstate+ndeath);l++){ 
       else {              i=i++;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
        /*  scanf("%d",i);*/              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       cutv(strd,strc,strb,'V');              for (j=1; j<=i;j++){
       Tvar[i]=atoi(strc);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       strcpy(modelsav,stra);                }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            }
         scanf("%d",i);*/          }/* end of loop for state */
     }        } /* end of loop for age */
 }  
          /* Confidence intervalle of pij  */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        /*
   printf("cptcovprod=%d ", cptcovprod);          fprintf(ficgp,"\nset noparametric;unset label");
   scanf("%d ",i);*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     fclose(fic);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     /*  if(mle==1){*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     if (weightopt != 1) { /* Maximisation without weights*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       for(i=1;i<=n;i++) weight[i]=1.0;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     }        */
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
     for (i=1; i<=imx; i++) {        for (k2=1; k2<=(nlstate);k2++){
       for(m=2; (m<= maxwav); m++) {          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            if(l2==k2) continue;
          anint[m][i]=9999;            j=(k2-1)*(nlstate+ndeath)+l2;
          s[m][i]=-1;            for (k1=1; k1<=(nlstate);k1++){
        }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                if(l1==k1) continue;
       }                i=(k1-1)*(nlstate+ndeath)+l1;
     }                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
     for (i=1; i<=imx; i++)  {                  if ((int)age %5==0){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       for(m=1; (m<= maxwav); m++){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         if(s[m][i] >0){                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           if (s[m][i] >= nlstate+1) {                    mu1=mu[i][(int) age]/stepm*YEARM ;
             if(agedc[i]>0)                    mu2=mu[j][(int) age]/stepm*YEARM;
               if(moisdc[i]!=99 && andc[i]!=9999)                    c12=cv12/sqrt(v1*v2);
                 agev[m][i]=agedc[i];                    /* Computing eigen value of matrix of covariance */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
            else {                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
               if (andc[i]!=9999){                    /* Eigen vectors */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
               agev[m][i]=-1;                    /*v21=sqrt(1.-v11*v11); *//* error */
               }                    v21=(lc1-v1)/cv12*v11;
             }                    v12=-v21;
           }                    v22=v11;
           else if(s[m][i] !=9){ /* Should no more exist */                    tnalp=v21/v11;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                    if(first1==1){
             if(mint[m][i]==99 || anint[m][i]==9999)                      first1=0;
               agev[m][i]=1;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             else if(agev[m][i] <agemin){                    }
               agemin=agev[m][i];                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                    /*printf(fignu*/
             }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
             else if(agev[m][i] >agemax){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
               agemax=agev[m][i];                    if(first==1){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                      first=0;
             }                      fprintf(ficgp,"\nset parametric;unset label");
             /*agev[m][i]=anint[m][i]-annais[i];*/                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
             /*   agev[m][i] = age[i]+2*m;*/                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           }                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           else { /* =9 */   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
             agev[m][i]=1;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
             s[m][i]=-1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         else /*= 0 Unknown */                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
           agev[m][i]=1;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                          fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     for (i=1; i<=imx; i++)  {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for(m=1; (m<= maxwav); m++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         if (s[m][i] > (nlstate+ndeath)) {                    }else{
           printf("Error: Wrong value in nlstate or ndeath\n");                        first=0;
           goto end;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
         }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
     free_vector(severity,1,maxwav);                  } /* age mod 5 */
     free_imatrix(outcome,1,maxwav+1,1,n);                } /* end loop age */
     free_vector(moisnais,1,n);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     free_vector(annais,1,n);                first=1;
     /* free_matrix(mint,1,maxwav,1,n);              } /*l12 */
        free_matrix(anint,1,maxwav,1,n);*/            } /* k12 */
     free_vector(moisdc,1,n);          } /*l1 */
     free_vector(andc,1,n);        }/* k1 */
       } /* loop covariates */
        }
     wav=ivector(1,imx);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    free_vector(xp,1,npar);
        fclose(ficresprob);
     /* Concatenates waves */    fclose(ficresprobcov);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
       Tcode=ivector(1,100);  }
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  /******************* Printing html file ***********/
        void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
    codtab=imatrix(1,100,1,10);                    int lastpass, int stepm, int weightopt, char model[],\
    h=0;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
    m=pow(2,cptcoveff);                    int popforecast, int estepm ,\
                      double jprev1, double mprev1,double anprev1, \
    for(k=1;k<=cptcoveff; k++){                    double jprev2, double mprev2,double anprev2){
      for(i=1; i <=(m/pow(2,k));i++){    int jj1, k1, i1, cpt;
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
            h++;     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  </ul>");
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
          }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
        }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      }     fprintf(fichtm,"\
    }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       codtab[1][2]=1;codtab[2][2]=2; */     fprintf(fichtm,"\
    /* for(i=1; i <=m ;i++){   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       for(k=1; k <=cptcovn; k++){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);     fprintf(fichtm,"\
       }   - Life expectancies by age and initial health status (estepm=%2d months): \
       printf("\n");     <a href=\"%s\">%s</a> <br>\n</li>",
       }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       scanf("%d",i);*/  
      fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      
       jj1=0;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   for(k1=1; k1<=m;k1++){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     for(i1=1; i1<=ncodemax[k1];i1++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       jj1++;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       if (cptcovn > 0) {
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
               for (cpt=1; cpt<=cptcoveff;cpt++) 
     /* For Powell, parameters are in a vector p[] starting at p[1]           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       }
        /* Pij */
     if(mle==1){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     }       /* Quasi-incidences */
           fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     /*--------- results files --------------*/   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
           /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
    jk=1;           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         }
    for(i=1,jk=1; i <=nlstate; i++){       for(cpt=1; cpt<=nlstate;cpt++) {
      for(k=1; k <=(nlstate+ndeath); k++){          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
        if (k != i)  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
          {       }
            printf("%d%d ",i,k);     } /* end i1 */
            fprintf(ficres,"%1d%1d ",i,k);   }/* End k1 */
            for(j=1; j <=ncovmodel; j++){   fprintf(fichtm,"</ul>");
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);  
              jk++;   fprintf(fichtm,"\
            }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
            printf("\n");   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
            fprintf(ficres,"\n");  
          }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
      }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    }   fprintf(fichtm,"\
  if(mle==1){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     /* Computing hessian and covariance matrix */           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);   fprintf(fichtm,"\
  }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     printf("# Scales (for hessian or gradient estimation)\n");   fprintf(fichtm,"\
      for(i=1,jk=1; i <=nlstate; i++){   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       for(j=1; j <=nlstate+ndeath; j++){           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
         if (j!=i) {   fprintf(fichtm,"\
           fprintf(ficres,"%1d%1d",i,j);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
           printf("%1d%1d",i,j);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
           for(k=1; k<=ncovmodel;k++){   fprintf(fichtm,"\
             printf(" %.5e",delti[jk]);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
             fprintf(ficres," %.5e",delti[jk]);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
             jk++;  
           }  /*  if(popforecast==1) fprintf(fichtm,"\n */
           printf("\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           fprintf(ficres,"\n");  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         }  /*      <br>",fileres,fileres,fileres,fileres); */
       }  /*  else  */
      }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       fflush(fichtm);
     k=1;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   m=cptcoveff;
     for(i=1;i<=npar;i++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       /*  if (k>nlstate) k=1;  
       i1=(i-1)/(ncovmodel*nlstate)+1;   jj1=0;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   for(k1=1; k1<=m;k1++){
       printf("%s%d%d",alph[k],i1,tab[i]);*/     for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficres,"%3d",i);       jj1++;
       printf("%3d",i);       if (cptcovn > 0) {
       for(j=1; j<=i;j++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         fprintf(ficres," %.5e",matcov[i][j]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
         printf(" %.5e",matcov[i][j]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficres,"\n");       }
       printf("\n");       for(cpt=1; cpt<=nlstate;cpt++) {
       k++;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
      <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     while((c=getc(ficpar))=='#' && c!= EOF){       }
       ungetc(c,ficpar);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       fgets(line, MAXLINE, ficpar);  health expectancies in states (1) and (2): %s%d.png<br>\
       puts(line);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       fputs(line,ficparo);     } /* end i1 */
     }   }/* End k1 */
     ungetc(c,ficpar);   fprintf(fichtm,"</ul>");
     estepm=0;   fflush(fichtm);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  }
     if (estepm==0 || estepm < stepm) estepm=stepm;  
     if (fage <= 2) {  /******************* Gnuplot file **************/
       bage = ageminpar;  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       fage = agemaxpar;  
     }    char dirfileres[132],optfileres[132];
        int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    int ng;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  /*     printf("Problem with file %s",optionfilegnuplot); */
    /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     while((c=getc(ficpar))=='#' && c!= EOF){  /*   } */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    /*#ifdef windows */
     puts(line);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     fputs(line,ficparo);      /*#endif */
   }    m=pow(2,cptcoveff);
   ungetc(c,ficpar);  
      strcpy(dirfileres,optionfilefiname);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    strcpy(optfileres,"vpl");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   /* 1eme*/
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    for (cpt=1; cpt<= nlstate ; cpt ++) {
           for (k1=1; k1<= m ; k1 ++) {
   while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     ungetc(c,ficpar);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     fgets(line, MAXLINE, ficpar);       fprintf(ficgp,"set xlabel \"Age\" \n\
     puts(line);  set ylabel \"Probability\" \n\
     fputs(line,ficparo);  set ter png small\n\
   }  set size 0.65,0.65\n\
   ungetc(c,ficpar);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    
        for (i=1; i<= nlstate ; i ++) {
    dateprev1=anprev1+mprev1/12.+jprev1/365.;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
   fscanf(ficpar,"pop_based=%d\n",&popbased);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   fprintf(ficparo,"pop_based=%d\n",popbased);         for (i=1; i<= nlstate ; i ++) {
   fprintf(ficres,"pop_based=%d\n",popbased);           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){       } 
     ungetc(c,ficpar);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     fgets(line, MAXLINE, ficpar);       for (i=1; i<= nlstate ; i ++) {
     puts(line);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fputs(line,ficparo);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }  
   ungetc(c,ficpar);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    /*2 eme*/
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);      for (i=1; i<= nlstate+1 ; i ++) {
     puts(line);        k=2*i;
     fputs(line,ficparo);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   ungetc(c,ficpar);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        }   
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 /*------------ gnuplot -------------*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcpy(optionfilegnuplot,optionfilefiname);        }   
   strcat(optionfilegnuplot,".gp");        fprintf(ficgp,"\" t\"\" w l 0,");
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     printf("Problem with file %s",optionfilegnuplot);        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficgp);          else fprintf(ficgp," \%%*lf (\%%*lf)");
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        }   
 /*--------- index.htm --------*/        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
   strcpy(optionfilehtm,optionfile);      }
   strcat(optionfilehtm,".htm");    }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    
     printf("Problem with %s \n",optionfilehtm), exit(0);    /*3eme*/
   }    
     for (k1=1; k1<= m ; k1 ++) { 
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      for (cpt=1; cpt<= nlstate ; cpt ++) {
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        k=2+nlstate*(2*cpt-2);
 \n        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 Total number of observations=%d <br>\n        fprintf(ficgp,"set ter png small\n\
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  set size 0.65,0.65\n\
 <hr  size=\"2\" color=\"#EC5E5E\">  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
  <ul><li>Parameter files<br>\n        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   fclose(fichtm);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
            
 /*------------ free_vector  -------------*/        */
  chdir(path);        for (i=1; i< nlstate ; i ++) {
            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
  free_ivector(wav,1,imx);          
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        } 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        }
  free_ivector(num,1,n);    }
  free_vector(agedc,1,n);    
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    /* CV preval stable (period) */
  fclose(ficparo);    for (k1=1; k1<= m ; k1 ++) { 
  fclose(ficres);      for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   /*--------------- Prevalence limit --------------*/        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    set ter png small\nset size 0.65,0.65\n\
   strcpy(filerespl,"pl");  unset log y\n\
   strcat(filerespl,fileres);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        for (i=1; i< nlstate ; i ++)
   }          fprintf(ficgp,"+$%d",k+i+1);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   fprintf(ficrespl,"#Prevalence limit\n");        
   fprintf(ficrespl,"#Age ");        l=3+(nlstate+ndeath)*cpt;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   fprintf(ficrespl,"\n");        for (i=1; i< nlstate ; i ++) {
            l=3+(nlstate+ndeath)*cpt;
   prlim=matrix(1,nlstate,1,nlstate);          fprintf(ficgp,"+$%d",l+i+1);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    
   k=0;    /* proba elementaires */
   agebase=ageminpar;    for(i=1,jk=1; i <=nlstate; i++){
   agelim=agemaxpar;      for(k=1; k <=(nlstate+ndeath); k++){
   ftolpl=1.e-10;        if (k != i) {
   i1=cptcoveff;          for(j=1; j <=ncovmodel; j++){
   if (cptcovn < 1){i1=1;}            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
   for(cptcov=1;cptcov<=i1;cptcov++){            fprintf(ficgp,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
         k=k+1;        }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      }
         fprintf(ficrespl,"\n#******");     }
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         fprintf(ficrespl,"******\n");       for(jk=1; jk <=m; jk++) {
                 fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
         for (age=agebase; age<=agelim; age++){         if (ng==2)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           fprintf(ficrespl,"%.0f",age );         else
           for(i=1; i<=nlstate;i++)           fprintf(ficgp,"\nset title \"Probability\"\n");
           fprintf(ficrespl," %.5f", prlim[i][i]);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           fprintf(ficrespl,"\n");         i=1;
         }         for(k2=1; k2<=nlstate; k2++) {
       }           k3=i;
     }           for(k=1; k<=(nlstate+ndeath); k++) {
   fclose(ficrespl);             if (k != k2){
                if(ng==2)
   /*------------- h Pij x at various ages ------------*/                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {               ij=1;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;               for(j=3; j <=ncovmodel; j++) {
   }                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   printf("Computing pij: result on file '%s' \n", filerespij);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                     ij++;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                 }
   /*if (stepm<=24) stepsize=2;*/                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   agelim=AGESUP;               }
   hstepm=stepsize*YEARM; /* Every year of age */               fprintf(ficgp,")/(1");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */               
                 for(k1=1; k1 <=nlstate; k1++){   
   k=0;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   for(cptcov=1;cptcov<=i1;cptcov++){                 ij=1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                 for(j=3; j <=ncovmodel; j++){
       k=k+1;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         fprintf(ficrespij,"\n#****** ");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         for(j=1;j<=cptcoveff;j++)                     ij++;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   }
         fprintf(ficrespij,"******\n");                   else
                             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                 }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                 fprintf(ficgp,")");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */               }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
           oldm=oldms;savm=savms;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                 i=i+ncovmodel;
           fprintf(ficrespij,"# Age");             }
           for(i=1; i<=nlstate;i++)           } /* end k */
             for(j=1; j<=nlstate+ndeath;j++)         } /* end k2 */
               fprintf(ficrespij," %1d-%1d",i,j);       } /* end jk */
           fprintf(ficrespij,"\n");     } /* end ng */
            for (h=0; h<=nhstepm; h++){     fflush(ficgp); 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  }  /* end gnuplot */
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  /*************** Moving average **************/
             fprintf(ficrespij,"\n");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
              }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, cpt, cptcod;
           fprintf(ficrespij,"\n");    int modcovmax =1;
         }    int mobilavrange, mob;
     }    double age;
   }  
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                             a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   fclose(ficrespij);  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
   /*---------- Forecasting ------------------*/      else mobilavrange=mobilav;
   if((stepm == 1) && (strcmp(model,".")==0)){      for (age=bage; age<=fage; age++)
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        for (i=1; i<=nlstate;i++)
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   else{      /* We keep the original values on the extreme ages bage, fage and for 
     erreur=108;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);         we use a 5 terms etc. until the borders are no more concerned. 
   }      */ 
        for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   /*---------- Health expectancies and variances ------------*/          for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
   strcpy(filerest,"t");              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   strcat(filerest,fileres);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   if((ficrest=fopen(filerest,"w"))==NULL) {                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   }                }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
   strcpy(filerese,"e");        }/* end age */
   strcat(filerese,fileres);      }/* end mob */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    }else return -1;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    return 0;
   }  }/* End movingaverage */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   
  strcpy(fileresv,"v");  /************** Forecasting ******************/
   strcat(fileresv,fileres);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    /* proj1, year, month, day of starting projection 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);       agemin, agemax range of age
   }       dateprev1 dateprev2 range of dates during which prevalence is computed
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);       anproj2 year of en of projection (same day and month as proj1).
   calagedate=-1;    */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
   k=0;    double agec; /* generic age */
   for(cptcov=1;cptcov<=i1;cptcov++){    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double *popeffectif,*popcount;
       k=k+1;    double ***p3mat;
       fprintf(ficrest,"\n#****** ");    double ***mobaverage;
       for(j=1;j<=cptcoveff;j++)    char fileresf[FILENAMELENGTH];
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       fprintf(ficreseij,"\n#****** ");   
       for(j=1;j<=cptcoveff;j++)    strcpy(fileresf,"f"); 
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(fileresf,fileres);
       fprintf(ficreseij,"******\n");    if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficresvij,"\n#****** ");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("Computing forecasting: result on file '%s' \n", fileresf);
       fprintf(ficresvij,"******\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       oldm=oldms;savm=savms;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
          }
     }
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    stepsize=(int) (stepm+YEARM-1)/YEARM;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    if (stepm<=12) stepsize=1;
       fprintf(ficrest,"\n");    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
       epj=vector(1,nlstate+1);    }
       for(age=bage; age <=fage ;age++){    else  hstepm=estepm;   
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {    hstepm=hstepm/stepm; 
           for(i=1; i<=nlstate;i++)    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
             prlim[i][i]=probs[(int)age][i][k];                                 fractional in yp1 */
         }    anprojmean=yp;
            yp2=modf((yp1*12),&yp);
         fprintf(ficrest," %4.0f",age);    mprojmean=yp;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    yp1=modf((yp2*30.5),&yp);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    jprojmean=yp;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    if(jprojmean==0) jprojmean=1;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    if(mprojmean==0) jprojmean=1;
           }  
           epj[nlstate+1] +=epj[j];    i1=cptcoveff;
         }    if (cptcovn < 1){i1=1;}
     
         for(i=1, vepp=0.;i <=nlstate;i++)    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
           for(j=1;j <=nlstate;j++)    
             vepp += vareij[i][j][(int)age];    fprintf(ficresf,"#****** Routine prevforecast **\n");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){  /*            if (h==(int)(YEARM*yearp)){ */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
         }      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         fprintf(ficrest,"\n");        k=k+1;
       }        fprintf(ficresf,"\n#******");
     }        for(j=1;j<=cptcoveff;j++) {
   }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 free_matrix(mint,1,maxwav,1,n);        }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        fprintf(ficresf,"******\n");
     free_vector(weight,1,n);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   fclose(ficreseij);        for(j=1; j<=nlstate+ndeath;j++){ 
   fclose(ficresvij);          for(i=1; i<=nlstate;i++)              
   fclose(ficrest);            fprintf(ficresf," p%d%d",i,j);
   fclose(ficpar);          fprintf(ficresf," p.%d",j);
   free_vector(epj,1,nlstate+1);        }
          for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   /*------- Variance limit prevalence------*/            fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            nhstepm = nhstepm/hstepm; 
     exit(0);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }            oldm=oldms;savm=savms;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
   k=0;            for (h=0; h<=nhstepm; h++){
   for(cptcov=1;cptcov<=i1;cptcov++){              if (h*hstepm/YEARM*stepm ==yearp) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                fprintf(ficresf,"\n");
       k=k+1;                for(j=1;j<=cptcoveff;j++) 
       fprintf(ficresvpl,"\n#****** ");                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       for(j=1;j<=cptcoveff;j++)                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              } 
       fprintf(ficresvpl,"******\n");              for(j=1; j<=nlstate+ndeath;j++) {
                      ppij=0.;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                for(i=1; i<=nlstate;i++) {
       oldm=oldms;savm=savms;                  if (mobilav==1) 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     }                  else {
  }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
   fclose(ficresvpl);                  if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
   /*---------- End : free ----------------*/                  }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                } /* end i */
                  if (h*hstepm/YEARM*stepm==yearp) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                  fprintf(ficresf," %.3f", ppij);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                }
                }/* end j */
              } /* end h */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          } /* end agec */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        } /* end yearp */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      } /* end cptcod */
      } /* end  cptcov */
   free_matrix(matcov,1,npar,1,npar);         
   free_vector(delti,1,npar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    fclose(ficresf);
   }
   fprintf(fichtm,"\n</body>");  
   fclose(fichtm);  /************** Forecasting *****not tested NB*************/
   fclose(ficgp);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
      
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   if(erreur >0)    int *popage;
     printf("End of Imach with error or warning %d\n",erreur);    double calagedatem, agelim, kk1, kk2;
   else   printf("End of Imach\n");    double *popeffectif,*popcount;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    double ***p3mat,***tabpop,***tabpopprev;
      double ***mobaverage;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    char filerespop[FILENAMELENGTH];
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
  end:    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 #ifdef windows    
   /* chdir(pathcd);*/    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 #endif    
  /*system("wgnuplot graph.plt");*/    
  /*system("../gp37mgw/wgnuplot graph.plt");*/    strcpy(filerespop,"pop"); 
  /*system("cd ../gp37mgw");*/    strcat(filerespop,fileres);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    if((ficrespop=fopen(filerespop,"w"))==NULL) {
  strcpy(plotcmd,GNUPLOTPROGRAM);      printf("Problem with forecast resultfile: %s\n", filerespop);
  strcat(plotcmd," ");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
  strcat(plotcmd,optionfilegnuplot);    }
  system(plotcmd);    printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 #ifdef windows  
   while (z[0] != 'q') {    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     /* chdir(path); */  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    if (mobilav!=0) {
     scanf("%s",z);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if (z[0] == 'c') system("./imach");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     else if (z[0] == 'e') system(optionfilehtm);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     else if (z[0] == 'g') system(plotcmd);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     else if (z[0] == 'q') exit(0);      }
   }    }
 #endif  
 }    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,"\"");
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.107


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>