Diff for /imach/src/imach.c between versions 1.48 and 1.75

version 1.48, 2002/06/10 13:12:49 version 1.75, 2003/05/03 01:18:24
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month or quarter trimester,    states. This elementary transition (by month, quarter,
   semester or year) is model as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the prevalence limits.    of the life expectancies. It also computes the stable prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   **********************************************************************/  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #include <math.h>    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #include <stdio.h>    
 #include <stdlib.h>    **********************************************************************/
 #include <unistd.h>  /*
     main
 #define MAXLINE 256    read parameterfile
 #define GNUPLOTPROGRAM "gnuplot"    read datafile
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    concatwav
 #define FILENAMELENGTH 80    if (mle >= 1)
 /*#define DEBUG*/      mlikeli
 #define windows    print results files
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    if mle==1 
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */        begin-prev-date,...
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    open gnuplot file
     open html file
 #define NINTERVMAX 8    stable prevalence
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */     for age prevalim()
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    h Pij x
 #define NCOVMAX 8 /* Maximum number of covariates */    variance of p varprob
 #define MAXN 20000    forecasting if prevfcast==1 prevforecast call prevalence()
 #define YEARM 12. /* Number of months per year */    health expectancies
 #define AGESUP 130    Variance-covariance of DFLE
 #define AGEBASE 40    prevalence()
 #ifdef windows     movingaverage()
 #define DIRSEPARATOR '\\'    varevsij() 
 #else    if popbased==1 varevsij(,popbased)
 #define DIRSEPARATOR '/'    total life expectancies
 #endif    Variance of stable prevalence
    end
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";  */
 int erreur; /* Error number */  
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;   
 int nlstate=2; /* Number of live states */  #include <math.h>
 int ndeath=1; /* Number of dead states */  #include <stdio.h>
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  #include <stdlib.h>
 int popbased=0;  #include <unistd.h>
   
 int *wav; /* Number of waves for this individuual 0 is possible */  #define MAXLINE 256
 int maxwav; /* Maxim number of waves */  #define GNUPLOTPROGRAM "gnuplot"
 int jmin, jmax; /* min, max spacing between 2 waves */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int mle, weightopt;  #define FILENAMELENGTH 80
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  /*#define DEBUG*/
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define windows
 double jmean; /* Mean space between 2 waves */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;  #define NINTERVMAX 8
 char filerese[FILENAMELENGTH];  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 FILE  *ficresvij;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 char fileresv[FILENAMELENGTH];  #define NCOVMAX 8 /* Maximum number of covariates */
 FILE  *ficresvpl;  #define MAXN 20000
 char fileresvpl[FILENAMELENGTH];  #define YEARM 12. /* Number of months per year */
 char title[MAXLINE];  #define AGESUP 130
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #define AGEBASE 40
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  #ifdef windows
   #define DIRSEPARATOR '\\'
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  #define ODIRSEPARATOR '/'
   #else
 char filerest[FILENAMELENGTH];  #define DIRSEPARATOR '/'
 char fileregp[FILENAMELENGTH];  #define ODIRSEPARATOR '\\'
 char popfile[FILENAMELENGTH];  #endif
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  char version[80]="Imach version 0.95, May 2003, INED-EUROREVES ";
   int erreur; /* Error number */
 #define NR_END 1  int nvar;
 #define FREE_ARG char*  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #define FTOL 1.0e-10  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 #define NRANSI  int ndeath=1; /* Number of dead states */
 #define ITMAX 200  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 #define TOL 2.0e-4  
   int *wav; /* Number of waves for this individuual 0 is possible */
 #define CGOLD 0.3819660  int maxwav; /* Maxim number of waves */
 #define ZEPS 1.0e-10  int jmin, jmax; /* min, max spacing between 2 waves */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #define GOLD 1.618034  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #define GLIMIT 100.0  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #define TINY 1.0e-20             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 static double maxarg1,maxarg2;  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    FILE *ficlog;
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #define rint(a) floor(a+0.5)  FILE *ficresprobmorprev;
   FILE *fichtm; /* Html File */
 static double sqrarg;  FILE *ficreseij;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char filerese[FILENAMELENGTH];
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 int imx;  FILE  *ficresvpl;
 int stepm;  char fileresvpl[FILENAMELENGTH];
 /* Stepm, step in month: minimum step interpolation*/  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 int estepm;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 int m,nb;  char filelog[FILENAMELENGTH]; /* Log file */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  char filerest[FILENAMELENGTH];
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char fileregp[FILENAMELENGTH];
 double **pmmij, ***probs, ***mobaverage;  char popfile[FILENAMELENGTH];
 double dateintmean=0;  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 double *weight;  
 int **s; /* Status */  #define NR_END 1
 double *agedc, **covar, idx;  #define FREE_ARG char*
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define FTOL 1.0e-10
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define NRANSI 
 double ftolhess; /* Tolerance for computing hessian */  #define ITMAX 200 
   
 /**************** split *************************/  #define TOL 2.0e-4 
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {  #define CGOLD 0.3819660 
    char *s;                             /* pointer */  #define ZEPS 1.0e-10 
    int  l1, l2;                         /* length counters */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
    l1 = strlen( path );                 /* length of path */  #define GOLD 1.618034 
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define GLIMIT 100.0 
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  #define TINY 1.0e-20 
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */  static double maxarg1,maxarg2;
       extern char       *getwd( );  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       if ( getwd( dirc ) == NULL ) {    
 #else  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       extern char       *getcwd( );  #define rint(a) floor(a+0.5)
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  static double sqrarg;
 #endif  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
          return( GLOCK_ERROR_GETCWD );  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       }  
       strcpy( name, path );             /* we've got it */  int imx; 
    } else {                             /* strip direcotry from path */  int stepm;
       s++;                              /* after this, the filename */  /* Stepm, step in month: minimum step interpolation*/
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int estepm;
       strcpy( name, s );                /* save file name */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  int m,nb;
    }  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
    l1 = strlen( dirc );                 /* length of directory */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 #ifdef windows  double **pmmij, ***probs;
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  double dateintmean=0;
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  double *weight;
 #endif  int **s; /* Status */
    s = strrchr( name, '.' );            /* find last / */  double *agedc, **covar, idx;
    s++;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
    l2= strlen( s)+1;  double ftolhess; /* Tolerance for computing hessian */
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  /**************** split *************************/
    return( 0 );                         /* we're done */  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 /******************************************/  
     l1 = strlen(path );                   /* length of path */
 void replace(char *s, char*t)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   int i;    if ( ss == NULL ) {                   /* no directory, so use current */
   int lg=20;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   i=0;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   lg=strlen(t);      /* get current working directory */
   for(i=0; i<= lg; i++) {      /*    extern  char* getcwd ( char *buf , int len);*/
     (s[i] = t[i]);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     if (t[i]== '\\') s[i]='/';        return( GLOCK_ERROR_GETCWD );
   }      }
 }      strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
 int nbocc(char *s, char occ)      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   int i,j=0;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   int lg=20;      strcpy( name, ss );         /* save file name */
   i=0;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   lg=strlen(s);      dirc[l1-l2] = 0;                    /* add zero */
   for(i=0; i<= lg; i++) {    }
   if  (s[i] == occ ) j++;    l1 = strlen( dirc );                  /* length of directory */
   }  #ifdef windows
   return j;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 }  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 void cutv(char *u,char *v, char*t, char occ)  #endif
 {    ss = strrchr( name, '.' );            /* find last / */
   int i,lg,j,p=0;    ss++;
   i=0;    strcpy(ext,ss);                       /* save extension */
   for(j=0; j<=strlen(t)-1; j++) {    l1= strlen( name);
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    l2= strlen(ss)+1;
   }    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
   lg=strlen(t);    return( 0 );                          /* we're done */
   for(j=0; j<p; j++) {  }
     (u[j] = t[j]);  
   }  
      u[p]='\0';  /******************************************/
   
    for(j=0; j<= lg; j++) {  void replace(char *s, char*t)
     if (j>=(p+1))(v[j-p-1] = t[j]);  {
   }    int i;
 }    int lg=20;
     i=0;
 /********************** nrerror ********************/    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 void nrerror(char error_text[])      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   fprintf(stderr,"ERREUR ...\n");    }
   fprintf(stderr,"%s\n",error_text);  }
   exit(1);  
 }  int nbocc(char *s, char occ)
 /*********************** vector *******************/  {
 double *vector(int nl, int nh)    int i,j=0;
 {    int lg=20;
   double *v;    i=0;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    lg=strlen(s);
   if (!v) nrerror("allocation failure in vector");    for(i=0; i<= lg; i++) {
   return v-nl+NR_END;    if  (s[i] == occ ) j++;
 }    }
     return j;
 /************************ free vector ******************/  }
 void free_vector(double*v, int nl, int nh)  
 {  void cutv(char *u,char *v, char*t, char occ)
   free((FREE_ARG)(v+nl-NR_END));  {
 }    /* cuts string t into u and v where u is ended by char occ excluding it
        and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 /************************ivector *******************************/       gives u="abcedf" and v="ghi2j" */
 int *ivector(long nl,long nh)    int i,lg,j,p=0;
 {    i=0;
   int *v;    for(j=0; j<=strlen(t)-1; j++) {
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   if (!v) nrerror("allocation failure in ivector");    }
   return v-nl+NR_END;  
 }    lg=strlen(t);
     for(j=0; j<p; j++) {
 /******************free ivector **************************/      (u[j] = t[j]);
 void free_ivector(int *v, long nl, long nh)    }
 {       u[p]='\0';
   free((FREE_ARG)(v+nl-NR_END));  
 }     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
 /******************* imatrix *******************************/    }
 int **imatrix(long nrl, long nrh, long ncl, long nch)  }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  /********************** nrerror ********************/
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  void nrerror(char error_text[])
    {
   /* allocate pointers to rows */    fprintf(stderr,"ERREUR ...\n");
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    fprintf(stderr,"%s\n",error_text);
   if (!m) nrerror("allocation failure 1 in matrix()");    exit(EXIT_FAILURE);
   m += NR_END;  }
   m -= nrl;  /*********************** vector *******************/
    double *vector(int nl, int nh)
    {
   /* allocate rows and set pointers to them */    double *v;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!v) nrerror("allocation failure in vector");
   m[nrl] += NR_END;    return v-nl+NR_END;
   m[nrl] -= ncl;  }
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  /************************ free vector ******************/
    void free_vector(double*v, int nl, int nh)
   /* return pointer to array of pointers to rows */  {
   return m;    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /****************** free_imatrix *************************/  /************************ivector *******************************/
 void free_imatrix(m,nrl,nrh,ncl,nch)  int *ivector(long nl,long nh)
       int **m;  {
       long nch,ncl,nrh,nrl;    int *v;
      /* free an int matrix allocated by imatrix() */    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 {    if (!v) nrerror("allocation failure in ivector");
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    return v-nl+NR_END;
   free((FREE_ARG) (m+nrl-NR_END));  }
 }  
   /******************free ivector **************************/
 /******************* matrix *******************************/  void free_ivector(int *v, long nl, long nh)
 double **matrix(long nrl, long nrh, long ncl, long nch)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  }
   double **m;  
   /******************* imatrix *******************************/
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   if (!m) nrerror("allocation failure 1 in matrix()");       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   m += NR_END;  { 
   m -= nrl;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    /* allocate pointers to rows */ 
   m[nrl] += NR_END;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   m[nrl] -= ncl;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    m -= nrl; 
   return m;    
 }    
     /* allocate rows and set pointers to them */ 
 /*************************free matrix ************************/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 {    m[nrl] += NR_END; 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m[nrl] -= ncl; 
   free((FREE_ARG)(m+nrl-NR_END));    
 }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
 /******************* ma3x *******************************/    /* return pointer to array of pointers to rows */ 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    return m; 
 {  } 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));        int **m;
   if (!m) nrerror("allocation failure 1 in matrix()");        long nch,ncl,nrh,nrl; 
   m += NR_END;       /* free an int matrix allocated by imatrix() */ 
   m -= nrl;  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    free((FREE_ARG) (m+nrl-NR_END)); 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  } 
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    double **m;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   m[nrl][ncl] -= nll;    if (!m) nrerror("allocation failure 1 in matrix()");
   for (j=ncl+1; j<=nch; j++)    m += NR_END;
     m[nrl][j]=m[nrl][j-1]+nlay;    m -= nrl;
    
   for (i=nrl+1; i<=nrh; i++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for (j=ncl+1; j<=nch; j++)    m[nrl] += NR_END;
       m[i][j]=m[i][j-1]+nlay;    m[nrl] -= ncl;
   }  
   return m;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }    return m;
     /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
 /*************************free ma3x ************************/     */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  }
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /*************************free matrix ************************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /***************** f1dim *************************/  }
 extern int ncom;  
 extern double *pcom,*xicom;  /******************* ma3x *******************************/
 extern double (*nrfunc)(double []);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
    {
 double f1dim(double x)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 {    double ***m;
   int j;  
   double f;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double *xt;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
   xt=vector(1,ncom);    m -= nrl;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   free_vector(xt,1,ncom);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   return f;    m[nrl] += NR_END;
 }    m[nrl] -= ncl;
   
 /*****************brent *************************/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   int iter;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double a,b,d,etemp;    m[nrl][ncl] += NR_END;
   double fu,fv,fw,fx;    m[nrl][ncl] -= nll;
   double ftemp;    for (j=ncl+1; j<=nch; j++) 
   double p,q,r,tol1,tol2,u,v,w,x,xm;      m[nrl][j]=m[nrl][j-1]+nlay;
   double e=0.0;    
      for (i=nrl+1; i<=nrh; i++) {
   a=(ax < cx ? ax : cx);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   b=(ax > cx ? ax : cx);      for (j=ncl+1; j<=nch; j++) 
   x=w=v=bx;        m[i][j]=m[i][j-1]+nlay;
   fw=fv=fx=(*f)(x);    }
   for (iter=1;iter<=ITMAX;iter++) {    return m; 
     xm=0.5*(a+b);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    */
     printf(".");fflush(stdout);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /*************************free ma3x ************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       *xmin=x;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       return fx;    free((FREE_ARG)(m+nrl-NR_END));
     }  }
     ftemp=fu;  
     if (fabs(e) > tol1) {  /***************** f1dim *************************/
       r=(x-w)*(fx-fv);  extern int ncom; 
       q=(x-v)*(fx-fw);  extern double *pcom,*xicom;
       p=(x-v)*q-(x-w)*r;  extern double (*nrfunc)(double []); 
       q=2.0*(q-r);   
       if (q > 0.0) p = -p;  double f1dim(double x) 
       q=fabs(q);  { 
       etemp=e;    int j; 
       e=d;    double f;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    double *xt; 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));   
       else {    xt=vector(1,ncom); 
         d=p/q;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         u=x+d;    f=(*nrfunc)(xt); 
         if (u-a < tol2 || b-u < tol2)    free_vector(xt,1,ncom); 
           d=SIGN(tol1,xm-x);    return f; 
       }  } 
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  { 
     fu=(*f)(u);    int iter; 
     if (fu <= fx) {    double a,b,d,etemp;
       if (u >= x) a=x; else b=x;    double fu,fv,fw,fx;
       SHFT(v,w,x,u)    double ftemp;
         SHFT(fv,fw,fx,fu)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         } else {    double e=0.0; 
           if (u < x) a=u; else b=u;   
           if (fu <= fw || w == x) {    a=(ax < cx ? ax : cx); 
             v=w;    b=(ax > cx ? ax : cx); 
             w=u;    x=w=v=bx; 
             fv=fw;    fw=fv=fx=(*f)(x); 
             fw=fu;    for (iter=1;iter<=ITMAX;iter++) { 
           } else if (fu <= fv || v == x || v == w) {      xm=0.5*(a+b); 
             v=u;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
             fv=fu;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
           }      printf(".");fflush(stdout);
         }      fprintf(ficlog,".");fflush(ficlog);
   }  #ifdef DEBUG
   nrerror("Too many iterations in brent");      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   *xmin=x;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   return fx;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 }  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 /****************** mnbrak ***********************/        *xmin=x; 
         return fx; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      } 
             double (*func)(double))      ftemp=fu;
 {      if (fabs(e) > tol1) { 
   double ulim,u,r,q, dum;        r=(x-w)*(fx-fv); 
   double fu;        q=(x-v)*(fx-fw); 
          p=(x-v)*q-(x-w)*r; 
   *fa=(*func)(*ax);        q=2.0*(q-r); 
   *fb=(*func)(*bx);        if (q > 0.0) p = -p; 
   if (*fb > *fa) {        q=fabs(q); 
     SHFT(dum,*ax,*bx,dum)        etemp=e; 
       SHFT(dum,*fb,*fa,dum)        e=d; 
       }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   *cx=(*bx)+GOLD*(*bx-*ax);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   *fc=(*func)(*cx);        else { 
   while (*fb > *fc) {          d=p/q; 
     r=(*bx-*ax)*(*fb-*fc);          u=x+d; 
     q=(*bx-*cx)*(*fb-*fa);          if (u-a < tol2 || b-u < tol2) 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/            d=SIGN(tol1,xm-x); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        } 
     ulim=(*bx)+GLIMIT*(*cx-*bx);      } else { 
     if ((*bx-u)*(u-*cx) > 0.0) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       fu=(*func)(u);      } 
     } else if ((*cx-u)*(u-ulim) > 0.0) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*func)(u);      fu=(*f)(u); 
       if (fu < *fc) {      if (fu <= fx) { 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))        if (u >= x) a=x; else b=x; 
           SHFT(*fb,*fc,fu,(*func)(u))        SHFT(v,w,x,u) 
           }          SHFT(fv,fw,fx,fu) 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {          } else { 
       u=ulim;            if (u < x) a=u; else b=u; 
       fu=(*func)(u);            if (fu <= fw || w == x) { 
     } else {              v=w; 
       u=(*cx)+GOLD*(*cx-*bx);              w=u; 
       fu=(*func)(u);              fv=fw; 
     }              fw=fu; 
     SHFT(*ax,*bx,*cx,u)            } else if (fu <= fv || v == x || v == w) { 
       SHFT(*fa,*fb,*fc,fu)              v=u; 
       }              fv=fu; 
 }            } 
           } 
 /*************** linmin ************************/    } 
     nrerror("Too many iterations in brent"); 
 int ncom;    *xmin=x; 
 double *pcom,*xicom;    return fx; 
 double (*nrfunc)(double []);  } 
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /****************** mnbrak ***********************/
 {  
   double brent(double ax, double bx, double cx,  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                double (*f)(double), double tol, double *xmin);              double (*func)(double)) 
   double f1dim(double x);  { 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    double ulim,u,r,q, dum;
               double *fc, double (*func)(double));    double fu; 
   int j;   
   double xx,xmin,bx,ax;    *fa=(*func)(*ax); 
   double fx,fb,fa;    *fb=(*func)(*bx); 
      if (*fb > *fa) { 
   ncom=n;      SHFT(dum,*ax,*bx,dum) 
   pcom=vector(1,n);        SHFT(dum,*fb,*fa,dum) 
   xicom=vector(1,n);        } 
   nrfunc=func;    *cx=(*bx)+GOLD*(*bx-*ax); 
   for (j=1;j<=n;j++) {    *fc=(*func)(*cx); 
     pcom[j]=p[j];    while (*fb > *fc) { 
     xicom[j]=xi[j];      r=(*bx-*ax)*(*fb-*fc); 
   }      q=(*bx-*cx)*(*fb-*fa); 
   ax=0.0;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   xx=1.0;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      if ((*bx-u)*(u-*cx) > 0.0) { 
 #ifdef DEBUG        fu=(*func)(u); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 #endif        fu=(*func)(u); 
   for (j=1;j<=n;j++) {        if (fu < *fc) { 
     xi[j] *= xmin;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     p[j] += xi[j];            SHFT(*fb,*fc,fu,(*func)(u)) 
   }            } 
   free_vector(xicom,1,n);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   free_vector(pcom,1,n);        u=ulim; 
 }        fu=(*func)(u); 
       } else { 
 /*************** powell ************************/        u=(*cx)+GOLD*(*cx-*bx); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        fu=(*func)(u); 
             double (*func)(double []))      } 
 {      SHFT(*ax,*bx,*cx,u) 
   void linmin(double p[], double xi[], int n, double *fret,        SHFT(*fa,*fb,*fc,fu) 
               double (*func)(double []));        } 
   int i,ibig,j;  } 
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /*************** linmin ************************/
   double *xits;  
   pt=vector(1,n);  int ncom; 
   ptt=vector(1,n);  double *pcom,*xicom;
   xit=vector(1,n);  double (*nrfunc)(double []); 
   xits=vector(1,n);   
   *fret=(*func)(p);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   for (j=1;j<=n;j++) pt[j]=p[j];  { 
   for (*iter=1;;++(*iter)) {    double brent(double ax, double bx, double cx, 
     fp=(*fret);                 double (*f)(double), double tol, double *xmin); 
     ibig=0;    double f1dim(double x); 
     del=0.0;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);                double *fc, double (*func)(double)); 
     for (i=1;i<=n;i++)    int j; 
       printf(" %d %.12f",i, p[i]);    double xx,xmin,bx,ax; 
     printf("\n");    double fx,fb,fa;
     for (i=1;i<=n;i++) {   
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    ncom=n; 
       fptt=(*fret);    pcom=vector(1,n); 
 #ifdef DEBUG    xicom=vector(1,n); 
       printf("fret=%lf \n",*fret);    nrfunc=func; 
 #endif    for (j=1;j<=n;j++) { 
       printf("%d",i);fflush(stdout);      pcom[j]=p[j]; 
       linmin(p,xit,n,fret,func);      xicom[j]=xi[j]; 
       if (fabs(fptt-(*fret)) > del) {    } 
         del=fabs(fptt-(*fret));    ax=0.0; 
         ibig=i;    xx=1.0; 
       }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 #ifdef DEBUG    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       printf("%d %.12e",i,(*fret));  #ifdef DEBUG
       for (j=1;j<=n;j++) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         printf(" x(%d)=%.12e",j,xit[j]);  #endif
       }    for (j=1;j<=n;j++) { 
       for(j=1;j<=n;j++)      xi[j] *= xmin; 
         printf(" p=%.12e",p[j]);      p[j] += xi[j]; 
       printf("\n");    } 
 #endif    free_vector(xicom,1,n); 
     }    free_vector(pcom,1,n); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  } 
 #ifdef DEBUG  
       int k[2],l;  /*************** powell ************************/
       k[0]=1;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       k[1]=-1;              double (*func)(double [])) 
       printf("Max: %.12e",(*func)(p));  { 
       for (j=1;j<=n;j++)    void linmin(double p[], double xi[], int n, double *fret, 
         printf(" %.12e",p[j]);                double (*func)(double [])); 
       printf("\n");    int i,ibig,j; 
       for(l=0;l<=1;l++) {    double del,t,*pt,*ptt,*xit;
         for (j=1;j<=n;j++) {    double fp,fptt;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    double *xits;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    pt=vector(1,n); 
         }    ptt=vector(1,n); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    xit=vector(1,n); 
       }    xits=vector(1,n); 
 #endif    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
       free_vector(xit,1,n);      fp=(*fret); 
       free_vector(xits,1,n);      ibig=0; 
       free_vector(ptt,1,n);      del=0.0; 
       free_vector(pt,1,n);      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       return;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     }      for (i=1;i<=n;i++) 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        printf(" %d %.12f",i, p[i]);
     for (j=1;j<=n;j++) {      fprintf(ficlog," %d %.12f",i, p[i]);
       ptt[j]=2.0*p[j]-pt[j];      printf("\n");
       xit[j]=p[j]-pt[j];      fprintf(ficlog,"\n");
       pt[j]=p[j];      for (i=1;i<=n;i++) { 
     }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     fptt=(*func)(ptt);        fptt=(*fret); 
     if (fptt < fp) {  #ifdef DEBUG
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        printf("fret=%lf \n",*fret);
       if (t < 0.0) {        fprintf(ficlog,"fret=%lf \n",*fret);
         linmin(p,xit,n,fret,func);  #endif
         for (j=1;j<=n;j++) {        printf("%d",i);fflush(stdout);
           xi[j][ibig]=xi[j][n];        fprintf(ficlog,"%d",i);fflush(ficlog);
           xi[j][n]=xit[j];        linmin(p,xit,n,fret,func); 
         }        if (fabs(fptt-(*fret)) > del) { 
 #ifdef DEBUG          del=fabs(fptt-(*fret)); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          ibig=i; 
         for(j=1;j<=n;j++)        } 
           printf(" %.12e",xit[j]);  #ifdef DEBUG
         printf("\n");        printf("%d %.12e",i,(*fret));
 #endif        fprintf(ficlog,"%d %.12e",i,(*fret));
       }        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   }          printf(" x(%d)=%.12e",j,xit[j]);
 }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
 /**** Prevalence limit ****************/        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)          fprintf(ficlog," p=%.12e",p[j]);
 {        }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        printf("\n");
      matrix by transitions matrix until convergence is reached */        fprintf(ficlog,"\n");
   #endif
   int i, ii,j,k;      } 
   double min, max, maxmin, maxmax,sumnew=0.;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double **matprod2();  #ifdef DEBUG
   double **out, cov[NCOVMAX], **pmij();        int k[2],l;
   double **newm;        k[0]=1;
   double agefin, delaymax=50 ; /* Max number of years to converge */        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for (j=1;j<=nlstate+ndeath;j++){        for (j=1;j<=n;j++) {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
         }
    cov[1]=1.;        printf("\n");
          fprintf(ficlog,"\n");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        for(l=0;l<=1;l++) {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){          for (j=1;j<=n;j++) {
     newm=savm;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     /* Covariates have to be included here again */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      cov[2]=agefin;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
       for (k=1; k<=cptcovn;k++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        }
       }  #endif
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        free_vector(ptt,1,n); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        free_vector(pt,1,n); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        return; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     savm=oldm;      for (j=1;j<=n;j++) { 
     oldm=newm;        ptt[j]=2.0*p[j]-pt[j]; 
     maxmax=0.;        xit[j]=p[j]-pt[j]; 
     for(j=1;j<=nlstate;j++){        pt[j]=p[j]; 
       min=1.;      } 
       max=0.;      fptt=(*func)(ptt); 
       for(i=1; i<=nlstate; i++) {      if (fptt < fp) { 
         sumnew=0;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        if (t < 0.0) { 
         prlim[i][j]= newm[i][j]/(1-sumnew);          linmin(p,xit,n,fret,func); 
         max=FMAX(max,prlim[i][j]);          for (j=1;j<=n;j++) { 
         min=FMIN(min,prlim[i][j]);            xi[j][ibig]=xi[j][n]; 
       }            xi[j][n]=xit[j]; 
       maxmin=max-min;          }
       maxmax=FMAX(maxmax,maxmin);  #ifdef DEBUG
     }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     if(maxmax < ftolpl){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       return prlim;          for(j=1;j<=n;j++){
     }            printf(" %.12e",xit[j]);
   }            fprintf(ficlog," %.12e",xit[j]);
 }          }
           printf("\n");
 /*************** transition probabilities ***************/          fprintf(ficlog,"\n");
   #endif
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        }
 {      } 
   double s1, s2;    } 
   /*double t34;*/  } 
   int i,j,j1, nc, ii, jj;  
   /**** Prevalence limit (stable prevalence)  ****************/
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         /*s2 += param[i][j][nc]*cov[nc];*/    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];       matrix by transitions matrix until convergence is reached */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }    int i, ii,j,k;
       ps[i][j]=s2;    double min, max, maxmin, maxmax,sumnew=0.;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double **matprod2();
     }    double **out, cov[NCOVMAX], **pmij();
     for(j=i+1; j<=nlstate+ndeath;j++){    double **newm;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double agefin, delaymax=50 ; /* Max number of years to converge */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    for (ii=1;ii<=nlstate+ndeath;ii++)
       }      for (j=1;j<=nlstate+ndeath;j++){
       ps[i][j]=s2;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
   }  
     /*ps[3][2]=1;*/     cov[1]=1.;
    
   for(i=1; i<= nlstate; i++){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      s1=0;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for(j=1; j<i; j++)      newm=savm;
       s1+=exp(ps[i][j]);      /* Covariates have to be included here again */
     for(j=i+1; j<=nlstate+ndeath; j++)       cov[2]=agefin;
       s1+=exp(ps[i][j]);    
     ps[i][i]=1./(s1+1.);        for (k=1; k<=cptcovn;k++) {
     for(j=1; j<i; j++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       ps[i][j]= exp(ps[i][j])*ps[i][i];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for(j=i+1; j<=nlstate+ndeath; j++)        }
       ps[i][j]= exp(ps[i][j])*ps[i][i];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        for (k=1; k<=cptcovprod;k++)
   } /* end i */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for(jj=1; jj<= nlstate+ndeath; jj++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       ps[ii][jj]=0;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       ps[ii][ii]=1;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     }  
   }      savm=oldm;
       oldm=newm;
       maxmax=0.;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      for(j=1;j<=nlstate;j++){
     for(jj=1; jj<= nlstate+ndeath; jj++){        min=1.;
      printf("%lf ",ps[ii][jj]);        max=0.;
    }        for(i=1; i<=nlstate; i++) {
     printf("\n ");          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     printf("\n ");printf("%lf ",cov[2]);*/          prlim[i][j]= newm[i][j]/(1-sumnew);
 /*          max=FMAX(max,prlim[i][j]);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          min=FMIN(min,prlim[i][j]);
   goto end;*/        }
     return ps;        maxmin=max-min;
 }        maxmax=FMAX(maxmax,maxmin);
       }
 /**************** Product of 2 matrices ******************/      if(maxmax < ftolpl){
         return prlim;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      }
 {    }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  /*************** transition probabilities ***************/ 
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   long i, j, k;  {
   for(i=nrl; i<= nrh; i++)    double s1, s2;
     for(k=ncolol; k<=ncoloh; k++)    /*double t34;*/
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    int i,j,j1, nc, ii, jj;
         out[i][k] +=in[i][j]*b[j][k];  
       for(i=1; i<= nlstate; i++){
   return out;      for(j=1; j<i;j++){
 }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /************* Higher Matrix Product ***************/          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        ps[i][j]=s2;
 {        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      }
      duration (i.e. until      for(j=i+1; j<=nlstate+ndeath;j++){
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
      (typically every 2 years instead of every month which is too big).          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
      Model is determined by parameters x and covariates have to be        }
      included manually here.        ps[i][j]=s2;
       }
      */    }
       /*ps[3][2]=1;*/
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];    for(i=1; i<= nlstate; i++){
   double **newm;       s1=0;
       for(j=1; j<i; j++)
   /* Hstepm could be zero and should return the unit matrix */        s1+=exp(ps[i][j]);
   for (i=1;i<=nlstate+ndeath;i++)      for(j=i+1; j<=nlstate+ndeath; j++)
     for (j=1;j<=nlstate+ndeath;j++){        s1+=exp(ps[i][j]);
       oldm[i][j]=(i==j ? 1.0 : 0.0);      ps[i][i]=1./(s1+1.);
       po[i][j][0]=(i==j ? 1.0 : 0.0);      for(j=1; j<i; j++)
     }        ps[i][j]= exp(ps[i][j])*ps[i][i];
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      for(j=i+1; j<=nlstate+ndeath; j++)
   for(h=1; h <=nhstepm; h++){        ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(d=1; d <=hstepm; d++){      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       newm=savm;    } /* end i */
       /* Covariates have to be included here again */  
       cov[1]=1.;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      for(jj=1; jj<= nlstate+ndeath; jj++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        ps[ii][jj]=0;
       for (k=1; k<=cptcovage;k++)        ps[ii][ii]=1;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      }
       for (k=1; k<=cptcovprod;k++)    }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   
     /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      for(jj=1; jj<= nlstate+ndeath; jj++){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/       printf("%lf ",ps[ii][jj]);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,     }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      printf("\n ");
       savm=oldm;      }
       oldm=newm;      printf("\n ");printf("%lf ",cov[2]);*/
     }  /*
     for(i=1; i<=nlstate+ndeath; i++)    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       for(j=1;j<=nlstate+ndeath;j++) {    goto end;*/
         po[i][j][h]=newm[i][j];      return ps;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  }
          */  
       }  /**************** Product of 2 matrices ******************/
   } /* end h */  
   return po;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 }  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 /*************** log-likelihood *************/    /* in, b, out are matrice of pointers which should have been initialized 
 double func( double *x)       before: only the contents of out is modified. The function returns
 {       a pointer to pointers identical to out */
   int i, ii, j, k, mi, d, kk;    long i, j, k;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for(i=nrl; i<= nrh; i++)
   double **out;      for(k=ncolol; k<=ncoloh; k++)
   double sw; /* Sum of weights */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   double lli; /* Individual log likelihood */          out[i][k] +=in[i][j]*b[j][k];
   long ipmx;  
   /*extern weight */    return out;
   /* We are differentiating ll according to initial status */  }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);  /************* Higher Matrix Product ***************/
   */  
   cov[1]=1.;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
   for(k=1; k<=nlstate; k++) ll[k]=0.;    /* Computes the transition matrix starting at age 'age' over 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){       'nhstepm*hstepm*stepm' months (i.e. until
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     for(mi=1; mi<= wav[i]-1; mi++){       nhstepm*hstepm matrices. 
       for (ii=1;ii<=nlstate+ndeath;ii++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);       (typically every 2 years instead of every month which is too big 
       for(d=0; d<dh[mi][i]; d++){       for the memory).
         newm=savm;       Model is determined by parameters x and covariates have to be 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;       included manually here. 
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       */
         }  
            int i, j, d, h, k;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double **out, cov[NCOVMAX];
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double **newm;
         savm=oldm;  
         oldm=newm;    /* Hstepm could be zero and should return the unit matrix */
            for (i=1;i<=nlstate+ndeath;i++)
              for (j=1;j<=nlstate+ndeath;j++){
       } /* end mult */        oldm[i][j]=(i==j ? 1.0 : 0.0);
              po[i][j][0]=(i==j ? 1.0 : 0.0);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       ipmx +=1;    for(h=1; h <=nhstepm; h++){
       sw += weight[i];      for(d=1; d <=hstepm; d++){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        newm=savm;
     } /* end of wave */        /* Covariates have to be included here again */
   } /* end of individual */        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        for (k=1; k<=cptcovage;k++)
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   return -l;        for (k=1; k<=cptcovprod;k++)
 }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   
 /*********** Maximum Likelihood Estimation ***************/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i,j, iter;        savm=oldm;
   double **xi,*delti;        oldm=newm;
   double fret;      }
   xi=matrix(1,npar,1,npar);      for(i=1; i<=nlstate+ndeath; i++)
   for (i=1;i<=npar;i++)        for(j=1;j<=nlstate+ndeath;j++) {
     for (j=1;j<=npar;j++)          po[i][j][h]=newm[i][j];
       xi[i][j]=(i==j ? 1.0 : 0.0);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   printf("Powell\n");           */
   powell(p,xi,npar,ftol,&iter,&fret,func);        }
     } /* end h */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    return po;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   
 }  
   /*************** log-likelihood *************/
 /**** Computes Hessian and covariance matrix ***/  double func( double *x)
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  {
 {    int i, ii, j, k, mi, d, kk;
   double  **a,**y,*x,pd;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double **hess;    double **out;
   int i, j,jk;    double sw; /* Sum of weights */
   int *indx;    double lli; /* Individual log likelihood */
     int s1, s2;
   double hessii(double p[], double delta, int theta, double delti[]);    double bbh, survp;
   double hessij(double p[], double delti[], int i, int j);    long ipmx;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    /*extern weight */
   void ludcmp(double **a, int npar, int *indx, double *d) ;    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   hess=matrix(1,npar,1,npar);    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   printf("\nCalculation of the hessian matrix. Wait...\n");    */
   for (i=1;i<=npar;i++){    cov[1]=1.;
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/    if(mle==1){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=1;i<=npar;i++) {        for(mi=1; mi<= wav[i]-1; mi++){
     for (j=1;j<=npar;j++)  {          for (ii=1;ii<=nlstate+ndeath;ii++)
       if (j>i) {            for (j=1;j<=nlstate+ndeath;j++){
         printf(".%d%d",i,j);fflush(stdout);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         hess[i][j]=hessij(p,delti,i,j);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         hess[j][i]=hess[i][j];                }
         /*printf(" %lf ",hess[i][j]);*/          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   printf("\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   a=matrix(1,npar,1,npar);            savm=oldm;
   y=matrix(1,npar,1,npar);            oldm=newm;
   x=vector(1,npar);          } /* end mult */
   indx=ivector(1,npar);        
   for (i=1;i<=npar;i++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          /* But now since version 0.9 we anticipate for bias and large stepm.
   ludcmp(a,npar,indx,&pd);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
   for (j=1;j<=npar;j++) {           * the nearest (and in case of equal distance, to the lowest) interval but now
     for (i=1;i<=npar;i++) x[i]=0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     x[j]=1;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     lubksb(a,npar,indx,x);           * probability in order to take into account the bias as a fraction of the way
     for (i=1;i<=npar;i++){           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       matcov[i][j]=x[i];           * -stepm/2 to stepm/2 .
     }           * For stepm=1 the results are the same as for previous versions of Imach.
   }           * For stepm > 1 the results are less biased than in previous versions. 
            */
   printf("\n#Hessian matrix#\n");          s1=s[mw[mi][i]][i];
   for (i=1;i<=npar;i++) {          s2=s[mw[mi+1][i]][i];
     for (j=1;j<=npar;j++) {          bbh=(double)bh[mi][i]/(double)stepm; 
       printf("%.3e ",hess[i][j]);          /* bias is positive if real duration
     }           * is higher than the multiple of stepm and negative otherwise.
     printf("\n");           */
   }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
   /* Recompute Inverse */            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   for (i=1;i<=npar;i++)               to the likelihood is the probability to die between last step unit time and current 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];               step unit time, which is also the differences between probability to die before dh 
   ludcmp(a,npar,indx,&pd);               and probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
   /*  printf("\n#Hessian matrix recomputed#\n");          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
   for (j=1;j<=npar;j++) {          and not the date of a change in health state. The former idea was
     for (i=1;i<=npar;i++) x[i]=0;          to consider that at each interview the state was recorded
     x[j]=1;          (healthy, disable or death) and IMaCh was corrected; but when we
     lubksb(a,npar,indx,x);          introduced the exact date of death then we should have modified
     for (i=1;i<=npar;i++){          the contribution of an exact death to the likelihood. This new
       y[i][j]=x[i];          contribution is smaller and very dependent of the step unit
       printf("%.3e ",y[i][j]);          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
     printf("\n");          interview up to one month before death multiplied by the
   }          probability to die within a month. Thanks to Chris
   */          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
   free_matrix(a,1,npar,1,npar);          which slows down the processing. The difference can be up to 10%
   free_matrix(y,1,npar,1,npar);          lower mortality.
   free_vector(x,1,npar);            */
   free_ivector(indx,1,npar);            lli=log(out[s1][s2] - savm[s1][s2]);
   free_matrix(hess,1,npar,1,npar);          }else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 }          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 /*************** hessian matrix ****************/          /*if(lli ==000.0)*/
 double hessii( double x[], double delta, int theta, double delti[])          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 {          ipmx +=1;
   int i;          sw += weight[i];
   int l=1, lmax=20;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double k1,k2;        } /* end of wave */
   double p2[NPARMAX+1];      } /* end of individual */
   double res;    }  else if(mle==2){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double fx;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int k=0,kmax=10;        for(mi=1; mi<= wav[i]-1; mi++){
   double l1;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   fx=func(x);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++) p2[i]=x[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(l=0 ; l <=lmax; l++){            }
     l1=pow(10,l);          for(d=0; d<=dh[mi][i]; d++){
     delts=delt;            newm=savm;
     for(k=1 ; k <kmax; k=k+1){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       delt = delta*(l1*k);            for (kk=1; kk<=cptcovage;kk++) {
       p2[theta]=x[theta] +delt;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       k1=func(p2)-fx;            }
       p2[theta]=x[theta]-delt;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       k2=func(p2)-fx;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /*res= (k1-2.0*fx+k2)/delt/delt; */            savm=oldm;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            oldm=newm;
                } /* end mult */
 #ifdef DEBUG        
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 #endif          /* But now since version 0.9 we anticipate for bias and large stepm.
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){           * (in months) between two waves is not a multiple of stepm, we rounded to 
         k=kmax;           * the nearest (and in case of equal distance, to the lowest) interval but now
       }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         k=kmax; l=lmax*10.;           * probability in order to take into account the bias as a fraction of the way
       }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){           * -stepm/2 to stepm/2 .
         delts=delt;           * For stepm=1 the results are the same as for previous versions of Imach.
       }           * For stepm > 1 the results are less biased than in previous versions. 
     }           */
   }          s1=s[mw[mi][i]][i];
   delti[theta]=delts;          s2=s[mw[mi+1][i]][i];
   return res;          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
 }           * is higher than the multiple of stepm and negative otherwise.
            */
 double hessij( double x[], double delti[], int thetai,int thetaj)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   int i;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   int l=1, l1, lmax=20;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   double k1,k2,k3,k4,res,fx;          /*if(lli ==000.0)*/
   double p2[NPARMAX+1];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int k;          ipmx +=1;
           sw += weight[i];
   fx=func(x);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (k=1; k<=2; k++) {        } /* end of wave */
     for (i=1;i<=npar;i++) p2[i]=x[i];      } /* end of individual */
     p2[thetai]=x[thetai]+delti[thetai]/k;    }  else if(mle==3){  /* exponential inter-extrapolation */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     k1=func(p2)-fx;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
     p2[thetai]=x[thetai]+delti[thetai]/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            for (j=1;j<=nlstate+ndeath;j++){
     k2=func(p2)-fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]-delti[thetai]/k;            }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          for(d=0; d<dh[mi][i]; d++){
     k3=func(p2)-fx;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p2[thetai]=x[thetai]-delti[thetai]/k;            for (kk=1; kk<=cptcovage;kk++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     k4=func(p2)-fx;            }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 #ifdef DEBUG                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            savm=oldm;
 #endif            oldm=newm;
   }          } /* end mult */
   return res;        
 }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
 /************** Inverse of matrix **************/           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 void ludcmp(double **a, int n, int *indx, double *d)           * (in months) between two waves is not a multiple of stepm, we rounded to 
 {           * the nearest (and in case of equal distance, to the lowest) interval but now
   int i,imax,j,k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double big,dum,sum,temp;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   double *vv;           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   vv=vector(1,n);           * -stepm/2 to stepm/2 .
   *d=1.0;           * For stepm=1 the results are the same as for previous versions of Imach.
   for (i=1;i<=n;i++) {           * For stepm > 1 the results are less biased than in previous versions. 
     big=0.0;           */
     for (j=1;j<=n;j++)          s1=s[mw[mi][i]][i];
       if ((temp=fabs(a[i][j])) > big) big=temp;          s2=s[mw[mi+1][i]][i];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          bbh=(double)bh[mi][i]/(double)stepm; 
     vv[i]=1.0/big;          /* bias is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
   for (j=1;j<=n;j++) {           */
     for (i=1;i<j;i++) {          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
       sum=a[i][j];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       a[i][j]=sum;          /*if(lli ==000.0)*/
     }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     big=0.0;          ipmx +=1;
     for (i=j;i<=n;i++) {          sw += weight[i];
       sum=a[i][j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (k=1;k<j;k++)        } /* end of wave */
         sum -= a[i][k]*a[k][j];      } /* end of individual */
       a[i][j]=sum;    }else{  /* ml=4 no inter-extrapolation */
       if ( (dum=vv[i]*fabs(sum)) >= big) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         big=dum;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         imax=i;        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     if (j != imax) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=1;k<=n;k++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         dum=a[imax][k];            }
         a[imax][k]=a[j][k];          for(d=0; d<dh[mi][i]; d++){
         a[j][k]=dum;            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       *d = -(*d);            for (kk=1; kk<=cptcovage;kk++) {
       vv[imax]=vv[j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
     indx[j]=imax;          
     if (a[j][j] == 0.0) a[j][j]=TINY;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if (j != n) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       dum=1.0/(a[j][j]);            savm=oldm;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            oldm=newm;
     }          } /* end mult */
   }        
   free_vector(vv,1,n);  /* Doesn't work */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 ;          ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void lubksb(double **a, int n, int *indx, double b[])        } /* end of wave */
 {      } /* end of individual */
   int i,ii=0,ip,j;    } /* End of if */
   double sum;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for (i=1;i<=n;i++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     ip=indx[i];    return -l;
     sum=b[ip];  }
     b[ip]=b[i];  
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*********** Maximum Likelihood Estimation ***************/
     else if (sum) ii=i;  
     b[i]=sum;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   }  {
   for (i=n;i>=1;i--) {    int i,j, iter;
     sum=b[i];    double **xi;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    double fret;
     b[i]=sum/a[i][i];    xi=matrix(1,npar,1,npar);
   }    for (i=1;i<=npar;i++)
 }      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
 /************ Frequencies ********************/    printf("Powell\n");  fprintf(ficlog,"Powell\n");
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    powell(p,xi,npar,ftol,&iter,&fret,func);
 {  /* Some frequencies */  
       printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double ***freq; /* Frequencies */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  }
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];  /**** Computes Hessian and covariance matrix ***/
    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   pp=vector(1,nlstate);  {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double  **a,**y,*x,pd;
   strcpy(fileresp,"p");    double **hess;
   strcat(fileresp,fileres);    int i, j,jk;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    int *indx;
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);    double hessii(double p[], double delta, int theta, double delti[]);
   }    double hessij(double p[], double delti[], int i, int j);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   j1=0;    void ludcmp(double **a, int npar, int *indx, double *d) ;
    
   j=cptcoveff;    hess=matrix(1,npar,1,npar);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
      printf("\nCalculation of the hessian matrix. Wait...\n");
   for(k1=1; k1<=j;k1++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for(i1=1; i1<=ncodemax[k1];i1++){    for (i=1;i<=npar;i++){
       j1++;      printf("%d",i);fflush(stdout);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      fprintf(ficlog,"%d",i);fflush(ficlog);
         scanf("%d", i);*/      hess[i][i]=hessii(p,ftolhess,i,delti);
       for (i=-1; i<=nlstate+ndeath; i++)        /*printf(" %f ",p[i]);*/
         for (jk=-1; jk<=nlstate+ndeath; jk++)        /*printf(" %lf ",hess[i][i]);*/
           for(m=agemin; m <= agemax+3; m++)    }
             freq[i][jk][m]=0;    
          for (i=1;i<=npar;i++) {
       dateintsum=0;      for (j=1;j<=npar;j++)  {
       k2cpt=0;        if (j>i) { 
       for (i=1; i<=imx; i++) {          printf(".%d%d",i,j);fflush(stdout);
         bool=1;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         if  (cptcovn>0) {          hess[i][j]=hessij(p,delti,i,j);
           for (z1=1; z1<=cptcoveff; z1++)          hess[j][i]=hess[i][j];    
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /*printf(" %lf ",hess[i][j]);*/
               bool=0;        }
         }      }
         if (bool==1) {    }
           for(m=firstpass; m<=lastpass; m++){    printf("\n");
             k2=anint[m][i]+(mint[m][i]/12.);    fprintf(ficlog,"\n");
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
               if(agev[m][i]==1) agev[m][i]=agemax+2;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
               if (m<lastpass) {    
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    a=matrix(1,npar,1,npar);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    y=matrix(1,npar,1,npar);
               }    x=vector(1,npar);
                  indx=ivector(1,npar);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    for (i=1;i<=npar;i++)
                 dateintsum=dateintsum+k2;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                 k2cpt++;    ludcmp(a,npar,indx,&pd);
               }  
             }    for (j=1;j<=npar;j++) {
           }      for (i=1;i<=npar;i++) x[i]=0;
         }      x[j]=1;
       }      lubksb(a,npar,indx,x);
              for (i=1;i<=npar;i++){ 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        matcov[i][j]=x[i];
       }
       if  (cptcovn>0) {    }
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    printf("\n#Hessian matrix#\n");
         fprintf(ficresp, "**********\n#");    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
       for(i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++) { 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        printf("%.3e ",hess[i][j]);
       fprintf(ficresp, "\n");        fprintf(ficlog,"%.3e ",hess[i][j]);
            }
       for(i=(int)agemin; i <= (int)agemax+3; i++){      printf("\n");
         if(i==(int)agemax+3)      fprintf(ficlog,"\n");
           printf("Total");    }
         else  
           printf("Age %d", i);    /* Recompute Inverse */
         for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=npar;i++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             pp[jk] += freq[jk][m][i];    ludcmp(a,npar,indx,&pd);
         }  
         for(jk=1; jk <=nlstate ; jk++){    /*  printf("\n#Hessian matrix recomputed#\n");
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];    for (j=1;j<=npar;j++) {
           if(pp[jk]>=1.e-10)      for (i=1;i<=npar;i++) x[i]=0;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      x[j]=1;
           else      lubksb(a,npar,indx,x);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1;i<=npar;i++){ 
         }        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"%.3e ",y[i][j]);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      }
             pp[jk] += freq[jk][m][i];      printf("\n");
         }      fprintf(ficlog,"\n");
     }
         for(jk=1,pos=0; jk <=nlstate ; jk++)    */
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){    free_matrix(a,1,npar,1,npar);
           if(pos>=1.e-5)    free_matrix(y,1,npar,1,npar);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    free_vector(x,1,npar);
           else    free_ivector(indx,1,npar);
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    free_matrix(hess,1,npar,1,npar);
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  }
               probs[i][jk][j1]= pp[jk]/pos;  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  /*************** hessian matrix ****************/
             }  double hessii( double x[], double delta, int theta, double delti[])
             else  {
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    int i;
           }    int l=1, lmax=20;
         }    double k1,k2;
            double p2[NPARMAX+1];
         for(jk=-1; jk <=nlstate+ndeath; jk++)    double res;
           for(m=-1; m <=nlstate+ndeath; m++)    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double fx;
         if(i <= (int) agemax)    int k=0,kmax=10;
           fprintf(ficresp,"\n");    double l1;
         printf("\n");  
       }    fx=func(x);
     }    for (i=1;i<=npar;i++) p2[i]=x[i];
   }    for(l=0 ; l <=lmax; l++){
   dateintmean=dateintsum/k2cpt;      l1=pow(10,l);
        delts=delt;
   fclose(ficresp);      for(k=1 ; k <kmax; k=k+1){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        delt = delta*(l1*k);
   free_vector(pp,1,nlstate);        p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;
   /* End of Freq */        p2[theta]=x[theta]-delt;
 }        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
 /************ Prevalence ********************/        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        
 {  /* Some frequencies */  #ifdef DEBUG
          printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double ***freq; /* Frequencies */  #endif
   double *pp;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double pos, k2;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
   pp=vector(1,nlstate);        }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
            k=kmax; l=lmax*10.;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        }
   j1=0;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
   j=cptcoveff;        }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
      }
   for(k1=1; k1<=j;k1++){    delti[theta]=delts;
     for(i1=1; i1<=ncodemax[k1];i1++){    return res; 
       j1++;    
        }
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)    double hessij( double x[], double delti[], int thetai,int thetaj)
           for(m=agemin; m <= agemax+3; m++)  {
             freq[i][jk][m]=0;    int i;
          int l=1, l1, lmax=20;
       for (i=1; i<=imx; i++) {    double k1,k2,k3,k4,res,fx;
         bool=1;    double p2[NPARMAX+1];
         if  (cptcovn>0) {    int k;
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    fx=func(x);
               bool=0;    for (k=1; k<=2; k++) {
         }      for (i=1;i<=npar;i++) p2[i]=x[i];
         if (bool==1) {      p2[thetai]=x[thetai]+delti[thetai]/k;
           for(m=firstpass; m<=lastpass; m++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             k2=anint[m][i]+(mint[m][i]/12.);      k1=func(p2)-fx;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    
               if(agev[m][i]==0) agev[m][i]=agemax+1;      p2[thetai]=x[thetai]+delti[thetai]/k;
               if(agev[m][i]==1) agev[m][i]=agemax+2;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               if (m<lastpass) {      k2=func(p2)-fx;
                 if (calagedate>0)    
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      p2[thetai]=x[thetai]-delti[thetai]/k;
                 else      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      k3=func(p2)-fx;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    
               }      p2[thetai]=x[thetai]-delti[thetai]/k;
             }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           }      k4=func(p2)-fx;
         }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       }  #ifdef DEBUG
       for(i=(int)agemin; i <= (int)agemax+3; i++){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for(jk=1; jk <=nlstate ; jk++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  #endif
             pp[jk] += freq[jk][m][i];    }
         }    return res;
         for(jk=1; jk <=nlstate ; jk++){  }
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  /************** Inverse of matrix **************/
         }  void ludcmp(double **a, int n, int *indx, double *d) 
          { 
         for(jk=1; jk <=nlstate ; jk++){    int i,imax,j,k; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double big,dum,sum,temp; 
             pp[jk] += freq[jk][m][i];    double *vv; 
         }   
            vv=vector(1,n); 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    *d=1.0; 
            for (i=1;i<=n;i++) { 
         for(jk=1; jk <=nlstate ; jk++){          big=0.0; 
           if( i <= (int) agemax){      for (j=1;j<=n;j++) 
             if(pos>=1.e-5){        if ((temp=fabs(a[i][j])) > big) big=temp; 
               probs[i][jk][j1]= pp[jk]/pos;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
             }      vv[i]=1.0/big; 
           }    } 
         }    for (j=1;j<=n;j++) { 
              for (i=1;i<j;i++) { 
       }        sum=a[i][j]; 
     }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   }        a[i][j]=sum; 
       } 
        big=0.0; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for (i=j;i<=n;i++) { 
   free_vector(pp,1,nlstate);        sum=a[i][j]; 
          for (k=1;k<j;k++) 
 }  /* End of Freq */          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 /************* Waves Concatenation ***************/        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          imax=i; 
 {        } 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      } 
      Death is a valid wave (if date is known).      if (j != imax) { 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for (k=1;k<=n;k++) { 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          dum=a[imax][k]; 
      and mw[mi+1][i]. dh depends on stepm.          a[imax][k]=a[j][k]; 
      */          a[j][k]=dum; 
         } 
   int i, mi, m;        *d = -(*d); 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        vv[imax]=vv[j]; 
      double sum=0., jmean=0.;*/      } 
       indx[j]=imax; 
   int j, k=0,jk, ju, jl;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   double sum=0.;      if (j != n) { 
   jmin=1e+5;        dum=1.0/(a[j][j]); 
   jmax=-1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   jmean=0.;      } 
   for(i=1; i<=imx; i++){    } 
     mi=0;    free_vector(vv,1,n);  /* Doesn't work */
     m=firstpass;  ;
     while(s[m][i] <= nlstate){  } 
       if(s[m][i]>=1)  
         mw[++mi][i]=m;  void lubksb(double **a, int n, int *indx, double b[]) 
       if(m >=lastpass)  { 
         break;    int i,ii=0,ip,j; 
       else    double sum; 
         m++;   
     }/* end while */    for (i=1;i<=n;i++) { 
     if (s[m][i] > nlstate){      ip=indx[i]; 
       mi++;     /* Death is another wave */      sum=b[ip]; 
       /* if(mi==0)  never been interviewed correctly before death */      b[ip]=b[i]; 
          /* Only death is a correct wave */      if (ii) 
       mw[mi][i]=m;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     }      else if (sum) ii=i; 
       b[i]=sum; 
     wav[i]=mi;    } 
     if(mi==0)    for (i=n;i>=1;i--) { 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      sum=b[i]; 
   }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
   for(i=1; i<=imx; i++){    } 
     for(mi=1; mi<wav[i];mi++){  } 
       if (stepm <=0)  
         dh[mi][i]=1;  /************ Frequencies ********************/
       else{  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
         if (s[mw[mi+1][i]][i] > nlstate) {  {  /* Some frequencies */
           if (agedc[i] < 2*AGESUP) {    
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           if(j==0) j=1;  /* Survives at least one month after exam */    int first;
           k=k+1;    double ***freq; /* Frequencies */
           if (j >= jmax) jmax=j;    double *pp, **prop;
           if (j <= jmin) jmin=j;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           sum=sum+j;    FILE *ficresp;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    char fileresp[FILENAMELENGTH];
           }    
         }    pp=vector(1,nlstate);
         else{    prop=matrix(1,nlstate,iagemin,iagemax+3);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    strcpy(fileresp,"p");
           k=k+1;    strcat(fileresp,fileres);
           if (j >= jmax) jmax=j;    if((ficresp=fopen(fileresp,"w"))==NULL) {
           else if (j <= jmin)jmin=j;      printf("Problem with prevalence resultfile: %s\n", fileresp);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           sum=sum+j;      exit(0);
         }    }
         jk= j/stepm;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         jl= j -jk*stepm;    j1=0;
         ju= j -(jk+1)*stepm;    
         if(jl <= -ju)    j=cptcoveff;
           dh[mi][i]=jk;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         else  
           dh[mi][i]=jk+1;    first=1;
         if(dh[mi][i]==0)  
           dh[mi][i]=1; /* At least one step */    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
     }        j1++;
   }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   jmean=sum/k;          scanf("%d", i);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        for (i=-1; i<=nlstate+ndeath; i++)  
  }          for (jk=-1; jk<=nlstate+ndeath; jk++)  
 /*********** Tricode ****************************/            for(m=iagemin; m <= iagemax+3; m++)
 void tricode(int *Tvar, int **nbcode, int imx)              freq[i][jk][m]=0;
 {  
   int Ndum[20],ij=1, k, j, i;      for (i=1; i<=nlstate; i++)  
   int cptcode=0;        for(m=iagemin; m <= iagemax+3; m++)
   cptcoveff=0;          prop[i][m]=0;
          
   for (k=0; k<19; k++) Ndum[k]=0;        dateintsum=0;
   for (k=1; k<=7; k++) ncodemax[k]=0;        k2cpt=0;
         for (i=1; i<=imx; i++) {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          bool=1;
     for (i=1; i<=imx; i++) {          if  (cptcovn>0) {
       ij=(int)(covar[Tvar[j]][i]);            for (z1=1; z1<=cptcoveff; z1++) 
       Ndum[ij]++;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/                bool=0;
       if (ij > cptcode) cptcode=ij;          }
     }          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
     for (i=0; i<=cptcode; i++) {              k2=anint[m][i]+(mint[m][i]/12.);
       if(Ndum[i]!=0) ncodemax[j]++;              if ((k2>=dateprev1) && (k2<=dateprev2)) {
     }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     ij=1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
     for (i=1; i<=ncodemax[j]; i++) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       for (k=0; k<=19; k++) {                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         if (Ndum[k] != 0) {                }
           nbcode[Tvar[j]][ij]=k;                
                          if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           ij++;                  dateintsum=dateintsum+k2;
         }                  k2cpt++;
         if (ij > ncodemax[j]) break;                }
       }                }
     }            }
   }            }
         }
  for (k=0; k<19; k++) Ndum[k]=0;         
         fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
  for (i=1; i<=ncovmodel-2; i++) {  
       ij=Tvar[i];        if  (cptcovn>0) {
       Ndum[ij]++;          fprintf(ficresp, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
  ij=1;        }
  for (i=1; i<=10; i++) {        for(i=1; i<=nlstate;i++) 
    if((Ndum[i]!=0) && (i<=ncovcol)){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      Tvaraff[ij]=i;        fprintf(ficresp, "\n");
      ij++;        
    }        for(i=iagemin; i <= iagemax+3; i++){
  }          if(i==iagemax+3){
              fprintf(ficlog,"Total");
     cptcoveff=ij-1;          }else{
 }            if(first==1){
               first=0;
 /*********** Health Expectancies ****************/              printf("See log file for details...\n");
             }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            fprintf(ficlog,"Age %d", i);
           }
 {          for(jk=1; jk <=nlstate ; jk++){
   /* Health expectancies */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;              pp[jk] += freq[jk][m][i]; 
   double age, agelim, hf;          }
   double ***p3mat,***varhe;          for(jk=1; jk <=nlstate ; jk++){
   double **dnewm,**doldm;            for(m=-1, pos=0; m <=0 ; m++)
   double *xp;              pos += freq[jk][m][i];
   double **gp, **gm;            if(pp[jk]>=1.e-10){
   double ***gradg, ***trgradg;              if(first==1){
   int theta;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   xp=vector(1,npar);            }else{
   dnewm=matrix(1,nlstate*2,1,npar);              if(first==1)
   doldm=matrix(1,nlstate*2,1,nlstate*2);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficreseij,"# Health expectancies\n");            }
   fprintf(ficreseij,"# Age");          }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   fprintf(ficreseij,"\n");              pp[jk] += freq[jk][m][i];
           }       
   if(estepm < stepm){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     printf ("Problem %d lower than %d\n",estepm, stepm);            pos += pp[jk];
   }            posprop += prop[jk][i];
   else  hstepm=estepm;            }
   /* We compute the life expectancy from trapezoids spaced every estepm months          for(jk=1; jk <=nlstate ; jk++){
    * This is mainly to measure the difference between two models: for example            if(pos>=1.e-5){
    * if stepm=24 months pijx are given only every 2 years and by summing them              if(first==1)
    * we are calculating an estimate of the Life Expectancy assuming a linear                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    * progression inbetween and thus overestimating or underestimating according              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    * to the curvature of the survival function. If, for the same date, we            }else{
    * estimate the model with stepm=1 month, we can keep estepm to 24 months              if(first==1)
    * to compare the new estimate of Life expectancy with the same linear                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
    * hypothesis. A more precise result, taking into account a more precise              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
    * curvature will be obtained if estepm is as small as stepm. */            }
             if( i <= iagemax){
   /* For example we decided to compute the life expectancy with the smallest unit */              if(pos>=1.e-5){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
      nhstepm is the number of hstepm from age to agelim                probs[i][jk][j1]= pp[jk]/pos;
      nstepm is the number of stepm from age to agelin.                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
      Look at hpijx to understand the reason of that which relies in memory size              }
      and note for a fixed period like estepm months */              else
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
      survival function given by stepm (the optimization length). Unfortunately it            }
      means that if the survival funtion is printed only each two years of age and if          }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          
      results. So we changed our mind and took the option of the best precision.          for(jk=-1; jk <=nlstate+ndeath; jk++)
   */            for(m=-1; m <=nlstate+ndeath; m++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */              if(freq[jk][m][i] !=0 ) {
               if(first==1)
   agelim=AGESUP;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     /* nhstepm age range expressed in number of stepm */              }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          if(i <= iagemax)
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            fprintf(ficresp,"\n");
     /* if (stepm >= YEARM) hstepm=1;*/          if(first==1)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            printf("Others in log...\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficlog,"\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        }
     gp=matrix(0,nhstepm,1,nlstate*2);      }
     gm=matrix(0,nhstepm,1,nlstate*2);    }
     dateintmean=dateintsum/k2cpt; 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored   
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    fclose(ficresp);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
      free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /* End of Freq */
   }
     /* Computing Variances of health expectancies */  
   /************ Prevalence ********************/
      for(theta=1; theta <=npar; theta++){  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       for(i=1; i<=npar; i++){  {  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       }       in each health status at the date of interview (if between dateprev1 and dateprev2).
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         We still use firstpass and lastpass as another selection.
      */
       cptj=0;   
       for(j=1; j<= nlstate; j++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         for(i=1; i<=nlstate; i++){    double ***freq; /* Frequencies */
           cptj=cptj+1;    double *pp, **prop;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    double pos,posprop; 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double  y2; /* in fractional years */
           }    int iagemin, iagemax;
         }  
       }    iagemin= (int) agemin;
          iagemax= (int) agemax;
          /*pp=vector(1,nlstate);*/
       for(i=1; i<=npar; i++)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      j1=0;
          
       cptj=0;    j=cptcoveff;
       for(j=1; j<= nlstate; j++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(i=1;i<=nlstate;i++){    
           cptj=cptj+1;    for(k1=1; k1<=j;k1++){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      for(i1=1; i1<=ncodemax[k1];i1++){
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        j1++;
           }        
         }        for (i=1; i<=nlstate; i++)  
       }          for(m=iagemin; m <= iagemax+3; m++)
       for(j=1; j<= nlstate*2; j++)            prop[i][m]=0.0;
         for(h=0; h<=nhstepm-1; h++){       
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        for (i=1; i<=imx; i++) { /* Each individual */
         }          bool=1;
      }          if  (cptcovn>0) {
                for (z1=1; z1<=cptcoveff; z1++) 
 /* End theta */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          } 
           if (bool==1) { 
      for(h=0; h<=nhstepm-1; h++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for(j=1; j<=nlstate*2;j++)              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         for(theta=1; theta <=npar; theta++)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           trgradg[h][j][theta]=gradg[h][theta][j];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                      if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      for(i=1;i<=nlstate*2;i++)                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       for(j=1;j<=nlstate*2;j++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         varhe[i][j][(int)age] =0.;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
      printf("%d|",(int)age);fflush(stdout);                } 
      for(h=0;h<=nhstepm-1;h++){              }
       for(k=0;k<=nhstepm-1;k++){            } /* end selection of waves */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        }
         for(i=1;i<=nlstate*2;i++)        for(i=iagemin; i <= iagemax+3; i++){  
           for(j=1;j<=nlstate*2;j++)          
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       }            posprop += prop[jk][i]; 
     }          } 
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){     
       for(j=1; j<=nlstate;j++)            if( i <=  iagemax){ 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){              if(posprop>=1.e-5){ 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                probs[i][jk][j1]= prop[jk][i]/posprop;
                        } 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            } 
           }/* end jk */ 
         }        }/* end i */ 
       } /* end i1 */
     fprintf(ficreseij,"%3.0f",age );    } /* end k1 */
     cptj=0;    
     for(i=1; i<=nlstate;i++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       for(j=1; j<=nlstate;j++){    /*free_vector(pp,1,nlstate);*/
         cptj++;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  }  /* End of prevalence */
       }  
     fprintf(ficreseij,"\n");  /************* Waves Concatenation ***************/
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     free_matrix(gp,0,nhstepm,1,nlstate*2);  {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);       Death is a valid wave (if date is known).
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   printf("\n");       and mw[mi+1][i]. dh depends on stepm.
        */
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);    int i, mi, m;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);       double sum=0., jmean=0.;*/
 }    int first;
     int j, k=0,jk, ju, jl;
 /************ Variance ******************/    double sum=0.;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    first=0;
 {    jmin=1e+5;
   /* Variance of health expectancies */    jmax=-1;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    jmean=0.;
   double **newm;    for(i=1; i<=imx; i++){
   double **dnewm,**doldm;      mi=0;
   int i, j, nhstepm, hstepm, h, nstepm ;      m=firstpass;
   int k, cptcode;      while(s[m][i] <= nlstate){
   double *xp;        if(s[m][i]>=1)
   double **gp, **gm;          mw[++mi][i]=m;
   double ***gradg, ***trgradg;        if(m >=lastpass)
   double ***p3mat;          break;
   double age,agelim, hf;        else
   int theta;          m++;
       }/* end while */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      if (s[m][i] > nlstate){
   fprintf(ficresvij,"# Age");        mi++;     /* Death is another wave */
   for(i=1; i<=nlstate;i++)        /* if(mi==0)  never been interviewed correctly before death */
     for(j=1; j<=nlstate;j++)           /* Only death is a correct wave */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        mw[mi][i]=m;
   fprintf(ficresvij,"\n");      }
   
   xp=vector(1,npar);      wav[i]=mi;
   dnewm=matrix(1,nlstate,1,npar);      if(mi==0){
   doldm=matrix(1,nlstate,1,nlstate);        if(first==0){
            printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
   if(estepm < stepm){          first=1;
     printf ("Problem %d lower than %d\n",estepm, stepm);        }
   }        if(first==1){
   else  hstepm=estepm;            fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
   /* For example we decided to compute the life expectancy with the smallest unit */        }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      } /* end mi==0 */
      nhstepm is the number of hstepm from age to agelim    }
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    for(i=1; i<=imx; i++){
      and note for a fixed period like k years */      for(mi=1; mi<wav[i];mi++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        if (stepm <=0)
      survival function given by stepm (the optimization length). Unfortunately it          dh[mi][i]=1;
      means that if the survival funtion is printed only each two years of age and if        else{
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          if (s[mw[mi+1][i]][i] > nlstate) {
      results. So we changed our mind and took the option of the best precision.            if (agedc[i] < 2*AGESUP) {
   */            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            if(j==0) j=1;  /* Survives at least one month after exam */
   agelim = AGESUP;            k=k+1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            if (j >= jmax) jmax=j;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            if (j <= jmin) jmin=j;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            sum=sum+j;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            /*if (j<0) printf("j=%d num=%d \n",j,i); */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     gp=matrix(0,nhstepm,1,nlstate);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     gm=matrix(0,nhstepm,1,nlstate);            }
           }
     for(theta=1; theta <=npar; theta++){          else{
       for(i=1; i<=npar; i++){ /* Computes gradient */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       }            k=k+1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              if (j >= jmax) jmax=j;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            else if (j <= jmin)jmin=j;
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       if (popbased==1) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         for(i=1; i<=nlstate;i++)            sum=sum+j;
           prlim[i][i]=probs[(int)age][i][ij];          }
       }          jk= j/stepm;
            jl= j -jk*stepm;
       for(j=1; j<= nlstate; j++){          ju= j -(jk+1)*stepm;
         for(h=0; h<=nhstepm; h++){          if(mle <=1){ 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            if(jl==0){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];              dh[mi][i]=jk;
         }              bh[mi][i]=0;
       }            }else{ /* We want a negative bias in order to only have interpolation ie
                        * at the price of an extra matrix product in likelihood */
       for(i=1; i<=npar; i++) /* Computes gradient */              dh[mi][i]=jk+1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              bh[mi][i]=ju;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }else{
              if(jl <= -ju){
       if (popbased==1) {              dh[mi][i]=jk;
         for(i=1; i<=nlstate;i++)              bh[mi][i]=jl;       /* bias is positive if real duration
           prlim[i][i]=probs[(int)age][i][ij];                                   * is higher than the multiple of stepm and negative otherwise.
       }                                   */
             }
       for(j=1; j<= nlstate; j++){            else{
         for(h=0; h<=nhstepm; h++){              dh[mi][i]=jk+1;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              bh[mi][i]=ju;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            }
         }            if(dh[mi][i]==0){
       }              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
       for(j=1; j<= nlstate; j++)              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         for(h=0; h<=nhstepm; h++){            }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          }
         }        } /* end if mle */
     } /* End theta */      } /* end wave */
     }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     for(h=0; h<=nhstepm; h++)    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       for(j=1; j<=nlstate;j++)   }
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  {
     for(i=1;i<=nlstate;i++)    
       for(j=1;j<=nlstate;j++)    int Ndum[20],ij=1, k, j, i, maxncov=19;
         vareij[i][j][(int)age] =0.;    int cptcode=0;
     cptcoveff=0; 
     for(h=0;h<=nhstepm;h++){   
       for(k=0;k<=nhstepm;k++){    for (k=0; k<maxncov; k++) Ndum[k]=0;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for (k=1; k<=7; k++) ncodemax[k]=0;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           for(j=1;j<=nlstate;j++)      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;                                 modality*/ 
       }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     }        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     fprintf(ficresvij,"%.0f ",age );        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     for(i=1; i<=nlstate;i++)                                         Tvar[j]. If V=sex and male is 0 and 
       for(j=1; j<=nlstate;j++){                                         female is 1, then  cptcode=1.*/
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      }
       }  
     fprintf(ficresvij,"\n");      for (i=0; i<=cptcode; i++) {
     free_matrix(gp,0,nhstepm,1,nlstate);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     free_matrix(gm,0,nhstepm,1,nlstate);      }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      ij=1; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1; i<=ncodemax[j]; i++) {
   } /* End age */        for (k=0; k<= maxncov; k++) {
            if (Ndum[k] != 0) {
   free_vector(xp,1,npar);            nbcode[Tvar[j]][ij]=k; 
   free_matrix(doldm,1,nlstate,1,npar);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   free_matrix(dnewm,1,nlstate,1,nlstate);            
             ij++;
 }          }
           if (ij > ncodemax[j]) break; 
 /************ Variance of prevlim ******************/        }  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      } 
 {    }  
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/   for (k=0; k< maxncov; k++) Ndum[k]=0;
   double **newm;  
   double **dnewm,**doldm;   for (i=1; i<=ncovmodel-2; i++) { 
   int i, j, nhstepm, hstepm;     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   int k, cptcode;     ij=Tvar[i];
   double *xp;     Ndum[ij]++;
   double *gp, *gm;   }
   double **gradg, **trgradg;  
   double age,agelim;   ij=1;
   int theta;   for (i=1; i<= maxncov; i++) {
         if((Ndum[i]!=0) && (i<=ncovcol)){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");       Tvaraff[ij]=i; /*For printing */
   fprintf(ficresvpl,"# Age");       ij++;
   for(i=1; i<=nlstate;i++)     }
       fprintf(ficresvpl," %1d-%1d",i,i);   }
   fprintf(ficresvpl,"\n");   
    cptcoveff=ij-1; /*Number of simple covariates*/
   xp=vector(1,npar);  }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  /*********** Health Expectancies ****************/
    
   hstepm=1*YEARM; /* Every year of age */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* Health expectancies */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     if (stepm >= YEARM) hstepm=1;    double age, agelim, hf;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double ***p3mat,***varhe;
     gradg=matrix(1,npar,1,nlstate);    double **dnewm,**doldm;
     gp=vector(1,nlstate);    double *xp;
     gm=vector(1,nlstate);    double **gp, **gm;
     double ***gradg, ***trgradg;
     for(theta=1; theta <=npar; theta++){    int theta;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       }    xp=vector(1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    dnewm=matrix(1,nlstate*nlstate,1,npar);
       for(i=1;i<=nlstate;i++)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         gp[i] = prlim[i][i];    
        fprintf(ficreseij,"# Health expectancies\n");
       for(i=1; i<=npar; i++) /* Computes gradient */    fprintf(ficreseij,"# Age");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(i=1; i<=nlstate;i++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(j=1; j<=nlstate;j++)
       for(i=1;i<=nlstate;i++)        fprintf(ficreseij," %1d-%1d (SE)",i,j);
         gm[i] = prlim[i][i];    fprintf(ficreseij,"\n");
   
       for(i=1;i<=nlstate;i++)    if(estepm < stepm){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      printf ("Problem %d lower than %d\n",estepm, stepm);
     } /* End theta */    }
     else  hstepm=estepm;   
     trgradg =matrix(1,nlstate,1,npar);    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
     for(j=1; j<=nlstate;j++)     * if stepm=24 months pijx are given only every 2 years and by summing them
       for(theta=1; theta <=npar; theta++)     * we are calculating an estimate of the Life Expectancy assuming a linear 
         trgradg[j][theta]=gradg[theta][j];     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
     for(i=1;i<=nlstate;i++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       varpl[i][(int)age] =0.;     * to compare the new estimate of Life expectancy with the same linear 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);     * hypothesis. A more precise result, taking into account a more precise
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);     * curvature will be obtained if estepm is as small as stepm. */
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     fprintf(ficresvpl,"%.0f ",age );       nhstepm is the number of hstepm from age to agelim 
     for(i=1; i<=nlstate;i++)       nstepm is the number of stepm from age to agelin. 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));       Look at hpijx to understand the reason of that which relies in memory size
     fprintf(ficresvpl,"\n");       and note for a fixed period like estepm months */
     free_vector(gp,1,nlstate);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     free_vector(gm,1,nlstate);       survival function given by stepm (the optimization length). Unfortunately it
     free_matrix(gradg,1,npar,1,nlstate);       means that if the survival funtion is printed only each two years of age and if
     free_matrix(trgradg,1,nlstate,1,npar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   } /* End age */       results. So we changed our mind and took the option of the best precision.
     */
   free_vector(xp,1,npar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    agelim=AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 }      /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 /************ Variance of one-step probabilities  ******************/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      /* if (stepm >= YEARM) hstepm=1;*/
 {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   int i, j,  i1, k1, l1;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int k2, l2, j1,  z1;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   int k=0,l, cptcode;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   int first=1;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;  
   double **dnewm,**doldm;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   double *xp;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   double *gp, *gm;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   double **gradg, **trgradg;   
   double **mu;  
   double age,agelim, cov[NCOVMAX];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  
   int theta;      /* Computing Variances of health expectancies */
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];       for(theta=1; theta <=npar; theta++){
   char fileresprobcor[FILENAMELENGTH];        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double ***varpij;        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcpy(fileresprob,"prob");    
   strcat(fileresprob,fileres);        cptj=0;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        for(j=1; j<= nlstate; j++){
     printf("Problem with resultfile: %s\n", fileresprob);          for(i=1; i<=nlstate; i++){
   }            cptj=cptj+1;
   strcpy(fileresprobcov,"probcov");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   strcat(fileresprobcov,fileres);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {            }
     printf("Problem with resultfile: %s\n", fileresprobcov);          }
   }        }
   strcpy(fileresprobcor,"probcor");       
   strcat(fileresprobcor,fileres);       
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        for(i=1; i<=npar; i++) 
     printf("Problem with resultfile: %s\n", fileresprobcor);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        cptj=0;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        for(j=1; j<= nlstate; j++){
            for(i=1;i<=nlstate;i++){
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            cptj=cptj+1;
   fprintf(ficresprob,"# Age");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   fprintf(ficresprobcov,"# Age");            }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          }
   fprintf(ficresprobcov,"# Age");        }
         for(j=1; j<= nlstate*nlstate; j++)
           for(h=0; h<=nhstepm-1; h++){
   for(i=1; i<=nlstate;i++)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     for(j=1; j<=(nlstate+ndeath);j++){          }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);       } 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);     
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  /* End theta */
     }    
   fprintf(ficresprob,"\n");       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   fprintf(ficresprobcov,"\n");  
   fprintf(ficresprobcor,"\n");       for(h=0; h<=nhstepm-1; h++)
   xp=vector(1,npar);        for(j=1; j<=nlstate*nlstate;j++)
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          for(theta=1; theta <=npar; theta++)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            trgradg[h][j][theta]=gradg[h][theta][j];
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);       
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  
   first=1;       for(i=1;i<=nlstate*nlstate;i++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for(j=1;j<=nlstate*nlstate;j++)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          varhe[i][j][(int)age] =0.;
     exit(0);  
   }       printf("%d|",(int)age);fflush(stdout);
   else{       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(ficgp,"\n# Routine varprob");       for(h=0;h<=nhstepm-1;h++){
   }        for(k=0;k<=nhstepm-1;k++){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     printf("Problem with html file: %s\n", optionfilehtm);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     exit(0);          for(i=1;i<=nlstate*nlstate;i++)
   }            for(j=1;j<=nlstate*nlstate;j++)
   else{              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");        }
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      }
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
   cov[1]=1;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   j=cptcoveff;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            
   j1=0;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   for(k1=1; k1<=1;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){          }
     j1++;  
       fprintf(ficreseij,"%3.0f",age );
     if  (cptcovn>0) {      cptj=0;
       fprintf(ficresprob, "\n#********** Variable ");      for(i=1; i<=nlstate;i++)
       fprintf(ficresprobcov, "\n#********** Variable ");        for(j=1; j<=nlstate;j++){
       fprintf(ficgp, "\n#********** Variable ");          cptj++;
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       fprintf(ficresprobcor, "\n#********** Variable ");        }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      fprintf(ficreseij,"\n");
       fprintf(ficresprob, "**********\n#");     
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficresprobcov, "**********\n#");      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficgp, "**********\n#");      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficgp, "**********\n#");    }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    printf("\n");
       fprintf(fichtm, "**********\n#");    fprintf(ficlog,"\n");
     }  
        free_vector(xp,1,npar);
       for (age=bage; age<=fage; age ++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         cov[2]=age;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         for (k=1; k<=cptcovn;k++) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  }
         }  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /************ Variance ******************/
         for (k=1; k<=cptcovprod;k++)  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
            /* Variance of health expectancies */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    /* double **newm;*/
         gp=vector(1,(nlstate)*(nlstate+ndeath));    double **dnewm,**doldm;
         gm=vector(1,(nlstate)*(nlstate+ndeath));    double **dnewmp,**doldmp;
        int i, j, nhstepm, hstepm, h, nstepm ;
         for(theta=1; theta <=npar; theta++){    int k, cptcode;
           for(i=1; i<=npar; i++)    double *xp;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    double **gp, **gm;  /* for var eij */
              double ***gradg, ***trgradg; /*for var eij */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double **gradgp, **trgradgp; /* for var p point j */
              double *gpp, *gmp; /* for var p point j */
           k=0;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           for(i=1; i<= (nlstate); i++){    double ***p3mat;
             for(j=1; j<=(nlstate+ndeath);j++){    double age,agelim, hf;
               k=k+1;    double ***mobaverage;
               gp[k]=pmmij[i][j];    int theta;
             }    char digit[4];
           }    char digitp[25];
            
           for(i=1; i<=npar; i++)    char fileresprobmorprev[FILENAMELENGTH];
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
        if(popbased==1){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      if(mobilav!=0)
           k=0;        strcpy(digitp,"-populbased-mobilav-");
           for(i=1; i<=(nlstate); i++){      else strcpy(digitp,"-populbased-nomobil-");
             for(j=1; j<=(nlstate+ndeath);j++){    }
               k=k+1;    else 
               gm[k]=pmmij[i][j];      strcpy(digitp,"-stablbased-");
             }  
           }    if (mobilav!=0) {
            mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    }
           for(theta=1; theta <=npar; theta++)  
             trgradg[j][theta]=gradg[theta][j];    strcpy(fileresprobmorprev,"prmorprev"); 
            sprintf(digit,"%-d",ij);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
            strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         pmij(pmmij,cov,ncovmodel,x,nlstate);    strcat(fileresprobmorprev,fileres);
            if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         k=0;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         for(i=1; i<=(nlstate); i++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           for(j=1; j<=(nlstate+ndeath);j++){    }
             k=k+1;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             mu[k][(int) age]=pmmij[i][j];    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      fprintf(ficresprobmorprev," p.%-d SE",j);
             varpij[i][j][(int)age] = doldm[i][j];      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         /*printf("\n%d ",(int)age);    }  
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    fprintf(ficresprobmorprev,"\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
      }*/      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
         fprintf(ficresprob,"\n%d ",(int)age);      exit(0);
         fprintf(ficresprobcov,"\n%d ",(int)age);    }
         fprintf(ficresprobcor,"\n%d ",(int)age);    else{
       fprintf(ficgp,"\n# Routine varevsij");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      printf("Problem with html file: %s\n", optionfilehtm);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      exit(0);
         }    }
         i=0;    else{
         for (k=1; k<=(nlstate);k++){      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           for (l=1; l<=(nlstate+ndeath);l++){      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
             i=i++;    }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    fprintf(ficresvij,"# Age");
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    for(i=1; i<=nlstate;i++)
             }      for(j=1; j<=nlstate;j++)
           }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
         }/* end of loop for state */    fprintf(ficresvij,"\n");
       } /* end of loop for age */  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    xp=vector(1,npar);
       for (k1=1; k1<=(nlstate);k1++){    dnewm=matrix(1,nlstate,1,npar);
         for (l1=1; l1<=(nlstate+ndeath);l1++){    doldm=matrix(1,nlstate,1,nlstate);
           if(l1==k1) continue;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           i=(k1-1)*(nlstate+ndeath)+l1;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for (k2=1; k2<=(nlstate);k2++){  
             for (l2=1; l2<=(nlstate+ndeath);l2++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
               if(l2==k2) continue;    gpp=vector(nlstate+1,nlstate+ndeath);
               j=(k2-1)*(nlstate+ndeath)+l2;    gmp=vector(nlstate+1,nlstate+ndeath);
               if(j<=i) continue;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
               for (age=bage; age<=fage; age ++){    
                 if ((int)age %5==0){    if(estepm < stepm){
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      printf ("Problem %d lower than %d\n",estepm, stepm);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    else  hstepm=estepm;   
                   mu1=mu[i][(int) age]/stepm*YEARM ;    /* For example we decided to compute the life expectancy with the smallest unit */
                   mu2=mu[j][(int) age]/stepm*YEARM;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   /* Computing eigen value of matrix of covariance */       nhstepm is the number of hstepm from age to agelim 
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));       nstepm is the number of stepm from age to agelin. 
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));       Look at hpijx to understand the reason of that which relies in memory size
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);       and note for a fixed period like k years */
                   /* Eigen vectors */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));       survival function given by stepm (the optimization length). Unfortunately it
                   v21=sqrt(1.-v11*v11);       means that if the survival funtion is printed every two years of age and if
                   v12=-v21;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   v22=v11;       results. So we changed our mind and took the option of the best precision.
                   /*printf(fignu*/    */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */    agelim = AGESUP;
                   if(first==1){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                     first=0;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                     fprintf(ficgp,"\nset parametric;set nolabel");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);      gp=matrix(0,nhstepm,1,nlstate);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);      gm=matrix(0,nhstepm,1,nlstate);
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      for(theta=1; theta <=npar; theta++){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);        }
                   }else{        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                     first=0;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);        if (popbased==1) {
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          if(mobilav ==0){
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            for(i=1; i<=nlstate;i++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              prlim[i][i]=probs[(int)age][i][ij];
                   }/* if first */          }else{ /* mobilav */ 
                 } /* age mod 5 */            for(i=1; i<=nlstate;i++)
               } /* end loop age */              prlim[i][i]=mobaverage[(int)age][i][ij];
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);          }
               first=1;        }
             } /*l12 */    
           } /* k12 */        for(j=1; j<= nlstate; j++){
         } /*l1 */          for(h=0; h<=nhstepm; h++){
       }/* k1 */            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     } /* loop covariates */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        /* This for computing probability of death (h=1 means
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);           computed over hstepm matrices product = hstepm*stepm months) 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);           as a weighted average of prlim.
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_vector(xp,1,npar);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   fclose(ficresprob);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   fclose(ficresprobcov);        }    
   fclose(ficresprobcor);        /* end probability of death */
   fclose(ficgp);  
   fclose(fichtm);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /******************* Printing html file ***********/   
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        if (popbased==1) {
                   int lastpass, int stepm, int weightopt, char model[],\          if(mobilav ==0){
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            for(i=1; i<=nlstate;i++)
                   int popforecast, int estepm ,\              prlim[i][i]=probs[(int)age][i][ij];
                   double jprev1, double mprev1,double anprev1, \          }else{ /* mobilav */ 
                   double jprev2, double mprev2,double anprev2){            for(i=1; i<=nlstate;i++)
   int jj1, k1, i1, cpt;              prlim[i][i]=mobaverage[(int)age][i][ij];
   /*char optionfilehtm[FILENAMELENGTH];*/          }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {        }
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          }
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        }
  - Life expectancies by age and initial health status (estepm=%2d months):        /* This for computing probability of death (h=1 means
    <a href=\"e%s\">e%s</a> <br>\n</li>", \           computed over hstepm matrices product = hstepm*stepm months) 
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);           as a weighted average of prlim.
         */
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          for(i=1,gmp[j]=0.; i<= nlstate; i++)
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n           gmp[j] += prlim[i][i]*p3mat[i][j][1];
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n        }    
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        /* end probability of death */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n        for(j=1; j<= nlstate; j++) /* vareij */
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  if(popforecast==1) fprintf(fichtm,"\n          }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         <br>",fileres,fileres,fileres,fileres);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
  else        }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  
 fprintf(fichtm," <li>Graphs</li><p>");      } /* End theta */
   
  m=cptcoveff;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
       for(h=0; h<=nhstepm; h++) /* veij */
  jj1=0;        for(j=1; j<=nlstate;j++)
  for(k1=1; k1<=m;k1++){          for(theta=1; theta <=npar; theta++)
    for(i1=1; i1<=ncodemax[k1];i1++){            trgradg[h][j][theta]=gradg[h][theta][j];
      jj1++;  
      if (cptcovn > 0) {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for(theta=1; theta <=npar; theta++)
        for (cpt=1; cpt<=cptcoveff;cpt++)          trgradgp[j][theta]=gradgp[theta][j];
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      /* Pij */      for(i=1;i<=nlstate;i++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>        for(j=1;j<=nlstate;j++)
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              vareij[i][j][(int)age] =0.;
      /* Quasi-incidences */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>      for(h=0;h<=nhstepm;h++){
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(k=0;k<=nhstepm;k++){
        /* Stable prevalence in each health state */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
        for(cpt=1; cpt<nlstate;cpt++){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          for(i=1;i<=nlstate;i++)
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            for(j=1;j<=nlstate;j++)
        }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     for(cpt=1; cpt<=nlstate;cpt++) {        }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      }
 interval) in state (%d): v%s%d%d.png <br>    
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        /* pptj */
      }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
      for(cpt=1; cpt<=nlstate;cpt++) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      for(j=nlstate+1;j<=nlstate+ndeath;j++)
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
      }          varppt[j][i]=doldmp[j][i];
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      /* end ppptj */
 health expectancies in states (1) and (2): e%s%d.png<br>      /*  x centered again */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
    }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
  }   
 fclose(fichtm);      if (popbased==1) {
 }        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
 /******************* Gnuplot file **************/            prlim[i][i]=probs[(int)age][i][ij];
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            prlim[i][i]=mobaverage[(int)age][i][ij];
   int ng;        }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      }
     printf("Problem with file %s",optionfilegnuplot);               
   }      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 #ifdef windows         as a weighted average of prlim.
     fprintf(ficgp,"cd \"%s\" \n",pathc);      */
 #endif      for(j=nlstate+1;j<=nlstate+ndeath;j++){
 m=pow(2,cptcoveff);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
  /* 1eme*/      }    
   for (cpt=1; cpt<= nlstate ; cpt ++) {      /* end probability of death */
    for (k1=1; k1<= m ; k1 ++) {  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 #ifdef windows      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        for(i=1; i<=nlstate;i++){
 #endif          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 #ifdef unix        }
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      } 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      fprintf(ficresprobmorprev,"\n");
 #endif  
       fprintf(ficresvij,"%.0f ",age );
 for (i=1; i<= nlstate ; i ++) {      for(i=1; i<=nlstate;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1; j<=nlstate;j++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 }        }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficresvij,"\n");
     for (i=1; i<= nlstate ; i ++) {      free_matrix(gp,0,nhstepm,1,nlstate);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      free_matrix(gm,0,nhstepm,1,nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      for (i=1; i<= nlstate ; i ++) {    } /* End age */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    free_vector(gpp,nlstate+1,nlstate+ndeath);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_vector(gmp,nlstate+1,nlstate+ndeath);
 }      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 #ifdef unix    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 #endif    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*2 eme*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
   for (k1=1; k1<= m ; k1 ++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
        fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
     for (i=1; i<= nlstate+1 ; i ++) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       k=2*i;  */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_vector(xp,1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_matrix(doldm,1,nlstate,1,nlstate);
 }      free_matrix(dnewm,1,nlstate,1,npar);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (j=1; j<= nlstate+1 ; j ++) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fclose(ficresprobmorprev);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fclose(ficgp);
 }      fclose(fichtm);
       fprintf(ficgp,"\" t\"\" w l 0,");  }  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  /************ Variance of prevlim ******************/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {
 }      /* Variance of prevalence limit */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       else fprintf(ficgp,"\" t\"\" w l 0,");    double **newm;
     }    double **dnewm,**doldm;
   }    int i, j, nhstepm, hstepm;
      int k, cptcode;
   /*3eme*/    double *xp;
     double *gp, *gm;
   for (k1=1; k1<= m ; k1 ++) {    double **gradg, **trgradg;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    double age,agelim;
       k=2+nlstate*(2*cpt-2);    int theta;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    fprintf(ficresvpl,"# Age");
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    for(i=1; i<=nlstate;i++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        fprintf(ficresvpl," %1d-%1d",i,i);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    fprintf(ficresvpl,"\n");
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
 */    doldm=matrix(1,nlstate,1,nlstate);
       for (i=1; i< nlstate ; i ++) {    
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       }    agelim = AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        if (stepm >= YEARM) hstepm=1;
   /* CV preval stat */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     for (k1=1; k1<= m ; k1 ++) {      gradg=matrix(1,npar,1,nlstate);
     for (cpt=1; cpt<nlstate ; cpt ++) {      gp=vector(1,nlstate);
       k=3;      gm=vector(1,nlstate);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
       for (i=1; i< nlstate ; i ++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
              for(i=1;i<=nlstate;i++)
       l=3+(nlstate+ndeath)*cpt;          gp[i] = prlim[i][i];
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      
       for (i=1; i< nlstate ; i ++) {        for(i=1; i<=npar; i++) /* Computes gradient */
         l=3+(nlstate+ndeath)*cpt;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficgp,"+$%d",l+i+1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }        for(i=1;i<=nlstate;i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            gm[i] = prlim[i][i];
     }  
   }          for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   /* proba elementaires */      } /* End theta */
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){      trgradg =matrix(1,nlstate,1,npar);
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){      for(j=1; j<=nlstate;j++)
                for(theta=1; theta <=npar; theta++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          trgradg[j][theta]=gradg[theta][j];
           jk++;  
           fprintf(ficgp,"\n");      for(i=1;i<=nlstate;i++)
         }        varpl[i][(int)age] =0.;
       }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
    }      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {      fprintf(ficresvpl,"%.0f ",age );
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      for(i=1; i<=nlstate;i++)
        if (ng==2)        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      fprintf(ficresvpl,"\n");
        else      free_vector(gp,1,nlstate);
          fprintf(ficgp,"\nset title \"Probability\"\n");      free_vector(gm,1,nlstate);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      free_matrix(gradg,1,npar,1,nlstate);
        i=1;      free_matrix(trgradg,1,nlstate,1,npar);
        for(k2=1; k2<=nlstate; k2++) {    } /* End age */
          k3=i;  
          for(k=1; k<=(nlstate+ndeath); k++) {    free_vector(xp,1,npar);
            if (k != k2){    free_matrix(doldm,1,nlstate,1,npar);
              if(ng==2)    free_matrix(dnewm,1,nlstate,1,nlstate);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  
              else  }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;  /************ Variance of one-step probabilities  ******************/
              for(j=3; j <=ncovmodel; j++) {  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  {
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    int i, j=0,  i1, k1, l1, t, tj;
                  ij++;    int k2, l2, j1,  z1;
                }    int k=0,l, cptcode;
                else    int first=1, first1;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
              }    double **dnewm,**doldm;
              fprintf(ficgp,")/(1");    double *xp;
                  double *gp, *gm;
              for(k1=1; k1 <=nlstate; k1++){      double **gradg, **trgradg;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    double **mu;
                ij=1;    double age,agelim, cov[NCOVMAX];
                for(j=3; j <=ncovmodel; j++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    int theta;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    char fileresprob[FILENAMELENGTH];
                    ij++;    char fileresprobcov[FILENAMELENGTH];
                  }    char fileresprobcor[FILENAMELENGTH];
                  else  
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double ***varpij;
                }  
                fprintf(ficgp,")");    strcpy(fileresprob,"prob"); 
              }    strcat(fileresprob,fileres);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      printf("Problem with resultfile: %s\n", fileresprob);
              i=i+ncovmodel;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
            }    }
          }    strcpy(fileresprobcov,"probcov"); 
        }    strcat(fileresprobcov,fileres);
      }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
    }      printf("Problem with resultfile: %s\n", fileresprobcov);
    fclose(ficgp);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 }  /* end gnuplot */    }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
 /*************** Moving average **************/    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   int i, cpt, cptcod;    }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       for (i=1; i<=nlstate;i++)    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           mobaverage[(int)agedeb][i][cptcod]=0.;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for (i=1; i<=nlstate;i++){    
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           for (cpt=0;cpt<=4;cpt++){    fprintf(ficresprob,"# Age");
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           }    fprintf(ficresprobcov,"# Age");
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         }    fprintf(ficresprobcov,"# Age");
       }  
     }  
        for(i=1; i<=nlstate;i++)
 }      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
 /************** Forecasting ******************/        fprintf(ficresprobcor," p%1d-%1d ",i,j);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      }  
     /* fprintf(ficresprob,"\n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficresprobcov,"\n");
   int *popage;    fprintf(ficresprobcor,"\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   */
   double *popeffectif,*popcount;   xp=vector(1,npar);
   double ***p3mat;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   char fileresf[FILENAMELENGTH];    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
  agelim=AGESUP;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    first=1;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
        fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
        exit(0);
   strcpy(fileresf,"f");    }
   strcat(fileresf,fileres);    else{
   if((ficresf=fopen(fileresf,"w"))==NULL) {      fprintf(ficgp,"\n# Routine varprob");
     printf("Problem with forecast resultfile: %s\n", fileresf);    }
   }    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   printf("Computing forecasting: result on file '%s' \n", fileresf);      printf("Problem with html file: %s\n", optionfilehtm);
       fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      exit(0);
     }
   if (mobilav==1) {    else{
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(fichtm,"\n");
   }  
       fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   if (stepm<=12) stepsize=1;      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
    
   agelim=AGESUP;    }
    
   hstepm=1;    cov[1]=1;
   hstepm=hstepm/stepm;    tj=cptcoveff;
   yp1=modf(dateintmean,&yp);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   anprojmean=yp;    j1=0;
   yp2=modf((yp1*12),&yp);    for(t=1; t<=tj;t++){
   mprojmean=yp;      for(i1=1; i1<=ncodemax[t];i1++){ 
   yp1=modf((yp2*30.5),&yp);        j1++;
   jprojmean=yp;        if  (cptcovn>0) {
   if(jprojmean==0) jprojmean=1;          fprintf(ficresprob, "\n#********** Variable "); 
   if(mprojmean==0) jprojmean=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprob, "**********\n#\n");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          fprintf(ficresprobcov, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(cptcov=1;cptcov<=i2;cptcov++){          fprintf(ficresprobcov, "**********\n#\n");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          
       k=k+1;          fprintf(ficgp, "\n#********** Variable "); 
       fprintf(ficresf,"\n#******");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1;j<=cptcoveff;j++) {          fprintf(ficgp, "**********\n#\n");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       }          
       fprintf(ficresf,"******\n");          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       fprintf(ficresf,"# StartingAge FinalAge");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                
                fprintf(ficresprobcor, "\n#********** Variable ");    
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficresf,"\n");          fprintf(ficresprobcor, "**********\n#");    
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          }
         
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for (age=bage; age<=fage; age ++){ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          cov[2]=age;
           nhstepm = nhstepm/hstepm;          for (k=1; k<=cptcovn;k++) {
                      cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for (k=1; k<=cptcovprod;k++)
                    cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for (h=0; h<=nhstepm; h++){          
             if (h==(int) (calagedate+YEARM*cpt)) {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             }          gp=vector(1,(nlstate)*(nlstate+ndeath));
             for(j=1; j<=nlstate+ndeath;j++) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
               kk1=0.;kk2=0;      
               for(i=1; i<=nlstate;i++) {                        for(theta=1; theta <=npar; theta++){
                 if (mobilav==1)            for(i=1; i<=npar; i++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                 else {            
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                 }            
                            k=0;
               }            for(i=1; i<= (nlstate); i++){
               if (h==(int)(calagedate+12*cpt)){              for(j=1; j<=(nlstate+ndeath);j++){
                 fprintf(ficresf," %.3f", kk1);                k=k+1;
                                        gp[k]=pmmij[i][j];
               }              }
             }            }
           }            
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1; i<=npar; i++)
         }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       }      
     }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   }            k=0;
                    for(i=1; i<=(nlstate); i++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   fclose(ficresf);                gm[k]=pmmij[i][j];
 }              }
 /************** Forecasting ******************/            }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){       
              for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   int *popage;          }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   double ***p3mat,***tabpop,***tabpopprev;            for(theta=1; theta <=npar; theta++)
   char filerespop[FILENAMELENGTH];              trgradg[j][theta]=gradg[theta][j];
           
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   agelim=AGESUP;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    
            pmij(pmmij,cov,ncovmodel,x,nlstate);
   strcpy(filerespop,"pop");          
   strcat(filerespop,fileres);          k=0;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          for(i=1; i<=(nlstate); i++){
     printf("Problem with forecast resultfile: %s\n", filerespop);            for(j=1; j<=(nlstate+ndeath);j++){
   }              k=k+1;
   printf("Computing forecasting: result on file '%s' \n", filerespop);              mu[k][(int) age]=pmmij[i][j];
             }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   if (mobilav==1) {            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              varpij[i][j][(int)age] = doldm[i][j];
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   if (stepm<=12) stepsize=1;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              }*/
   agelim=AGESUP;  
            fprintf(ficresprob,"\n%d ",(int)age);
   hstepm=1;          fprintf(ficresprobcov,"\n%d ",(int)age);
   hstepm=hstepm/stepm;          fprintf(ficresprobcor,"\n%d ",(int)age);
    
   if (popforecast==1) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     if((ficpop=fopen(popfile,"r"))==NULL) {            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       printf("Problem with population file : %s\n",popfile);exit(0);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     popage=ivector(0,AGESUP);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     popeffectif=vector(0,AGESUP);          }
     popcount=vector(0,AGESUP);          i=0;
              for (k=1; k<=(nlstate);k++){
     i=1;              for (l=1; l<=(nlstate+ndeath);l++){ 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              i=i++;
                  fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     imx=i;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              for (j=1; j<=i;j++){
   }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   for(cptcov=1;cptcov<=i2;cptcov++){              }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            }
       k=k+1;          }/* end of loop for state */
       fprintf(ficrespop,"\n#******");        } /* end of loop for age */
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /* Confidence intervalle of pij  */
       }        /*
       fprintf(ficrespop,"******\n");          fprintf(ficgp,"\nset noparametric;unset label");
       fprintf(ficrespop,"# Age");          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       if (popforecast==1)  fprintf(ficrespop," [Population]");          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       for (cpt=0; cpt<=0;cpt++) {          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           nhstepm = nhstepm/hstepm;        first1=1;
                  for (k2=1; k2<=(nlstate);k2++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           oldm=oldms;savm=savms;            if(l2==k2) continue;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              j=(k2-1)*(nlstate+ndeath)+l2;
                    for (k1=1; k1<=(nlstate);k1++){
           for (h=0; h<=nhstepm; h++){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
             if (h==(int) (calagedate+YEARM*cpt)) {                if(l1==k1) continue;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                i=(k1-1)*(nlstate+ndeath)+l1;
             }                if(i<=j) continue;
             for(j=1; j<=nlstate+ndeath;j++) {                for (age=bage; age<=fage; age ++){ 
               kk1=0.;kk2=0;                  if ((int)age %5==0){
               for(i=1; i<=nlstate;i++) {                                  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                 if (mobilav==1)                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                 else {                    mu1=mu[i][(int) age]/stepm*YEARM ;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                    mu2=mu[j][(int) age]/stepm*YEARM;
                 }                    c12=cv12/sqrt(v1*v2);
               }                    /* Computing eigen value of matrix of covariance */
               if (h==(int)(calagedate+12*cpt)){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   /*fprintf(ficrespop," %.3f", kk1);                    /* Eigen vectors */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
               }                    /*v21=sqrt(1.-v11*v11); *//* error */
             }                    v21=(lc1-v1)/cv12*v11;
             for(i=1; i<=nlstate;i++){                    v12=-v21;
               kk1=0.;                    v22=v11;
                 for(j=1; j<=nlstate;j++){                    tnalp=v21/v11;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                    if(first1==1){
                 }                      first1=0;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             }                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)                    /*printf(fignu*/
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    if(first==1){
         }                      first=0;
       }                      fprintf(ficgp,"\nset parametric;unset label");
                        fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   /******/                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                        fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           nhstepm = nhstepm/hstepm;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                                fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           oldm=oldms;savm=savms;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      }else{
           for (h=0; h<=nhstepm; h++){                      first=0;
             if (h==(int) (calagedate+YEARM*cpt)) {                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
             for(j=1; j<=nlstate+ndeath;j++) {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
               kk1=0.;kk2=0;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
               for(i=1; i<=nlstate;i++) {                                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                        }/* if first */
               }                  } /* age mod 5 */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                } /* end loop age */
             }                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
           }                first=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              } /*l12 */
         }            } /* k12 */
       }          } /*l1 */
    }        }/* k1 */
   }      } /* loop covariates */
      }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   if (popforecast==1) {    free_vector(xp,1,npar);
     free_ivector(popage,0,AGESUP);    fclose(ficresprob);
     free_vector(popeffectif,0,AGESUP);    fclose(ficresprobcov);
     free_vector(popcount,0,AGESUP);    fclose(ficresprobcor);
   }    fclose(ficgp);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fclose(fichtm);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   fclose(ficrespop);  
 }  
   /******************* Printing html file ***********/
 /***********************************************/  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 /**************** Main Program *****************/                    int lastpass, int stepm, int weightopt, char model[],\
 /***********************************************/                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
 int main(int argc, char *argv[])                    double jprev1, double mprev1,double anprev1, \
 {                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    /*char optionfilehtm[FILENAMELENGTH];*/
   double agedeb, agefin,hf;    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      printf("Problem with %s \n",optionfilehtm), exit(0);
       fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
   double fret;    }
   double **xi,tmp,delta;  
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
   double dum; /* Dummy variable */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
   double ***p3mat;   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
   int *indx;   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
   char line[MAXLINE], linepar[MAXLINE];   - Life expectancies by age and initial health status (estepm=%2d months): 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];     <a href=\"e%s\">e%s</a> <br>\n</li>", \
   int firstobs=1, lastobs=10;    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;   m=cptcoveff;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;   jj1=0;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   double bage, fage, age, agelim, agebase;       jj1++;
   double ftolpl=FTOL;       if (cptcovn > 0) {
   double **prlim;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   double *severity;         for (cpt=1; cpt<=cptcoveff;cpt++) 
   double ***param; /* Matrix of parameters */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   double  *p;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   double **matcov; /* Matrix of covariance */       }
   double ***delti3; /* Scale */       /* Pij */
   double *delti; /* Scale */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>
   double ***eij, ***vareij;  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
   double **varpl; /* Variances of prevalence limits by age */       /* Quasi-incidences */
   double *epj, vepp;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
   double kk1, kk2;  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;         /* Stable prevalence in each health state */
           for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
   char *alph[]={"a","a","b","c","d","e"}, str[4];  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
   char z[1]="c", occ;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
 #include <sys/time.h>  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
 #include <time.h>       }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];       fprintf(fichtm,"\n<br>- Total life expectancy by age and
    health expectancies in states (1) and (2): e%s%d.png<br>
   /* long total_usecs;  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
   struct timeval start_time, end_time;     } /* end i1 */
     }/* End k1 */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */   fprintf(fichtm,"</ul>");
   getcwd(pathcd, size);  
   
   printf("\n%s",version);   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
   if(argc <=1){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
     printf("\nEnter the parameter file name: ");   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
     scanf("%s",pathtot);   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
   }   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
   else{   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
     strcpy(pathtot,argv[1]);   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
   }   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);   if(popforecast==1) fprintf(fichtm,"\n
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/   - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
   /* cutv(path,optionfile,pathtot,'\\');*/   - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
           <br>",fileres,fileres,fileres,fileres);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);   else 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);     fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
   chdir(path);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   replace(pathc,path);  
    m=cptcoveff;
 /*-------- arguments in the command line --------*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   strcpy(fileres,"r");   jj1=0;
   strcat(fileres, optionfilefiname);   for(k1=1; k1<=m;k1++){
   strcat(fileres,".txt");    /* Other files have txt extension */     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   /*---------arguments file --------*/       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {         for (cpt=1; cpt<=cptcoveff;cpt++) 
     printf("Problem with optionfile %s\n",optionfile);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     goto end;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   }       }
        for(cpt=1; cpt<=nlstate;cpt++) {
   strcpy(filereso,"o");         fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
   strcat(filereso,fileres);  interval) in state (%d): v%s%d%d.png <br>
   if((ficparo=fopen(filereso,"w"))==NULL) {  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;       }
   }     } /* end i1 */
    }/* End k1 */
   /* Reads comments: lines beginning with '#' */   fprintf(fichtm,"</ul>");
   while((c=getc(ficpar))=='#' && c!= EOF){  fclose(fichtm);
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /******************* Gnuplot file **************/
     fputs(line,ficparo);  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   }  
   ungetc(c,ficpar);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      printf("Problem with file %s",optionfilegnuplot);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
 while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    /*#ifdef windows */
     puts(line);      fprintf(ficgp,"cd \"%s\" \n",pathc);
     fputs(line,ficparo);      /*#endif */
   }  m=pow(2,cptcoveff);
   ungetc(c,ficpar);    
     /* 1eme*/
        for (cpt=1; cpt<= nlstate ; cpt ++) {
   covar=matrix(0,NCOVMAX,1,n);     for (k1=1; k1<= m ; k1 ++) {
   cptcovn=0;       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
   ncovmodel=2+cptcovn;       for (i=1; i<= nlstate ; i ++) {
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* Read guess parameters */       }
   /* Reads comments: lines beginning with '#' */       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
   while((c=getc(ficpar))=='#' && c!= EOF){       for (i=1; i<= nlstate ; i ++) {
     ungetc(c,ficpar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fgets(line, MAXLINE, ficpar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     puts(line);       } 
     fputs(line,ficparo);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
   }       for (i=1; i<= nlstate ; i ++) {
   ungetc(c,ficpar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       }  
     for(i=1; i <=nlstate; i++)       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
     for(j=1; j <=nlstate+ndeath-1; j++){     }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       fprintf(ficparo,"%1d%1d",i1,j1);    /*2 eme*/
       printf("%1d%1d",i,j);    
       for(k=1; k<=ncovmodel;k++){    for (k1=1; k1<= m ; k1 ++) { 
         fscanf(ficpar," %lf",&param[i][j][k]);      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
         printf(" %lf",param[i][j][k]);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         fprintf(ficparo," %lf",param[i][j][k]);      
       }      for (i=1; i<= nlstate+1 ; i ++) {
       fscanf(ficpar,"\n");        k=2*i;
       printf("\n");        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
       fprintf(ficparo,"\n");        for (j=1; j<= nlstate+1 ; j ++) {
     }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   p=param[1][1];        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
   /* Reads comments: lines beginning with '#' */        for (j=1; j<= nlstate+1 ; j ++) {
   while((c=getc(ficpar))=='#' && c!= EOF){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     ungetc(c,ficpar);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fgets(line, MAXLINE, ficpar);        }   
     puts(line);        fprintf(ficgp,"\" t\"\" w l 0,");
     fputs(line,ficparo);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   ungetc(c,ficpar);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }   
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   for(i=1; i <=nlstate; i++){        else fprintf(ficgp,"\" t\"\" w l 0,");
     for(j=1; j <=nlstate+ndeath-1; j++){      }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       printf("%1d%1d",i,j);    
       fprintf(ficparo,"%1d%1d",i1,j1);    /*3eme*/
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar,"%le",&delti3[i][j][k]);    for (k1=1; k1<= m ; k1 ++) { 
         printf(" %le",delti3[i][j][k]);      for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficparo," %le",delti3[i][j][k]);        k=2+nlstate*(2*cpt-2);
       }        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       fscanf(ficpar,"\n");        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
       printf("\n");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficparo,"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   delti=delti3[1][1];          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   /* Reads comments: lines beginning with '#' */          
   while((c=getc(ficpar))=='#' && c!= EOF){        */
     ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++) {
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
     puts(line);          
     fputs(line,ficparo);        } 
   }      }
   ungetc(c,ficpar);    }
      
   matcov=matrix(1,npar,1,npar);    /* CV preval stat */
   for(i=1; i <=npar; i++){    for (k1=1; k1<= m ; k1 ++) { 
     fscanf(ficpar,"%s",&str);      for (cpt=1; cpt<nlstate ; cpt ++) {
     printf("%s",str);        k=3;
     fprintf(ficparo,"%s",str);        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     for(j=1; j <=i; j++){        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
       fscanf(ficpar," %le",&matcov[i][j]);        
       printf(" %.5le",matcov[i][j]);        for (i=1; i< nlstate ; i ++)
       fprintf(ficparo," %.5le",matcov[i][j]);          fprintf(ficgp,"+$%d",k+i+1);
     }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     fscanf(ficpar,"\n");        
     printf("\n");        l=3+(nlstate+ndeath)*cpt;
     fprintf(ficparo,"\n");        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
   }        for (i=1; i< nlstate ; i ++) {
   for(i=1; i <=npar; i++)          l=3+(nlstate+ndeath)*cpt;
     for(j=i+1;j<=npar;j++)          fprintf(ficgp,"+$%d",l+i+1);
       matcov[i][j]=matcov[j][i];        }
            fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   printf("\n");      } 
     }  
     
     /*-------- Rewriting paramater file ----------*/    /* proba elementaires */
      strcpy(rfileres,"r");    /* "Rparameterfile */    for(i=1,jk=1; i <=nlstate; i++){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      for(k=1; k <=(nlstate+ndeath); k++){
      strcat(rfileres,".");    /* */        if (k != i) {
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          for(j=1; j <=ncovmodel; j++){
     if((ficres =fopen(rfileres,"w"))==NULL) {            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            jk++; 
     }            fprintf(ficgp,"\n");
     fprintf(ficres,"#%s\n",version);          }
            }
     /*-------- data file ----------*/      }
     if((fic=fopen(datafile,"r"))==NULL)    {     }
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
     n= lastobs;         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
     severity = vector(1,maxwav);         if (ng==2)
     outcome=imatrix(1,maxwav+1,1,n);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     num=ivector(1,n);         else
     moisnais=vector(1,n);           fprintf(ficgp,"\nset title \"Probability\"\n");
     annais=vector(1,n);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     moisdc=vector(1,n);         i=1;
     andc=vector(1,n);         for(k2=1; k2<=nlstate; k2++) {
     agedc=vector(1,n);           k3=i;
     cod=ivector(1,n);           for(k=1; k<=(nlstate+ndeath); k++) {
     weight=vector(1,n);             if (k != k2){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */               if(ng==2)
     mint=matrix(1,maxwav,1,n);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     anint=matrix(1,maxwav,1,n);               else
     s=imatrix(1,maxwav+1,1,n);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     adl=imatrix(1,maxwav+1,1,n);                   ij=1;
     tab=ivector(1,NCOVMAX);               for(j=3; j <=ncovmodel; j++) {
     ncodemax=ivector(1,8);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     i=1;                   ij++;
     while (fgets(line, MAXLINE, fic) != NULL)    {                 }
       if ((i >= firstobs) && (i <=lastobs)) {                 else
                           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         for (j=maxwav;j>=1;j--){               }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);               fprintf(ficgp,")/(1");
           strcpy(line,stra);               
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);               for(k1=1; k1 <=nlstate; k1++){   
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
         }                 ij=1;
                         for(j=3; j <=ncovmodel; j++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                   }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                   else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);                 }
         for (j=ncovcol;j>=1;j--){                 fprintf(ficgp,")");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);               }
         }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
         num[i]=atol(stra);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                       i=i+ncovmodel;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){             }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/           } /* end k */
          } /* end k2 */
         i=i+1;       } /* end jk */
       }     } /* end ng */
     }     fclose(ficgp); 
     /* printf("ii=%d", ij);  }  /* end gnuplot */
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */  
   /*************** Moving average **************/
   /* for (i=1; i<=imx; i++){  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    int i, cpt, cptcod;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    int modcovmax =1;
     }*/    int mobilavrange, mob;
    /*  for (i=1; i<=imx; i++){    double age;
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                               a covariate has 2 modalities */
      if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   Tprod=ivector(1,15);      if(mobilav==1) mobilavrange=5; /* default */
   Tvaraff=ivector(1,15);      else mobilavrange=mobilav;
   Tvard=imatrix(1,15,1,2);      for (age=bage; age<=fage; age++)
   Tage=ivector(1,15);              for (i=1; i<=nlstate;i++)
              for (cptcod=1;cptcod<=modcovmax;cptcod++)
   if (strlen(model) >1){            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     j=0, j1=0, k1=1, k2=1;      /* We keep the original values on the extreme ages bage, fage and for 
     j=nbocc(model,'+');         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     j1=nbocc(model,'*');         we use a 5 terms etc. until the borders are no more concerned. 
     cptcovn=j+1;      */ 
     cptcovprod=j1;      for (mob=3;mob <=mobilavrange;mob=mob+2){
            for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     strcpy(modelsav,model);          for (i=1; i<=nlstate;i++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       printf("Error. Non available option model=%s ",model);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       goto end;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
     }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                      mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     for(i=(j+1); i>=1;i--){                }
       cutv(stra,strb,modelsav,'+');              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          }
       /*scanf("%d",i);*/        }/* end age */
       if (strchr(strb,'*')) {      }/* end mob */
         cutv(strd,strc,strb,'*');    }else return -1;
         if (strcmp(strc,"age")==0) {    return 0;
           cptcovprod--;  }/* End movingaverage */
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);  
           cptcovage++;  /************** Forecasting ******************/
             Tage[cptcovage]=i;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
             /*printf("stre=%s ", stre);*/    /* proj1, year, month, day of starting projection 
         }       agemin, agemax range of age
         else if (strcmp(strd,"age")==0) {       dateprev1 dateprev2 range of dates during which prevalence is computed
           cptcovprod--;       anproj2 year of en of projection (same day and month as proj1).
           cutv(strb,stre,strc,'V');    */
           Tvar[i]=atoi(stre);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
           cptcovage++;    int *popage;
           Tage[cptcovage]=i;    double agec; /* generic age */
         }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
         else {    double *popeffectif,*popcount;
           cutv(strb,stre,strc,'V');    double ***p3mat;
           Tvar[i]=ncovcol+k1;    double ***mobaverage;
           cutv(strb,strc,strd,'V');    char fileresf[FILENAMELENGTH];
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);    agelim=AGESUP;
           Tvard[k1][2]=atoi(stre);    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           Tvar[cptcovn+k2]=Tvard[k1][1];   
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    strcpy(fileresf,"f"); 
           for (k=1; k<=lastobs;k++)    strcat(fileresf,fileres);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    if((ficresf=fopen(fileresf,"w"))==NULL) {
           k1++;      printf("Problem with forecast resultfile: %s\n", fileresf);
           k2=k2+2;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         }    }
       }    printf("Computing forecasting: result on file '%s' \n", fileresf);
       else {    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);    if (mobilav!=0) {
       }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       strcpy(modelsav,stra);        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         scanf("%d",i);*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     }      }
 }    }
    
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   printf("cptcovprod=%d ", cptcovprod);    if (stepm<=12) stepsize=1;
   scanf("%d ",i);*/    if(estepm < stepm){
     fclose(fic);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     /*  if(mle==1){*/    else  hstepm=estepm;   
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;    hstepm=hstepm/stepm; 
     }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     /*-calculation of age at interview from date of interview and age at death -*/                                 fractional in yp1 */
     agev=matrix(1,maxwav,1,imx);    anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     for (i=1; i<=imx; i++) {    mprojmean=yp;
       for(m=2; (m<= maxwav); m++) {    yp1=modf((yp2*30.5),&yp);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    jprojmean=yp;
          anint[m][i]=9999;    if(jprojmean==0) jprojmean=1;
          s[m][i]=-1;    if(mprojmean==0) jprojmean=1;
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    i1=cptcoveff;
       }    if (cptcovn < 1){i1=1;}
     }    
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     for (i=1; i<=imx; i++)  {    
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficresf,"#****** Routine prevforecast **\n");
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){  /*            if (h==(int)(YEARM*yearp)){ */
           if (s[m][i] >= nlstate+1) {    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
             if(agedc[i]>0)      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
               if(moisdc[i]!=99 && andc[i]!=9999)        k=k+1;
                 agev[m][i]=agedc[i];        fprintf(ficresf,"\n#******");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        for(j=1;j<=cptcoveff;j++) {
            else {          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               if (andc[i]!=9999){        }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        fprintf(ficresf,"******\n");
               agev[m][i]=-1;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
               }        for(j=1; j<=nlstate+ndeath;j++){ 
             }          for(i=1; i<=nlstate;i++)              
           }            fprintf(ficresf," p%d%d",i,j);
           else if(s[m][i] !=9){ /* Should no more exist */          fprintf(ficresf," p.%d",j);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        }
             if(mint[m][i]==99 || anint[m][i]==9999)        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
               agev[m][i]=1;          fprintf(ficresf,"\n");
             else if(agev[m][i] <agemin){          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             }            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             else if(agev[m][i] >agemax){            nhstepm = nhstepm/hstepm; 
               agemax=agev[m][i];            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            oldm=oldms;savm=savms;
             }            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
             /*agev[m][i]=anint[m][i]-annais[i];*/          
             /*   agev[m][i] = age[i]+2*m;*/            for (h=0; h<=nhstepm; h++){
           }              if (h*hstepm/YEARM*stepm ==yearp) {
           else { /* =9 */                fprintf(ficresf,"\n");
             agev[m][i]=1;                for(j=1;j<=cptcoveff;j++) 
             s[m][i]=-1;                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
         }              } 
         else /*= 0 Unknown */              for(j=1; j<=nlstate+ndeath;j++) {
           agev[m][i]=1;                ppij=0.;
       }                for(i=1; i<=nlstate;i++) {
                      if (mobilav==1) 
     }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     for (i=1; i<=imx; i++)  {                  else {
       for(m=1; (m<= maxwav); m++){                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
         if (s[m][i] > (nlstate+ndeath)) {                  }
           printf("Error: Wrong value in nlstate or ndeath\n");                    if (h*hstepm/YEARM*stepm== yearp) {
           goto end;                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
         }                  }
       }                } /* end i */
     }                if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                }
               }/* end j */
     free_vector(severity,1,maxwav);            } /* end h */
     free_imatrix(outcome,1,maxwav+1,1,n);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(moisnais,1,n);          } /* end agec */
     free_vector(annais,1,n);        } /* end yearp */
     /* free_matrix(mint,1,maxwav,1,n);      } /* end cptcod */
        free_matrix(anint,1,maxwav,1,n);*/    } /* end  cptcov */
     free_vector(moisdc,1,n);         
     free_vector(andc,1,n);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
        fclose(ficresf);
     wav=ivector(1,imx);  }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  /************** Forecasting *****not tested NB*************/
      populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     /* Concatenates waves */    
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
       Tcode=ivector(1,100);    double *popeffectif,*popcount;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    double ***p3mat,***tabpop,***tabpopprev;
       ncodemax[1]=1;    double ***mobaverage;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    char filerespop[FILENAMELENGTH];
        
    codtab=imatrix(1,100,1,10);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    h=0;    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    m=pow(2,cptcoveff);    agelim=AGESUP;
      calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
    for(k=1;k<=cptcoveff; k++){    
      for(i=1; i <=(m/pow(2,k));i++){    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
        for(j=1; j <= ncodemax[k]; j++){    
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    
            h++;    strcpy(filerespop,"pop"); 
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    strcat(filerespop,fileres);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    if((ficrespop=fopen(filerespop,"w"))==NULL) {
          }      printf("Problem with forecast resultfile: %s\n", filerespop);
        }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
      }    }
    }    printf("Computing forecasting: result on file '%s' \n", filerespop);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    if (mobilav!=0) {
       }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       scanf("%d",i);*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
          }
    /* Calculates basic frequencies. Computes observed prevalence at single age    }
        and prints on file fileres'p'. */  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
        if (stepm<=12) stepsize=1;
        
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    agelim=AGESUP;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    hstepm=1;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    hstepm=hstepm/stepm; 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    
          if (popforecast==1) {
     /* For Powell, parameters are in a vector p[] starting at p[1]      if((ficpop=fopen(popfile,"r"))==NULL) {
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        printf("Problem with population file : %s\n",popfile);exit(0);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
     if(mle==1){      popage=ivector(0,AGESUP);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      popeffectif=vector(0,AGESUP);
     }      popcount=vector(0,AGESUP);
          
     /*--------- results files --------------*/      i=1;   
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       
       imx=i;
    jk=1;      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(k=1; k <=(nlstate+ndeath); k++){     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
        if (k != i)        k=k+1;
          {        fprintf(ficrespop,"\n#******");
            printf("%d%d ",i,k);        for(j=1;j<=cptcoveff;j++) {
            fprintf(ficres,"%1d%1d ",i,k);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
            for(j=1; j <=ncovmodel; j++){        }
              printf("%f ",p[jk]);        fprintf(ficrespop,"******\n");
              fprintf(ficres,"%f ",p[jk]);        fprintf(ficrespop,"# Age");
              jk++;        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
            }        if (popforecast==1)  fprintf(ficrespop," [Population]");
            printf("\n");        
            fprintf(ficres,"\n");        for (cpt=0; cpt<=0;cpt++) { 
          }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
      }          
    }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
  if(mle==1){            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     /* Computing hessian and covariance matrix */            nhstepm = nhstepm/hstepm; 
     ftolhess=ftol; /* Usually correct */            
     hesscov(matcov, p, npar, delti, ftolhess, func);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  }            oldm=oldms;savm=savms;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     printf("# Scales (for hessian or gradient estimation)\n");          
      for(i=1,jk=1; i <=nlstate; i++){            for (h=0; h<=nhstepm; h++){
       for(j=1; j <=nlstate+ndeath; j++){              if (h==(int) (calagedatem+YEARM*cpt)) {
         if (j!=i) {                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           fprintf(ficres,"%1d%1d",i,j);              } 
           printf("%1d%1d",i,j);              for(j=1; j<=nlstate+ndeath;j++) {
           for(k=1; k<=ncovmodel;k++){                kk1=0.;kk2=0;
             printf(" %.5e",delti[jk]);                for(i=1; i<=nlstate;i++) {              
             fprintf(ficres," %.5e",delti[jk]);                  if (mobilav==1) 
             jk++;                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
           }                  else {
           printf("\n");                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
           fprintf(ficres,"\n");                  }
         }                }
       }                if (h==(int)(calagedatem+12*cpt)){
      }                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                        /*fprintf(ficrespop," %.3f", kk1);
     k=1;                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                }
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              }
     for(i=1;i<=npar;i++){              for(i=1; i<=nlstate;i++){
       /*  if (k>nlstate) k=1;                kk1=0.;
       i1=(i-1)/(ncovmodel*nlstate)+1;                  for(j=1; j<=nlstate;j++){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
       printf("%s%d%d",alph[k],i1,tab[i]);*/                  }
       fprintf(ficres,"%3d",i);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
       printf("%3d",i);              }
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
         printf(" %.5e",matcov[i][j]);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
       }            }
       fprintf(ficres,"\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("\n");          }
       k++;        }
     }   
        /******/
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
       fgets(line, MAXLINE, ficpar);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
       puts(line);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
       fputs(line,ficparo);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     }            nhstepm = nhstepm/hstepm; 
     ungetc(c,ficpar);            
     estepm=0;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            oldm=oldms;savm=savms;
     if (estepm==0 || estepm < stepm) estepm=stepm;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     if (fage <= 2) {            for (h=0; h<=nhstepm; h++){
       bage = ageminpar;              if (h==(int) (calagedatem+YEARM*cpt)) {
       fage = agemaxpar;                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     }              } 
                  for(j=1; j<=nlstate+ndeath;j++) {
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                kk1=0.;kk2=0;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                for(i=1; i<=nlstate;i++) {              
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                  }
     while((c=getc(ficpar))=='#' && c!= EOF){                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     ungetc(c,ficpar);              }
     fgets(line, MAXLINE, ficpar);            }
     puts(line);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);          }
   }        }
   ungetc(c,ficpar);     } 
      }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);   
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
          if (popforecast==1) {
   while((c=getc(ficpar))=='#' && c!= EOF){      free_ivector(popage,0,AGESUP);
     ungetc(c,ficpar);      free_vector(popeffectif,0,AGESUP);
     fgets(line, MAXLINE, ficpar);      free_vector(popcount,0,AGESUP);
     puts(line);    }
     fputs(line,ficparo);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);    fclose(ficrespop);
    }
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  /***********************************************/
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  /**************** Main Program *****************/
   /***********************************************/
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
   fprintf(ficparo,"pop_based=%d\n",popbased);    int main(int argc, char *argv[])
   fprintf(ficres,"pop_based=%d\n",popbased);    {
      int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   while((c=getc(ficpar))=='#' && c!= EOF){    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     ungetc(c,ficpar);    double agedeb, agefin,hf;
     fgets(line, MAXLINE, ficpar);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
     puts(line);  
     fputs(line,ficparo);    double fret;
   }    double **xi,tmp,delta;
   ungetc(c,ficpar);  
     double dum; /* Dummy variable */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    double ***p3mat;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    double ***mobaverage;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
 while((c=getc(ficpar))=='#' && c!= EOF){    int firstobs=1, lastobs=10;
     ungetc(c,ficpar);    int sdeb, sfin; /* Status at beginning and end */
     fgets(line, MAXLINE, ficpar);    int c,  h , cpt,l;
     puts(line);    int ju,jl, mi;
     fputs(line,ficparo);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   }    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
   ungetc(c,ficpar);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    int hstepm, nhstepm;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
 /*------------ gnuplot -------------*/    double **prlim;
   strcpy(optionfilegnuplot,optionfilefiname);    double *severity;
   strcat(optionfilegnuplot,".gp");    double ***param; /* Matrix of parameters */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    double  *p;
     printf("Problem with file %s",optionfilegnuplot);    double **matcov; /* Matrix of covariance */
   }    double ***delti3; /* Scale */
   fclose(ficgp);    double *delti; /* Scale */
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    double ***eij, ***vareij;
 /*--------- index.htm --------*/    double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   strcpy(optionfilehtm,optionfile);    double kk1, kk2;
   strcat(optionfilehtm,".htm");    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);    char *alph[]={"a","a","b","c","d","e"}, str[4];
   }  
   
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    char z[1]="c", occ;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  #include <sys/time.h>
 \n  #include <time.h>
 Total number of observations=%d <br>\n    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n   
 <hr  size=\"2\" color=\"#EC5E5E\">    /* long total_usecs;
  <ul><li>Parameter files<br>\n       struct timeval start_time, end_time;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   fclose(fichtm);    getcwd(pathcd, size);
   
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    printf("\n%s",version);
      if(argc <=1){
 /*------------ free_vector  -------------*/      printf("\nEnter the parameter file name: ");
  chdir(path);      scanf("%s",pathtot);
      }
  free_ivector(wav,1,imx);    else{
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      strcpy(pathtot,argv[1]);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      }
  free_ivector(num,1,n);    /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
  free_vector(agedc,1,n);    /*cygwin_split_path(pathtot,path,optionfile);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
  fclose(ficparo);    /* cutv(path,optionfile,pathtot,'\\');*/
  fclose(ficres);  
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   /*--------------- Prevalence limit --------------*/    chdir(path);
      replace(pathc,path);
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);    /*-------- arguments in the command line --------*/
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    /* Log file */
   }    strcat(filelog, optionfilefiname);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    strcat(filelog,".log");    /* */
   fprintf(ficrespl,"#Prevalence limit\n");    if((ficlog=fopen(filelog,"w"))==NULL)    {
   fprintf(ficrespl,"#Age ");      printf("Problem with logfile %s\n",filelog);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      goto end;
   fprintf(ficrespl,"\n");    }
      fprintf(ficlog,"Log filename:%s\n",filelog);
   prlim=matrix(1,nlstate,1,nlstate);    fprintf(ficlog,"\n%s",version);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"\nEnter the parameter file name: ");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fflush(ficlog);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* */
   k=0;    strcpy(fileres,"r");
   agebase=ageminpar;    strcat(fileres, optionfilefiname);
   agelim=agemaxpar;    strcat(fileres,".txt");    /* Other files have txt extension */
   ftolpl=1.e-10;  
   i1=cptcoveff;    /*---------arguments file --------*/
   if (cptcovn < 1){i1=1;}  
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
   for(cptcov=1;cptcov<=i1;cptcov++){      printf("Problem with optionfile %s\n",optionfile);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
         k=k+1;      goto end;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    }
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)    strcpy(filereso,"o");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(filereso,fileres);
         fprintf(ficrespl,"******\n");    if((ficparo=fopen(filereso,"w"))==NULL) {
              printf("Problem with Output resultfile: %s\n", filereso);
         for (age=agebase; age<=agelim; age++){      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      goto end;
           fprintf(ficrespl,"%.0f",age );    }
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);    /* Reads comments: lines beginning with '#' */
           fprintf(ficrespl,"\n");    while((c=getc(ficpar))=='#' && c!= EOF){
         }      ungetc(c,ficpar);
       }      fgets(line, MAXLINE, ficpar);
     }      puts(line);
   fclose(ficrespl);      fputs(line,ficparo);
     }
   /*------------- h Pij x at various ages ------------*/    ungetc(c,ficpar);
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   }    while((c=getc(ficpar))=='#' && c!= EOF){
   printf("Computing pij: result on file '%s' \n", filerespij);      ungetc(c,ficpar);
        fgets(line, MAXLINE, ficpar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      puts(line);
   /*if (stepm<=24) stepsize=2;*/      fputs(line,ficparo);
     }
   agelim=AGESUP;    ungetc(c,ficpar);
   hstepm=stepsize*YEARM; /* Every year of age */    
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     
      covar=matrix(0,NCOVMAX,1,n); 
   k=0;    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   for(cptcov=1;cptcov<=i1;cptcov++){    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
         fprintf(ficrespij,"\n#****** ");    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
         for(j=1;j<=cptcoveff;j++)    
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* Read guess parameters */
         fprintf(ficrespij,"******\n");    /* Reads comments: lines beginning with '#' */
            while((c=getc(ficpar))=='#' && c!= EOF){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      ungetc(c,ficpar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fgets(line, MAXLINE, ficpar);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      puts(line);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fputs(line,ficparo);
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      ungetc(c,ficpar);
           fprintf(ficrespij,"# Age");    
           for(i=1; i<=nlstate;i++)    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
             for(j=1; j<=nlstate+ndeath;j++)    for(i=1; i <=nlstate; i++)
               fprintf(ficrespij," %1d-%1d",i,j);      for(j=1; j <=nlstate+ndeath-1; j++){
           fprintf(ficrespij,"\n");        fscanf(ficpar,"%1d%1d",&i1,&j1);
            for (h=0; h<=nhstepm; h++){        fprintf(ficparo,"%1d%1d",i1,j1);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        if(mle==1)
             for(i=1; i<=nlstate;i++)          printf("%1d%1d",i,j);
               for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficlog,"%1d%1d",i,j);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        for(k=1; k<=ncovmodel;k++){
             fprintf(ficrespij,"\n");          fscanf(ficpar," %lf",&param[i][j][k]);
              }          if(mle==1){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            printf(" %lf",param[i][j][k]);
           fprintf(ficrespij,"\n");            fprintf(ficlog," %lf",param[i][j][k]);
         }          }
     }          else
   }            fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        }
         fscanf(ficpar,"\n");
   fclose(ficrespij);        if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
   /*---------- Forecasting ------------------*/        fprintf(ficparo,"\n");
   if((stepm == 1) && (strcmp(model,".")==0)){      }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   }  
   else{    p=param[1][1];
     erreur=108;    
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    /* Reads comments: lines beginning with '#' */
   }    while((c=getc(ficpar))=='#' && c!= EOF){
        ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
   /*---------- Health expectancies and variances ------------*/      puts(line);
       fputs(line,ficparo);
   strcpy(filerest,"t");    }
   strcat(filerest,fileres);    ungetc(c,ficpar);
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   }    /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
   strcpy(filerese,"e");        printf("%1d%1d",i,j);
   strcat(filerese,fileres);        fprintf(ficparo,"%1d%1d",i1,j1);
   if((ficreseij=fopen(filerese,"w"))==NULL) {        for(k=1; k<=ncovmodel;k++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          fscanf(ficpar,"%le",&delti3[i][j][k]);
   }          printf(" %le",delti3[i][j][k]);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          fprintf(ficparo," %le",delti3[i][j][k]);
         }
  strcpy(fileresv,"v");        fscanf(ficpar,"\n");
   strcat(fileresv,fileres);        printf("\n");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        fprintf(ficparo,"\n");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      }
   }    }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    delti=delti3[1][1];
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
   k=0;    
   for(cptcov=1;cptcov<=i1;cptcov++){    /* Reads comments: lines beginning with '#' */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    while((c=getc(ficpar))=='#' && c!= EOF){
       k=k+1;      ungetc(c,ficpar);
       fprintf(ficrest,"\n#****** ");      fgets(line, MAXLINE, ficpar);
       for(j=1;j<=cptcoveff;j++)      puts(line);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fputs(line,ficparo);
       fprintf(ficrest,"******\n");    }
     ungetc(c,ficpar);
       fprintf(ficreseij,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)    matcov=matrix(1,npar,1,npar);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i <=npar; i++){
       fprintf(ficreseij,"******\n");      fscanf(ficpar,"%s",&str);
       if(mle==1)
       fprintf(ficresvij,"\n#****** ");        printf("%s",str);
       for(j=1;j<=cptcoveff;j++)      fprintf(ficlog,"%s",str);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficparo,"%s",str);
       fprintf(ficresvij,"******\n");      for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        if(mle==1){
       oldm=oldms;savm=savms;          printf(" %.5le",matcov[i][j]);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            fprintf(ficlog," %.5le",matcov[i][j]);
          }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        else
       oldm=oldms;savm=savms;          fprintf(ficlog," %.5le",matcov[i][j]);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        fprintf(ficparo," %.5le",matcov[i][j]);
          }
       fscanf(ficpar,"\n");
        if(mle==1)
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        printf("\n");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      fprintf(ficlog,"\n");
       fprintf(ficrest,"\n");      fprintf(ficparo,"\n");
     }
       epj=vector(1,nlstate+1);    for(i=1; i <=npar; i++)
       for(age=bage; age <=fage ;age++){      for(j=i+1;j<=npar;j++)
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        matcov[i][j]=matcov[j][i];
         if (popbased==1) {     
           for(i=1; i<=nlstate;i++)    if(mle==1)
             prlim[i][i]=probs[(int)age][i][k];      printf("\n");
         }    fprintf(ficlog,"\n");
          
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    /*-------- Rewriting paramater file ----------*/
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    strcpy(rfileres,"r");    /* "Rparameterfile */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    strcat(rfileres,".");    /* */
           }    strcat(rfileres,optionfilext);    /* Other files have txt extension */
           epj[nlstate+1] +=epj[j];    if((ficres =fopen(rfileres,"w"))==NULL) {
         }      printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
         for(i=1, vepp=0.;i <=nlstate;i++)    }
           for(j=1;j <=nlstate;j++)    fprintf(ficres,"#%s\n",version);
             vepp += vareij[i][j][(int)age];      
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    /*-------- data file ----------*/
         for(j=1;j <=nlstate;j++){    if((fic=fopen(datafile,"r"))==NULL)    {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      printf("Problem with datafile: %s\n", datafile);goto end;
         }      fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
         fprintf(ficrest,"\n");    }
       }  
     }    n= lastobs;
   }    severity = vector(1,maxwav);
 free_matrix(mint,1,maxwav,1,n);    outcome=imatrix(1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    num=ivector(1,n);
     free_vector(weight,1,n);    moisnais=vector(1,n);
   fclose(ficreseij);    annais=vector(1,n);
   fclose(ficresvij);    moisdc=vector(1,n);
   fclose(ficrest);    andc=vector(1,n);
   fclose(ficpar);    agedc=vector(1,n);
   free_vector(epj,1,nlstate+1);    cod=ivector(1,n);
      weight=vector(1,n);
   /*------- Variance limit prevalence------*/      for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
   strcpy(fileresvpl,"vpl");    anint=matrix(1,maxwav,1,n);
   strcat(fileresvpl,fileres);    s=imatrix(1,maxwav+1,1,n);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    tab=ivector(1,NCOVMAX);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    ncodemax=ivector(1,8);
     exit(0);  
   }    i=1;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
   k=0;          
   for(cptcov=1;cptcov<=i1;cptcov++){        for (j=maxwav;j>=1;j--){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
       k=k+1;          strcpy(line,stra);
       fprintf(ficresvpl,"\n#****** ");          cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
       for(j=1;j<=cptcoveff;j++)          cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       fprintf(ficresvpl,"******\n");          
              cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
     }        cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
  }  
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
   fclose(ficresvpl);        for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
   /*---------- End : free ----------------*/        } 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        num[i]=atol(stra);
            
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
    
          i=i+1;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* printf("ii=%d", ij);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       scanf("%d",i);*/
      imx=i-1; /* Number of individuals */
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);    /* for (i=1; i<=imx; i++){
   free_matrix(agev,1,maxwav,1,imx);      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
   fprintf(fichtm,"\n</body>");      }*/
   fclose(fichtm);     /*  for (i=1; i<=imx; i++){
   fclose(ficgp);       if (s[4][i]==9)  s[4][i]=-1; 
         printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
   if(erreur >0)   for (i=1; i<=imx; i++)
     printf("End of Imach with error or warning %d\n",erreur);   
   else   printf("End of Imach\n");     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */       else weight[i]=1;*/
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    /* Calculation of the number of parameter from char model*/
   /*printf("Total time was %d uSec.\n", total_usecs);*/    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
   /*------ End -----------*/    Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
  end:    Tage=ivector(1,15);      
 #ifdef windows     
   /* chdir(pathcd);*/    if (strlen(model) >1){ /* If there is at least 1 covariate */
 #endif      j=0, j1=0, k1=1, k2=1;
  /*system("wgnuplot graph.plt");*/      j=nbocc(model,'+'); /* j=Number of '+' */
  /*system("../gp37mgw/wgnuplot graph.plt");*/      j1=nbocc(model,'*'); /* j1=Number of '*' */
  /*system("cd ../gp37mgw");*/      cptcovn=j+1; 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      cptcovprod=j1; /*Number of products */
  strcpy(plotcmd,GNUPLOTPROGRAM);      
  strcat(plotcmd," ");      strcpy(modelsav,model); 
  strcat(plotcmd,optionfilegnuplot);      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
  system(plotcmd);        printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
 #ifdef windows        goto end;
   while (z[0] != 'q') {      }
     /* chdir(path); */      
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      /* This loop fills the array Tvar from the string 'model'.*/
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");      for(i=(j+1); i>=1;i--){
     else if (z[0] == 'e') system(optionfilehtm);        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
     else if (z[0] == 'g') system(plotcmd);        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
     else if (z[0] == 'q') exit(0);        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
   }        /*scanf("%d",i);*/
 #endif        if (strchr(strb,'*')) {  /* Model includes a product */
 }          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if(moisdc[i]!=99 && andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if (andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if(mint[m][i]==99 || anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.48  
changed lines
  Added in v.1.75


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>