Diff for /imach/src/imach.c between versions 1.48 and 1.85

version 1.48, 2002/06/10 13:12:49 version 1.85, 2003/06/17 13:12:43
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.85  2003/06/17 13:12:43  brouard
      * imach.c (Repository): Check when date of death was earlier that
   This program computes Healthy Life Expectancies from    current date of interview. It may happen when the death was just
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    prior to the death. In this case, dh was negative and likelihood
   first survey ("cross") where individuals from different ages are    was wrong (infinity). We still send an "Error" but patch by
   interviewed on their health status or degree of disability (in the    assuming that the date of death was just one stepm after the
   case of a health survey which is our main interest) -2- at least a    interview.
   second wave of interviews ("longitudinal") which measure each change    (Repository): Because some people have very long ID (first column)
   (if any) in individual health status.  Health expectancies are    we changed int to long in num[] and we added a new lvector for
   computed from the time spent in each health state according to a    memory allocation. But we also truncated to 8 characters (left
   model. More health states you consider, more time is necessary to reach the    truncation)
   Maximum Likelihood of the parameters involved in the model.  The    (Repository): No more line truncation errors.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.84  2003/06/13 21:44:43  brouard
   conditional to be observed in state i at the first wave. Therefore    * imach.c (Repository): Replace "freqsummary" at a correct
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    place. It differs from routine "prevalence" which may be called
   'age' is age and 'sex' is a covariate. If you want to have a more    many times. Probs is memory consuming and must be used with
   complex model than "constant and age", you should modify the program    parcimony.
   where the markup *Covariates have to be included here again* invites    Version 0.95a2 (should output exactly the same maximization than 0.8a2)
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.82  2003/06/05 15:57:20  brouard
   identical for each individual. Also, if a individual missed an    Add log in  imach.c and  fullversion number is now printed.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.    */
   /*
   hPijx is the probability to be observed in state i at age x+h     Interpolated Markov Chain
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Short summary of the programme:
   states. This elementary transition (by month or quarter trimester,    
   semester or year) is model as a multinomial logistic.  The hPx    This program computes Healthy Life Expectancies from
   matrix is simply the matrix product of nh*stepm elementary matrices    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   and the contribution of each individual to the likelihood is simply    first survey ("cross") where individuals from different ages are
   hPijx.    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
   Also this programme outputs the covariance matrix of the parameters but also    second wave of interviews ("longitudinal") which measure each change
   of the life expectancies. It also computes the prevalence limits.    (if any) in individual health status.  Health expectancies are
      computed from the time spent in each health state according to a
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    model. More health states you consider, more time is necessary to reach the
            Institut national d'études démographiques, Paris.    Maximum Likelihood of the parameters involved in the model.  The
   This software have been partly granted by Euro-REVES, a concerted action    simplest model is the multinomial logistic model where pij is the
   from the European Union.    probability to be observed in state j at the second wave
   It is copyrighted identically to a GNU software product, ie programme and    conditional to be observed in state i at the first wave. Therefore
   software can be distributed freely for non commercial use. Latest version    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   can be accessed at http://euroreves.ined.fr/imach .    'age' is age and 'sex' is a covariate. If you want to have a more
   **********************************************************************/    complex model than "constant and age", you should modify the program
      where the markup *Covariates have to be included here again* invites
 #include <math.h>    you to do it.  More covariates you add, slower the
 #include <stdio.h>    convergence.
 #include <stdlib.h>  
 #include <unistd.h>    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 #define MAXLINE 256    identical for each individual. Also, if a individual missed an
 #define GNUPLOTPROGRAM "gnuplot"    intermediate interview, the information is lost, but taken into
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    account using an interpolation or extrapolation.  
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    hPijx is the probability to be observed in state i at age x+h
 #define windows    conditional to the observed state i at age x. The delay 'h' can be
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    split into an exact number (nh*stepm) of unobserved intermediate
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    matrix is simply the matrix product of nh*stepm elementary matrices
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    and the contribution of each individual to the likelihood is simply
     hPijx.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Also this programme outputs the covariance matrix of the parameters but also
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    of the life expectancies. It also computes the stable prevalence. 
 #define NCOVMAX 8 /* Maximum number of covariates */    
 #define MAXN 20000    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define YEARM 12. /* Number of months per year */             Institut national d'études démographiques, Paris.
 #define AGESUP 130    This software have been partly granted by Euro-REVES, a concerted action
 #define AGEBASE 40    from the European Union.
 #ifdef windows    It is copyrighted identically to a GNU software product, ie programme and
 #define DIRSEPARATOR '\\'    software can be distributed freely for non commercial use. Latest version
 #else    can be accessed at http://euroreves.ined.fr/imach .
 #define DIRSEPARATOR '/'  
 #endif    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    
 int erreur; /* Error number */    **********************************************************************/
 int nvar;  /*
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    main
 int npar=NPARMAX;    read parameterfile
 int nlstate=2; /* Number of live states */    read datafile
 int ndeath=1; /* Number of dead states */    concatwav
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    freqsummary
 int popbased=0;    if (mle >= 1)
       mlikeli
 int *wav; /* Number of waves for this individuual 0 is possible */    print results files
 int maxwav; /* Maxim number of waves */    if mle==1 
 int jmin, jmax; /* min, max spacing between 2 waves */       computes hessian
 int mle, weightopt;    read end of parameter file: agemin, agemax, bage, fage, estepm
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */        begin-prev-date,...
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    open gnuplot file
 double jmean; /* Mean space between 2 waves */    open html file
 double **oldm, **newm, **savm; /* Working pointers to matrices */    stable prevalence
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */     for age prevalim()
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    h Pij x
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    variance of p varprob
 FILE *fichtm; /* Html File */    forecasting if prevfcast==1 prevforecast call prevalence()
 FILE *ficreseij;    health expectancies
 char filerese[FILENAMELENGTH];    Variance-covariance of DFLE
 FILE  *ficresvij;    prevalence()
 char fileresv[FILENAMELENGTH];     movingaverage()
 FILE  *ficresvpl;    varevsij() 
 char fileresvpl[FILENAMELENGTH];    if popbased==1 varevsij(,popbased)
 char title[MAXLINE];    total life expectancies
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Variance of stable prevalence
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];   end
   */
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
   
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];   
 char popfile[FILENAMELENGTH];  #include <math.h>
   #include <stdio.h>
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  #include <stdlib.h>
   #include <unistd.h>
 #define NR_END 1  
 #define FREE_ARG char*  #define MAXLINE 256
 #define FTOL 1.0e-10  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define NRANSI  #define FILENAMELENGTH 132
 #define ITMAX 200  /*#define DEBUG*/
   /*#define windows*/
 #define TOL 2.0e-4  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define GOLD 1.618034  #define NINTERVMAX 8
 #define GLIMIT 100.0  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define TINY 1.0e-20  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 static double maxarg1,maxarg2;  #define MAXN 20000
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define YEARM 12. /* Number of months per year */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define AGESUP 130
    #define AGEBASE 40
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #ifdef unix
 #define rint(a) floor(a+0.5)  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
 static double sqrarg;  #else
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define DIRSEPARATOR '\\'
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define ODIRSEPARATOR '/'
   #endif
 int imx;  
 int stepm;  /* $Id$ */
 /* Stepm, step in month: minimum step interpolation*/  /* $State$ */
   
 int estepm;  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  char fullversion[]="$Revision$ $Date$"; 
   int erreur; /* Error number */
 int m,nb;  int nvar;
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int npar=NPARMAX;
 double **pmmij, ***probs, ***mobaverage;  int nlstate=2; /* Number of live states */
 double dateintmean=0;  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double *weight;  int popbased=0;
 int **s; /* Status */  
 double *agedc, **covar, idx;  int *wav; /* Number of waves for this individuual 0 is possible */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int mle, weightopt;
 double ftolhess; /* Tolerance for computing hessian */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /**************** split *************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
    char *s;                             /* pointer */  double **oldm, **newm, **savm; /* Working pointers to matrices */
    int  l1, l2;                         /* length counters */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    l1 = strlen( path );                 /* length of path */  FILE *ficlog, *ficrespow;
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int globpr; /* Global variable for printing or not */
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  double fretone; /* Only one call to likelihood */
    if ( s == NULL ) {                   /* no directory, so use current */  long ipmx; /* Number of contributions */
 #if     defined(__bsd__)                /* get current working directory */  double sw; /* Sum of weights */
       extern char       *getwd( );  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
       if ( getwd( dirc ) == NULL ) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #else  FILE *ficresprobmorprev;
       extern char       *getcwd( );  FILE *fichtm; /* Html File */
   FILE *ficreseij;
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char filerese[FILENAMELENGTH];
 #endif  FILE  *ficresvij;
          return( GLOCK_ERROR_GETCWD );  char fileresv[FILENAMELENGTH];
       }  FILE  *ficresvpl;
       strcpy( name, path );             /* we've got it */  char fileresvpl[FILENAMELENGTH];
    } else {                             /* strip direcotry from path */  char title[MAXLINE];
       s++;                              /* after this, the filename */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       l2 = strlen( s );                 /* length of filename */  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  char filelog[FILENAMELENGTH]; /* Log file */
       dirc[l1-l2] = 0;                  /* add zero */  char filerest[FILENAMELENGTH];
    }  char fileregp[FILENAMELENGTH];
    l1 = strlen( dirc );                 /* length of directory */  char popfile[FILENAMELENGTH];
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define NR_END 1
 #endif  #define FREE_ARG char*
    s = strrchr( name, '.' );            /* find last / */  #define FTOL 1.0e-10
    s++;  
    strcpy(ext,s);                       /* save extension */  #define NRANSI 
    l1= strlen( name);  #define ITMAX 200 
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);  #define TOL 2.0e-4 
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /******************************************/  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 void replace(char *s, char*t)  #define TINY 1.0e-20 
 {  
   int i;  static double maxarg1,maxarg2;
   int lg=20;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   i=0;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   lg=strlen(t);    
   for(i=0; i<= lg; i++) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     (s[i] = t[i]);  #define rint(a) floor(a+0.5)
     if (t[i]== '\\') s[i]='/';  
   }  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 int nbocc(char *s, char occ)  
 {  int imx; 
   int i,j=0;  int stepm;
   int lg=20;  /* Stepm, step in month: minimum step interpolation*/
   i=0;  
   lg=strlen(s);  int estepm;
   for(i=0; i<= lg; i++) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   if  (s[i] == occ ) j++;  
   }  int m,nb;
   return j;  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 void cutv(char *u,char *v, char*t, char occ)  double **pmmij, ***probs;
 {  double dateintmean=0;
   int i,lg,j,p=0;  
   i=0;  double *weight;
   for(j=0; j<=strlen(t)-1; j++) {  int **s; /* Status */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  double *agedc, **covar, idx;
   }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
   lg=strlen(t);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   for(j=0; j<p; j++) {  double ftolhess; /* Tolerance for computing hessian */
     (u[j] = t[j]);  
   }  /**************** split *************************/
      u[p]='\0';  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
    for(j=0; j<= lg; j++) {    char  *ss;                            /* pointer */
     if (j>=(p+1))(v[j-p-1] = t[j]);    int   l1, l2;                         /* length counters */
   }  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /********************** nrerror ********************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
 void nrerror(char error_text[])      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   fprintf(stderr,"ERREUR ...\n");      /* get current working directory */
   fprintf(stderr,"%s\n",error_text);      /*    extern  char* getcwd ( char *buf , int len);*/
   exit(1);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
 /*********************** vector *******************/      }
 double *vector(int nl, int nh)      strcpy( name, path );               /* we've got it */
 {    } else {                              /* strip direcotry from path */
   double *v;      ss++;                               /* after this, the filename */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      l2 = strlen( ss );                  /* length of filename */
   if (!v) nrerror("allocation failure in vector");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   return v-nl+NR_END;      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /************************ free vector ******************/    }
 void free_vector(double*v, int nl, int nh)    l1 = strlen( dirc );                  /* length of directory */
 {    /*#ifdef windows
   free((FREE_ARG)(v+nl-NR_END));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 }  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 /************************ivector *******************************/  #endif
 int *ivector(long nl,long nh)    */
 {    ss = strrchr( name, '.' );            /* find last / */
   int *v;    ss++;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    strcpy(ext,ss);                       /* save extension */
   if (!v) nrerror("allocation failure in ivector");    l1= strlen( name);
   return v-nl+NR_END;    l2= strlen(ss)+1;
 }    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
 /******************free ivector **************************/    return( 0 );                          /* we're done */
 void free_ivector(int *v, long nl, long nh)  }
 {  
   free((FREE_ARG)(v+nl-NR_END));  
 }  /******************************************/
   
 /******************* imatrix *******************************/  void replace(char *s, char*t)
 int **imatrix(long nrl, long nrh, long ncl, long nch)  {
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    int i;
 {    int lg=20;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    i=0;
   int **m;    lg=strlen(t);
      for(i=0; i<= lg; i++) {
   /* allocate pointers to rows */      (s[i] = t[i]);
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      if (t[i]== '\\') s[i]='/';
   if (!m) nrerror("allocation failure 1 in matrix()");    }
   m += NR_END;  }
   m -= nrl;  
    int nbocc(char *s, char occ)
    {
   /* allocate rows and set pointers to them */    int i,j=0;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    int lg=20;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    i=0;
   m[nrl] += NR_END;    lg=strlen(s);
   m[nrl] -= ncl;    for(i=0; i<= lg; i++) {
      if  (s[i] == occ ) j++;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    }
      return j;
   /* return pointer to array of pointers to rows */  }
   return m;  
 }  void cutv(char *u,char *v, char*t, char occ)
   {
 /****************** free_imatrix *************************/    /* cuts string t into u and v where u is ended by char occ excluding it
 void free_imatrix(m,nrl,nrh,ncl,nch)       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
       int **m;       gives u="abcedf" and v="ghi2j" */
       long nch,ncl,nrh,nrl;    int i,lg,j,p=0;
      /* free an int matrix allocated by imatrix() */    i=0;
 {    for(j=0; j<=strlen(t)-1; j++) {
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   free((FREE_ARG) (m+nrl-NR_END));    }
 }  
     lg=strlen(t);
 /******************* matrix *******************************/    for(j=0; j<p; j++) {
 double **matrix(long nrl, long nrh, long ncl, long nch)      (u[j] = t[j]);
 {    }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;       u[p]='\0';
   double **m;  
      for(j=0; j<= lg; j++) {
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      if (j>=(p+1))(v[j-p-1] = t[j]);
   if (!m) nrerror("allocation failure 1 in matrix()");    }
   m += NR_END;  }
   m -= nrl;  
   /********************** nrerror ********************/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void nrerror(char error_text[])
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    exit(EXIT_FAILURE);
   return m;  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
 /*************************free matrix ************************/  {
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    double *v;
 {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if (!v) nrerror("allocation failure in vector");
   free((FREE_ARG)(m+nrl-NR_END));    return v-nl+NR_END;
 }  }
   
 /******************* ma3x *******************************/  /************************ free vector ******************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  void free_vector(double*v, int nl, int nh)
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    free((FREE_ARG)(v+nl-NR_END));
   double ***m;  }
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /************************ivector *******************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  int *ivector(long nl,long nh)
   m += NR_END;  {
   m -= nrl;    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if (!v) nrerror("allocation failure in ivector");
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    return v-nl+NR_END;
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   /******************free ivector **************************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  void free_ivector(int *v, long nl, long nh)
   {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    free((FREE_ARG)(v+nl-NR_END));
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  }
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  /************************lvector *******************************/
   for (j=ncl+1; j<=nch; j++)  long *lvector(long nl,long nh)
     m[nrl][j]=m[nrl][j-1]+nlay;  {
      long *v;
   for (i=nrl+1; i<=nrh; i++) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    if (!v) nrerror("allocation failure in ivector");
     for (j=ncl+1; j<=nch; j++)    return v-nl+NR_END;
       m[i][j]=m[i][j-1]+nlay;  }
   }  
   return m;  /******************free lvector **************************/
 }  void free_lvector(long *v, long nl, long nh)
   {
 /*************************free ma3x ************************/    free((FREE_ARG)(v+nl-NR_END));
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  }
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /******************* imatrix *******************************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   free((FREE_ARG)(m+nrl-NR_END));       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 }  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 /***************** f1dim *************************/    int **m; 
 extern int ncom;    
 extern double *pcom,*xicom;    /* allocate pointers to rows */ 
 extern double (*nrfunc)(double []);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      if (!m) nrerror("allocation failure 1 in matrix()"); 
 double f1dim(double x)    m += NR_END; 
 {    m -= nrl; 
   int j;    
   double f;    
   double *xt;    /* allocate rows and set pointers to them */ 
      m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   xt=vector(1,ncom);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    m[nrl] += NR_END; 
   f=(*nrfunc)(xt);    m[nrl] -= ncl; 
   free_vector(xt,1,ncom);    
   return f;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 }    
     /* return pointer to array of pointers to rows */ 
 /*****************brent *************************/    return m; 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  } 
 {  
   int iter;  /****************** free_imatrix *************************/
   double a,b,d,etemp;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double fu,fv,fw,fx;        int **m;
   double ftemp;        long nch,ncl,nrh,nrl; 
   double p,q,r,tol1,tol2,u,v,w,x,xm;       /* free an int matrix allocated by imatrix() */ 
   double e=0.0;  { 
      free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   a=(ax < cx ? ax : cx);    free((FREE_ARG) (m+nrl-NR_END)); 
   b=(ax > cx ? ax : cx);  } 
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  /******************* matrix *******************************/
   for (iter=1;iter<=ITMAX;iter++) {  double **matrix(long nrl, long nrh, long ncl, long nch)
     xm=0.5*(a+b);  {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    double **m;
     printf(".");fflush(stdout);  
 #ifdef DEBUG    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    if (!m) nrerror("allocation failure 1 in matrix()");
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    m += NR_END;
 #endif    m -= nrl;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       return fx;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     ftemp=fu;    m[nrl] -= ncl;
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       q=(x-v)*(fx-fw);    return m;
       p=(x-v)*q-(x-w)*r;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       q=2.0*(q-r);     */
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  /*************************free matrix ************************/
       e=d;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       else {    free((FREE_ARG)(m+nrl-NR_END));
         d=p/q;  }
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  /******************* ma3x *******************************/
           d=SIGN(tol1,xm-x);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       }  {
     } else {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    double ***m;
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     fu=(*f)(u);    if (!m) nrerror("allocation failure 1 in matrix()");
     if (fu <= fx) {    m += NR_END;
       if (u >= x) a=x; else b=x;    m -= nrl;
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         } else {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           if (u < x) a=u; else b=u;    m[nrl] += NR_END;
           if (fu <= fw || w == x) {    m[nrl] -= ncl;
             v=w;  
             w=u;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
             fv=fw;  
             fw=fu;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
           } else if (fu <= fv || v == x || v == w) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
             v=u;    m[nrl][ncl] += NR_END;
             fv=fu;    m[nrl][ncl] -= nll;
           }    for (j=ncl+1; j<=nch; j++) 
         }      m[nrl][j]=m[nrl][j-1]+nlay;
   }    
   nrerror("Too many iterations in brent");    for (i=nrl+1; i<=nrh; i++) {
   *xmin=x;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   return fx;      for (j=ncl+1; j<=nch; j++) 
 }        m[i][j]=m[i][j-1]+nlay;
     }
 /****************** mnbrak ***********************/    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
             double (*func)(double))    */
 {  }
   double ulim,u,r,q, dum;  
   double fu;  /*************************free ma3x ************************/
    void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   *fa=(*func)(*ax);  {
   *fb=(*func)(*bx);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   if (*fb > *fa) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     SHFT(dum,*ax,*bx,dum)    free((FREE_ARG)(m+nrl-NR_END));
       SHFT(dum,*fb,*fa,dum)  }
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  /***************** f1dim *************************/
   *fc=(*func)(*cx);  extern int ncom; 
   while (*fb > *fc) {  extern double *pcom,*xicom;
     r=(*bx-*ax)*(*fb-*fc);  extern double (*nrfunc)(double []); 
     q=(*bx-*cx)*(*fb-*fa);   
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  double f1dim(double x) 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  { 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    int j; 
     if ((*bx-u)*(u-*cx) > 0.0) {    double f;
       fu=(*func)(u);    double *xt; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {   
       fu=(*func)(u);    xt=vector(1,ncom); 
       if (fu < *fc) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    f=(*nrfunc)(xt); 
           SHFT(*fb,*fc,fu,(*func)(u))    free_vector(xt,1,ncom); 
           }    return f; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  } 
       u=ulim;  
       fu=(*func)(u);  /*****************brent *************************/
     } else {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       u=(*cx)+GOLD*(*cx-*bx);  { 
       fu=(*func)(u);    int iter; 
     }    double a,b,d,etemp;
     SHFT(*ax,*bx,*cx,u)    double fu,fv,fw,fx;
       SHFT(*fa,*fb,*fc,fu)    double ftemp;
       }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 }    double e=0.0; 
    
 /*************** linmin ************************/    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
 int ncom;    x=w=v=bx; 
 double *pcom,*xicom;    fw=fv=fx=(*f)(x); 
 double (*nrfunc)(double []);    for (iter=1;iter<=ITMAX;iter++) { 
        xm=0.5*(a+b); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   double brent(double ax, double bx, double cx,      printf(".");fflush(stdout);
                double (*f)(double), double tol, double *xmin);      fprintf(ficlog,".");fflush(ficlog);
   double f1dim(double x);  #ifdef DEBUG
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
               double *fc, double (*func)(double));      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int j;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double xx,xmin,bx,ax;  #endif
   double fx,fb,fa;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
          *xmin=x; 
   ncom=n;        return fx; 
   pcom=vector(1,n);      } 
   xicom=vector(1,n);      ftemp=fu;
   nrfunc=func;      if (fabs(e) > tol1) { 
   for (j=1;j<=n;j++) {        r=(x-w)*(fx-fv); 
     pcom[j]=p[j];        q=(x-v)*(fx-fw); 
     xicom[j]=xi[j];        p=(x-v)*q-(x-w)*r; 
   }        q=2.0*(q-r); 
   ax=0.0;        if (q > 0.0) p = -p; 
   xx=1.0;        q=fabs(q); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        etemp=e; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        e=d; 
 #ifdef DEBUG        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #endif        else { 
   for (j=1;j<=n;j++) {          d=p/q; 
     xi[j] *= xmin;          u=x+d; 
     p[j] += xi[j];          if (u-a < tol2 || b-u < tol2) 
   }            d=SIGN(tol1,xm-x); 
   free_vector(xicom,1,n);        } 
   free_vector(pcom,1,n);      } else { 
 }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
 /*************** powell ************************/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      fu=(*f)(u); 
             double (*func)(double []))      if (fu <= fx) { 
 {        if (u >= x) a=x; else b=x; 
   void linmin(double p[], double xi[], int n, double *fret,        SHFT(v,w,x,u) 
               double (*func)(double []));          SHFT(fv,fw,fx,fu) 
   int i,ibig,j;          } else { 
   double del,t,*pt,*ptt,*xit;            if (u < x) a=u; else b=u; 
   double fp,fptt;            if (fu <= fw || w == x) { 
   double *xits;              v=w; 
   pt=vector(1,n);              w=u; 
   ptt=vector(1,n);              fv=fw; 
   xit=vector(1,n);              fw=fu; 
   xits=vector(1,n);            } else if (fu <= fv || v == x || v == w) { 
   *fret=(*func)(p);              v=u; 
   for (j=1;j<=n;j++) pt[j]=p[j];              fv=fu; 
   for (*iter=1;;++(*iter)) {            } 
     fp=(*fret);          } 
     ibig=0;    } 
     del=0.0;    nrerror("Too many iterations in brent"); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    *xmin=x; 
     for (i=1;i<=n;i++)    return fx; 
       printf(" %d %.12f",i, p[i]);  } 
     printf("\n");  
     for (i=1;i<=n;i++) {  /****************** mnbrak ***********************/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 #ifdef DEBUG              double (*func)(double)) 
       printf("fret=%lf \n",*fret);  { 
 #endif    double ulim,u,r,q, dum;
       printf("%d",i);fflush(stdout);    double fu; 
       linmin(p,xit,n,fret,func);   
       if (fabs(fptt-(*fret)) > del) {    *fa=(*func)(*ax); 
         del=fabs(fptt-(*fret));    *fb=(*func)(*bx); 
         ibig=i;    if (*fb > *fa) { 
       }      SHFT(dum,*ax,*bx,dum) 
 #ifdef DEBUG        SHFT(dum,*fb,*fa,dum) 
       printf("%d %.12e",i,(*fret));        } 
       for (j=1;j<=n;j++) {    *cx=(*bx)+GOLD*(*bx-*ax); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    *fc=(*func)(*cx); 
         printf(" x(%d)=%.12e",j,xit[j]);    while (*fb > *fc) { 
       }      r=(*bx-*ax)*(*fb-*fc); 
       for(j=1;j<=n;j++)      q=(*bx-*cx)*(*fb-*fa); 
         printf(" p=%.12e",p[j]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       printf("\n");        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 #endif      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     }      if ((*bx-u)*(u-*cx) > 0.0) { 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        fu=(*func)(u); 
 #ifdef DEBUG      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       int k[2],l;        fu=(*func)(u); 
       k[0]=1;        if (fu < *fc) { 
       k[1]=-1;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       printf("Max: %.12e",(*func)(p));            SHFT(*fb,*fc,fu,(*func)(u)) 
       for (j=1;j<=n;j++)            } 
         printf(" %.12e",p[j]);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       printf("\n");        u=ulim; 
       for(l=0;l<=1;l++) {        fu=(*func)(u); 
         for (j=1;j<=n;j++) {      } else { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        u=(*cx)+GOLD*(*cx-*bx); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        fu=(*func)(u); 
         }      } 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      SHFT(*ax,*bx,*cx,u) 
       }        SHFT(*fa,*fb,*fc,fu) 
 #endif        } 
   } 
   
       free_vector(xit,1,n);  /*************** linmin ************************/
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  int ncom; 
       free_vector(pt,1,n);  double *pcom,*xicom;
       return;  double (*nrfunc)(double []); 
     }   
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for (j=1;j<=n;j++) {  { 
       ptt[j]=2.0*p[j]-pt[j];    double brent(double ax, double bx, double cx, 
       xit[j]=p[j]-pt[j];                 double (*f)(double), double tol, double *xmin); 
       pt[j]=p[j];    double f1dim(double x); 
     }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     fptt=(*func)(ptt);                double *fc, double (*func)(double)); 
     if (fptt < fp) {    int j; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    double xx,xmin,bx,ax; 
       if (t < 0.0) {    double fx,fb,fa;
         linmin(p,xit,n,fret,func);   
         for (j=1;j<=n;j++) {    ncom=n; 
           xi[j][ibig]=xi[j][n];    pcom=vector(1,n); 
           xi[j][n]=xit[j];    xicom=vector(1,n); 
         }    nrfunc=func; 
 #ifdef DEBUG    for (j=1;j<=n;j++) { 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      pcom[j]=p[j]; 
         for(j=1;j<=n;j++)      xicom[j]=xi[j]; 
           printf(" %.12e",xit[j]);    } 
         printf("\n");    ax=0.0; 
 #endif    xx=1.0; 
       }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   }  #ifdef DEBUG
 }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /**** Prevalence limit ****************/  #endif
     for (j=1;j<=n;j++) { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      xi[j] *= xmin; 
 {      p[j] += xi[j]; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    } 
      matrix by transitions matrix until convergence is reached */    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
   int i, ii,j,k;  } 
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /*************** powell ************************/
   double **out, cov[NCOVMAX], **pmij();  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   double **newm;              double (*func)(double [])) 
   double agefin, delaymax=50 ; /* Max number of years to converge */  { 
     void linmin(double p[], double xi[], int n, double *fret, 
   for (ii=1;ii<=nlstate+ndeath;ii++)                double (*func)(double [])); 
     for (j=1;j<=nlstate+ndeath;j++){    int i,ibig,j; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
     double *xits;
    cov[1]=1.;    pt=vector(1,n); 
      ptt=vector(1,n); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    xit=vector(1,n); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    xits=vector(1,n); 
     newm=savm;    *fret=(*func)(p); 
     /* Covariates have to be included here again */    for (j=1;j<=n;j++) pt[j]=p[j]; 
      cov[2]=agefin;    for (*iter=1;;++(*iter)) { 
        fp=(*fret); 
       for (k=1; k<=cptcovn;k++) {      ibig=0; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      del=0.0; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       for (k=1; k<=cptcovprod;k++)      for (i=1;i<=n;i++) {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        fprintf(ficrespow," %.12lf", p[i]);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      printf("\n");
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");
     savm=oldm;      for (i=1;i<=n;i++) { 
     oldm=newm;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     maxmax=0.;        fptt=(*fret); 
     for(j=1;j<=nlstate;j++){  #ifdef DEBUG
       min=1.;        printf("fret=%lf \n",*fret);
       max=0.;        fprintf(ficlog,"fret=%lf \n",*fret);
       for(i=1; i<=nlstate; i++) {  #endif
         sumnew=0;        printf("%d",i);fflush(stdout);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        fprintf(ficlog,"%d",i);fflush(ficlog);
         prlim[i][j]= newm[i][j]/(1-sumnew);        linmin(p,xit,n,fret,func); 
         max=FMAX(max,prlim[i][j]);        if (fabs(fptt-(*fret)) > del) { 
         min=FMIN(min,prlim[i][j]);          del=fabs(fptt-(*fret)); 
       }          ibig=i; 
       maxmin=max-min;        } 
       maxmax=FMAX(maxmax,maxmin);  #ifdef DEBUG
     }        printf("%d %.12e",i,(*fret));
     if(maxmax < ftolpl){        fprintf(ficlog,"%d %.12e",i,(*fret));
       return prlim;        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   }          printf(" x(%d)=%.12e",j,xit[j]);
 }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
 /*************** transition probabilities ***************/        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          fprintf(ficlog," p=%.12e",p[j]);
 {        }
   double s1, s2;        printf("\n");
   /*double t34;*/        fprintf(ficlog,"\n");
   int i,j,j1, nc, ii, jj;  #endif
       } 
     for(i=1; i<= nlstate; i++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for(j=1; j<i;j++){  #ifdef DEBUG
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        int k[2],l;
         /*s2 += param[i][j][nc]*cov[nc];*/        k[0]=1;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        k[1]=-1;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        printf("Max: %.12e",(*func)(p));
       }        fprintf(ficlog,"Max: %.12e",(*func)(p));
       ps[i][j]=s2;        for (j=1;j<=n;j++) {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
     for(j=i+1; j<=nlstate+ndeath;j++){        }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        printf("\n");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fprintf(ficlog,"\n");
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        for(l=0;l<=1;l++) {
       }          for (j=1;j<=n;j++) {
       ps[i][j]=s2;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     /*ps[3][2]=1;*/          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for(i=1; i<= nlstate; i++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      s1=0;        }
     for(j=1; j<i; j++)  #endif
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);        free_vector(xit,1,n); 
     ps[i][i]=1./(s1+1.);        free_vector(xits,1,n); 
     for(j=1; j<i; j++)        free_vector(ptt,1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        free_vector(pt,1,n); 
     for(j=i+1; j<=nlstate+ndeath; j++)        return; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   } /* end i */      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        xit[j]=p[j]-pt[j]; 
     for(jj=1; jj<= nlstate+ndeath; jj++){        pt[j]=p[j]; 
       ps[ii][jj]=0;      } 
       ps[ii][ii]=1;      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          for (j=1;j<=n;j++) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){            xi[j][ibig]=xi[j][n]; 
      printf("%lf ",ps[ii][jj]);            xi[j][n]=xit[j]; 
    }          }
     printf("\n ");  #ifdef DEBUG
     }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     printf("\n ");printf("%lf ",cov[2]);*/          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /*          for(j=1;j<=n;j++){
   for(i=1; i<= npar; i++) printf("%f ",x[i]);            printf(" %.12e",xit[j]);
   goto end;*/            fprintf(ficlog," %.12e",xit[j]);
     return ps;          }
 }          printf("\n");
           fprintf(ficlog,"\n");
 /**************** Product of 2 matrices ******************/  #endif
         }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      } 
 {    } 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  } 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  /**** Prevalence limit (stable prevalence)  ****************/
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   long i, j, k;  {
   for(i=nrl; i<= nrh; i++)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for(k=ncolol; k<=ncoloh; k++)       matrix by transitions matrix until convergence is reached */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
   return out;    double **matprod2();
 }    double **out, cov[NCOVMAX], **pmij();
     double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
 /************* Higher Matrix Product ***************/  
     for (ii=1;ii<=nlstate+ndeath;ii++)
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      for (j=1;j<=nlstate+ndeath;j++){
 {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      }
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.     cov[1]=1.;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   
      (typically every 2 years instead of every month which is too big).   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      Model is determined by parameters x and covariates have to be    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
      included manually here.      newm=savm;
       /* Covariates have to be included here again */
      */       cov[2]=agefin;
     
   int i, j, d, h, k;        for (k=1; k<=cptcovn;k++) {
   double **out, cov[NCOVMAX];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double **newm;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
   /* Hstepm could be zero and should return the unit matrix */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for (i=1;i<=nlstate+ndeath;i++)        for (k=1; k<=cptcovprod;k++)
     for (j=1;j<=nlstate+ndeath;j++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   for(h=1; h <=nhstepm; h++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     for(d=1; d <=hstepm; d++){  
       newm=savm;      savm=oldm;
       /* Covariates have to be included here again */      oldm=newm;
       cov[1]=1.;      maxmax=0.;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      for(j=1;j<=nlstate;j++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        min=1.;
       for (k=1; k<=cptcovage;k++)        max=0.;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for(i=1; i<=nlstate; i++) {
       for (k=1; k<=cptcovprod;k++)          sumnew=0;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          min=FMIN(min,prlim[i][j]);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        maxmin=max-min;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        maxmax=FMAX(maxmax,maxmin);
       savm=oldm;      }
       oldm=newm;      if(maxmax < ftolpl){
     }        return prlim;
     for(i=1; i<=nlstate+ndeath; i++)      }
       for(j=1;j<=nlstate+ndeath;j++) {    }
         po[i][j][h]=newm[i][j];  }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  /*************** transition probabilities ***************/ 
       }  
   } /* end h */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   return po;  {
 }    double s1, s2;
     /*double t34;*/
     int i,j,j1, nc, ii, jj;
 /*************** log-likelihood *************/  
 double func( double *x)      for(i=1; i<= nlstate; i++){
 {      for(j=1; j<i;j++){
   int i, ii, j, k, mi, d, kk;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          /*s2 += param[i][j][nc]*cov[nc];*/
   double **out;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double sw; /* Sum of weights */          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   double lli; /* Individual log likelihood */        }
   long ipmx;        ps[i][j]=s2;
   /*extern weight */        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   /* We are differentiating ll according to initial status */      }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      for(j=i+1; j<=nlstate+ndeath;j++){
   /*for(i=1;i<imx;i++)        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     printf(" %d\n",s[4][i]);          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   */          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   cov[1]=1.;        }
         ps[i][j]=s2;
   for(k=1; k<=nlstate; k++) ll[k]=0.;      }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      /*ps[3][2]=1;*/
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)    for(i=1; i<= nlstate; i++){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);       s1=0;
       for(d=0; d<dh[mi][i]; d++){      for(j=1; j<i; j++)
         newm=savm;        s1+=exp(ps[i][j]);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for(j=i+1; j<=nlstate+ndeath; j++)
         for (kk=1; kk<=cptcovage;kk++) {        s1+=exp(ps[i][j]);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      ps[i][i]=1./(s1+1.);
         }      for(j=1; j<i; j++)
                ps[i][j]= exp(ps[i][j])*ps[i][i];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      for(j=i+1; j<=nlstate+ndeath; j++)
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        ps[i][j]= exp(ps[i][j])*ps[i][i];
         savm=oldm;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         oldm=newm;    } /* end i */
          
            for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       } /* end mult */      for(jj=1; jj<= nlstate+ndeath; jj++){
              ps[ii][jj]=0;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        ps[ii][ii]=1;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      }
       ipmx +=1;    }
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   } /* end of individual */      for(jj=1; jj<= nlstate+ndeath; jj++){
        printf("%lf ",ps[ii][jj]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];     }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      printf("\n ");
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      }
   return -l;      printf("\n ");printf("%lf ",cov[2]);*/
 }  /*
     for(i=1; i<= npar; i++) printf("%f ",x[i]);
     goto end;*/
 /*********** Maximum Likelihood Estimation ***************/      return ps;
   }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  /**************** Product of 2 matrices ******************/
   int i,j, iter;  
   double **xi,*delti;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   double fret;  {
   xi=matrix(1,npar,1,npar);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   for (i=1;i<=npar;i++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     for (j=1;j<=npar;j++)    /* in, b, out are matrice of pointers which should have been initialized 
       xi[i][j]=(i==j ? 1.0 : 0.0);       before: only the contents of out is modified. The function returns
   printf("Powell\n");       a pointer to pointers identical to out */
   powell(p,xi,npar,ftol,&iter,&fret,func);    long i, j, k;
     for(i=nrl; i<= nrh; i++)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      for(k=ncolol; k<=ncoloh; k++)
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
 }  
     return out;
 /**** Computes Hessian and covariance matrix ***/  }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {  
   double  **a,**y,*x,pd;  /************* Higher Matrix Product ***************/
   double **hess;  
   int i, j,jk;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   int *indx;  {
     /* Computes the transition matrix starting at age 'age' over 
   double hessii(double p[], double delta, int theta, double delti[]);       'nhstepm*hstepm*stepm' months (i.e. until
   double hessij(double p[], double delti[], int i, int j);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   void lubksb(double **a, int npar, int *indx, double b[]) ;       nhstepm*hstepm matrices. 
   void ludcmp(double **a, int npar, int *indx, double *d) ;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
   hess=matrix(1,npar,1,npar);       for the memory).
        Model is determined by parameters x and covariates have to be 
   printf("\nCalculation of the hessian matrix. Wait...\n");       included manually here. 
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);       */
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/    int i, j, d, h, k;
     /*printf(" %lf ",hess[i][i]);*/    double **out, cov[NCOVMAX];
   }    double **newm;
    
   for (i=1;i<=npar;i++) {    /* Hstepm could be zero and should return the unit matrix */
     for (j=1;j<=npar;j++)  {    for (i=1;i<=nlstate+ndeath;i++)
       if (j>i) {      for (j=1;j<=nlstate+ndeath;j++){
         printf(".%d%d",i,j);fflush(stdout);        oldm[i][j]=(i==j ? 1.0 : 0.0);
         hess[i][j]=hessij(p,delti,i,j);        po[i][j][0]=(i==j ? 1.0 : 0.0);
         hess[j][i]=hess[i][j];          }
         /*printf(" %lf ",hess[i][j]);*/    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    for(h=1; h <=nhstepm; h++){
     }      for(d=1; d <=hstepm; d++){
   }        newm=savm;
   printf("\n");        /* Covariates have to be included here again */
         cov[1]=1.;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   a=matrix(1,npar,1,npar);        for (k=1; k<=cptcovage;k++)
   y=matrix(1,npar,1,npar);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   x=vector(1,npar);        for (k=1; k<=cptcovprod;k++)
   indx=ivector(1,npar);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for (j=1;j<=npar;j++) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for (i=1;i<=npar;i++) x[i]=0;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     x[j]=1;        savm=oldm;
     lubksb(a,npar,indx,x);        oldm=newm;
     for (i=1;i<=npar;i++){      }
       matcov[i][j]=x[i];      for(i=1; i<=nlstate+ndeath; i++)
     }        for(j=1;j<=nlstate+ndeath;j++) {
   }          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   printf("\n#Hessian matrix#\n");           */
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++) {    } /* end h */
       printf("%.3e ",hess[i][j]);    return po;
     }  }
     printf("\n");  
   }  
   /*************** log-likelihood *************/
   /* Recompute Inverse */  double func( double *x)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    int i, ii, j, k, mi, d, kk;
   ludcmp(a,npar,indx,&pd);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   /*  printf("\n#Hessian matrix recomputed#\n");    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
   for (j=1;j<=npar;j++) {    int s1, s2;
     for (i=1;i<=npar;i++) x[i]=0;    double bbh, survp;
     x[j]=1;    long ipmx;
     lubksb(a,npar,indx,x);    /*extern weight */
     for (i=1;i<=npar;i++){    /* We are differentiating ll according to initial status */
       y[i][j]=x[i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       printf("%.3e ",y[i][j]);    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     printf("\n");    */
   }    cov[1]=1.;
   */  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);    if(mle==1){
   free_vector(x,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_ivector(indx,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_matrix(hess,1,npar,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*************** hessian matrix ****************/            }
 double hessii( double x[], double delta, int theta, double delti[])          for(d=0; d<dh[mi][i]; d++){
 {            newm=savm;
   int i;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int l=1, lmax=20;            for (kk=1; kk<=cptcovage;kk++) {
   double k1,k2;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double p2[NPARMAX+1];            }
   double res;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double fx;            savm=oldm;
   int k=0,kmax=10;            oldm=newm;
   double l1;          } /* end mult */
         
   fx=func(x);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   for (i=1;i<=npar;i++) p2[i]=x[i];          /* But now since version 0.9 we anticipate for bias and large stepm.
   for(l=0 ; l <=lmax; l++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     l1=pow(10,l);           * (in months) between two waves is not a multiple of stepm, we rounded to 
     delts=delt;           * the nearest (and in case of equal distance, to the lowest) interval but now
     for(k=1 ; k <kmax; k=k+1){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       delt = delta*(l1*k);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       p2[theta]=x[theta] +delt;           * probability in order to take into account the bias as a fraction of the way
       k1=func(p2)-fx;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       p2[theta]=x[theta]-delt;           * -stepm/2 to stepm/2 .
       k2=func(p2)-fx;           * For stepm=1 the results are the same as for previous versions of Imach.
       /*res= (k1-2.0*fx+k2)/delt/delt; */           * For stepm > 1 the results are less biased than in previous versions. 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */           */
                s1=s[mw[mi][i]][i];
 #ifdef DEBUG          s2=s[mw[mi+1][i]][i];
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          bbh=(double)bh[mi][i]/(double)stepm; 
 #endif          /* bias is positive if real duration
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */           * is higher than the multiple of stepm and negative otherwise.
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){           */
         k=kmax;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       }          if( s2 > nlstate){ 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            /* i.e. if s2 is a death state and if the date of death is known then the contribution
         k=kmax; l=lmax*10.;               to the likelihood is the probability to die between last step unit time and current 
       }               step unit time, which is also the differences between probability to die before dh 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){               and probability to die before dh-stepm . 
         delts=delt;               In version up to 0.92 likelihood was computed
       }          as if date of death was unknown. Death was treated as any other
     }          health state: the date of the interview describes the actual state
   }          and not the date of a change in health state. The former idea was
   delti[theta]=delts;          to consider that at each interview the state was recorded
   return res;          (healthy, disable or death) and IMaCh was corrected; but when we
            introduced the exact date of death then we should have modified
 }          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
 double hessij( double x[], double delti[], int thetai,int thetaj)          stepm. It is no more the probability to die between last interview
 {          and month of death but the probability to survive from last
   int i;          interview up to one month before death multiplied by the
   int l=1, l1, lmax=20;          probability to die within a month. Thanks to Chris
   double k1,k2,k3,k4,res,fx;          Jackson for correcting this bug.  Former versions increased
   double p2[NPARMAX+1];          mortality artificially. The bad side is that we add another loop
   int k;          which slows down the processing. The difference can be up to 10%
           lower mortality.
   fx=func(x);            */
   for (k=1; k<=2; k++) {            lli=log(out[s1][s2] - savm[s1][s2]);
     for (i=1;i<=npar;i++) p2[i]=x[i];          }else{
     p2[thetai]=x[thetai]+delti[thetai]/k;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     k1=func(p2)-fx;          } 
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     p2[thetai]=x[thetai]+delti[thetai]/k;          /*if(lli ==000.0)*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     k2=func(p2)-fx;          ipmx +=1;
            sw += weight[i];
     p2[thetai]=x[thetai]-delti[thetai]/k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        } /* end of wave */
     k3=func(p2)-fx;      } /* end of individual */
      }  else if(mle==2){
     p2[thetai]=x[thetai]-delti[thetai]/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     k4=func(p2)-fx;        for(mi=1; mi<= wav[i]-1; mi++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          for (ii=1;ii<=nlstate+ndeath;ii++)
 #ifdef DEBUG            for (j=1;j<=nlstate+ndeath;j++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 #endif              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   return res;          for(d=0; d<=dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /************** Inverse of matrix **************/            for (kk=1; kk<=cptcovage;kk++) {
 void ludcmp(double **a, int n, int *indx, double *d)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   int i,imax,j,k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double big,dum,sum,temp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *vv;            savm=oldm;
              oldm=newm;
   vv=vector(1,n);          } /* end mult */
   *d=1.0;        
   for (i=1;i<=n;i++) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     big=0.0;          /* But now since version 0.9 we anticipate for bias and large stepm.
     for (j=1;j<=n;j++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       if ((temp=fabs(a[i][j])) > big) big=temp;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           * the nearest (and in case of equal distance, to the lowest) interval but now
     vv[i]=1.0/big;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   for (j=1;j<=n;j++) {           * probability in order to take into account the bias as a fraction of the way
     for (i=1;i<j;i++) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       sum=a[i][j];           * -stepm/2 to stepm/2 .
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           * For stepm=1 the results are the same as for previous versions of Imach.
       a[i][j]=sum;           * For stepm > 1 the results are less biased than in previous versions. 
     }           */
     big=0.0;          s1=s[mw[mi][i]][i];
     for (i=j;i<=n;i++) {          s2=s[mw[mi+1][i]][i];
       sum=a[i][j];          bbh=(double)bh[mi][i]/(double)stepm; 
       for (k=1;k<j;k++)          /* bias is positive if real duration
         sum -= a[i][k]*a[k][j];           * is higher than the multiple of stepm and negative otherwise.
       a[i][j]=sum;           */
       if ( (dum=vv[i]*fabs(sum)) >= big) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         big=dum;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         imax=i;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
       }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
     if (j != imax) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for (k=1;k<=n;k++) {          ipmx +=1;
         dum=a[imax][k];          sw += weight[i];
         a[imax][k]=a[j][k];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         a[j][k]=dum;        } /* end of wave */
       }      } /* end of individual */
       *d = -(*d);    }  else if(mle==3){  /* exponential inter-extrapolation */
       vv[imax]=vv[j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     indx[j]=imax;        for(mi=1; mi<= wav[i]-1; mi++){
     if (a[j][j] == 0.0) a[j][j]=TINY;          for (ii=1;ii<=nlstate+ndeath;ii++)
     if (j != n) {            for (j=1;j<=nlstate+ndeath;j++){
       dum=1.0/(a[j][j]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
   }          for(d=0; d<dh[mi][i]; d++){
   free_vector(vv,1,n);  /* Doesn't work */            newm=savm;
 ;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void lubksb(double **a, int n, int *indx, double b[])            }
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i,ii=0,ip,j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double sum;            savm=oldm;
              oldm=newm;
   for (i=1;i<=n;i++) {          } /* end mult */
     ip=indx[i];        
     sum=b[ip];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     b[ip]=b[i];          /* But now since version 0.9 we anticipate for bias and large stepm.
     if (ii)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           * (in months) between two waves is not a multiple of stepm, we rounded to 
     else if (sum) ii=i;           * the nearest (and in case of equal distance, to the lowest) interval but now
     b[i]=sum;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   for (i=n;i>=1;i--) {           * probability in order to take into account the bias as a fraction of the way
     sum=b[i];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           * -stepm/2 to stepm/2 .
     b[i]=sum/a[i][i];           * For stepm=1 the results are the same as for previous versions of Imach.
   }           * For stepm > 1 the results are less biased than in previous versions. 
 }           */
           s1=s[mw[mi][i]][i];
 /************ Frequencies ********************/          s2=s[mw[mi+1][i]][i];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          bbh=(double)bh[mi][i]/(double)stepm; 
 {  /* Some frequencies */          /* bias is positive if real duration
             * is higher than the multiple of stepm and negative otherwise.
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           */
   double ***freq; /* Frequencies */          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   double *pp;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double pos, k2, dateintsum=0,k2cpt=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   FILE *ficresp;          /*if(lli ==000.0)*/
   char fileresp[FILENAMELENGTH];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
   pp=vector(1,nlstate);          sw += weight[i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcpy(fileresp,"p");        } /* end of wave */
   strcat(fileresp,fileres);      } /* end of individual */
   if((ficresp=fopen(fileresp,"w"))==NULL) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     printf("Problem with prevalence resultfile: %s\n", fileresp);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     exit(0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for (ii=1;ii<=nlstate+ndeath;ii++)
   j1=0;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   j=cptcoveff;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            }
            for(d=0; d<dh[mi][i]; d++){
   for(k1=1; k1<=j;k1++){            newm=savm;
     for(i1=1; i1<=ncodemax[k1];i1++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       j1++;            for (kk=1; kk<=cptcovage;kk++) {
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         scanf("%d", i);*/            }
       for (i=-1; i<=nlstate+ndeath; i++)            
         for (jk=-1; jk<=nlstate+ndeath; jk++)              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(m=agemin; m <= agemax+3; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             freq[i][jk][m]=0;            savm=oldm;
                  oldm=newm;
       dateintsum=0;          } /* end mult */
       k2cpt=0;        
       for (i=1; i<=imx; i++) {          s1=s[mw[mi][i]][i];
         bool=1;          s2=s[mw[mi+1][i]][i];
         if  (cptcovn>0) {          if( s2 > nlstate){ 
           for (z1=1; z1<=cptcoveff; z1++)            lli=log(out[s1][s2] - savm[s1][s2]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          }else{
               bool=0;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
         if (bool==1) {          ipmx +=1;
           for(m=firstpass; m<=lastpass; m++){          sw += weight[i];
             k2=anint[m][i]+(mint[m][i]/12.);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        } /* end of wave */
               if(agev[m][i]==1) agev[m][i]=agemax+2;      } /* end of individual */
               if (m<lastpass) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               }        for(mi=1; mi<= wav[i]-1; mi++){
                        for (ii=1;ii<=nlstate+ndeath;ii++)
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            for (j=1;j<=nlstate+ndeath;j++){
                 dateintsum=dateintsum+k2;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 k2cpt++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               }            }
             }          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            }
           
       if  (cptcovn>0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficresp, "\n#********** Variable ");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            savm=oldm;
         fprintf(ficresp, "**********\n#");            oldm=newm;
       }          } /* end mult */
       for(i=1; i<=nlstate;i++)        
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          s1=s[mw[mi][i]][i];
       fprintf(ficresp, "\n");          s2=s[mw[mi+1][i]][i];
                lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(i=(int)agemin; i <= (int)agemax+3; i++){          ipmx +=1;
         if(i==(int)agemax+3)          sw += weight[i];
           printf("Total");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         else          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           printf("Age %d", i);        } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    } /* End of if */
             pp[jk] += freq[jk][m][i];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(jk=1; jk <=nlstate ; jk++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(m=-1, pos=0; m <=0 ; m++)    return -l;
             pos += freq[jk][m][i];  }
           if(pp[jk]>=1.e-10)  
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*************** log-likelihood *************/
           else  double funcone( double *x)
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  {
         }    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
         for(jk=1; jk <=nlstate ; jk++){    double **out;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double lli; /* Individual log likelihood */
             pp[jk] += freq[jk][m][i];    int s1, s2;
         }    double bbh, survp;
     /*extern weight */
         for(jk=1,pos=0; jk <=nlstate ; jk++)    /* We are differentiating ll according to initial status */
           pos += pp[jk];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for(jk=1; jk <=nlstate ; jk++){    /*for(i=1;i<imx;i++) 
           if(pos>=1.e-5)      printf(" %d\n",s[4][i]);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    */
           else    cov[1]=1.;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           if( i <= (int) agemax){    for(k=1; k<=nlstate; k++) ll[k]=0.;
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               probs[i][jk][j1]= pp[jk]/pos;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      for(mi=1; mi<= wav[i]-1; mi++){
             }        for (ii=1;ii<=nlstate+ndeath;ii++)
             else          for (j=1;j<=nlstate+ndeath;j++){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }          }
                for(d=0; d<dh[mi][i]; d++){
         for(jk=-1; jk <=nlstate+ndeath; jk++)          newm=savm;
           for(m=-1; m <=nlstate+ndeath; m++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          for (kk=1; kk<=cptcovage;kk++) {
         if(i <= (int) agemax)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           fprintf(ficresp,"\n");          }
         printf("\n");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }          savm=oldm;
   }          oldm=newm;
   dateintmean=dateintsum/k2cpt;        } /* end mult */
          
   fclose(ficresp);        s1=s[mw[mi][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        s2=s[mw[mi+1][i]][i];
   free_vector(pp,1,nlstate);        bbh=(double)bh[mi][i]/(double)stepm; 
          /* bias is positive if real duration
   /* End of Freq */         * is higher than the multiple of stepm and negative otherwise.
 }         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
 /************ Prevalence ********************/          lli=log(out[s1][s2] - savm[s1][s2]);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        } else if (mle==1){
 {  /* Some frequencies */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          } else if(mle==2){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double ***freq; /* Frequencies */        } else if(mle==3){  /* exponential inter-extrapolation */
   double *pp;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double pos, k2;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
   pp=vector(1,nlstate);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          lli=log(out[s1][s2]); /* Original formula */
          } /* End of if */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        ipmx +=1;
   j1=0;        sw += weight[i];
          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   j=cptcoveff;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        if(globpr){
            fprintf(ficresilk,"%6d %1d %1d %1d %1d %3d %10.6f %6.4f %10.6f %10.6f %10.6f ", \
   for(k1=1; k1<=j;k1++){                  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     for(i1=1; i1<=ncodemax[k1];i1++){          for(k=1,l=0.; k<=nlstate; k++) 
       j1++;            fprintf(ficresilk," %10.6f",ll[k]);
                fprintf(ficresilk,"\n");
       for (i=-1; i<=nlstate+ndeath; i++)          }
         for (jk=-1; jk<=nlstate+ndeath; jk++)        } /* end of wave */
           for(m=agemin; m <= agemax+3; m++)    } /* end of individual */
             freq[i][jk][m]=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
          /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for (i=1; i<=imx; i++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         bool=1;    return -l;
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         }  {
         if (bool==1) {    /* This routine should help understanding what is done with the selection of individuals/waves and
           for(m=firstpass; m<=lastpass; m++){       to check the exact contribution to the likelihood.
             k2=anint[m][i]+(mint[m][i]/12.);       Plotting could be done.
             if ((k2>=dateprev1) && (k2<=dateprev2)) {     */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    int k;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    if(globpr !=0){ /* Just counts and sums no printings */
               if (m<lastpass) {      strcpy(fileresilk,"ilk"); 
                 if (calagedate>0)      strcat(fileresilk,fileres);
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                 else        printf("Problem with resultfile: %s\n", fileresilk);
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      }
               }      fprintf(ficresilk, "# individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state");
             }      fprintf(ficresilk, "# i s1 s2 mi mw dh likeli weight out sav ");
           }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         }      for(k=1; k<=nlstate; k++) 
       }        fprintf(ficresilk," ll[%d]",k);
       for(i=(int)agemin; i <= (int)agemax+3; i++){      fprintf(ficresilk,"\n");
         for(jk=1; jk <=nlstate ; jk++){    }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];    *fretone=(*funcone)(p);
         }    if(globpr !=0)
         for(jk=1; jk <=nlstate ; jk++){      fclose(ficresilk);
           for(m=-1, pos=0; m <=0 ; m++)    return;
             pos += freq[jk][m][i];  }
         }  
          /*********** Maximum Likelihood Estimation ***************/
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
             pp[jk] += freq[jk][m][i];  {
         }    int i,j, iter;
            double **xi;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    double fret;
            double fretone; /* Only one call to likelihood */
         for(jk=1; jk <=nlstate ; jk++){        char filerespow[FILENAMELENGTH];
           if( i <= (int) agemax){    xi=matrix(1,npar,1,npar);
             if(pos>=1.e-5){    for (i=1;i<=npar;i++)
               probs[i][jk][j1]= pp[jk]/pos;      for (j=1;j<=npar;j++)
             }        xi[i][j]=(i==j ? 1.0 : 0.0);
           }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         }    strcpy(filerespow,"pow"); 
            strcat(filerespow,fileres);
       }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", filerespow);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
      fprintf(ficrespow,"# Powell\n# iter -2*LL");
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    for (i=1;i<=nlstate;i++)
   free_vector(pp,1,nlstate);      for(j=1;j<=nlstate+ndeath;j++)
          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 }  /* End of Freq */    fprintf(ficrespow,"\n");
   
 /************* Waves Concatenation ***************/    powell(p,xi,npar,ftol,&iter,&fret,func);
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    fclose(ficrespow);
 {    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      Death is a valid wave (if date is known).    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  }
      and mw[mi+1][i]. dh depends on stepm.  
      */  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   int i, mi, m;  {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    double  **a,**y,*x,pd;
      double sum=0., jmean=0.;*/    double **hess;
     int i, j,jk;
   int j, k=0,jk, ju, jl;    int *indx;
   double sum=0.;  
   jmin=1e+5;    double hessii(double p[], double delta, int theta, double delti[]);
   jmax=-1;    double hessij(double p[], double delti[], int i, int j);
   jmean=0.;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   for(i=1; i<=imx; i++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
     mi=0;  
     m=firstpass;    hess=matrix(1,npar,1,npar);
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)    printf("\nCalculation of the hessian matrix. Wait...\n");
         mw[++mi][i]=m;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       if(m >=lastpass)    for (i=1;i<=npar;i++){
         break;      printf("%d",i);fflush(stdout);
       else      fprintf(ficlog,"%d",i);fflush(ficlog);
         m++;      hess[i][i]=hessii(p,ftolhess,i,delti);
     }/* end while */      /*printf(" %f ",p[i]);*/
     if (s[m][i] > nlstate){      /*printf(" %lf ",hess[i][i]);*/
       mi++;     /* Death is another wave */    }
       /* if(mi==0)  never been interviewed correctly before death */    
          /* Only death is a correct wave */    for (i=1;i<=npar;i++) {
       mw[mi][i]=m;      for (j=1;j<=npar;j++)  {
     }        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
     wav[i]=mi;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     if(mi==0)          hess[i][j]=hessij(p,delti,i,j);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          hess[j][i]=hess[i][j];    
   }          /*printf(" %lf ",hess[i][j]);*/
         }
   for(i=1; i<=imx; i++){      }
     for(mi=1; mi<wav[i];mi++){    }
       if (stepm <=0)    printf("\n");
         dh[mi][i]=1;    fprintf(ficlog,"\n");
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           if (agedc[i] < 2*AGESUP) {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    
           if(j==0) j=1;  /* Survives at least one month after exam */    a=matrix(1,npar,1,npar);
           k=k+1;    y=matrix(1,npar,1,npar);
           if (j >= jmax) jmax=j;    x=vector(1,npar);
           if (j <= jmin) jmin=j;    indx=ivector(1,npar);
           sum=sum+j;    for (i=1;i<=npar;i++)
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           }    ludcmp(a,npar,indx,&pd);
         }  
         else{    for (j=1;j<=npar;j++) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      for (i=1;i<=npar;i++) x[i]=0;
           k=k+1;      x[j]=1;
           if (j >= jmax) jmax=j;      lubksb(a,npar,indx,x);
           else if (j <= jmin)jmin=j;      for (i=1;i<=npar;i++){ 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        matcov[i][j]=x[i];
           sum=sum+j;      }
         }    }
         jk= j/stepm;  
         jl= j -jk*stepm;    printf("\n#Hessian matrix#\n");
         ju= j -(jk+1)*stepm;    fprintf(ficlog,"\n#Hessian matrix#\n");
         if(jl <= -ju)    for (i=1;i<=npar;i++) { 
           dh[mi][i]=jk;      for (j=1;j<=npar;j++) { 
         else        printf("%.3e ",hess[i][j]);
           dh[mi][i]=jk+1;        fprintf(ficlog,"%.3e ",hess[i][j]);
         if(dh[mi][i]==0)      }
           dh[mi][i]=1; /* At least one step */      printf("\n");
       }      fprintf(ficlog,"\n");
     }    }
   }  
   jmean=sum/k;    /* Recompute Inverse */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    for (i=1;i<=npar;i++)
  }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 /*********** Tricode ****************************/    ludcmp(a,npar,indx,&pd);
 void tricode(int *Tvar, int **nbcode, int imx)  
 {    /*  printf("\n#Hessian matrix recomputed#\n");
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;    for (j=1;j<=npar;j++) {
   cptcoveff=0;      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
   for (k=0; k<19; k++) Ndum[k]=0;      lubksb(a,npar,indx,x);
   for (k=1; k<=7; k++) ncodemax[k]=0;      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        printf("%.3e ",y[i][j]);
     for (i=1; i<=imx; i++) {        fprintf(ficlog,"%.3e ",y[i][j]);
       ij=(int)(covar[Tvar[j]][i]);      }
       Ndum[ij]++;      printf("\n");
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      fprintf(ficlog,"\n");
       if (ij > cptcode) cptcode=ij;    }
     }    */
   
     for (i=0; i<=cptcode; i++) {    free_matrix(a,1,npar,1,npar);
       if(Ndum[i]!=0) ncodemax[j]++;    free_matrix(y,1,npar,1,npar);
     }    free_vector(x,1,npar);
     ij=1;    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
   
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {  }
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;  /*************** hessian matrix ****************/
            double hessii( double x[], double delta, int theta, double delti[])
           ij++;  {
         }    int i;
         if (ij > ncodemax[j]) break;    int l=1, lmax=20;
       }      double k1,k2;
     }    double p2[NPARMAX+1];
   }      double res;
     double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
  for (k=0; k<19; k++) Ndum[k]=0;    double fx;
     int k=0,kmax=10;
  for (i=1; i<=ncovmodel-2; i++) {    double l1;
       ij=Tvar[i];  
       Ndum[ij]++;    fx=func(x);
     }    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
  ij=1;      l1=pow(10,l);
  for (i=1; i<=10; i++) {      delts=delt;
    if((Ndum[i]!=0) && (i<=ncovcol)){      for(k=1 ; k <kmax; k=k+1){
      Tvaraff[ij]=i;        delt = delta*(l1*k);
      ij++;        p2[theta]=x[theta] +delt;
    }        k1=func(p2)-fx;
  }        p2[theta]=x[theta]-delt;
          k2=func(p2)-fx;
     cptcoveff=ij-1;        /*res= (k1-2.0*fx+k2)/delt/delt; */
 }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
 /*********** Health Expectancies ****************/  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
 {        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   /* Health expectancies */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          k=kmax;
   double age, agelim, hf;        }
   double ***p3mat,***varhe;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double **dnewm,**doldm;          k=kmax; l=lmax*10.;
   double *xp;        }
   double **gp, **gm;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double ***gradg, ***trgradg;          delts=delt;
   int theta;        }
       }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    }
   xp=vector(1,npar);    delti[theta]=delts;
   dnewm=matrix(1,nlstate*2,1,npar);    return res; 
   doldm=matrix(1,nlstate*2,1,nlstate*2);    
    }
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  double hessij( double x[], double delti[], int thetai,int thetaj)
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    int i;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    int l=1, l1, lmax=20;
   fprintf(ficreseij,"\n");    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
   if(estepm < stepm){    int k;
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    fx=func(x);
   else  hstepm=estepm;      for (k=1; k<=2; k++) {
   /* We compute the life expectancy from trapezoids spaced every estepm months      for (i=1;i<=npar;i++) p2[i]=x[i];
    * This is mainly to measure the difference between two models: for example      p2[thetai]=x[thetai]+delti[thetai]/k;
    * if stepm=24 months pijx are given only every 2 years and by summing them      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
    * we are calculating an estimate of the Life Expectancy assuming a linear      k1=func(p2)-fx;
    * progression inbetween and thus overestimating or underestimating according    
    * to the curvature of the survival function. If, for the same date, we      p2[thetai]=x[thetai]+delti[thetai]/k;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
    * to compare the new estimate of Life expectancy with the same linear      k2=func(p2)-fx;
    * hypothesis. A more precise result, taking into account a more precise    
    * curvature will be obtained if estepm is as small as stepm. */      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   /* For example we decided to compute the life expectancy with the smallest unit */      k3=func(p2)-fx;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    
      nhstepm is the number of hstepm from age to agelim      p2[thetai]=x[thetai]-delti[thetai]/k;
      nstepm is the number of stepm from age to agelin.      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      Look at hpijx to understand the reason of that which relies in memory size      k4=func(p2)-fx;
      and note for a fixed period like estepm months */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  #ifdef DEBUG
      survival function given by stepm (the optimization length). Unfortunately it      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      means that if the survival funtion is printed only each two years of age and if      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  #endif
      results. So we changed our mind and took the option of the best precision.    }
   */    return res;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  }
   
   agelim=AGESUP;  /************** Inverse of matrix **************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  void ludcmp(double **a, int n, int *indx, double *d) 
     /* nhstepm age range expressed in number of stepm */  { 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    int i,imax,j,k; 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double big,dum,sum,temp; 
     /* if (stepm >= YEARM) hstepm=1;*/    double *vv; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */   
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    vv=vector(1,n); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    *d=1.0; 
     gp=matrix(0,nhstepm,1,nlstate*2);    for (i=1;i<=n;i++) { 
     gm=matrix(0,nhstepm,1,nlstate*2);      big=0.0; 
       for (j=1;j<=n;j++) 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        if ((temp=fabs(a[i][j])) > big) big=temp; 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        vv[i]=1.0/big; 
      } 
     for (j=1;j<=n;j++) { 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
     /* Computing Variances of health expectancies */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
      for(theta=1; theta <=npar; theta++){      } 
       for(i=1; i<=npar; i++){      big=0.0; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=j;i<=n;i++) { 
       }        sum=a[i][j]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
       cptj=0;        a[i][j]=sum; 
       for(j=1; j<= nlstate; j++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         for(i=1; i<=nlstate; i++){          big=dum; 
           cptj=cptj+1;          imax=i; 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        } 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      } 
           }      if (j != imax) { 
         }        for (k=1;k<=n;k++) { 
       }          dum=a[imax][k]; 
                a[imax][k]=a[j][k]; 
                a[j][k]=dum; 
       for(i=1; i<=npar; i++)        } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        *d = -(*d); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          vv[imax]=vv[j]; 
            } 
       cptj=0;      indx[j]=imax; 
       for(j=1; j<= nlstate; j++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
         for(i=1;i<=nlstate;i++){      if (j != n) { 
           cptj=cptj+1;        dum=1.0/(a[j][j]); 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      } 
           }    } 
         }    free_vector(vv,1,n);  /* Doesn't work */
       }  ;
       for(j=1; j<= nlstate*2; j++)  } 
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  void lubksb(double **a, int n, int *indx, double b[]) 
         }  { 
      }    int i,ii=0,ip,j; 
        double sum; 
 /* End theta */   
     for (i=1;i<=n;i++) { 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      ip=indx[i]; 
       sum=b[ip]; 
      for(h=0; h<=nhstepm-1; h++)      b[ip]=b[i]; 
       for(j=1; j<=nlstate*2;j++)      if (ii) 
         for(theta=1; theta <=npar; theta++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           trgradg[h][j][theta]=gradg[h][theta][j];      else if (sum) ii=i; 
            b[i]=sum; 
     } 
      for(i=1;i<=nlstate*2;i++)    for (i=n;i>=1;i--) { 
       for(j=1;j<=nlstate*2;j++)      sum=b[i]; 
         varhe[i][j][(int)age] =0.;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
      printf("%d|",(int)age);fflush(stdout);    } 
      for(h=0;h<=nhstepm-1;h++){  } 
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  /************ Frequencies ********************/
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
         for(i=1;i<=nlstate*2;i++)  {  /* Some frequencies */
           for(j=1;j<=nlstate*2;j++)    
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       }    int first;
     }    double ***freq; /* Frequencies */
     /* Computing expectancies */    double *pp, **prop;
     for(i=1; i<=nlstate;i++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(j=1; j<=nlstate;j++)    FILE *ficresp;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    char fileresp[FILENAMELENGTH];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    
              pp=vector(1,nlstate);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
         }    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(ficreseij,"%3.0f",age );      printf("Problem with prevalence resultfile: %s\n", fileresp);
     cptj=0;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     for(i=1; i<=nlstate;i++)      exit(0);
       for(j=1; j<=nlstate;j++){    }
         cptj++;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    j1=0;
       }    
     fprintf(ficreseij,"\n");    j=cptcoveff;
        if (cptcovn<1) {j=1;ncodemax[1]=1;}
     free_matrix(gm,0,nhstepm,1,nlstate*2);  
     free_matrix(gp,0,nhstepm,1,nlstate*2);    first=1;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    for(k1=1; k1<=j;k1++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;
   printf("\n");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
   free_vector(xp,1,npar);        for (i=-1; i<=nlstate+ndeath; i++)  
   free_matrix(dnewm,1,nlstate*2,1,npar);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            for(m=iagemin; m <= iagemax+3; m++)
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);              freq[i][jk][m]=0;
 }  
       for (i=1; i<=nlstate; i++)  
 /************ Variance ******************/        for(m=iagemin; m <= iagemax+3; m++)
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          prop[i][m]=0;
 {        
   /* Variance of health expectancies */        dateintsum=0;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        k2cpt=0;
   double **newm;        for (i=1; i<=imx; i++) {
   double **dnewm,**doldm;          bool=1;
   int i, j, nhstepm, hstepm, h, nstepm ;          if  (cptcovn>0) {
   int k, cptcode;            for (z1=1; z1<=cptcoveff; z1++) 
   double *xp;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   double **gp, **gm;                bool=0;
   double ***gradg, ***trgradg;          }
   double ***p3mat;          if (bool==1){
   double age,agelim, hf;            for(m=firstpass; m<=lastpass; m++){
   int theta;              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficresvij,"# Age");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   for(i=1; i<=nlstate;i++)                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(j=1; j<=nlstate;j++)                if (m<lastpass) {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficresvij,"\n");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
   xp=vector(1,npar);                
   dnewm=matrix(1,nlstate,1,npar);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   doldm=matrix(1,nlstate,1,nlstate);                  dateintsum=dateintsum+k2;
                    k2cpt++;
   if(estepm < stepm){                }
     printf ("Problem %d lower than %d\n",estepm, stepm);                /*}*/
   }            }
   else  hstepm=estepm;            }
   /* For example we decided to compute the life expectancy with the smallest unit */        }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.         
      nhstepm is the number of hstepm from age to agelim        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size        if  (cptcovn>0) {
      and note for a fixed period like k years */          fprintf(ficresp, "\n#********** Variable "); 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      survival function given by stepm (the optimization length). Unfortunately it          fprintf(ficresp, "**********\n#");
      means that if the survival funtion is printed only each two years of age and if        }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        for(i=1; i<=nlstate;i++) 
      results. So we changed our mind and took the option of the best precision.          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   */        fprintf(ficresp, "\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        
   agelim = AGESUP;        for(i=iagemin; i <= iagemax+3; i++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          if(i==iagemax+3){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            fprintf(ficlog,"Total");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          }else{
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(first==1){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);              first=0;
     gp=matrix(0,nhstepm,1,nlstate);              printf("See log file for details...\n");
     gm=matrix(0,nhstepm,1,nlstate);            }
             fprintf(ficlog,"Age %d", i);
     for(theta=1; theta <=npar; theta++){          }
       for(i=1; i<=npar; i++){ /* Computes gradient */          for(jk=1; jk <=nlstate ; jk++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       }              pp[jk] += freq[jk][m][i]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
       if (popbased==1) {              pos += freq[jk][m][i];
         for(i=1; i<=nlstate;i++)            if(pp[jk]>=1.e-10){
           prlim[i][i]=probs[(int)age][i][ij];              if(first==1){
       }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }
       for(j=1; j<= nlstate; j++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for(h=0; h<=nhstepm; h++){            }else{
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)              if(first==1)
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
              }
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(jk=1; jk <=nlstate ; jk++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              pp[jk] += freq[jk][m][i];
            }       
       if (popbased==1) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         for(i=1; i<=nlstate;i++)            pos += pp[jk];
           prlim[i][i]=probs[(int)age][i][ij];            posprop += prop[jk][i];
       }          }
           for(jk=1; jk <=nlstate ; jk++){
       for(j=1; j<= nlstate; j++){            if(pos>=1.e-5){
         for(h=0; h<=nhstepm; h++){              if(first==1)
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         }            }else{
       }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for(j=1; j<= nlstate; j++)              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for(h=0; h<=nhstepm; h++){            }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            if( i <= iagemax){
         }              if(pos>=1.e-5){
     } /* End theta */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
     for(h=0; h<=nhstepm; h++)              else
       for(j=1; j<=nlstate;j++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         for(theta=1; theta <=npar; theta++)            }
           trgradg[h][j][theta]=gradg[h][theta][j];          }
           
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          for(jk=-1; jk <=nlstate+ndeath; jk++)
     for(i=1;i<=nlstate;i++)            for(m=-1; m <=nlstate+ndeath; m++)
       for(j=1;j<=nlstate;j++)              if(freq[jk][m][i] !=0 ) {
         vareij[i][j][(int)age] =0.;              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(h=0;h<=nhstepm;h++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(k=0;k<=nhstepm;k++){              }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          if(i <= iagemax)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            fprintf(ficresp,"\n");
         for(i=1;i<=nlstate;i++)          if(first==1)
           for(j=1;j<=nlstate;j++)            printf("Others in log...\n");
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          fprintf(ficlog,"\n");
       }        }
     }      }
     }
     fprintf(ficresvij,"%.0f ",age );    dateintmean=dateintsum/k2cpt; 
     for(i=1; i<=nlstate;i++)   
       for(j=1; j<=nlstate;j++){    fclose(ficresp);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
       }    free_vector(pp,1,nlstate);
     fprintf(ficresvij,"\n");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     free_matrix(gp,0,nhstepm,1,nlstate);    /* End of Freq */
     free_matrix(gm,0,nhstepm,1,nlstate);  }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  /************ Prevalence ********************/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   } /* End age */  {  
      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   free_vector(xp,1,npar);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   free_matrix(doldm,1,nlstate,1,npar);       We still use firstpass and lastpass as another selection.
   free_matrix(dnewm,1,nlstate,1,nlstate);    */
    
 }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
 /************ Variance of prevlim ******************/    double *pp, **prop;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double pos,posprop; 
 {    double  y2; /* in fractional years */
   /* Variance of prevalence limit */    int iagemin, iagemax;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    iagemin= (int) agemin;
   double **dnewm,**doldm;    iagemax= (int) agemax;
   int i, j, nhstepm, hstepm;    /*pp=vector(1,nlstate);*/
   int k, cptcode;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   double *xp;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   double *gp, *gm;    j1=0;
   double **gradg, **trgradg;    
   double age,agelim;    j=cptcoveff;
   int theta;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    for(k1=1; k1<=j;k1++){
   fprintf(ficresvpl,"# Age");      for(i1=1; i1<=ncodemax[k1];i1++){
   for(i=1; i<=nlstate;i++)        j1++;
       fprintf(ficresvpl," %1d-%1d",i,i);        
   fprintf(ficresvpl,"\n");        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
   xp=vector(1,npar);            prop[i][m]=0.0;
   dnewm=matrix(1,nlstate,1,npar);       
   doldm=matrix(1,nlstate,1,nlstate);        for (i=1; i<=imx; i++) { /* Each individual */
            bool=1;
   hstepm=1*YEARM; /* Every year of age */          if  (cptcovn>0) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            for (z1=1; z1<=cptcoveff; z1++) 
   agelim = AGESUP;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                bool=0;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          } 
     if (stepm >= YEARM) hstepm=1;          if (bool==1) { 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     gradg=matrix(1,npar,1,nlstate);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     gp=vector(1,nlstate);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     gm=vector(1,nlstate);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for(theta=1; theta <=npar; theta++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       for(i=1; i<=npar; i++){ /* Computes gradient */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  prop[s[m][i]][iagemax+3] += weight[i]; 
       for(i=1;i<=nlstate;i++)                } 
         gp[i] = prlim[i][i];              }
                } /* end selection of waves */
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for(i=iagemin; i <= iagemax+3; i++){  
       for(i=1;i<=nlstate;i++)          
         gm[i] = prlim[i][i];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
       for(i=1;i<=nlstate;i++)          } 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
     trgradg =matrix(1,nlstate,1,npar);              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
     for(j=1; j<=nlstate;j++)              } 
       for(theta=1; theta <=npar; theta++)            } 
         trgradg[j][theta]=gradg[theta][j];          }/* end jk */ 
         }/* end i */ 
     for(i=1;i<=nlstate;i++)      } /* end i1 */
       varpl[i][(int)age] =0.;    } /* end k1 */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     for(i=1;i<=nlstate;i++)    /*free_vector(pp,1,nlstate);*/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  /************* Waves Concatenation ***************/
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     free_vector(gp,1,nlstate);  {
     free_vector(gm,1,nlstate);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     free_matrix(gradg,1,npar,1,nlstate);       Death is a valid wave (if date is known).
     free_matrix(trgradg,1,nlstate,1,npar);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   } /* End age */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
   free_vector(xp,1,npar);       */
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 }       double sum=0., jmean=0.;*/
     int first;
 /************ Variance of one-step probabilities  ******************/    int j, k=0,jk, ju, jl;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    double sum=0.;
 {    first=0;
   int i, j,  i1, k1, l1;    jmin=1e+5;
   int k2, l2, j1,  z1;    jmax=-1;
   int k=0,l, cptcode;    jmean=0.;
   int first=1;    for(i=1; i<=imx; i++){
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;      mi=0;
   double **dnewm,**doldm;      m=firstpass;
   double *xp;      while(s[m][i] <= nlstate){
   double *gp, *gm;        if(s[m][i]>=1)
   double **gradg, **trgradg;          mw[++mi][i]=m;
   double **mu;        if(m >=lastpass)
   double age,agelim, cov[NCOVMAX];          break;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        else
   int theta;          m++;
   char fileresprob[FILENAMELENGTH];      }/* end while */
   char fileresprobcov[FILENAMELENGTH];      if (s[m][i] > nlstate){
   char fileresprobcor[FILENAMELENGTH];        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
   double ***varpij;           /* Only death is a correct wave */
         mw[mi][i]=m;
   strcpy(fileresprob,"prob");      }
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      wav[i]=mi;
     printf("Problem with resultfile: %s\n", fileresprob);      if(mi==0){
   }        if(first==0){
   strcpy(fileresprobcov,"probcov");          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   strcat(fileresprobcov,fileres);          first=1;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        }
     printf("Problem with resultfile: %s\n", fileresprobcov);        if(first==1){
   }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   strcpy(fileresprobcor,"probcor");        }
   strcat(fileresprobcor,fileres);      } /* end mi==0 */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    } /* End individuals */
     printf("Problem with resultfile: %s\n", fileresprobcor);  
   }    for(i=1; i<=imx; i++){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      for(mi=1; mi<wav[i];mi++){
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        if (stepm <=0)
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          dh[mi][i]=1;
          else{
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   fprintf(ficresprob,"# Age");            if (agedc[i] < 2*AGESUP) {
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   fprintf(ficresprobcov,"# Age");              if(j==0) j=1;  /* Survives at least one month after exam */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");              else if(j<0){
   fprintf(ficresprobcov,"# Age");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Careful Patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fixe the contradiction between dates.\n",stepm);
   for(i=1; i<=nlstate;i++)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(j=1; j<=(nlstate+ndeath);j++){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);              }
       fprintf(ficresprobcov," p%1d-%1d ",i,j);              k=k+1;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);              if (j >= jmax) jmax=j;
     }                if (j <= jmin) jmin=j;
   fprintf(ficresprob,"\n");              sum=sum+j;
   fprintf(ficresprobcov,"\n");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   fprintf(ficresprobcor,"\n");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   xp=vector(1,npar);            }
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          else{
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   first=1;            k=k+1;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            if (j >= jmax) jmax=j;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            else if (j <= jmin)jmin=j;
     exit(0);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   else{            if(j<0){
     fprintf(ficgp,"\n# Routine varprob");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            }
     printf("Problem with html file: %s\n", optionfilehtm);            sum=sum+j;
     exit(0);          }
   }          jk= j/stepm;
   else{          jl= j -jk*stepm;
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");          ju= j -(jk+1)*stepm;
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");            if(jl==0){
               dh[mi][i]=jk;
   }              bh[mi][i]=0;
   cov[1]=1;            }else{ /* We want a negative bias in order to only have interpolation ie
   j=cptcoveff;                    * at the price of an extra matrix product in likelihood */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              dh[mi][i]=jk+1;
   j1=0;              bh[mi][i]=ju;
   for(k1=1; k1<=1;k1++){            }
     for(i1=1; i1<=ncodemax[k1];i1++){          }else{
     j1++;            if(jl <= -ju){
               dh[mi][i]=jk;
     if  (cptcovn>0) {              bh[mi][i]=jl;       /* bias is positive if real duration
       fprintf(ficresprob, "\n#********** Variable ");                                   * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficresprobcov, "\n#********** Variable ");                                   */
       fprintf(ficgp, "\n#********** Variable ");            }
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");            else{
       fprintf(ficresprobcor, "\n#********** Variable ");              dh[mi][i]=jk+1;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              bh[mi][i]=ju;
       fprintf(ficresprob, "**********\n#");            }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            if(dh[mi][i]==0){
       fprintf(ficresprobcov, "**********\n#");              dh[mi][i]=1; /* At least one step */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              bh[mi][i]=ju; /* At least one step */
       fprintf(ficgp, "**********\n#");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
       fprintf(ficgp, "**********\n#");          } /* end if mle */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
       fprintf(fichtm, "**********\n#");      } /* end wave */
     }    }
        jmean=sum/k;
       for (age=bage; age<=fage; age ++){    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         cov[2]=age;    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         for (k=1; k<=cptcovn;k++) {   }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }  /*********** Tricode ****************************/
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  void tricode(int *Tvar, int **nbcode, int imx)
         for (k=1; k<=cptcovprod;k++)  {
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
            int Ndum[20],ij=1, k, j, i, maxncov=19;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    int cptcode=0;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    cptcoveff=0; 
         gp=vector(1,(nlstate)*(nlstate+ndeath));   
         gm=vector(1,(nlstate)*(nlstate+ndeath));    for (k=0; k<maxncov; k++) Ndum[k]=0;
        for (k=1; k<=7; k++) ncodemax[k]=0;
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                           modality*/ 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                  Ndum[ij]++; /*store the modality */
           k=0;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           for(i=1; i<= (nlstate); i++){        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
             for(j=1; j<=(nlstate+ndeath);j++){                                         Tvar[j]. If V=sex and male is 0 and 
               k=k+1;                                         female is 1, then  cptcode=1.*/
               gp[k]=pmmij[i][j];      }
             }  
           }      for (i=0; i<=cptcode; i++) {
                  if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           for(i=1; i<=npar; i++)      }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
          ij=1; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for (i=1; i<=ncodemax[j]; i++) {
           k=0;        for (k=0; k<= maxncov; k++) {
           for(i=1; i<=(nlstate); i++){          if (Ndum[k] != 0) {
             for(j=1; j<=(nlstate+ndeath);j++){            nbcode[Tvar[j]][ij]=k; 
               k=k+1;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
               gm[k]=pmmij[i][j];            
             }            ij++;
           }          }
                if (ij > ncodemax[j]) break; 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        }  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        } 
         }    }  
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)   for (k=0; k< maxncov; k++) Ndum[k]=0;
           for(theta=1; theta <=npar; theta++)  
             trgradg[j][theta]=gradg[theta][j];   for (i=1; i<=ncovmodel-2; i++) { 
             /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);     ij=Tvar[i];
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);     Ndum[ij]++;
           }
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
           ij=1;
         k=0;   for (i=1; i<= maxncov; i++) {
         for(i=1; i<=(nlstate); i++){     if((Ndum[i]!=0) && (i<=ncovcol)){
           for(j=1; j<=(nlstate+ndeath);j++){       Tvaraff[ij]=i; /*For printing */
             k=k+1;       ij++;
             mu[k][(int) age]=pmmij[i][j];     }
           }   }
         }   
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)   cptcoveff=ij-1; /*Number of simple covariates*/
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  }
             varpij[i][j][(int)age] = doldm[i][j];  
   /*********** Health Expectancies ****************/
         /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
      }*/  {
     /* Health expectancies */
         fprintf(ficresprob,"\n%d ",(int)age);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         fprintf(ficresprobcov,"\n%d ",(int)age);    double age, agelim, hf;
         fprintf(ficresprobcor,"\n%d ",(int)age);    double ***p3mat,***varhe;
     double **dnewm,**doldm;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    double *xp;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    double **gp, **gm;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double ***gradg, ***trgradg;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    int theta;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         i=0;    xp=vector(1,npar);
         for (k=1; k<=(nlstate);k++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
           for (l=1; l<=(nlstate+ndeath);l++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
             i=i++;    
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    fprintf(ficreseij,"# Health expectancies\n");
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    fprintf(ficreseij,"# Age");
             for (j=1; j<=i;j++){    for(i=1; i<=nlstate;i++)
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      for(j=1; j<=nlstate;j++)
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        fprintf(ficreseij," %1d-%1d (SE)",i,j);
             }    fprintf(ficreseij,"\n");
           }  
         }/* end of loop for state */    if(estepm < stepm){
       } /* end of loop for age */      printf ("Problem %d lower than %d\n",estepm, stepm);
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    }
       for (k1=1; k1<=(nlstate);k1++){    else  hstepm=estepm;   
         for (l1=1; l1<=(nlstate+ndeath);l1++){    /* We compute the life expectancy from trapezoids spaced every estepm months
           if(l1==k1) continue;     * This is mainly to measure the difference between two models: for example
           i=(k1-1)*(nlstate+ndeath)+l1;     * if stepm=24 months pijx are given only every 2 years and by summing them
           for (k2=1; k2<=(nlstate);k2++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
             for (l2=1; l2<=(nlstate+ndeath);l2++){     * progression in between and thus overestimating or underestimating according
               if(l2==k2) continue;     * to the curvature of the survival function. If, for the same date, we 
               j=(k2-1)*(nlstate+ndeath)+l2;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               if(j<=i) continue;     * to compare the new estimate of Life expectancy with the same linear 
               for (age=bage; age<=fage; age ++){     * hypothesis. A more precise result, taking into account a more precise
                 if ((int)age %5==0){     * curvature will be obtained if estepm is as small as stepm. */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    /* For example we decided to compute the life expectancy with the smallest unit */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   mu1=mu[i][(int) age]/stepm*YEARM ;       nhstepm is the number of hstepm from age to agelim 
                   mu2=mu[j][(int) age]/stepm*YEARM;       nstepm is the number of stepm from age to agelin. 
                   /* Computing eigen value of matrix of covariance */       Look at hpijx to understand the reason of that which relies in memory size
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));       and note for a fixed period like estepm months */
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);       survival function given by stepm (the optimization length). Unfortunately it
                   /* Eigen vectors */       means that if the survival funtion is printed only each two years of age and if
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   v21=sqrt(1.-v11*v11);       results. So we changed our mind and took the option of the best precision.
                   v12=-v21;    */
                   v22=v11;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   /*printf(fignu*/  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    agelim=AGESUP;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   if(first==1){      /* nhstepm age range expressed in number of stepm */
                     first=0;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
                     fprintf(ficgp,"\nset parametric;set nolabel");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);      /* if (stepm >= YEARM) hstepm=1;*/
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
                   }else{   
                     first=0;  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      /* Computing Variances of health expectancies */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);       for(theta=1; theta <=npar; theta++){
                   }/* if first */        for(i=1; i<=npar; i++){ 
                 } /* age mod 5 */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               } /* end loop age */        }
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               first=1;    
             } /*l12 */        cptj=0;
           } /* k12 */        for(j=1; j<= nlstate; j++){
         } /*l1 */          for(i=1; i<=nlstate; i++){
       }/* k1 */            cptj=cptj+1;
     } /* loop covariates */            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       
   }        for(i=1; i<=npar; i++) 
   free_vector(xp,1,npar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fclose(ficresprob);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fclose(ficresprobcov);        
   fclose(ficresprobcor);        cptj=0;
   fclose(ficgp);        for(j=1; j<= nlstate; j++){
   fclose(fichtm);          for(i=1;i<=nlstate;i++){
 }            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
 /******************* Printing html file ***********/              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \            }
                   int lastpass, int stepm, int weightopt, char model[],\          }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        }
                   int popforecast, int estepm ,\        for(j=1; j<= nlstate*nlstate; j++)
                   double jprev1, double mprev1,double anprev1, \          for(h=0; h<=nhstepm-1; h++){
                   double jprev2, double mprev2,double anprev2){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   int jj1, k1, i1, cpt;          }
   /*char optionfilehtm[FILENAMELENGTH];*/       } 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {     
     printf("Problem with %s \n",optionfilehtm), exit(0);  /* End theta */
   }  
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n       for(h=0; h<=nhstepm-1; h++)
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        for(j=1; j<=nlstate*nlstate;j++)
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          for(theta=1; theta <=npar; theta++)
  - Life expectancies by age and initial health status (estepm=%2d months):            trgradg[h][j][theta]=gradg[h][theta][j];
    <a href=\"e%s\">e%s</a> <br>\n</li>", \       
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
        for(i=1;i<=nlstate*nlstate;i++)
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n        for(j=1;j<=nlstate*nlstate;j++)
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          varhe[i][j][(int)age] =0.;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n       printf("%d|",(int)age);fflush(stdout);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n       for(h=0;h<=nhstepm-1;h++){
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n        for(k=0;k<=nhstepm-1;k++){
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
  if(popforecast==1) fprintf(fichtm,"\n          for(i=1;i<=nlstate*nlstate;i++)
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            for(j=1;j<=nlstate*nlstate;j++)
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         <br>",fileres,fileres,fileres,fileres);        }
  else      }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      /* Computing expectancies */
 fprintf(fichtm," <li>Graphs</li><p>");      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
  m=cptcoveff;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
  jj1=0;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){          }
      jj1++;  
      if (cptcovn > 0) {      fprintf(ficreseij,"%3.0f",age );
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      cptj=0;
        for (cpt=1; cpt<=cptcoveff;cpt++)      for(i=1; i<=nlstate;i++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        for(j=1; j<=nlstate;j++){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          cptj++;
      }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
      /* Pij */        }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      fprintf(ficreseij,"\n");
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);         
      /* Quasi-incidences */      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
        /* Stable prevalence in each health state */      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
        for(cpt=1; cpt<nlstate;cpt++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    }
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    printf("\n");
        }    fprintf(ficlog,"\n");
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    free_vector(xp,1,npar);
 interval) in state (%d): v%s%d%d.png <br>    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
      for(cpt=1; cpt<=nlstate;cpt++) {  }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  /************ Variance ******************/
      }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  {
 health expectancies in states (1) and (2): e%s%d.png<br>    /* Variance of health expectancies */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
    }    /* double **newm;*/
  }    double **dnewm,**doldm;
 fclose(fichtm);    double **dnewmp,**doldmp;
 }    int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
 /******************* Gnuplot file **************/    double *xp;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    double **gradgp, **trgradgp; /* for var p point j */
   int ng;    double *gpp, *gmp; /* for var p point j */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     printf("Problem with file %s",optionfilegnuplot);    double ***p3mat;
   }    double age,agelim, hf;
     double ***mobaverage;
 #ifdef windows    int theta;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    char digit[4];
 #endif    char digitp[25];
 m=pow(2,cptcoveff);  
      char fileresprobmorprev[FILENAMELENGTH];
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {    if(popbased==1){
    for (k1=1; k1<= m ; k1 ++) {      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
 #ifdef windows      else strcpy(digitp,"-populbased-nomobil-");
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    }
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    else 
 #endif      strcpy(digitp,"-stablbased-");
 #ifdef unix  
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    if (mobilav!=0) {
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 #endif      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 for (i=1; i<= nlstate ; i ++) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    strcpy(fileresprobmorprev,"prmorprev"); 
     for (i=1; i<= nlstate ; i ++) {    sprintf(digit,"%-d",ij);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    strcat(fileresprobmorprev,fileres);
      for (i=1; i<= nlstate ; i ++) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 }      }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 #ifdef unix    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 #endif    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
    }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }      fprintf(ficresprobmorprev," p.%-d SE",j);
   /*2 eme*/      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   for (k1=1; k1<= m ; k1 ++) {    }  
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
          printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
     for (i=1; i<= nlstate+1 ; i ++) {      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       k=2*i;      exit(0);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    else{
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficgp,"\n# Routine varevsij");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      printf("Problem with html file: %s\n", optionfilehtm);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      exit(0);
       for (j=1; j<= nlstate+1 ; j ++) {    }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    else{
         else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 }        fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       fprintf(ficgp,"\" t\"\" w l 0,");    }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresvij,"# Age");
 }      for(i=1; i<=nlstate;i++)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      for(j=1; j<=nlstate;j++)
       else fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     }    fprintf(ficresvij,"\n");
   }  
      xp=vector(1,npar);
   /*3eme*/    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   for (k1=1; k1<= m ; k1 ++) {    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    gpp=vector(nlstate+1,nlstate+ndeath);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    gmp=vector(nlstate+1,nlstate+ndeath);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    if(estepm < stepm){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      printf ("Problem %d lower than %d\n",estepm, stepm);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    }
     else  hstepm=estepm;   
 */    /* For example we decided to compute the life expectancy with the smallest unit */
       for (i=1; i< nlstate ; i ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
       }       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like k years */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   /* CV preval stat */       means that if the survival funtion is printed every two years of age and if
     for (k1=1; k1<= m ; k1 ++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for (cpt=1; cpt<nlstate ; cpt ++) {       results. So we changed our mind and took the option of the best precision.
       k=3;    */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for (i=1; i< nlstate ; i ++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fprintf(ficgp,"+$%d",k+i+1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       l=3+(nlstate+ndeath)*cpt;      gp=matrix(0,nhstepm,1,nlstate);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      gm=matrix(0,nhstepm,1,nlstate);
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);      for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
   }          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){        if (popbased==1) {
     for(k=1; k <=(nlstate+ndeath); k++){          if(mobilav ==0){
       if (k != i) {            for(i=1; i<=nlstate;i++)
         for(j=1; j <=ncovmodel; j++){              prlim[i][i]=probs[(int)age][i][ij];
                  }else{ /* mobilav */ 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            for(i=1; i<=nlstate;i++)
           jk++;              prlim[i][i]=mobaverage[(int)age][i][ij];
           fprintf(ficgp,"\n");          }
         }        }
       }    
     }        for(j=1; j<= nlstate; j++){
    }          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
      for(jk=1; jk <=m; jk++) {          }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        }
        if (ng==2)        /* This for computing probability of death (h=1 means
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");           computed over hstepm matrices product = hstepm*stepm months) 
        else           as a weighted average of prlim.
          fprintf(ficgp,"\nset title \"Probability\"\n");        */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
        i=1;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
        for(k2=1; k2<=nlstate; k2++) {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
          k3=i;        }    
          for(k=1; k<=(nlstate+ndeath); k++) {        /* end probability of death */
            if (k != k2){  
              if(ng==2)        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
              else        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
              ij=1;   
              for(j=3; j <=ncovmodel; j++) {        if (popbased==1) {
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          if(mobilav ==0){
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            for(i=1; i<=nlstate;i++)
                  ij++;              prlim[i][i]=probs[(int)age][i][ij];
                }          }else{ /* mobilav */ 
                else            for(i=1; i<=nlstate;i++)
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              prlim[i][i]=mobaverage[(int)age][i][ij];
              }          }
              fprintf(ficgp,")/(1");        }
                
              for(k1=1; k1 <=nlstate; k1++){          for(j=1; j<= nlstate; j++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          for(h=0; h<=nhstepm; h++){
                ij=1;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                for(j=3; j <=ncovmodel; j++){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
                    ij++;        /* This for computing probability of death (h=1 means
                  }           computed over hstepm matrices product = hstepm*stepm months) 
                  else           as a weighted average of prlim.
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        */
                }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                fprintf(ficgp,")");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
              }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        }    
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        /* end probability of death */
              i=i+ncovmodel;  
            }        for(j=1; j<= nlstate; j++) /* vareij */
          }          for(h=0; h<=nhstepm; h++){
        }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
      }          }
    }  
    fclose(ficgp);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 }  /* end gnuplot */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
 /*************** Moving average **************/      } /* End theta */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      for(h=0; h<=nhstepm; h++) /* veij */
       for (i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          for(theta=1; theta <=npar; theta++)
           mobaverage[(int)agedeb][i][cptcod]=0.;            trgradg[h][j][theta]=gradg[h][theta][j];
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       for (i=1; i<=nlstate;i++){        for(theta=1; theta <=npar; theta++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          trgradgp[j][theta]=gradgp[theta][j];
           for (cpt=0;cpt<=4;cpt++){    
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      for(i=1;i<=nlstate;i++)
         }        for(j=1;j<=nlstate;j++)
       }          vareij[i][j][(int)age] =0.;
     }  
          for(h=0;h<=nhstepm;h++){
 }        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 /************** Forecasting ******************/          for(i=1;i<=nlstate;i++)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){            for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;      }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    
   double *popeffectif,*popcount;      /* pptj */
   double ***p3mat;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   char fileresf[FILENAMELENGTH];      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
  agelim=AGESUP;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      /*  x centered again */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   strcpy(fileresf,"f");   
   strcat(fileresf,fileres);      if (popbased==1) {
   if((ficresf=fopen(fileresf,"w"))==NULL) {        if(mobilav ==0){
     printf("Problem with forecast resultfile: %s\n", fileresf);          for(i=1; i<=nlstate;i++)
   }            prlim[i][i]=probs[(int)age][i][ij];
   printf("Computing forecasting: result on file '%s' \n", fileresf);        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
   if (mobilav==1) {      }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);               
     movingaverage(agedeb, fage, ageminpar, mobaverage);      /* This for computing probability of death (h=1 means
   }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   stepsize=(int) (stepm+YEARM-1)/YEARM;      */
   if (stepm<=12) stepsize=1;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   agelim=AGESUP;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
   hstepm=1;      /* end probability of death */
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   anprojmean=yp;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   yp2=modf((yp1*12),&yp);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   mprojmean=yp;        for(i=1; i<=nlstate;i++){
   yp1=modf((yp2*30.5),&yp);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   jprojmean=yp;        }
   if(jprojmean==0) jprojmean=1;      } 
   if(mprojmean==0) jprojmean=1;      fprintf(ficresprobmorprev,"\n");
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i2;cptcov++){        for(j=1; j<=nlstate;j++){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       k=k+1;        }
       fprintf(ficresf,"\n#******");      fprintf(ficresvij,"\n");
       for(j=1;j<=cptcoveff;j++) {      free_matrix(gp,0,nhstepm,1,nlstate);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_matrix(gm,0,nhstepm,1,nlstate);
       }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       fprintf(ficresf,"******\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       fprintf(ficresf,"# StartingAge FinalAge");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    } /* End age */
          free_vector(gpp,nlstate+1,nlstate+ndeath);
          free_vector(gmp,nlstate+1,nlstate+ndeath);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         fprintf(ficresf,"\n");    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           nhstepm = nhstepm/hstepm;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
            /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
           oldm=oldms;savm=savms;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
            fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
           for (h=0; h<=nhstepm; h++){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
             if (h==(int) (calagedate+YEARM*cpt)) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  */
             }    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    free_vector(xp,1,npar);
               for(i=1; i<=nlstate;i++) {                  free_matrix(doldm,1,nlstate,1,nlstate);
                 if (mobilav==1)    free_matrix(dnewm,1,nlstate,1,npar);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 else {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                    fclose(ficresprobmorprev);
               }    fclose(ficgp);
               if (h==(int)(calagedate+12*cpt)){    fclose(fichtm);
                 fprintf(ficresf," %.3f", kk1);  }  /* end varevsij */
                          
               }  /************ Variance of prevlim ******************/
             }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
           }  {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Variance of prevalence limit */
         }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       }    double **newm;
     }    double **dnewm,**doldm;
   }    int i, j, nhstepm, hstepm;
            int k, cptcode;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *xp;
     double *gp, *gm;
   fclose(ficresf);    double **gradg, **trgradg;
 }    double age,agelim;
 /************** Forecasting ******************/    int theta;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){     
      fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficresvpl,"# Age");
   int *popage;    for(i=1; i<=nlstate;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        fprintf(ficresvpl," %1d-%1d",i,i);
   double *popeffectif,*popcount;    fprintf(ficresvpl,"\n");
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    doldm=matrix(1,nlstate,1,nlstate);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   agelim=AGESUP;    hstepm=1*YEARM; /* Every year of age */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
      agelim = AGESUP;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        if (stepm >= YEARM) hstepm=1;
   strcpy(filerespop,"pop");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   strcat(filerespop,fileres);      gradg=matrix(1,npar,1,nlstate);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      gp=vector(1,nlstate);
     printf("Problem with forecast resultfile: %s\n", filerespop);      gm=vector(1,nlstate);
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   if (mobilav==1) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1;i<=nlstate;i++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);          gp[i] = prlim[i][i];
   }      
         for(i=1; i<=npar; i++) /* Computes gradient */
   stepsize=(int) (stepm+YEARM-1)/YEARM;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if (stepm<=12) stepsize=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   agelim=AGESUP;          gm[i] = prlim[i][i];
    
   hstepm=1;        for(i=1;i<=nlstate;i++)
   hstepm=hstepm/stepm;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
        } /* End theta */
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {      trgradg =matrix(1,nlstate,1,npar);
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }      for(j=1; j<=nlstate;j++)
     popage=ivector(0,AGESUP);        for(theta=1; theta <=npar; theta++)
     popeffectif=vector(0,AGESUP);          trgradg[j][theta]=gradg[theta][j];
     popcount=vector(0,AGESUP);  
          for(i=1;i<=nlstate;i++)
     i=1;          varpl[i][(int)age] =0.;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     imx=i;      for(i=1;i<=nlstate;i++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   }  
       fprintf(ficresvpl,"%.0f ",age );
   for(cptcov=1;cptcov<=i2;cptcov++){      for(i=1; i<=nlstate;i++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       k=k+1;      fprintf(ficresvpl,"\n");
       fprintf(ficrespop,"\n#******");      free_vector(gp,1,nlstate);
       for(j=1;j<=cptcoveff;j++) {      free_vector(gm,1,nlstate);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_matrix(gradg,1,npar,1,nlstate);
       }      free_matrix(trgradg,1,nlstate,1,npar);
       fprintf(ficrespop,"******\n");    } /* End age */
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    free_vector(xp,1,npar);
       if (popforecast==1)  fprintf(ficrespop," [Population]");    free_matrix(doldm,1,nlstate,1,npar);
          free_matrix(dnewm,1,nlstate,1,nlstate);
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    }
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /************ Variance of one-step probabilities  ******************/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
           nhstepm = nhstepm/hstepm;  {
              int i, j=0,  i1, k1, l1, t, tj;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k2, l2, j1,  z1;
           oldm=oldms;savm=savms;    int k=0,l, cptcode;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int first=1, first1;
            double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           for (h=0; h<=nhstepm; h++){    double **dnewm,**doldm;
             if (h==(int) (calagedate+YEARM*cpt)) {    double *xp;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double *gp, *gm;
             }    double **gradg, **trgradg;
             for(j=1; j<=nlstate+ndeath;j++) {    double **mu;
               kk1=0.;kk2=0;    double age,agelim, cov[NCOVMAX];
               for(i=1; i<=nlstate;i++) {                  double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                 if (mobilav==1)    int theta;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    char fileresprob[FILENAMELENGTH];
                 else {    char fileresprobcov[FILENAMELENGTH];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    char fileresprobcor[FILENAMELENGTH];
                 }  
               }    double ***varpij;
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    strcpy(fileresprob,"prob"); 
                   /*fprintf(ficrespop," %.3f", kk1);    strcat(fileresprob,fileres);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
               }      printf("Problem with resultfile: %s\n", fileresprob);
             }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
             for(i=1; i<=nlstate;i++){    }
               kk1=0.;    strcpy(fileresprobcov,"probcov"); 
                 for(j=1; j<=nlstate;j++){    strcat(fileresprobcov,fileres);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                 }      printf("Problem with resultfile: %s\n", fileresprobcov);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
             }    }
     strcpy(fileresprobcor,"probcor"); 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    strcat(fileresprobcor,fileres);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", fileresprobcor);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         }    }
       }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   /******/    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           nhstepm = nhstepm/hstepm;    fprintf(ficresprob,"# Age");
              fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobcov,"# Age");
           oldm=oldms;savm=savms;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresprobcov,"# Age");
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    for(i=1; i<=nlstate;i++)
             }      for(j=1; j<=(nlstate+ndeath);j++){
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
               kk1=0.;kk2=0;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
               for(i=1; i<=nlstate;i++) {                      fprintf(ficresprobcor," p%1d-%1d ",i,j);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          }  
               }   /* fprintf(ficresprob,"\n");
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fprintf(ficresprobcov,"\n");
             }    fprintf(ficresprobcor,"\n");
           }   */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   xp=vector(1,npar);
         }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
    }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      first=1;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   if (popforecast==1) {      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
     free_ivector(popage,0,AGESUP);      exit(0);
     free_vector(popeffectif,0,AGESUP);    }
     free_vector(popcount,0,AGESUP);    else{
   }      fprintf(ficgp,"\n# Routine varprob");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   fclose(ficrespop);      printf("Problem with html file: %s\n", optionfilehtm);
 }      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
 /***********************************************/    }
 /**************** Main Program *****************/    else{
 /***********************************************/      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(fichtm,"\n");
 int main(int argc, char *argv[])  
 {      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    }
   
   double fret;    cov[1]=1;
   double **xi,tmp,delta;    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   double dum; /* Dummy variable */    j1=0;
   double ***p3mat;    for(t=1; t<=tj;t++){
   int *indx;      for(i1=1; i1<=ncodemax[t];i1++){ 
   char line[MAXLINE], linepar[MAXLINE];        j1++;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        if  (cptcovn>0) {
   int firstobs=1, lastobs=10;          fprintf(ficresprob, "\n#********** Variable "); 
   int sdeb, sfin; /* Status at beginning and end */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int c,  h , cpt,l;          fprintf(ficresprob, "**********\n#\n");
   int ju,jl, mi;          fprintf(ficresprobcov, "\n#********** Variable "); 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          fprintf(ficresprobcov, "**********\n#\n");
   int mobilav=0,popforecast=0;          
   int hstepm, nhstepm;          fprintf(ficgp, "\n#********** Variable "); 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
   double bage, fage, age, agelim, agebase;          
   double ftolpl=FTOL;          
   double **prlim;          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   double *severity;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double ***param; /* Matrix of parameters */          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   double  *p;          
   double **matcov; /* Matrix of covariance */          fprintf(ficresprobcor, "\n#********** Variable ");    
   double ***delti3; /* Scale */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double *delti; /* Scale */          fprintf(ficresprobcor, "**********\n#");    
   double ***eij, ***vareij;        }
   double **varpl; /* Variances of prevalence limits by age */        
   double *epj, vepp;        for (age=bage; age<=fage; age ++){ 
   double kk1, kk2;          cov[2]=age;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
   char *alph[]={"a","a","b","c","d","e"}, str[4];          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   char z[1]="c", occ;          
 #include <sys/time.h>          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 #include <time.h>          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          gp=vector(1,(nlstate)*(nlstate+ndeath));
            gm=vector(1,(nlstate)*(nlstate+ndeath));
   /* long total_usecs;      
   struct timeval start_time, end_time;          for(theta=1; theta <=npar; theta++){
              for(i=1; i<=npar; i++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   getcwd(pathcd, size);            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   printf("\n%s",version);            
   if(argc <=1){            k=0;
     printf("\nEnter the parameter file name: ");            for(i=1; i<= (nlstate); i++){
     scanf("%s",pathtot);              for(j=1; j<=(nlstate+ndeath);j++){
   }                k=k+1;
   else{                gp[k]=pmmij[i][j];
     strcpy(pathtot,argv[1]);              }
   }            }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/            
   /*cygwin_split_path(pathtot,path,optionfile);            for(i=1; i<=npar; i++)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   /* cutv(path,optionfile,pathtot,'\\');*/      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            k=0;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            for(i=1; i<=(nlstate); i++){
   chdir(path);              for(j=1; j<=(nlstate+ndeath);j++){
   replace(pathc,path);                k=k+1;
                 gm[k]=pmmij[i][j];
 /*-------- arguments in the command line --------*/              }
             }
   strcpy(fileres,"r");       
   strcat(fileres, optionfilefiname);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   strcat(fileres,".txt");    /* Other files have txt extension */              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   /*---------arguments file --------*/  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            for(theta=1; theta <=npar; theta++)
     printf("Problem with optionfile %s\n",optionfile);              trgradg[j][theta]=gradg[theta][j];
     goto end;          
   }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   strcpy(filereso,"o");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   strcat(filereso,fileres);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   if((ficparo=fopen(filereso,"w"))==NULL) {          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   }  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
   /* Reads comments: lines beginning with '#' */          
   while((c=getc(ficpar))=='#' && c!= EOF){          k=0;
     ungetc(c,ficpar);          for(i=1; i<=(nlstate); i++){
     fgets(line, MAXLINE, ficpar);            for(j=1; j<=(nlstate+ndeath);j++){
     puts(line);              k=k+1;
     fputs(line,ficparo);              mu[k][(int) age]=pmmij[i][j];
   }            }
   ungetc(c,ficpar);          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);              varpij[i][j][(int)age] = doldm[i][j];
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){          /*printf("\n%d ",(int)age);
     ungetc(c,ficpar);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     fgets(line, MAXLINE, ficpar);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     puts(line);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     fputs(line,ficparo);            }*/
   }  
   ungetc(c,ficpar);          fprintf(ficresprob,"\n%d ",(int)age);
            fprintf(ficresprobcov,"\n%d ",(int)age);
              fprintf(ficresprobcor,"\n%d ",(int)age);
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   ncovmodel=2+cptcovn;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
            }
   /* Read guess parameters */          i=0;
   /* Reads comments: lines beginning with '#' */          for (k=1; k<=(nlstate);k++){
   while((c=getc(ficpar))=='#' && c!= EOF){            for (l=1; l<=(nlstate+ndeath);l++){ 
     ungetc(c,ficpar);              i=i++;
     fgets(line, MAXLINE, ficpar);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     puts(line);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     fputs(line,ficparo);              for (j=1; j<=i;j++){
   }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   ungetc(c,ficpar);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            }
     for(i=1; i <=nlstate; i++)          }/* end of loop for state */
     for(j=1; j <=nlstate+ndeath-1; j++){        } /* end of loop for age */
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);        /* Confidence intervalle of pij  */
       printf("%1d%1d",i,j);        /*
       for(k=1; k<=ncovmodel;k++){          fprintf(ficgp,"\nset noparametric;unset label");
         fscanf(ficpar," %lf",&param[i][j][k]);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         printf(" %lf",param[i][j][k]);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         fprintf(ficparo," %lf",param[i][j][k]);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       fscanf(ficpar,"\n");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       printf("\n");          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       fprintf(ficparo,"\n");        */
     }  
          /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        first1=1;
         for (k2=1; k2<=(nlstate);k2++){
   p=param[1][1];          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
              if(l2==k2) continue;
   /* Reads comments: lines beginning with '#' */            j=(k2-1)*(nlstate+ndeath)+l2;
   while((c=getc(ficpar))=='#' && c!= EOF){            for (k1=1; k1<=(nlstate);k1++){
     ungetc(c,ficpar);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     fgets(line, MAXLINE, ficpar);                if(l1==k1) continue;
     puts(line);                i=(k1-1)*(nlstate+ndeath)+l1;
     fputs(line,ficparo);                if(i<=j) continue;
   }                for (age=bage; age<=fage; age ++){ 
   ungetc(c,ficpar);                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   for(i=1; i <=nlstate; i++){                    mu1=mu[i][(int) age]/stepm*YEARM ;
     for(j=1; j <=nlstate+ndeath-1; j++){                    mu2=mu[j][(int) age]/stepm*YEARM;
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    c12=cv12/sqrt(v1*v2);
       printf("%1d%1d",i,j);                    /* Computing eigen value of matrix of covariance */
       fprintf(ficparo,"%1d%1d",i1,j1);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       for(k=1; k<=ncovmodel;k++){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         fscanf(ficpar,"%le",&delti3[i][j][k]);                    /* Eigen vectors */
         printf(" %le",delti3[i][j][k]);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
         fprintf(ficparo," %le",delti3[i][j][k]);                    /*v21=sqrt(1.-v11*v11); *//* error */
       }                    v21=(lc1-v1)/cv12*v11;
       fscanf(ficpar,"\n");                    v12=-v21;
       printf("\n");                    v22=v11;
       fprintf(ficparo,"\n");                    tnalp=v21/v11;
     }                    if(first1==1){
   }                      first1=0;
   delti=delti3[1][1];                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      }
   /* Reads comments: lines beginning with '#' */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   while((c=getc(ficpar))=='#' && c!= EOF){                    /*printf(fignu*/
     ungetc(c,ficpar);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     fgets(line, MAXLINE, ficpar);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     puts(line);                    if(first==1){
     fputs(line,ficparo);                      first=0;
   }                      fprintf(ficgp,"\nset parametric;unset label");
   ungetc(c,ficpar);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   matcov=matrix(1,npar,1,npar);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
   for(i=1; i <=npar; i++){                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
     fscanf(ficpar,"%s",&str);                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     printf("%s",str);                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
     fprintf(ficparo,"%s",str);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     for(j=1; j <=i; j++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fscanf(ficpar," %le",&matcov[i][j]);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       printf(" %.5le",matcov[i][j]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       fprintf(ficparo," %.5le",matcov[i][j]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     }                    }else{
     fscanf(ficpar,"\n");                      first=0;
     printf("\n");                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
     fprintf(ficparo,"\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   for(i=1; i <=npar; i++)                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     for(j=i+1;j<=npar;j++)                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       matcov[i][j]=matcov[j][i];                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                        }/* if first */
   printf("\n");                  } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
     /*-------- Rewriting paramater file ----------*/                first=1;
      strcpy(rfileres,"r");    /* "Rparameterfile */              } /*l12 */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            } /* k12 */
      strcat(rfileres,".");    /* */          } /*l1 */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        }/* k1 */
     if((ficres =fopen(rfileres,"w"))==NULL) {      } /* loop covariates */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    }
     }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     fprintf(ficres,"#%s\n",version);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
        free_vector(xp,1,npar);
     /*-------- data file ----------*/    fclose(ficresprob);
     if((fic=fopen(datafile,"r"))==NULL)    {    fclose(ficresprobcov);
       printf("Problem with datafile: %s\n", datafile);goto end;    fclose(ficresprobcor);
     }    fclose(ficgp);
     fclose(fichtm);
     n= lastobs;  }
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);  /******************* Printing html file ***********/
     moisnais=vector(1,n);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     annais=vector(1,n);                    int lastpass, int stepm, int weightopt, char model[],\
     moisdc=vector(1,n);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     andc=vector(1,n);                    int popforecast, int estepm ,\
     agedc=vector(1,n);                    double jprev1, double mprev1,double anprev1, \
     cod=ivector(1,n);                    double jprev2, double mprev2,double anprev2){
     weight=vector(1,n);    int jj1, k1, i1, cpt;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    /*char optionfilehtm[FILENAMELENGTH];*/
     mint=matrix(1,maxwav,1,n);    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
     anint=matrix(1,maxwav,1,n);      printf("Problem with %s \n",optionfilehtm), exit(0);
     s=imatrix(1,maxwav+1,1,n);      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     adl=imatrix(1,maxwav+1,1,n);        }
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
     i=1;   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
     while (fgets(line, MAXLINE, fic) != NULL)    {   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
       if ((i >= firstobs) && (i <=lastobs)) {   - Life expectancies by age and initial health status (estepm=%2d months): \
             <a href=\"e%s\">e%s</a> <br>\n</li>", \
         for (j=maxwav;j>=1;j--){    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   m=cptcoveff;
         }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);   jj1=0;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);       jj1++;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);         for (cpt=1; cpt<=cptcoveff;cpt++) 
         for (j=ncovcol;j>=1;j--){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }       }
         num[i]=atol(stra);       /* Pij */
               fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         i=i+1;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
       }  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
     }         /* Stable prevalence in each health state */
     /* printf("ii=%d", ij);         for(cpt=1; cpt<nlstate;cpt++){
        scanf("%d",i);*/           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   imx=i-1; /* Number of individuals */  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
   /* for (i=1; i<=imx; i++){       for(cpt=1; cpt<=nlstate;cpt++) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;       }
     }*/       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    /*  for (i=1; i<=imx; i++){  health expectancies in states (1) and (2): e%s%d.png<br>\
      if (s[4][i]==9)  s[4][i]=-1;  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/     } /* end i1 */
     }/* End k1 */
     fprintf(fichtm,"</ul>");
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
   Tvaraff=ivector(1,15);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
   Tvard=imatrix(1,15,1,2);   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
   Tage=ivector(1,15);         - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
       - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
   if (strlen(model) >1){   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
     j=0, j1=0, k1=1, k2=1;   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
     j=nbocc(model,'+');   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
     j1=nbocc(model,'*');  
     cptcovn=j+1;  /*  if(popforecast==1) fprintf(fichtm,"\n */
     cptcovprod=j1;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
      /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     strcpy(modelsav,model);  /*      <br>",fileres,fileres,fileres,fileres); */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  /*  else  */
       printf("Error. Non available option model=%s ",model);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       goto end;  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     }  
       m=cptcoveff;
     for(i=(j+1); i>=1;i--){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       cutv(stra,strb,modelsav,'+');  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);   jj1=0;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/   for(k1=1; k1<=m;k1++){
       /*scanf("%d",i);*/     for(i1=1; i1<=ncodemax[k1];i1++){
       if (strchr(strb,'*')) {       jj1++;
         cutv(strd,strc,strb,'*');       if (cptcovn > 0) {
         if (strcmp(strc,"age")==0) {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           cptcovprod--;         for (cpt=1; cpt<=cptcoveff;cpt++) 
           cutv(strb,stre,strd,'V');           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           Tvar[i]=atoi(stre);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           cptcovage++;       }
             Tage[cptcovage]=i;       for(cpt=1; cpt<=nlstate;cpt++) {
             /*printf("stre=%s ", stre);*/         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
         }  interval) in state (%d): v%s%d%d.png <br>\
         else if (strcmp(strd,"age")==0) {  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
           cptcovprod--;       }
           cutv(strb,stre,strc,'V');     } /* end i1 */
           Tvar[i]=atoi(stre);   }/* End k1 */
           cptcovage++;   fprintf(fichtm,"</ul>");
           Tage[cptcovage]=i;  fclose(fichtm);
         }  }
         else {  
           cutv(strb,stre,strc,'V');  /******************* Gnuplot file **************/
           Tvar[i]=ncovcol+k1;  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
           Tvard[k1][1]=atoi(strc);    int ng;
           Tvard[k1][2]=atoi(stre);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
           Tvar[cptcovn+k2]=Tvard[k1][1];      printf("Problem with file %s",optionfilegnuplot);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
           for (k=1; k<=lastobs;k++)    }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;    /*#ifdef windows */
           k2=k2+2;      fprintf(ficgp,"cd \"%s\" \n",pathc);
         }      /*#endif */
       }  m=pow(2,cptcoveff);
       else {    
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/   /* 1eme*/
        /*  scanf("%d",i);*/    for (cpt=1; cpt<= nlstate ; cpt ++) {
       cutv(strd,strc,strb,'V');     for (k1=1; k1<= m ; k1 ++) {
       Tvar[i]=atoi(strc);       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       }       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);       for (i=1; i<= nlstate ; i ++) {
         scanf("%d",i);*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     }         else fprintf(ficgp," \%%*lf (\%%*lf)");
 }       }
         fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);       for (i=1; i<= nlstate ; i ++) {
   printf("cptcovprod=%d ", cptcovprod);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   scanf("%d ",i);*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fclose(fic);       } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
     /*  if(mle==1){*/       for (i=1; i<= nlstate ; i ++) {
     if (weightopt != 1) { /* Maximisation without weights*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       for(i=1;i<=n;i++) weight[i]=1.0;         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       }  
     /*-calculation of age at interview from date of interview and age at death -*/       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
     agev=matrix(1,maxwav,1,imx);     }
     }
     for (i=1; i<=imx; i++) {    /*2 eme*/
       for(m=2; (m<= maxwav); m++) {    
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    for (k1=1; k1<= m ; k1 ++) { 
          anint[m][i]=9999;      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
          s[m][i]=-1;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
        }      
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      for (i=1; i<= nlstate+1 ; i ++) {
       }        k=2*i;
     }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
     for (i=1; i<=imx; i++)  {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(m=1; (m<= maxwav); m++){        }   
         if(s[m][i] >0){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           if (s[m][i] >= nlstate+1) {        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
             if(agedc[i]>0)        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
               if(moisdc[i]!=99 && andc[i]!=9999)        for (j=1; j<= nlstate+1 ; j ++) {
                 agev[m][i]=agedc[i];          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
            else {        }   
               if (andc[i]!=9999){        fprintf(ficgp,"\" t\"\" w l 0,");
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
               agev[m][i]=-1;        for (j=1; j<= nlstate+1 ; j ++) {
               }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             }          else fprintf(ficgp," \%%*lf (\%%*lf)");
           }        }   
           else if(s[m][i] !=9){ /* Should no more exist */        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        else fprintf(ficgp,"\" t\"\" w l 0,");
             if(mint[m][i]==99 || anint[m][i]==9999)      }
               agev[m][i]=1;    }
             else if(agev[m][i] <agemin){    
               agemin=agev[m][i];    /*3eme*/
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    
             }    for (k1=1; k1<= m ; k1 ++) { 
             else if(agev[m][i] >agemax){      for (cpt=1; cpt<= nlstate ; cpt ++) {
               agemax=agev[m][i];        k=2+nlstate*(2*cpt-2);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
             }        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
             /*agev[m][i]=anint[m][i]-annais[i];*/        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             /*   agev[m][i] = age[i]+2*m;*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           else { /* =9 */          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             agev[m][i]=1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             s[m][i]=-1;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           }          
         }        */
         else /*= 0 Unknown */        for (i=1; i< nlstate ; i ++) {
           agev[m][i]=1;          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
       }          
            } 
     }      }
     for (i=1; i<=imx; i++)  {    }
       for(m=1; (m<= maxwav); m++){    
         if (s[m][i] > (nlstate+ndeath)) {    /* CV preval stable (period) */
           printf("Error: Wrong value in nlstate or ndeath\n");      for (k1=1; k1<= m ; k1 ++) { 
           goto end;      for (cpt=1; cpt<=nlstate ; cpt ++) {
         }        k=3;
       }        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
     free_vector(severity,1,maxwav);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     free_imatrix(outcome,1,maxwav+1,1,n);        
     free_vector(moisnais,1,n);        l=3+(nlstate+ndeath)*cpt;
     free_vector(annais,1,n);        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
     /* free_matrix(mint,1,maxwav,1,n);        for (i=1; i< nlstate ; i ++) {
        free_matrix(anint,1,maxwav,1,n);*/          l=3+(nlstate+ndeath)*cpt;
     free_vector(moisdc,1,n);          fprintf(ficgp,"+$%d",l+i+1);
     free_vector(andc,1,n);        }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
          } 
     wav=ivector(1,imx);    }  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    /* proba elementaires */
        for(i=1,jk=1; i <=nlstate; i++){
     /* Concatenates waves */      for(k=1; k <=(nlstate+ndeath); k++){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       Tcode=ivector(1,100);            jk++; 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            fprintf(ficgp,"\n");
       ncodemax[1]=1;          }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        }
            }
    codtab=imatrix(1,100,1,10);     }
    h=0;  
    m=pow(2,cptcoveff);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         for(jk=1; jk <=m; jk++) {
    for(k=1;k<=cptcoveff; k++){         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
      for(i=1; i <=(m/pow(2,k));i++){         if (ng==2)
        for(j=1; j <= ncodemax[k]; j++){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){         else
            h++;           fprintf(ficgp,"\nset title \"Probability\"\n");
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/         i=1;
          }         for(k2=1; k2<=nlstate; k2++) {
        }           k3=i;
      }           for(k=1; k<=(nlstate+ndeath); k++) {
    }             if (k != k2){
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);               if(ng==2)
       codtab[1][2]=1;codtab[2][2]=2; */                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
    /* for(i=1; i <=m ;i++){               else
       for(k=1; k <=cptcovn; k++){                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);               ij=1;
       }               for(j=3; j <=ncovmodel; j++) {
       printf("\n");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       scanf("%d",i);*/                   ij++;
                     }
    /* Calculates basic frequencies. Computes observed prevalence at single age                 else
        and prints on file fileres'p'. */                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                   fprintf(ficgp,")/(1");
                   
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               for(k1=1; k1 <=nlstate; k1++){   
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 ij=1;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 for(j=3; j <=ncovmodel; j++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                           fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     /* For Powell, parameters are in a vector p[] starting at p[1]                     ij++;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                   }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                   else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     if(mle==1){                 }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                 fprintf(ficgp,")");
     }               }
                   fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     /*--------- results files --------------*/               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);               i=i+ncovmodel;
               }
            } /* end k */
    jk=1;         } /* end k2 */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       } /* end jk */
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     } /* end ng */
    for(i=1,jk=1; i <=nlstate; i++){     fclose(ficgp); 
      for(k=1; k <=(nlstate+ndeath); k++){  }  /* end gnuplot */
        if (k != i)  
          {  
            printf("%d%d ",i,k);  /*************** Moving average **************/
            fprintf(ficres,"%1d%1d ",i,k);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);    int i, cpt, cptcod;
              fprintf(ficres,"%f ",p[jk]);    int modcovmax =1;
              jk++;    int mobilavrange, mob;
            }    double age;
            printf("\n");  
            fprintf(ficres,"\n");    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
          }                             a covariate has 2 modalities */
      }    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
    }  
  if(mle==1){    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     /* Computing hessian and covariance matrix */      if(mobilav==1) mobilavrange=5; /* default */
     ftolhess=ftol; /* Usually correct */      else mobilavrange=mobilav;
     hesscov(matcov, p, npar, delti, ftolhess, func);      for (age=bage; age<=fage; age++)
  }        for (i=1; i<=nlstate;i++)
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     printf("# Scales (for hessian or gradient estimation)\n");            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
      for(i=1,jk=1; i <=nlstate; i++){      /* We keep the original values on the extreme ages bage, fage and for 
       for(j=1; j <=nlstate+ndeath; j++){         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         if (j!=i) {         we use a 5 terms etc. until the borders are no more concerned. 
           fprintf(ficres,"%1d%1d",i,j);      */ 
           printf("%1d%1d",i,j);      for (mob=3;mob <=mobilavrange;mob=mob+2){
           for(k=1; k<=ncovmodel;k++){        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
             printf(" %.5e",delti[jk]);          for (i=1; i<=nlstate;i++){
             fprintf(ficres," %.5e",delti[jk]);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
             jk++;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           printf("\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           fprintf(ficres,"\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         }                }
       }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
      }            }
              }
     k=1;        }/* end age */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      }/* end mob */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }else return -1;
     for(i=1;i<=npar;i++){    return 0;
       /*  if (k>nlstate) k=1;  }/* End movingaverage */
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/  /************** Forecasting ******************/
       fprintf(ficres,"%3d",i);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       printf("%3d",i);    /* proj1, year, month, day of starting projection 
       for(j=1; j<=i;j++){       agemin, agemax range of age
         fprintf(ficres," %.5e",matcov[i][j]);       dateprev1 dateprev2 range of dates during which prevalence is computed
         printf(" %.5e",matcov[i][j]);       anproj2 year of en of projection (same day and month as proj1).
       }    */
       fprintf(ficres,"\n");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       printf("\n");    int *popage;
       k++;    double agec; /* generic age */
     }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
        double *popeffectif,*popcount;
     while((c=getc(ficpar))=='#' && c!= EOF){    double ***p3mat;
       ungetc(c,ficpar);    double ***mobaverage;
       fgets(line, MAXLINE, ficpar);    char fileresf[FILENAMELENGTH];
       puts(line);  
       fputs(line,ficparo);    agelim=AGESUP;
     }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     ungetc(c,ficpar);   
     estepm=0;    strcpy(fileresf,"f"); 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    strcat(fileresf,fileres);
     if (estepm==0 || estepm < stepm) estepm=stepm;    if((ficresf=fopen(fileresf,"w"))==NULL) {
     if (fage <= 2) {      printf("Problem with forecast resultfile: %s\n", fileresf);
       bage = ageminpar;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
       fage = agemaxpar;    }
     }    printf("Computing forecasting: result on file '%s' \n", fileresf);
        fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
      if (mobilav!=0) {
     while((c=getc(ficpar))=='#' && c!= EOF){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     ungetc(c,ficpar);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     fgets(line, MAXLINE, ficpar);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     puts(line);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fputs(line,ficparo);      }
   }    }
   ungetc(c,ficpar);  
      stepsize=(int) (stepm+YEARM-1)/YEARM;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    if (stepm<=12) stepsize=1;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    if(estepm < stepm){
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      printf ("Problem %d lower than %d\n",estepm, stepm);
          }
   while((c=getc(ficpar))=='#' && c!= EOF){    else  hstepm=estepm;   
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    hstepm=hstepm/stepm; 
     puts(line);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     fputs(line,ficparo);                                 fractional in yp1 */
   }    anprojmean=yp;
   ungetc(c,ficpar);    yp2=modf((yp1*12),&yp);
      mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    jprojmean=yp;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
   fprintf(ficparo,"pop_based=%d\n",popbased);      i1=cptcoveff;
   fprintf(ficres,"pop_based=%d\n",popbased);      if (cptcovn < 1){i1=1;}
      
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    fprintf(ficresf,"#****** Routine prevforecast **\n");
     puts(line);  
     fputs(line,ficparo);  /*            if (h==(int)(YEARM*yearp)){ */
   }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   ungetc(c,ficpar);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        fprintf(ficresf,"\n#******");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        for(j=1;j<=cptcoveff;j++) {
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
 while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     ungetc(c,ficpar);        for(j=1; j<=nlstate+ndeath;j++){ 
     fgets(line, MAXLINE, ficpar);          for(i=1; i<=nlstate;i++)              
     puts(line);            fprintf(ficresf," p%d%d",i,j);
     fputs(line,ficparo);          fprintf(ficresf," p.%d",j);
   }        }
   ungetc(c,ficpar);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*------------ gnuplot -------------*/            oldm=oldms;savm=savms;
   strcpy(optionfilegnuplot,optionfilefiname);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   strcat(optionfilegnuplot,".gp");          
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            for (h=0; h<=nhstepm; h++){
     printf("Problem with file %s",optionfilegnuplot);              if (h*hstepm/YEARM*stepm ==yearp) {
   }                fprintf(ficresf,"\n");
   fclose(ficgp);                for(j=1;j<=cptcoveff;j++) 
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 /*--------- index.htm --------*/                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
   strcpy(optionfilehtm,optionfile);              for(j=1; j<=nlstate+ndeath;j++) {
   strcat(optionfilehtm,".htm");                ppij=0.;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                for(i=1; i<=nlstate;i++) {
     printf("Problem with %s \n",optionfilehtm), exit(0);                  if (mobilav==1) 
   }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                  }
 \n                  if (h*hstepm/YEARM*stepm== yearp) {
 Total number of observations=%d <br>\n                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                  }
 <hr  size=\"2\" color=\"#EC5E5E\">                } /* end i */
  <ul><li>Parameter files<br>\n                if (h*hstepm/YEARM*stepm==yearp) {
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                  fprintf(ficresf," %.3f", ppij);
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);                }
   fclose(fichtm);              }/* end j */
             } /* end h */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            } /* end agec */
 /*------------ free_vector  -------------*/        } /* end yearp */
  chdir(path);      } /* end cptcod */
      } /* end  cptcov */
  free_ivector(wav,1,imx);         
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);    fclose(ficresf);
  free_vector(agedc,1,n);  }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);  /************** Forecasting *****not tested NB*************/
  fclose(ficres);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   /*--------------- Prevalence limit --------------*/    int *popage;
      double calagedatem, agelim, kk1, kk2;
   strcpy(filerespl,"pl");    double *popeffectif,*popcount;
   strcat(filerespl,fileres);    double ***p3mat,***tabpop,***tabpopprev;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    double ***mobaverage;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    char filerespop[FILENAMELENGTH];
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficrespl,"#Prevalence limit\n");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficrespl,"#Age ");    agelim=AGESUP;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   fprintf(ficrespl,"\n");    
      prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   prlim=matrix(1,nlstate,1,nlstate);    
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(filerespop,"pop"); 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcat(filerespop,fileres);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      printf("Problem with forecast resultfile: %s\n", filerespop);
   k=0;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   agebase=ageminpar;    }
   agelim=agemaxpar;    printf("Computing forecasting: result on file '%s' \n", filerespop);
   ftolpl=1.e-10;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   for(cptcov=1;cptcov<=i1;cptcov++){    if (mobilav!=0) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         k=k+1;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrespl,"\n#******");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         for(j=1;j<=cptcoveff;j++)      }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
         fprintf(ficrespl,"******\n");  
            stepsize=(int) (stepm+YEARM-1)/YEARM;
         for (age=agebase; age<=agelim; age++){    if (stepm<=12) stepsize=1;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    
           fprintf(ficrespl,"%.0f",age );    agelim=AGESUP;
           for(i=1; i<=nlstate;i++)    
           fprintf(ficrespl," %.5f", prlim[i][i]);    hstepm=1;
           fprintf(ficrespl,"\n");    hstepm=hstepm/stepm; 
         }    
       }    if (popforecast==1) {
     }      if((ficpop=fopen(popfile,"r"))==NULL) {
   fclose(ficrespl);        printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   /*------------- h Pij x at various ages ------------*/      } 
        popage=ivector(0,AGESUP);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      popeffectif=vector(0,AGESUP);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      popcount=vector(0,AGESUP);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      
   }      i=1;   
   printf("Computing pij: result on file '%s' \n", filerespij);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       
   stepsize=(int) (stepm+YEARM-1)/YEARM;      imx=i;
   /*if (stepm<=24) stepsize=2;*/      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
          k=k+1;
   k=0;        fprintf(ficrespop,"\n#******");
   for(cptcov=1;cptcov<=i1;cptcov++){        for(j=1;j<=cptcoveff;j++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       k=k+1;        }
         fprintf(ficrespij,"\n#****** ");        fprintf(ficrespop,"******\n");
         for(j=1;j<=cptcoveff;j++)        fprintf(ficrespop,"# Age");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         fprintf(ficrespij,"******\n");        if (popforecast==1)  fprintf(ficrespop," [Population]");
                
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        for (cpt=0; cpt<=0;cpt++) { 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           oldm=oldms;savm=savms;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              nhstepm = nhstepm/hstepm; 
           fprintf(ficrespij,"# Age");            
           for(i=1; i<=nlstate;i++)            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             for(j=1; j<=nlstate+ndeath;j++)            oldm=oldms;savm=savms;
               fprintf(ficrespij," %1d-%1d",i,j);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"\n");          
            for (h=0; h<=nhstepm; h++){            for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );              if (h==(int) (calagedatem+YEARM*cpt)) {
             for(i=1; i<=nlstate;i++)                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               for(j=1; j<=nlstate+ndeath;j++)              } 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              for(j=1; j<=nlstate+ndeath;j++) {
             fprintf(ficrespij,"\n");                kk1=0.;kk2=0;
              }                for(i=1; i<=nlstate;i++) {              
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  if (mobilav==1) 
           fprintf(ficrespij,"\n");                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
         }                  else {
     }                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   }                  }
                 }
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
   fclose(ficrespij);                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
   /*---------- Forecasting ------------------*/              }
   if((stepm == 1) && (strcmp(model,".")==0)){              for(i=1; i<=nlstate;i++){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                kk1=0.;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                  for(j=1; j<=nlstate;j++){
   }                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   else{                  }
     erreur=108;                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);              }
   }  
                if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   /*---------- Health expectancies and variances ------------*/            }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(filerest,"t");          }
   strcat(filerest,fileres);        }
   if((ficrest=fopen(filerest,"w"))==NULL) {   
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    /******/
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   strcpy(filerese,"e");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   strcat(filerese,fileres);            nhstepm = nhstepm/hstepm; 
   if((ficreseij=fopen(filerese,"w"))==NULL) {            
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }            oldm=oldms;savm=savms;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
  strcpy(fileresv,"v");              if (h==(int) (calagedatem+YEARM*cpt)) {
   strcat(fileresv,fileres);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {              } 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);              for(j=1; j<=nlstate+ndeath;j++) {
   }                kk1=0.;kk2=0;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                for(i=1; i<=nlstate;i++) {              
   calagedate=-1;                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   k=0;              }
   for(cptcov=1;cptcov<=i1;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       k=k+1;          }
       fprintf(ficrest,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)     } 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficrest,"******\n");   
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    if (popforecast==1) {
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_ivector(popage,0,AGESUP);
       fprintf(ficreseij,"******\n");      free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
       fprintf(ficresvij,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficresvij,"******\n");    fclose(ficrespop);
   } /* End of popforecast */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  /***********************************************/
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    /**************** Main Program *****************/
    /***********************************************/
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  int main(int argc, char *argv[])
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  {
        int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
      int jj;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    int numlinepar=0; /* Current linenumber of parameter file */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    double agedeb, agefin,hf;
       fprintf(ficrest,"\n");    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
       epj=vector(1,nlstate+1);    double fret;
       for(age=bage; age <=fage ;age++){    double **xi,tmp,delta;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {    double dum; /* Dummy variable */
           for(i=1; i<=nlstate;i++)    double ***p3mat;
             prlim[i][i]=probs[(int)age][i][k];    double ***mobaverage;
         }    int *indx;
            char line[MAXLINE], linepar[MAXLINE];
         fprintf(ficrest," %4.0f",age);    char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    int firstobs=1, lastobs=10;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    int sdeb, sfin; /* Status at beginning and end */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    int c,  h , cpt,l;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    int ju,jl, mi;
           }    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
           epj[nlstate+1] +=epj[j];    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
         }    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
         for(i=1, vepp=0.;i <=nlstate;i++)    int hstepm, nhstepm;
           for(j=1;j <=nlstate;j++)    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
             vepp += vareij[i][j][(int)age];    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){    double bage, fage, age, agelim, agebase;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    double ftolpl=FTOL;
         }    double **prlim;
         fprintf(ficrest,"\n");    double *severity;
       }    double ***param; /* Matrix of parameters */
     }    double  *p;
   }    double **matcov; /* Matrix of covariance */
 free_matrix(mint,1,maxwav,1,n);    double ***delti3; /* Scale */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    double *delti; /* Scale */
     free_vector(weight,1,n);    double ***eij, ***vareij;
   fclose(ficreseij);    double **varpl; /* Variances of prevalence limits by age */
   fclose(ficresvij);    double *epj, vepp;
   fclose(ficrest);    double kk1, kk2;
   fclose(ficpar);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   free_vector(epj,1,nlstate+1);  
      char *alph[]={"a","a","b","c","d","e"}, str[4];
   /*------- Variance limit prevalence------*/    
   
   strcpy(fileresvpl,"vpl");    char z[1]="c", occ;
   strcat(fileresvpl,fileres);  #include <sys/time.h>
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  #include <time.h>
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     exit(0);    char *strt, *strtend;
   }    char *stratrunc;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    int lstra;
   
   k=0;    long total_usecs;
   for(cptcov=1;cptcov<=i1;cptcov++){    struct timeval start_time, end_time, curr_time;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    struct timezone tzp;
       k=k+1;    extern int gettimeofday();
       fprintf(ficresvpl,"\n#****** ");    struct tm tmg, tm, *gmtime(), *localtime();
       for(j=1;j<=cptcoveff;j++)    long time_value;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    extern long time();
       fprintf(ficresvpl,"******\n");   
          /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    (void) gettimeofday(&start_time,&tzp);
       oldm=oldms;savm=savms;    tm = *localtime(&start_time.tv_sec);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    tmg = *gmtime(&start_time.tv_sec);
     }    strt=asctime(&tm);
  }  /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   fclose(ficresvpl);  /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*---------- End : free ----------------*/  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
    /*   tp.tv_sec = mktime(&tmg); */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*   strt=asctime(&tmg); */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*   printf("Time(after) =%s",strt);  */
    /*  (void) time (&time_value);
    *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  *  tm = *localtime(&time_value);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  *  strt=asctime(&tm);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  */
    
   free_matrix(matcov,1,npar,1,npar);    getcwd(pathcd, size);
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);    printf("\n%s\n%s",version,fullversion);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    if(argc <=1){
       printf("\nEnter the parameter file name: ");
   fprintf(fichtm,"\n</body>");      scanf("%s",pathtot);
   fclose(fichtm);    }
   fclose(ficgp);    else{
        strcpy(pathtot,argv[1]);
     }
   if(erreur >0)    /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     printf("End of Imach with error or warning %d\n",erreur);    /*cygwin_split_path(pathtot,path,optionfile);
   else   printf("End of Imach\n");      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    /* cutv(path,optionfile,pathtot,'\\');*/
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   /*------ End -----------*/    chdir(path);
     replace(pathc,path);
   
  end:    /*-------- arguments in the command line --------*/
 #ifdef windows  
   /* chdir(pathcd);*/    /* Log file */
 #endif    strcat(filelog, optionfilefiname);
  /*system("wgnuplot graph.plt");*/    strcat(filelog,".log");    /* */
  /*system("../gp37mgw/wgnuplot graph.plt");*/    if((ficlog=fopen(filelog,"w"))==NULL)    {
  /*system("cd ../gp37mgw");*/      printf("Problem with logfile %s\n",filelog);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      goto end;
  strcpy(plotcmd,GNUPLOTPROGRAM);    }
  strcat(plotcmd," ");    fprintf(ficlog,"Log filename:%s\n",filelog);
  strcat(plotcmd,optionfilegnuplot);    fprintf(ficlog,"\n%s\n%s",version,fullversion);
  system(plotcmd);    fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 #ifdef windows    printf("Localtime (at start)=%s",strt); 
   while (z[0] != 'q') {    fprintf(ficlog,"Localtime (at start)=%s",strt); 
     /* chdir(path); */    fflush(ficlog);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);    /* */
     if (z[0] == 'c') system("./imach");    strcpy(fileres,"r");
     else if (z[0] == 'e') system(optionfilehtm);    strcat(fileres, optionfilefiname);
     else if (z[0] == 'g') system(plotcmd);    strcat(fileres,".txt");    /* Other files have txt extension */
     else if (z[0] == 'q') exit(0);  
   }    /*---------arguments file --------*/
 #endif  
 }    if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get ipmx number of contributions and sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",\
             version,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot);
     fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.48  
changed lines
  Added in v.1.85


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>