Diff for /imach/src/imach.c between versions 1.48 and 1.89

version 1.48, 2002/06/10 13:12:49 version 1.89, 2003/06/24 12:30:52
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.89  2003/06/24 12:30:52  brouard
      (Module): Some bugs corrected for windows. Also, when
   This program computes Healthy Life Expectancies from    mle=-1 a template is output in file "or"mypar.txt with the design
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    of the covariance matrix to be input.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.88  2003/06/23 17:54:56  brouard
   case of a health survey which is our main interest) -2- at least a    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.87  2003/06/18 12:26:01  brouard
   computed from the time spent in each health state according to a    Version 0.96
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.86  2003/06/17 20:04:08  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Change position of html and gnuplot routines and added
   probability to be observed in state j at the second wave    routine fileappend.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.85  2003/06/17 13:12:43  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    * imach.c (Repository): Check when date of death was earlier that
   complex model than "constant and age", you should modify the program    current date of interview. It may happen when the death was just
   where the markup *Covariates have to be included here again* invites    prior to the death. In this case, dh was negative and likelihood
   you to do it.  More covariates you add, slower the    was wrong (infinity). We still send an "Error" but patch by
   convergence.    assuming that the date of death was just one stepm after the
     interview.
   The advantage of this computer programme, compared to a simple    (Repository): Because some people have very long ID (first column)
   multinomial logistic model, is clear when the delay between waves is not    we changed int to long in num[] and we added a new lvector for
   identical for each individual. Also, if a individual missed an    memory allocation. But we also truncated to 8 characters (left
   intermediate interview, the information is lost, but taken into    truncation)
   account using an interpolation or extrapolation.      (Repository): No more line truncation errors.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.84  2003/06/13 21:44:43  brouard
   conditional to the observed state i at age x. The delay 'h' can be    * imach.c (Repository): Replace "freqsummary" at a correct
   split into an exact number (nh*stepm) of unobserved intermediate    place. It differs from routine "prevalence" which may be called
   states. This elementary transition (by month or quarter trimester,    many times. Probs is memory consuming and must be used with
   semester or year) is model as a multinomial logistic.  The hPx    parcimony.
   matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.  */
   This software have been partly granted by Euro-REVES, a concerted action  /*
   from the European Union.     Interpolated Markov Chain
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Short summary of the programme:
   can be accessed at http://euroreves.ined.fr/imach .    
   **********************************************************************/    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #include <math.h>    first survey ("cross") where individuals from different ages are
 #include <stdio.h>    interviewed on their health status or degree of disability (in the
 #include <stdlib.h>    case of a health survey which is our main interest) -2- at least a
 #include <unistd.h>    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define MAXLINE 256    computed from the time spent in each health state according to a
 #define GNUPLOTPROGRAM "gnuplot"    model. More health states you consider, more time is necessary to reach the
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Maximum Likelihood of the parameters involved in the model.  The
 #define FILENAMELENGTH 80    simplest model is the multinomial logistic model where pij is the
 /*#define DEBUG*/    probability to be observed in state j at the second wave
 #define windows    conditional to be observed in state i at the first wave. Therefore
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    where the markup *Covariates have to be included here again* invites
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    you to do it.  More covariates you add, slower the
     convergence.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    The advantage of this computer programme, compared to a simple
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    multinomial logistic model, is clear when the delay between waves is not
 #define NCOVMAX 8 /* Maximum number of covariates */    identical for each individual. Also, if a individual missed an
 #define MAXN 20000    intermediate interview, the information is lost, but taken into
 #define YEARM 12. /* Number of months per year */    account using an interpolation or extrapolation.  
 #define AGESUP 130  
 #define AGEBASE 40    hPijx is the probability to be observed in state i at age x+h
 #ifdef windows    conditional to the observed state i at age x. The delay 'h' can be
 #define DIRSEPARATOR '\\'    split into an exact number (nh*stepm) of unobserved intermediate
 #else    states. This elementary transition (by month, quarter,
 #define DIRSEPARATOR '/'    semester or year) is modelled as a multinomial logistic.  The hPx
 #endif    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    hPijx.
 int erreur; /* Error number */  
 int nvar;    Also this programme outputs the covariance matrix of the parameters but also
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    of the life expectancies. It also computes the stable prevalence. 
 int npar=NPARMAX;    
 int nlstate=2; /* Number of live states */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int ndeath=1; /* Number of dead states */             Institut national d'études démographiques, Paris.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    This software have been partly granted by Euro-REVES, a concerted action
 int popbased=0;    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 int *wav; /* Number of waves for this individuual 0 is possible */    software can be distributed freely for non commercial use. Latest version
 int maxwav; /* Maxim number of waves */    can be accessed at http://euroreves.ined.fr/imach .
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    
 double jmean; /* Mean space between 2 waves */    **********************************************************************/
 double **oldm, **newm, **savm; /* Working pointers to matrices */  /*
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    main
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    read parameterfile
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    read datafile
 FILE *fichtm; /* Html File */    concatwav
 FILE *ficreseij;    freqsummary
 char filerese[FILENAMELENGTH];    if (mle >= 1)
 FILE  *ficresvij;      mlikeli
 char fileresv[FILENAMELENGTH];    print results files
 FILE  *ficresvpl;    if mle==1 
 char fileresvpl[FILENAMELENGTH];       computes hessian
 char title[MAXLINE];    read end of parameter file: agemin, agemax, bage, fage, estepm
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        begin-prev-date,...
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    open gnuplot file
     open html file
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    stable prevalence
      for age prevalim()
 char filerest[FILENAMELENGTH];    h Pij x
 char fileregp[FILENAMELENGTH];    variance of p varprob
 char popfile[FILENAMELENGTH];    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Variance-covariance of DFLE
     prevalence()
 #define NR_END 1     movingaverage()
 #define FREE_ARG char*    varevsij() 
 #define FTOL 1.0e-10    if popbased==1 varevsij(,popbased)
     total life expectancies
 #define NRANSI    Variance of stable prevalence
 #define ITMAX 200   end
   */
 #define TOL 2.0e-4  
   
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10   
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #include <math.h>
   #include <stdio.h>
 #define GOLD 1.618034  #include <stdlib.h>
 #define GLIMIT 100.0  #include <unistd.h>
 #define TINY 1.0e-20  
   #include <sys/time.h>
 static double maxarg1,maxarg2;  #include <time.h>
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #include "timeval.h"
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
    #define MAXLINE 256
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define GNUPLOTPROGRAM "gnuplot"
 #define rint(a) floor(a+0.5)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 static double sqrarg;  /*#define DEBUG*/
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  /*#define windows*/
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int imx;  
 int stepm;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /* Stepm, step in month: minimum step interpolation*/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 int estepm;  #define NINTERVMAX 8
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int m,nb;  #define NCOVMAX 8 /* Maximum number of covariates */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #define MAXN 20000
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define YEARM 12. /* Number of months per year */
 double **pmmij, ***probs, ***mobaverage;  #define AGESUP 130
 double dateintmean=0;  #define AGEBASE 40
   #ifdef unix
 double *weight;  #define DIRSEPARATOR '/'
 int **s; /* Status */  #define ODIRSEPARATOR '\\'
 double *agedc, **covar, idx;  #else
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #endif
 double ftolhess; /* Tolerance for computing hessian */  
   /* $Id$ */
 /**************** split *************************/  /* $State$ */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
    char *s;                             /* pointer */  char fullversion[]="$Revision$ $Date$"; 
    int  l1, l2;                         /* length counters */  int erreur; /* Error number */
   int nvar;
    l1 = strlen( path );                 /* length of path */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int npar=NPARMAX;
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  int nlstate=2; /* Number of live states */
    if ( s == NULL ) {                   /* no directory, so use current */  int ndeath=1; /* Number of dead states */
 #if     defined(__bsd__)                /* get current working directory */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       extern char       *getwd( );  int popbased=0;
   
       if ( getwd( dirc ) == NULL ) {  int *wav; /* Number of waves for this individuual 0 is possible */
 #else  int maxwav; /* Maxim number of waves */
       extern char       *getcwd( );  int jmin, jmax; /* min, max spacing between 2 waves */
   int gipmx, gsw; /* Global variables on the number of contributions 
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {                     to the likelihood and the sum of weights (done by funcone)*/
 #endif  int mle, weightopt;
          return( GLOCK_ERROR_GETCWD );  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       strcpy( name, path );             /* we've got it */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    } else {                             /* strip direcotry from path */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       s++;                              /* after this, the filename */  double jmean; /* Mean space between 2 waves */
       l2 = strlen( s );                 /* length of filename */  double **oldm, **newm, **savm; /* Working pointers to matrices */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       strcpy( name, s );                /* save file name */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  FILE *ficlog, *ficrespow;
       dirc[l1-l2] = 0;                  /* add zero */  int globpr; /* Global variable for printing or not */
    }  double fretone; /* Only one call to likelihood */
    l1 = strlen( dirc );                 /* length of directory */  long ipmx; /* Number of contributions */
 #ifdef windows  double sw; /* Sum of weights */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #else  FILE *ficresilk;
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #endif  FILE *ficresprobmorprev;
    s = strrchr( name, '.' );            /* find last / */  FILE *fichtm; /* Html File */
    s++;  FILE *ficreseij;
    strcpy(ext,s);                       /* save extension */  char filerese[FILENAMELENGTH];
    l1= strlen( name);  FILE  *ficresvij;
    l2= strlen( s)+1;  char fileresv[FILENAMELENGTH];
    strncpy( finame, name, l1-l2);  FILE  *ficresvpl;
    finame[l1-l2]= 0;  char fileresvpl[FILENAMELENGTH];
    return( 0 );                         /* we're done */  char title[MAXLINE];
 }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH]; 
 /******************************************/  char command[FILENAMELENGTH];
   int  outcmd=0;
 void replace(char *s, char*t)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int i;  char lfileres[FILENAMELENGTH];
   int lg=20;  char filelog[FILENAMELENGTH]; /* Log file */
   i=0;  char filerest[FILENAMELENGTH];
   lg=strlen(t);  char fileregp[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char popfile[FILENAMELENGTH];
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   }  
 }  #define NR_END 1
   #define FREE_ARG char*
 int nbocc(char *s, char occ)  #define FTOL 1.0e-10
 {  
   int i,j=0;  #define NRANSI 
   int lg=20;  #define ITMAX 200 
   i=0;  
   lg=strlen(s);  #define TOL 2.0e-4 
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  #define CGOLD 0.3819660 
   }  #define ZEPS 1.0e-10 
   return j;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 }  
   #define GOLD 1.618034 
 void cutv(char *u,char *v, char*t, char occ)  #define GLIMIT 100.0 
 {  #define TINY 1.0e-20 
   int i,lg,j,p=0;  
   i=0;  static double maxarg1,maxarg2;
   for(j=0; j<=strlen(t)-1; j++) {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   }    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   lg=strlen(t);  #define rint(a) floor(a+0.5)
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  static double sqrarg;
   }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
      u[p]='\0';  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   
    for(j=0; j<= lg; j++) {  int imx; 
     if (j>=(p+1))(v[j-p-1] = t[j]);  int stepm;
   }  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /********************** nrerror ********************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 void nrerror(char error_text[])  int m,nb;
 {  long *num;
   fprintf(stderr,"ERREUR ...\n");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   fprintf(stderr,"%s\n",error_text);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   exit(1);  double **pmmij, ***probs;
 }  double dateintmean=0;
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  double *weight;
 {  int **s; /* Status */
   double *v;  double *agedc, **covar, idx;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
   
 /************************ free vector ******************/  /**************** split *************************/
 void free_vector(double*v, int nl, int nh)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   free((FREE_ARG)(v+nl-NR_END));    char  *ss;                            /* pointer */
 }    int   l1, l2;                         /* length counters */
   
 /************************ivector *******************************/    l1 = strlen(path );                   /* length of path */
 int *ivector(long nl,long nh)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   int *v;    if ( ss == NULL ) {                   /* no directory, so use current */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   if (!v) nrerror("allocation failure in ivector");        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   return v-nl+NR_END;      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /******************free ivector **************************/        return( GLOCK_ERROR_GETCWD );
 void free_ivector(int *v, long nl, long nh)      }
 {      strcpy( name, path );               /* we've got it */
   free((FREE_ARG)(v+nl-NR_END));    } else {                              /* strip direcotry from path */
 }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 /******************* imatrix *******************************/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 int **imatrix(long nrl, long nrh, long ncl, long nch)      strcpy( name, ss );         /* save file name */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {      dirc[l1-l2] = 0;                    /* add zero */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    }
   int **m;    l1 = strlen( dirc );                  /* length of directory */
      /*#ifdef windows
   /* allocate pointers to rows */    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #else
   if (!m) nrerror("allocation failure 1 in matrix()");    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m += NR_END;  #endif
   m -= nrl;    */
      ss = strrchr( name, '.' );            /* find last / */
      ss++;
   /* allocate rows and set pointers to them */    strcpy(ext,ss);                       /* save extension */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    l1= strlen( name);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    l2= strlen(ss)+1;
   m[nrl] += NR_END;    strncpy( finame, name, l1-l2);
   m[nrl] -= ncl;    finame[l1-l2]= 0;
      return( 0 );                          /* we're done */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  }
    
   /* return pointer to array of pointers to rows */  
   return m;  /******************************************/
 }  
   void replace_back_to_slash(char *s, char*t)
 /****************** free_imatrix *************************/  {
 void free_imatrix(m,nrl,nrh,ncl,nch)    int i;
       int **m;    int lg=0;
       long nch,ncl,nrh,nrl;    i=0;
      /* free an int matrix allocated by imatrix() */    lg=strlen(t);
 {    for(i=0; i<= lg; i++) {
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      (s[i] = t[i]);
   free((FREE_ARG) (m+nrl-NR_END));      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  int nbocc(char *s, char occ)
 {  {
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    int i,j=0;
   double **m;    int lg=20;
     i=0;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    lg=strlen(s);
   if (!m) nrerror("allocation failure 1 in matrix()");    for(i=0; i<= lg; i++) {
   m += NR_END;    if  (s[i] == occ ) j++;
   m -= nrl;    }
     return j;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  void cutv(char *u,char *v, char*t, char occ)
   m[nrl] -= ncl;  {
     /* cuts string t into u and v where u is ended by char occ excluding it
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   return m;       gives u="abcedf" and v="ghi2j" */
 }    int i,lg,j,p=0;
     i=0;
 /*************************free matrix ************************/    for(j=0; j<=strlen(t)-1; j++) {
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 {    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    lg=strlen(t);
 }    for(j=0; j<p; j++) {
       (u[j] = t[j]);
 /******************* ma3x *******************************/    }
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)       u[p]='\0';
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;     for(j=0; j<= lg; j++) {
   double ***m;      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  }
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /********************** nrerror ********************/
   m -= nrl;  
   void nrerror(char error_text[])
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    fprintf(stderr,"ERREUR ...\n");
   m[nrl] += NR_END;    fprintf(stderr,"%s\n",error_text);
   m[nrl] -= ncl;    exit(EXIT_FAILURE);
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /*********************** vector *******************/
   double *vector(int nl, int nh)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  {
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    double *v;
   m[nrl][ncl] += NR_END;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   m[nrl][ncl] -= nll;    if (!v) nrerror("allocation failure in vector");
   for (j=ncl+1; j<=nch; j++)    return v-nl+NR_END;
     m[nrl][j]=m[nrl][j-1]+nlay;  }
    
   for (i=nrl+1; i<=nrh; i++) {  /************************ free vector ******************/
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  void free_vector(double*v, int nl, int nh)
     for (j=ncl+1; j<=nch; j++)  {
       m[i][j]=m[i][j-1]+nlay;    free((FREE_ARG)(v+nl-NR_END));
   }  }
   return m;  
 }  /************************ivector *******************************/
   int *ivector(long nl,long nh)
 /*************************free ma3x ************************/  {
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    if (!v) nrerror("allocation failure in ivector");
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    return v-nl+NR_END;
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   /******************free ivector **************************/
 /***************** f1dim *************************/  void free_ivector(int *v, long nl, long nh)
 extern int ncom;  {
 extern double *pcom,*xicom;    free((FREE_ARG)(v+nl-NR_END));
 extern double (*nrfunc)(double []);  }
    
 double f1dim(double x)  /************************lvector *******************************/
 {  long *lvector(long nl,long nh)
   int j;  {
   double f;    long *v;
   double *xt;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      if (!v) nrerror("allocation failure in ivector");
   xt=vector(1,ncom);    return v-nl+NR_END;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  }
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /******************free lvector **************************/
   return f;  void free_lvector(long *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /*****************brent *************************/  }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  /******************* imatrix *******************************/
   int iter;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double a,b,d,etemp;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double fu,fv,fw,fx;  { 
   double ftemp;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double p,q,r,tol1,tol2,u,v,w,x,xm;    int **m; 
   double e=0.0;    
      /* allocate pointers to rows */ 
   a=(ax < cx ? ax : cx);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   b=(ax > cx ? ax : cx);    if (!m) nrerror("allocation failure 1 in matrix()"); 
   x=w=v=bx;    m += NR_END; 
   fw=fv=fx=(*f)(x);    m -= nrl; 
   for (iter=1;iter<=ITMAX;iter++) {    
     xm=0.5*(a+b);    
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    /* allocate rows and set pointers to them */ 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     printf(".");fflush(stdout);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 #ifdef DEBUG    m[nrl] += NR_END; 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    m[nrl] -= ncl; 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    
 #endif    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    
       *xmin=x;    /* return pointer to array of pointers to rows */ 
       return fx;    return m; 
     }  } 
     ftemp=fu;  
     if (fabs(e) > tol1) {  /****************** free_imatrix *************************/
       r=(x-w)*(fx-fv);  void free_imatrix(m,nrl,nrh,ncl,nch)
       q=(x-v)*(fx-fw);        int **m;
       p=(x-v)*q-(x-w)*r;        long nch,ncl,nrh,nrl; 
       q=2.0*(q-r);       /* free an int matrix allocated by imatrix() */ 
       if (q > 0.0) p = -p;  { 
       q=fabs(q);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       etemp=e;    free((FREE_ARG) (m+nrl-NR_END)); 
       e=d;  } 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /******************* matrix *******************************/
       else {  double **matrix(long nrl, long nrh, long ncl, long nch)
         d=p/q;  {
         u=x+d;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         if (u-a < tol2 || b-u < tol2)    double **m;
           d=SIGN(tol1,xm-x);  
       }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     } else {    if (!m) nrerror("allocation failure 1 in matrix()");
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m += NR_END;
     }    m -= nrl;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (fu <= fx) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       if (u >= x) a=x; else b=x;    m[nrl] += NR_END;
       SHFT(v,w,x,u)    m[nrl] -= ncl;
         SHFT(fv,fw,fx,fu)  
         } else {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           if (u < x) a=u; else b=u;    return m;
           if (fu <= fw || w == x) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
             v=w;     */
             w=u;  }
             fv=fw;  
             fw=fu;  /*************************free matrix ************************/
           } else if (fu <= fv || v == x || v == w) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
             v=u;  {
             fv=fu;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           }    free((FREE_ARG)(m+nrl-NR_END));
         }  }
   }  
   nrerror("Too many iterations in brent");  /******************* ma3x *******************************/
   *xmin=x;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   return fx;  {
 }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
 /****************** mnbrak ***********************/  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!m) nrerror("allocation failure 1 in matrix()");
             double (*func)(double))    m += NR_END;
 {    m -= nrl;
   double ulim,u,r,q, dum;  
   double fu;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *fa=(*func)(*ax);    m[nrl] += NR_END;
   *fb=(*func)(*bx);    m[nrl] -= ncl;
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       SHFT(dum,*fb,*fa,dum)  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   *cx=(*bx)+GOLD*(*bx-*ax);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   *fc=(*func)(*cx);    m[nrl][ncl] += NR_END;
   while (*fb > *fc) {    m[nrl][ncl] -= nll;
     r=(*bx-*ax)*(*fb-*fc);    for (j=ncl+1; j<=nch; j++) 
     q=(*bx-*cx)*(*fb-*fa);      m[nrl][j]=m[nrl][j-1]+nlay;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    for (i=nrl+1; i<=nrh; i++) {
     ulim=(*bx)+GLIMIT*(*cx-*bx);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     if ((*bx-u)*(u-*cx) > 0.0) {      for (j=ncl+1; j<=nch; j++) 
       fu=(*func)(u);        m[i][j]=m[i][j-1]+nlay;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    }
       fu=(*func)(u);    return m; 
       if (fu < *fc) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
           SHFT(*fb,*fc,fu,(*func)(u))    */
           }  }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  /*************************free ma3x ************************/
       fu=(*func)(u);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     } else {  {
       u=(*cx)+GOLD*(*cx-*bx);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       fu=(*func)(u);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
     SHFT(*ax,*bx,*cx,u)  }
       SHFT(*fa,*fb,*fc,fu)  
       }  /***************** f1dim *************************/
 }  extern int ncom; 
   extern double *pcom,*xicom;
 /*************** linmin ************************/  extern double (*nrfunc)(double []); 
    
 int ncom;  double f1dim(double x) 
 double *pcom,*xicom;  { 
 double (*nrfunc)(double []);    int j; 
      double f;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    double *xt; 
 {   
   double brent(double ax, double bx, double cx,    xt=vector(1,ncom); 
                double (*f)(double), double tol, double *xmin);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double f1dim(double x);    f=(*nrfunc)(xt); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    free_vector(xt,1,ncom); 
               double *fc, double (*func)(double));    return f; 
   int j;  } 
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /*****************brent *************************/
    double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   ncom=n;  { 
   pcom=vector(1,n);    int iter; 
   xicom=vector(1,n);    double a,b,d,etemp;
   nrfunc=func;    double fu,fv,fw,fx;
   for (j=1;j<=n;j++) {    double ftemp;
     pcom[j]=p[j];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     xicom[j]=xi[j];    double e=0.0; 
   }   
   ax=0.0;    a=(ax < cx ? ax : cx); 
   xx=1.0;    b=(ax > cx ? ax : cx); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    x=w=v=bx; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    fw=fv=fx=(*f)(x); 
 #ifdef DEBUG    for (iter=1;iter<=ITMAX;iter++) { 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      xm=0.5*(a+b); 
 #endif      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for (j=1;j<=n;j++) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     xi[j] *= xmin;      printf(".");fflush(stdout);
     p[j] += xi[j];      fprintf(ficlog,".");fflush(ficlog);
   }  #ifdef DEBUG
   free_vector(xicom,1,n);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   free_vector(pcom,1,n);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
 /*************** powell ************************/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        *xmin=x; 
             double (*func)(double []))        return fx; 
 {      } 
   void linmin(double p[], double xi[], int n, double *fret,      ftemp=fu;
               double (*func)(double []));      if (fabs(e) > tol1) { 
   int i,ibig,j;        r=(x-w)*(fx-fv); 
   double del,t,*pt,*ptt,*xit;        q=(x-v)*(fx-fw); 
   double fp,fptt;        p=(x-v)*q-(x-w)*r; 
   double *xits;        q=2.0*(q-r); 
   pt=vector(1,n);        if (q > 0.0) p = -p; 
   ptt=vector(1,n);        q=fabs(q); 
   xit=vector(1,n);        etemp=e; 
   xits=vector(1,n);        e=d; 
   *fret=(*func)(p);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for (j=1;j<=n;j++) pt[j]=p[j];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (*iter=1;;++(*iter)) {        else { 
     fp=(*fret);          d=p/q; 
     ibig=0;          u=x+d; 
     del=0.0;          if (u-a < tol2 || b-u < tol2) 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);            d=SIGN(tol1,xm-x); 
     for (i=1;i<=n;i++)        } 
       printf(" %d %.12f",i, p[i]);      } else { 
     printf("\n");        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for (i=1;i<=n;i++) {      } 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fptt=(*fret);      fu=(*f)(u); 
 #ifdef DEBUG      if (fu <= fx) { 
       printf("fret=%lf \n",*fret);        if (u >= x) a=x; else b=x; 
 #endif        SHFT(v,w,x,u) 
       printf("%d",i);fflush(stdout);          SHFT(fv,fw,fx,fu) 
       linmin(p,xit,n,fret,func);          } else { 
       if (fabs(fptt-(*fret)) > del) {            if (u < x) a=u; else b=u; 
         del=fabs(fptt-(*fret));            if (fu <= fw || w == x) { 
         ibig=i;              v=w; 
       }              w=u; 
 #ifdef DEBUG              fv=fw; 
       printf("%d %.12e",i,(*fret));              fw=fu; 
       for (j=1;j<=n;j++) {            } else if (fu <= fv || v == x || v == w) { 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);              v=u; 
         printf(" x(%d)=%.12e",j,xit[j]);              fv=fu; 
       }            } 
       for(j=1;j<=n;j++)          } 
         printf(" p=%.12e",p[j]);    } 
       printf("\n");    nrerror("Too many iterations in brent"); 
 #endif    *xmin=x; 
     }    return fx; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  } 
 #ifdef DEBUG  
       int k[2],l;  /****************** mnbrak ***********************/
       k[0]=1;  
       k[1]=-1;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       printf("Max: %.12e",(*func)(p));              double (*func)(double)) 
       for (j=1;j<=n;j++)  { 
         printf(" %.12e",p[j]);    double ulim,u,r,q, dum;
       printf("\n");    double fu; 
       for(l=0;l<=1;l++) {   
         for (j=1;j<=n;j++) {    *fa=(*func)(*ax); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    *fb=(*func)(*bx); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    if (*fb > *fa) { 
         }      SHFT(dum,*ax,*bx,dum) 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        SHFT(dum,*fb,*fa,dum) 
       }        } 
 #endif    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
     while (*fb > *fc) { 
       free_vector(xit,1,n);      r=(*bx-*ax)*(*fb-*fc); 
       free_vector(xits,1,n);      q=(*bx-*cx)*(*fb-*fa); 
       free_vector(ptt,1,n);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       free_vector(pt,1,n);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       return;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     }      if ((*bx-u)*(u-*cx) > 0.0) { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        fu=(*func)(u); 
     for (j=1;j<=n;j++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       ptt[j]=2.0*p[j]-pt[j];        fu=(*func)(u); 
       xit[j]=p[j]-pt[j];        if (fu < *fc) { 
       pt[j]=p[j];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     }            SHFT(*fb,*fc,fu,(*func)(u)) 
     fptt=(*func)(ptt);            } 
     if (fptt < fp) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        u=ulim; 
       if (t < 0.0) {        fu=(*func)(u); 
         linmin(p,xit,n,fret,func);      } else { 
         for (j=1;j<=n;j++) {        u=(*cx)+GOLD*(*cx-*bx); 
           xi[j][ibig]=xi[j][n];        fu=(*func)(u); 
           xi[j][n]=xit[j];      } 
         }      SHFT(*ax,*bx,*cx,u) 
 #ifdef DEBUG        SHFT(*fa,*fb,*fc,fu) 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        } 
         for(j=1;j<=n;j++)  } 
           printf(" %.12e",xit[j]);  
         printf("\n");  /*************** linmin ************************/
 #endif  
       }  int ncom; 
     }  double *pcom,*xicom;
   }  double (*nrfunc)(double []); 
 }   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 /**** Prevalence limit ****************/  { 
     double brent(double ax, double bx, double cx, 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)                 double (*f)(double), double tol, double *xmin); 
 {    double f1dim(double x); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
      matrix by transitions matrix until convergence is reached */                double *fc, double (*func)(double)); 
     int j; 
   int i, ii,j,k;    double xx,xmin,bx,ax; 
   double min, max, maxmin, maxmax,sumnew=0.;    double fx,fb,fa;
   double **matprod2();   
   double **out, cov[NCOVMAX], **pmij();    ncom=n; 
   double **newm;    pcom=vector(1,n); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    xicom=vector(1,n); 
     nrfunc=func; 
   for (ii=1;ii<=nlstate+ndeath;ii++)    for (j=1;j<=n;j++) { 
     for (j=1;j<=nlstate+ndeath;j++){      pcom[j]=p[j]; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      xicom[j]=xi[j]; 
     }    } 
     ax=0.0; 
    cov[1]=1.;    xx=1.0; 
      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #ifdef DEBUG
     newm=savm;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     /* Covariates have to be included here again */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      cov[2]=agefin;  #endif
      for (j=1;j<=n;j++) { 
       for (k=1; k<=cptcovn;k++) {      xi[j] *= xmin; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      p[j] += xi[j]; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    } 
       }    free_vector(xicom,1,n); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free_vector(pcom,1,n); 
       for (k=1; k<=cptcovprod;k++)  } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /*************** powell ************************/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/              double (*func)(double [])) 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  { 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
     savm=oldm;    int i,ibig,j; 
     oldm=newm;    double del,t,*pt,*ptt,*xit;
     maxmax=0.;    double fp,fptt;
     for(j=1;j<=nlstate;j++){    double *xits;
       min=1.;    pt=vector(1,n); 
       max=0.;    ptt=vector(1,n); 
       for(i=1; i<=nlstate; i++) {    xit=vector(1,n); 
         sumnew=0;    xits=vector(1,n); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    *fret=(*func)(p); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    for (j=1;j<=n;j++) pt[j]=p[j]; 
         max=FMAX(max,prlim[i][j]);    for (*iter=1;;++(*iter)) { 
         min=FMIN(min,prlim[i][j]);      fp=(*fret); 
       }      ibig=0; 
       maxmin=max-min;      del=0.0; 
       maxmax=FMAX(maxmax,maxmin);      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     if(maxmax < ftolpl){      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       return prlim;      for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
   }        fprintf(ficlog," %d %.12lf",i, p[i]);
 }        fprintf(ficrespow," %.12lf", p[i]);
       }
 /*************** transition probabilities ***************/      printf("\n");
       fprintf(ficlog,"\n");
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      fprintf(ficrespow,"\n");
 {      for (i=1;i<=n;i++) { 
   double s1, s2;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   /*double t34;*/        fptt=(*fret); 
   int i,j,j1, nc, ii, jj;  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
     for(i=1; i<= nlstate; i++){        fprintf(ficlog,"fret=%lf \n",*fret);
     for(j=1; j<i;j++){  #endif
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        printf("%d",i);fflush(stdout);
         /*s2 += param[i][j][nc]*cov[nc];*/        fprintf(ficlog,"%d",i);fflush(ficlog);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        linmin(p,xit,n,fret,func); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        if (fabs(fptt-(*fret)) > del) { 
       }          del=fabs(fptt-(*fret)); 
       ps[i][j]=s2;          ibig=i; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        } 
     }  #ifdef DEBUG
     for(j=i+1; j<=nlstate+ndeath;j++){        printf("%d %.12e",i,(*fret));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fprintf(ficlog,"%d %.12e",i,(*fret));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        for (j=1;j<=n;j++) {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       }          printf(" x(%d)=%.12e",j,xit[j]);
       ps[i][j]=s2;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     }        }
   }        for(j=1;j<=n;j++) {
     /*ps[3][2]=1;*/          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
   for(i=1; i<= nlstate; i++){        }
      s1=0;        printf("\n");
     for(j=1; j<i; j++)        fprintf(ficlog,"\n");
       s1+=exp(ps[i][j]);  #endif
     for(j=i+1; j<=nlstate+ndeath; j++)      } 
       s1+=exp(ps[i][j]);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     ps[i][i]=1./(s1+1.);  #ifdef DEBUG
     for(j=1; j<i; j++)        int k[2],l;
       ps[i][j]= exp(ps[i][j])*ps[i][i];        k[0]=1;
     for(j=i+1; j<=nlstate+ndeath; j++)        k[1]=-1;
       ps[i][j]= exp(ps[i][j])*ps[i][i];        printf("Max: %.12e",(*func)(p));
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        fprintf(ficlog,"Max: %.12e",(*func)(p));
   } /* end i */        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          fprintf(ficlog," %.12e",p[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){        }
       ps[ii][jj]=0;        printf("\n");
       ps[ii][ii]=1;        fprintf(ficlog,"\n");
     }        for(l=0;l<=1;l++) {
   }          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){          }
      printf("%lf ",ps[ii][jj]);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
    }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     printf("\n ");        }
     }  #endif
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        free_vector(xit,1,n); 
   goto end;*/        free_vector(xits,1,n); 
     return ps;        free_vector(ptt,1,n); 
 }        free_vector(pt,1,n); 
         return; 
 /**************** Product of 2 matrices ******************/      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      for (j=1;j<=n;j++) { 
 {        ptt[j]=2.0*p[j]-pt[j]; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        xit[j]=p[j]-pt[j]; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        pt[j]=p[j]; 
   /* in, b, out are matrice of pointers which should have been initialized      } 
      before: only the contents of out is modified. The function returns      fptt=(*func)(ptt); 
      a pointer to pointers identical to out */      if (fptt < fp) { 
   long i, j, k;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for(i=nrl; i<= nrh; i++)        if (t < 0.0) { 
     for(k=ncolol; k<=ncoloh; k++)          linmin(p,xit,n,fret,func); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          for (j=1;j<=n;j++) { 
         out[i][k] +=in[i][j]*b[j][k];            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
   return out;          }
 }  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /************* Higher Matrix Product ***************/          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )            fprintf(ficlog," %.12e",xit[j]);
 {          }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          printf("\n");
      duration (i.e. until          fprintf(ficlog,"\n");
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  #endif
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        }
      (typically every 2 years instead of every month which is too big).      } 
      Model is determined by parameters x and covariates have to be    } 
      included manually here.  } 
   
      */  /**** Prevalence limit (stable prevalence)  ****************/
   
   int i, j, d, h, k;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double **out, cov[NCOVMAX];  {
   double **newm;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)    int i, ii,j,k;
     for (j=1;j<=nlstate+ndeath;j++){    double min, max, maxmin, maxmax,sumnew=0.;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double **matprod2();
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double **out, cov[NCOVMAX], **pmij();
     }    double **newm;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double agefin, delaymax=50 ; /* Max number of years to converge */
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){    for (ii=1;ii<=nlstate+ndeath;ii++)
       newm=savm;      for (j=1;j<=nlstate+ndeath;j++){
       /* Covariates have to be included here again */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       cov[1]=1.;      }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];     cov[1]=1.;
       for (k=1; k<=cptcovage;k++)   
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (k=1; k<=cptcovprod;k++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      newm=savm;
       /* Covariates have to be included here again */
        cov[2]=agefin;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        for (k=1; k<=cptcovn;k++) {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       savm=oldm;        }
       oldm=newm;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     }        for (k=1; k<=cptcovprod;k++)
     for(i=1; i<=nlstate+ndeath; i++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
          */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   } /* end h */  
   return po;      savm=oldm;
 }      oldm=newm;
       maxmax=0.;
       for(j=1;j<=nlstate;j++){
 /*************** log-likelihood *************/        min=1.;
 double func( double *x)        max=0.;
 {        for(i=1; i<=nlstate; i++) {
   int i, ii, j, k, mi, d, kk;          sumnew=0;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double **out;          prlim[i][j]= newm[i][j]/(1-sumnew);
   double sw; /* Sum of weights */          max=FMAX(max,prlim[i][j]);
   double lli; /* Individual log likelihood */          min=FMIN(min,prlim[i][j]);
   long ipmx;        }
   /*extern weight */        maxmin=max-min;
   /* We are differentiating ll according to initial status */        maxmax=FMAX(maxmax,maxmin);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      }
   /*for(i=1;i<imx;i++)      if(maxmax < ftolpl){
     printf(" %d\n",s[4][i]);        return prlim;
   */      }
   cov[1]=1.;    }
   }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*************** transition probabilities ***************/ 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for (ii=1;ii<=nlstate+ndeath;ii++)  {
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double s1, s2;
       for(d=0; d<dh[mi][i]; d++){    /*double t34;*/
         newm=savm;    int i,j,j1, nc, ii, jj;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {      for(i=1; i<= nlstate; i++){
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for(j=1; j<i;j++){
         }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                  /*s2 += param[i][j][nc]*cov[nc];*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         savm=oldm;        }
         oldm=newm;        ps[i][j]=s2;
                /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
              }
       } /* end mult */      for(j=i+1; j<=nlstate+ndeath;j++){
              for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       ipmx +=1;        }
       sw += weight[i];        ps[i][j]=s2;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      }
     } /* end of wave */    }
   } /* end of individual */      /*ps[3][2]=1;*/
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for(i=1; i<= nlstate; i++){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */       s1=0;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      for(j=1; j<i; j++)
   return -l;        s1+=exp(ps[i][j]);
 }      for(j=i+1; j<=nlstate+ndeath; j++)
         s1+=exp(ps[i][j]);
       ps[i][i]=1./(s1+1.);
 /*********** Maximum Likelihood Estimation ***************/      for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      for(j=i+1; j<=nlstate+ndeath; j++)
 {        ps[i][j]= exp(ps[i][j])*ps[i][i];
   int i,j, iter;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   double **xi,*delti;    } /* end i */
   double fret;  
   xi=matrix(1,npar,1,npar);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   for (i=1;i<=npar;i++)      for(jj=1; jj<= nlstate+ndeath; jj++){
     for (j=1;j<=npar;j++)        ps[ii][jj]=0;
       xi[i][j]=(i==j ? 1.0 : 0.0);        ps[ii][ii]=1;
   printf("Powell\n");      }
   powell(p,xi,npar,ftol,&iter,&fret,func);    }
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
 }       printf("%lf ",ps[ii][jj]);
      }
 /**** Computes Hessian and covariance matrix ***/      printf("\n ");
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      }
 {      printf("\n ");printf("%lf ",cov[2]);*/
   double  **a,**y,*x,pd;  /*
   double **hess;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   int i, j,jk;    goto end;*/
   int *indx;      return ps;
   }
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  /**************** Product of 2 matrices ******************/
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
   hess=matrix(1,npar,1,npar);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* in, b, out are matrice of pointers which should have been initialized 
   for (i=1;i<=npar;i++){       before: only the contents of out is modified. The function returns
     printf("%d",i);fflush(stdout);       a pointer to pointers identical to out */
     hess[i][i]=hessii(p,ftolhess,i,delti);    long i, j, k;
     /*printf(" %f ",p[i]);*/    for(i=nrl; i<= nrh; i++)
     /*printf(" %lf ",hess[i][i]);*/      for(k=ncolol; k<=ncoloh; k++)
   }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
            out[i][k] +=in[i][j]*b[j][k];
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {    return out;
       if (j>i) {  }
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      /************* Higher Matrix Product ***************/
         /*printf(" %lf ",hess[i][j]);*/  
       }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }  {
   }    /* Computes the transition matrix starting at age 'age' over 
   printf("\n");       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");       nhstepm*hstepm matrices. 
         Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   a=matrix(1,npar,1,npar);       (typically every 2 years instead of every month which is too big 
   y=matrix(1,npar,1,npar);       for the memory).
   x=vector(1,npar);       Model is determined by parameters x and covariates have to be 
   indx=ivector(1,npar);       included manually here. 
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];       */
   ludcmp(a,npar,indx,&pd);  
     int i, j, d, h, k;
   for (j=1;j<=npar;j++) {    double **out, cov[NCOVMAX];
     for (i=1;i<=npar;i++) x[i]=0;    double **newm;
     x[j]=1;  
     lubksb(a,npar,indx,x);    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=npar;i++){    for (i=1;i<=nlstate+ndeath;i++)
       matcov[i][j]=x[i];      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   printf("\n#Hessian matrix#\n");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=npar;i++) {    for(h=1; h <=nhstepm; h++){
     for (j=1;j<=npar;j++) {      for(d=1; d <=hstepm; d++){
       printf("%.3e ",hess[i][j]);        newm=savm;
     }        /* Covariates have to be included here again */
     printf("\n");        cov[1]=1.;
   }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /* Recompute Inverse */        for (k=1; k<=cptcovage;k++)
   for (i=1;i<=npar;i++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for (k=1; k<=cptcovprod;k++)
   ludcmp(a,npar,indx,&pd);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   /*  printf("\n#Hessian matrix recomputed#\n");  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for (j=1;j<=npar;j++) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     for (i=1;i<=npar;i++) x[i]=0;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     x[j]=1;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     lubksb(a,npar,indx,x);        savm=oldm;
     for (i=1;i<=npar;i++){        oldm=newm;
       y[i][j]=x[i];      }
       printf("%.3e ",y[i][j]);      for(i=1; i<=nlstate+ndeath; i++)
     }        for(j=1;j<=nlstate+ndeath;j++) {
     printf("\n");          po[i][j][h]=newm[i][j];
   }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   */           */
         }
   free_matrix(a,1,npar,1,npar);    } /* end h */
   free_matrix(y,1,npar,1,npar);    return po;
   free_vector(x,1,npar);  }
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);  
   /*************** log-likelihood *************/
   double func( double *x)
 }  {
     int i, ii, j, k, mi, d, kk;
 /*************** hessian matrix ****************/    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 double hessii( double x[], double delta, int theta, double delti[])    double **out;
 {    double sw; /* Sum of weights */
   int i;    double lli; /* Individual log likelihood */
   int l=1, lmax=20;    int s1, s2;
   double k1,k2;    double bbh, survp;
   double p2[NPARMAX+1];    long ipmx;
   double res;    /*extern weight */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    /* We are differentiating ll according to initial status */
   double fx;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int k=0,kmax=10;    /*for(i=1;i<imx;i++) 
   double l1;      printf(" %d\n",s[4][i]);
     */
   fx=func(x);    cov[1]=1.;
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
     l1=pow(10,l);  
     delts=delt;    if(mle==1){
     for(k=1 ; k <kmax; k=k+1){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       delt = delta*(l1*k);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       p2[theta]=x[theta] +delt;        for(mi=1; mi<= wav[i]-1; mi++){
       k1=func(p2)-fx;          for (ii=1;ii<=nlstate+ndeath;ii++)
       p2[theta]=x[theta]-delt;            for (j=1;j<=nlstate+ndeath;j++){
       k2=func(p2)-fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*res= (k1-2.0*fx+k2)/delt/delt; */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            }
                for(d=0; d<dh[mi][i]; d++){
 #ifdef DEBUG            newm=savm;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 #endif            for (kk=1; kk<=cptcovage;kk++) {
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            }
         k=kmax;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            savm=oldm;
         k=kmax; l=lmax*10.;            oldm=newm;
       }          } /* end mult */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        
         delts=delt;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }          /* But now since version 0.9 we anticipate for bias and large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   delti[theta]=delts;           * the nearest (and in case of equal distance, to the lowest) interval but now
   return res;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 }           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 double hessij( double x[], double delti[], int thetai,int thetaj)           * -stepm/2 to stepm/2 .
 {           * For stepm=1 the results are the same as for previous versions of Imach.
   int i;           * For stepm > 1 the results are less biased than in previous versions. 
   int l=1, l1, lmax=20;           */
   double k1,k2,k3,k4,res,fx;          s1=s[mw[mi][i]][i];
   double p2[NPARMAX+1];          s2=s[mw[mi+1][i]][i];
   int k;          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
   fx=func(x);           * is higher than the multiple of stepm and negative otherwise.
   for (k=1; k<=2; k++) {           */
     for (i=1;i<=npar;i++) p2[i]=x[i];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     p2[thetai]=x[thetai]+delti[thetai]/k;          if( s2 > nlstate){ 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     k1=func(p2)-fx;               to the likelihood is the probability to die between last step unit time and current 
                 step unit time, which is also the differences between probability to die before dh 
     p2[thetai]=x[thetai]+delti[thetai]/k;               and probability to die before dh-stepm . 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;               In version up to 0.92 likelihood was computed
     k2=func(p2)-fx;          as if date of death was unknown. Death was treated as any other
            health state: the date of the interview describes the actual state
     p2[thetai]=x[thetai]-delti[thetai]/k;          and not the date of a change in health state. The former idea was
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          to consider that at each interview the state was recorded
     k3=func(p2)-fx;          (healthy, disable or death) and IMaCh was corrected; but when we
            introduced the exact date of death then we should have modified
     p2[thetai]=x[thetai]-delti[thetai]/k;          the contribution of an exact death to the likelihood. This new
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          contribution is smaller and very dependent of the step unit
     k4=func(p2)-fx;          stepm. It is no more the probability to die between last interview
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          and month of death but the probability to survive from last
 #ifdef DEBUG          interview up to one month before death multiplied by the
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          probability to die within a month. Thanks to Chris
 #endif          Jackson for correcting this bug.  Former versions increased
   }          mortality artificially. The bad side is that we add another loop
   return res;          which slows down the processing. The difference can be up to 10%
 }          lower mortality.
             */
 /************** Inverse of matrix **************/            lli=log(out[s1][s2] - savm[s1][s2]);
 void ludcmp(double **a, int n, int *indx, double *d)          }else{
 {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int i,imax,j,k;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double big,dum,sum,temp;          } 
   double *vv;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
   vv=vector(1,n);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   *d=1.0;          ipmx +=1;
   for (i=1;i<=n;i++) {          sw += weight[i];
     big=0.0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (j=1;j<=n;j++)        } /* end of wave */
       if ((temp=fabs(a[i][j])) > big) big=temp;      } /* end of individual */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    }  else if(mle==2){
     vv[i]=1.0/big;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (j=1;j<=n;j++) {        for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1;i<j;i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       sum=a[i][j];            for (j=1;j<=nlstate+ndeath;j++){
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       a[i][j]=sum;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     big=0.0;          for(d=0; d<=dh[mi][i]; d++){
     for (i=j;i<=n;i++) {            newm=savm;
       sum=a[i][j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for (k=1;k<j;k++)            for (kk=1; kk<=cptcovage;kk++) {
         sum -= a[i][k]*a[k][j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       a[i][j]=sum;            }
       if ( (dum=vv[i]*fabs(sum)) >= big) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         big=dum;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         imax=i;            savm=oldm;
       }            oldm=newm;
     }          } /* end mult */
     if (j != imax) {        
       for (k=1;k<=n;k++) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         dum=a[imax][k];          /* But now since version 0.9 we anticipate for bias and large stepm.
         a[imax][k]=a[j][k];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         a[j][k]=dum;           * (in months) between two waves is not a multiple of stepm, we rounded to 
       }           * the nearest (and in case of equal distance, to the lowest) interval but now
       *d = -(*d);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       vv[imax]=vv[j];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     }           * probability in order to take into account the bias as a fraction of the way
     indx[j]=imax;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     if (a[j][j] == 0.0) a[j][j]=TINY;           * -stepm/2 to stepm/2 .
     if (j != n) {           * For stepm=1 the results are the same as for previous versions of Imach.
       dum=1.0/(a[j][j]);           * For stepm > 1 the results are less biased than in previous versions. 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           */
     }          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   free_vector(vv,1,n);  /* Doesn't work */          bbh=(double)bh[mi][i]/(double)stepm; 
 ;          /* bias is positive if real duration
 }           * is higher than the multiple of stepm and negative otherwise.
            */
 void lubksb(double **a, int n, int *indx, double b[])          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   int i,ii=0,ip,j;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   double sum;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
   for (i=1;i<=n;i++) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     ip=indx[i];          ipmx +=1;
     sum=b[ip];          sw += weight[i];
     b[ip]=b[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (ii)        } /* end of wave */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      } /* end of individual */
     else if (sum) ii=i;    }  else if(mle==3){  /* exponential inter-extrapolation */
     b[i]=sum;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=n;i>=1;i--) {        for(mi=1; mi<= wav[i]-1; mi++){
     sum=b[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            for (j=1;j<=nlstate+ndeath;j++){
     b[i]=sum/a[i][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            }
           for(d=0; d<dh[mi][i]; d++){
 /************ Frequencies ********************/            newm=savm;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {  /* Some frequencies */            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            }
   double ***freq; /* Frequencies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double *pp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double pos, k2, dateintsum=0,k2cpt=0;            savm=oldm;
   FILE *ficresp;            oldm=newm;
   char fileresp[FILENAMELENGTH];          } /* end mult */
          
   pp=vector(1,nlstate);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          /* But now since version 0.9 we anticipate for bias and large stepm.
   strcpy(fileresp,"p");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   strcat(fileresp,fileres);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   if((ficresp=fopen(fileresp,"w"))==NULL) {           * the nearest (and in case of equal distance, to the lowest) interval but now
     printf("Problem with prevalence resultfile: %s\n", fileresp);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     exit(0);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   }           * probability in order to take into account the bias as a fraction of the way
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   j1=0;           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
   j=cptcoveff;           * For stepm > 1 the results are less biased than in previous versions. 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           */
            s1=s[mw[mi][i]][i];
   for(k1=1; k1<=j;k1++){          s2=s[mw[mi+1][i]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){          bbh=(double)bh[mi][i]/(double)stepm; 
       j1++;          /* bias is positive if real duration
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           * is higher than the multiple of stepm and negative otherwise.
         scanf("%d", i);*/           */
       for (i=-1; i<=nlstate+ndeath; i++)            /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         for (jk=-1; jk<=nlstate+ndeath; jk++)            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for(m=agemin; m <= agemax+3; m++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             freq[i][jk][m]=0;          /*if(lli ==000.0)*/
                /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       dateintsum=0;          ipmx +=1;
       k2cpt=0;          sw += weight[i];
       for (i=1; i<=imx; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         bool=1;        } /* end of wave */
         if  (cptcovn>0) {      } /* end of individual */
           for (z1=1; z1<=cptcoveff; z1++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               bool=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         if (bool==1) {          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=firstpass; m<=lastpass; m++){            for (j=1;j<=nlstate+ndeath;j++){
             k2=anint[m][i]+(mint[m][i]/12.);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;            }
               if(agev[m][i]==1) agev[m][i]=agemax+2;          for(d=0; d<dh[mi][i]; d++){
               if (m<lastpass) {            newm=savm;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            for (kk=1; kk<=cptcovage;kk++) {
               }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                          }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          
                 dateintsum=dateintsum+k2;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                 k2cpt++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               }            savm=oldm;
             }            oldm=newm;
           }          } /* end mult */
         }        
       }          s1=s[mw[mi][i]][i];
                  s2=s[mw[mi+1][i]][i];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
       if  (cptcovn>0) {          }else{
         fprintf(ficresp, "\n#********** Variable ");            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(ficresp, "**********\n#");          ipmx +=1;
       }          sw += weight[i];
       for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       fprintf(ficresp, "\n");        } /* end of wave */
            } /* end of individual */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         if(i==(int)agemax+3)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           printf("Total");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else        for(mi=1; mi<= wav[i]-1; mi++){
           printf("Age %d", i);          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
           for(m=-1, pos=0; m <=0 ; m++)            newm=savm;
             pos += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if(pp[jk]>=1.e-10)            for (kk=1; kk<=cptcovage;kk++) {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           else            }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){            savm=oldm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            oldm=newm;
             pp[jk] += freq[jk][m][i];          } /* end mult */
         }        
           s1=s[mw[mi][i]][i];
         for(jk=1,pos=0; jk <=nlstate ; jk++)          s2=s[mw[mi+1][i]][i];
           pos += pp[jk];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
           if(pos>=1.e-5)          sw += weight[i];
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           else          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        } /* end of wave */
           if( i <= (int) agemax){      } /* end of individual */
             if(pos>=1.e-5){    } /* End of if */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
               probs[i][jk][j1]= pp[jk]/pos;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             }    return -l;
             else  }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
           }  /*************** log-likelihood *************/
         }  double funcone( double *x)
          {
         for(jk=-1; jk <=nlstate+ndeath; jk++)    /* Same as likeli but slower because of a lot of printf and if */
           for(m=-1; m <=nlstate+ndeath; m++)    int i, ii, j, k, mi, d, kk;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         if(i <= (int) agemax)    double **out;
           fprintf(ficresp,"\n");    double lli; /* Individual log likelihood */
         printf("\n");    double llt;
       }    int s1, s2;
     }    double bbh, survp;
   }    /*extern weight */
   dateintmean=dateintsum/k2cpt;    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   fclose(ficresp);    /*for(i=1;i<imx;i++) 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      printf(" %d\n",s[4][i]);
   free_vector(pp,1,nlstate);    */
      cov[1]=1.;
   /* End of Freq */  
 }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 /************ Prevalence ********************/    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {  /* Some frequencies */      for(mi=1; mi<= wav[i]-1; mi++){
          for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          for (j=1;j<=nlstate+ndeath;j++){
   double ***freq; /* Frequencies */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *pp;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double pos, k2;          }
         for(d=0; d<dh[mi][i]; d++){
   pp=vector(1,nlstate);          newm=savm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            for (kk=1; kk<=cptcovage;kk++) {
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   j1=0;          }
            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   j=cptcoveff;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          savm=oldm;
            oldm=newm;
   for(k1=1; k1<=j;k1++){        } /* end mult */
     for(i1=1; i1<=ncodemax[k1];i1++){        
       j1++;        s1=s[mw[mi][i]][i];
              s2=s[mw[mi+1][i]][i];
       for (i=-1; i<=nlstate+ndeath; i++)          bbh=(double)bh[mi][i]/(double)stepm; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)          /* bias is positive if real duration
           for(m=agemin; m <= agemax+3; m++)         * is higher than the multiple of stepm and negative otherwise.
             freq[i][jk][m]=0;         */
              if( s2 > nlstate && (mle <5) ){  /* Jackson */
       for (i=1; i<=imx; i++) {          lli=log(out[s1][s2] - savm[s1][s2]);
         bool=1;        } else if (mle==1){
         if  (cptcovn>0) {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           for (z1=1; z1<=cptcoveff; z1++)        } else if(mle==2){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
               bool=0;        } else if(mle==3){  /* exponential inter-extrapolation */
         }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         if (bool==1) {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           for(m=firstpass; m<=lastpass; m++){          lli=log(out[s1][s2]); /* Original formula */
             k2=anint[m][i]+(mint[m][i]/12.);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          lli=log(out[s1][s2]); /* Original formula */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        } /* End of if */
               if(agev[m][i]==1) agev[m][i]=agemax+2;        ipmx +=1;
               if (m<lastpass) {        sw += weight[i];
                 if (calagedate>0)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                 else        if(globpr){
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];   %10.6f %10.6f %10.6f ", \
               }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
             }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         }            llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       for(i=(int)agemin; i <= (int)agemax+3; i++){          }
         for(jk=1; jk <=nlstate ; jk++){          fprintf(ficresilk," %10.6f\n", -llt);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        }
             pp[jk] += freq[jk][m][i];      } /* end of wave */
         }    } /* end of individual */
         for(jk=1; jk <=nlstate ; jk++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           for(m=-1, pos=0; m <=0 ; m++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             pos += freq[jk][m][i];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         }    if(globpr==0){ /* First time we count the contributions and weights */
              gipmx=ipmx;
         for(jk=1; jk <=nlstate ; jk++){      gsw=sw;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    }
             pp[jk] += freq[jk][m][i];    return -l;
         }  }
          
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  char *subdirf(char fileres[])
          {
         for(jk=1; jk <=nlstate ; jk++){        
           if( i <= (int) agemax){    strcpy(tmpout,optionfilefiname);
             if(pos>=1.e-5){    strcat(tmpout,"/"); /* Add to the right */
               probs[i][jk][j1]= pp[jk]/pos;    strcat(tmpout,fileres);
             }    return tmpout;
           }  }
         }  
          char *subdirf2(char fileres[], char *preop)
       }  {
     }    
   }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
      strcat(tmpout,preop);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    strcat(tmpout,fileres);
   free_vector(pp,1,nlstate);    return tmpout;
    }
 }  /* End of Freq */  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
 /************* Waves Concatenation ***************/    
     strcpy(tmpout,optionfilefiname);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    strcat(tmpout,"/");
 {    strcat(tmpout,preop);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    strcat(tmpout,preop2);
      Death is a valid wave (if date is known).    strcat(tmpout,fileres);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    return tmpout;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  }
      and mw[mi+1][i]. dh depends on stepm.  
      */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
   int i, mi, m;    /* This routine should help understanding what is done with 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;       the selection of individuals/waves and
      double sum=0., jmean=0.;*/       to check the exact contribution to the likelihood.
        Plotting could be done.
   int j, k=0,jk, ju, jl;     */
   double sum=0.;    int k;
   jmin=1e+5;  
   jmax=-1;    if(*globpri !=0){ /* Just counts and sums, no printings */
   jmean=0.;      strcpy(fileresilk,"ilk"); 
   for(i=1; i<=imx; i++){      strcat(fileresilk,fileres);
     mi=0;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     m=firstpass;        printf("Problem with resultfile: %s\n", fileresilk);
     while(s[m][i] <= nlstate){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       if(s[m][i]>=1)      }
         mw[++mi][i]=m;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       if(m >=lastpass)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         break;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       else      for(k=1; k<=nlstate; k++) 
         m++;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     }/* end while */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     if (s[m][i] > nlstate){    }
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    *fretone=(*funcone)(p);
          /* Only death is a correct wave */    if(*globpri !=0){
       mw[mi][i]=m;      fclose(ficresilk);
     }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
     wav[i]=mi;    } 
     if(mi==0)    return;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  }
   }  
   
   for(i=1; i<=imx; i++){  /*********** Maximum Likelihood Estimation ***************/
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         dh[mi][i]=1;  {
       else{    int i,j, iter;
         if (s[mw[mi+1][i]][i] > nlstate) {    double **xi;
           if (agedc[i] < 2*AGESUP) {    double fret;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    double fretone; /* Only one call to likelihood */
           if(j==0) j=1;  /* Survives at least one month after exam */    char filerespow[FILENAMELENGTH];
           k=k+1;    xi=matrix(1,npar,1,npar);
           if (j >= jmax) jmax=j;    for (i=1;i<=npar;i++)
           if (j <= jmin) jmin=j;      for (j=1;j<=npar;j++)
           sum=sum+j;        xi[i][j]=(i==j ? 1.0 : 0.0);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
           }    strcpy(filerespow,"pow"); 
         }    strcat(filerespow,fileres);
         else{    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      printf("Problem with resultfile: %s\n", filerespow);
           k=k+1;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           if (j >= jmax) jmax=j;    }
           else if (j <= jmin)jmin=j;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    for (i=1;i<=nlstate;i++)
           sum=sum+j;      for(j=1;j<=nlstate+ndeath;j++)
         }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         jk= j/stepm;    fprintf(ficrespow,"\n");
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;    powell(p,xi,npar,ftol,&iter,&fret,func);
         if(jl <= -ju)  
           dh[mi][i]=jk;    fclose(ficrespow);
         else    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           dh[mi][i]=jk+1;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         if(dh[mi][i]==0)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           dh[mi][i]=1; /* At least one step */  
       }  }
     }  
   }  /**** Computes Hessian and covariance matrix ***/
   jmean=sum/k;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  {
  }    double  **a,**y,*x,pd;
 /*********** Tricode ****************************/    double **hess;
 void tricode(int *Tvar, int **nbcode, int imx)    int i, j,jk;
 {    int *indx;
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;    double hessii(double p[], double delta, int theta, double delti[]);
   cptcoveff=0;    double hessij(double p[], double delti[], int i, int j);
      void lubksb(double **a, int npar, int *indx, double b[]) ;
   for (k=0; k<19; k++) Ndum[k]=0;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   for (k=1; k<=7; k++) ncodemax[k]=0;  
     hess=matrix(1,npar,1,npar);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {    printf("\nCalculation of the hessian matrix. Wait...\n");
       ij=(int)(covar[Tvar[j]][i]);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       Ndum[ij]++;    for (i=1;i<=npar;i++){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      printf("%d",i);fflush(stdout);
       if (ij > cptcode) cptcode=ij;      fprintf(ficlog,"%d",i);fflush(ficlog);
     }      hess[i][i]=hessii(p,ftolhess,i,delti);
       /*printf(" %f ",p[i]);*/
     for (i=0; i<=cptcode; i++) {      /*printf(" %lf ",hess[i][i]);*/
       if(Ndum[i]!=0) ncodemax[j]++;    }
     }    
     ij=1;    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
         if (j>i) { 
     for (i=1; i<=ncodemax[j]; i++) {          printf(".%d%d",i,j);fflush(stdout);
       for (k=0; k<=19; k++) {          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         if (Ndum[k] != 0) {          hess[i][j]=hessij(p,delti,i,j);
           nbcode[Tvar[j]][ij]=k;          hess[j][i]=hess[i][j];    
                    /*printf(" %lf ",hess[i][j]);*/
           ij++;        }
         }      }
         if (ij > ncodemax[j]) break;    }
       }      printf("\n");
     }    fprintf(ficlog,"\n");
   }    
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
  for (k=0; k<19; k++) Ndum[k]=0;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
  for (i=1; i<=ncovmodel-2; i++) {    a=matrix(1,npar,1,npar);
       ij=Tvar[i];    y=matrix(1,npar,1,npar);
       Ndum[ij]++;    x=vector(1,npar);
     }    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
  ij=1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
  for (i=1; i<=10; i++) {    ludcmp(a,npar,indx,&pd);
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i;    for (j=1;j<=npar;j++) {
      ij++;      for (i=1;i<=npar;i++) x[i]=0;
    }      x[j]=1;
  }      lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
     cptcoveff=ij-1;        matcov[i][j]=x[i];
 }      }
     }
 /*********** Health Expectancies ****************/  
     printf("\n#Hessian matrix#\n");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
 {      for (j=1;j<=npar;j++) { 
   /* Health expectancies */        printf("%.3e ",hess[i][j]);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double age, agelim, hf;      }
   double ***p3mat,***varhe;      printf("\n");
   double **dnewm,**doldm;      fprintf(ficlog,"\n");
   double *xp;    }
   double **gp, **gm;  
   double ***gradg, ***trgradg;    /* Recompute Inverse */
   int theta;    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    ludcmp(a,npar,indx,&pd);
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate*2,1,npar);    /*  printf("\n#Hessian matrix recomputed#\n");
   doldm=matrix(1,nlstate*2,1,nlstate*2);  
      for (j=1;j<=npar;j++) {
   fprintf(ficreseij,"# Health expectancies\n");      for (i=1;i<=npar;i++) x[i]=0;
   fprintf(ficreseij,"# Age");      x[j]=1;
   for(i=1; i<=nlstate;i++)      lubksb(a,npar,indx,x);
     for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++){ 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        y[i][j]=x[i];
   fprintf(ficreseij,"\n");        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
   if(estepm < stepm){      }
     printf ("Problem %d lower than %d\n",estepm, stepm);      printf("\n");
   }      fprintf(ficlog,"\n");
   else  hstepm=estepm;      }
   /* We compute the life expectancy from trapezoids spaced every estepm months    */
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them    free_matrix(a,1,npar,1,npar);
    * we are calculating an estimate of the Life Expectancy assuming a linear    free_matrix(y,1,npar,1,npar);
    * progression inbetween and thus overestimating or underestimating according    free_vector(x,1,npar);
    * to the curvature of the survival function. If, for the same date, we    free_ivector(indx,1,npar);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    free_matrix(hess,1,npar,1,npar);
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */  }
   
   /* For example we decided to compute the life expectancy with the smallest unit */  /*************** hessian matrix ****************/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  double hessii( double x[], double delta, int theta, double delti[])
      nhstepm is the number of hstepm from age to agelim  {
      nstepm is the number of stepm from age to agelin.    int i;
      Look at hpijx to understand the reason of that which relies in memory size    int l=1, lmax=20;
      and note for a fixed period like estepm months */    double k1,k2;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double p2[NPARMAX+1];
      survival function given by stepm (the optimization length). Unfortunately it    double res;
      means that if the survival funtion is printed only each two years of age and if    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double fx;
      results. So we changed our mind and took the option of the best precision.    int k=0,kmax=10;
   */    double l1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
     fx=func(x);
   agelim=AGESUP;    for (i=1;i<=npar;i++) p2[i]=x[i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for(l=0 ; l <=lmax; l++){
     /* nhstepm age range expressed in number of stepm */      l1=pow(10,l);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      delts=delt;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      for(k=1 ; k <kmax; k=k+1){
     /* if (stepm >= YEARM) hstepm=1;*/        delt = delta*(l1*k);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        p2[theta]=x[theta] +delt;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        k1=func(p2)-fx;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        p2[theta]=x[theta]-delt;
     gp=matrix(0,nhstepm,1,nlstate*2);        k2=func(p2)-fx;
     gm=matrix(0,nhstepm,1,nlstate*2);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  #ifdef DEBUG
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
          fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     /* Computing Variances of health expectancies */          k=kmax;
         }
      for(theta=1; theta <=npar; theta++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       for(i=1; i<=npar; i++){          k=kmax; l=lmax*10.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
       }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            delts=delt;
          }
       cptj=0;      }
       for(j=1; j<= nlstate; j++){    }
         for(i=1; i<=nlstate; i++){    delti[theta]=delts;
           cptj=cptj+1;    return res; 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  }
           }  
         }  double hessij( double x[], double delti[], int thetai,int thetaj)
       }  {
          int i;
          int l=1, l1, lmax=20;
       for(i=1; i<=npar; i++)    double k1,k2,k3,k4,res,fx;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double p2[NPARMAX+1];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int k;
        
       cptj=0;    fx=func(x);
       for(j=1; j<= nlstate; j++){    for (k=1; k<=2; k++) {
         for(i=1;i<=nlstate;i++){      for (i=1;i<=npar;i++) p2[i]=x[i];
           cptj=cptj+1;      p2[thetai]=x[thetai]+delti[thetai]/k;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      k1=func(p2)-fx;
           }    
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(j=1; j<= nlstate*2; j++)      k2=func(p2)-fx;
         for(h=0; h<=nhstepm-1; h++){    
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      p2[thetai]=x[thetai]-delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      }      k3=func(p2)-fx;
        
 /* End theta */      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
      for(h=0; h<=nhstepm-1; h++)  #ifdef DEBUG
       for(j=1; j<=nlstate*2;j++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for(theta=1; theta <=npar; theta++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           trgradg[h][j][theta]=gradg[h][theta][j];  #endif
          }
     return res;
      for(i=1;i<=nlstate*2;i++)  }
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
      printf("%d|",(int)age);fflush(stdout);  { 
      for(h=0;h<=nhstepm-1;h++){    int i,imax,j,k; 
       for(k=0;k<=nhstepm-1;k++){    double big,dum,sum,temp; 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    double *vv; 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);   
         for(i=1;i<=nlstate*2;i++)    vv=vector(1,n); 
           for(j=1;j<=nlstate*2;j++)    *d=1.0; 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    for (i=1;i<=n;i++) { 
       }      big=0.0; 
     }      for (j=1;j<=n;j++) 
     /* Computing expectancies */        if ((temp=fabs(a[i][j])) > big) big=temp; 
     for(i=1; i<=nlstate;i++)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(j=1; j<=nlstate;j++)      vv[i]=1.0/big; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    } 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    for (j=1;j<=n;j++) { 
                for (i=1;i<j;i++) { 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         }        a[i][j]=sum; 
       } 
     fprintf(ficreseij,"%3.0f",age );      big=0.0; 
     cptj=0;      for (i=j;i<=n;i++) { 
     for(i=1; i<=nlstate;i++)        sum=a[i][j]; 
       for(j=1; j<=nlstate;j++){        for (k=1;k<j;k++) 
         cptj++;          sum -= a[i][k]*a[k][j]; 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        a[i][j]=sum; 
       }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     fprintf(ficreseij,"\n");          big=dum; 
              imax=i; 
     free_matrix(gm,0,nhstepm,1,nlstate*2);        } 
     free_matrix(gp,0,nhstepm,1,nlstate*2);      } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      if (j != imax) { 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        for (k=1;k<=n;k++) { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          dum=a[imax][k]; 
   }          a[imax][k]=a[j][k]; 
   printf("\n");          a[j][k]=dum; 
         } 
   free_vector(xp,1,npar);        *d = -(*d); 
   free_matrix(dnewm,1,nlstate*2,1,npar);        vv[imax]=vv[j]; 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      } 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      indx[j]=imax; 
 }      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
 /************ Variance ******************/        dum=1.0/(a[j][j]); 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 {      } 
   /* Variance of health expectancies */    } 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    free_vector(vv,1,n);  /* Doesn't work */
   double **newm;  ;
   double **dnewm,**doldm;  } 
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;  void lubksb(double **a, int n, int *indx, double b[]) 
   double *xp;  { 
   double **gp, **gm;    int i,ii=0,ip,j; 
   double ***gradg, ***trgradg;    double sum; 
   double ***p3mat;   
   double age,agelim, hf;    for (i=1;i<=n;i++) { 
   int theta;      ip=indx[i]; 
       sum=b[ip]; 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      b[ip]=b[i]; 
   fprintf(ficresvij,"# Age");      if (ii) 
   for(i=1; i<=nlstate;i++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     for(j=1; j<=nlstate;j++)      else if (sum) ii=i; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      b[i]=sum; 
   fprintf(ficresvij,"\n");    } 
     for (i=n;i>=1;i--) { 
   xp=vector(1,npar);      sum=b[i]; 
   dnewm=matrix(1,nlstate,1,npar);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   doldm=matrix(1,nlstate,1,nlstate);      b[i]=sum/a[i][i]; 
      } 
   if(estepm < stepm){  } 
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  /************ Frequencies ********************/
   else  hstepm=estepm;    void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   /* For example we decided to compute the life expectancy with the smallest unit */  {  /* Some frequencies */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    
      nhstepm is the number of hstepm from age to agelim    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      nstepm is the number of stepm from age to agelin.    int first;
      Look at hpijx to understand the reason of that which relies in memory size    double ***freq; /* Frequencies */
      and note for a fixed period like k years */    double *pp, **prop;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      survival function given by stepm (the optimization length). Unfortunately it    FILE *ficresp;
      means that if the survival funtion is printed only each two years of age and if    char fileresp[FILENAMELENGTH];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    
      results. So we changed our mind and took the option of the best precision.    pp=vector(1,nlstate);
   */    prop=matrix(1,nlstate,iagemin,iagemax+3);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    strcpy(fileresp,"p");
   agelim = AGESUP;    strcat(fileresp,fileres);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    if((ficresp=fopen(fileresp,"w"))==NULL) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      printf("Problem with prevalence resultfile: %s\n", fileresp);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      exit(0);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    }
     gp=matrix(0,nhstepm,1,nlstate);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     gm=matrix(0,nhstepm,1,nlstate);    j1=0;
     
     for(theta=1; theta <=npar; theta++){    j=cptcoveff;
       for(i=1; i<=npar; i++){ /* Computes gradient */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    first=1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
       if (popbased==1) {        j1++;
         for(i=1; i<=nlstate;i++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           prlim[i][i]=probs[(int)age][i][ij];          scanf("%d", i);*/
       }        for (i=-1; i<=nlstate+ndeath; i++)  
            for (jk=-1; jk<=nlstate+ndeath; jk++)  
       for(j=1; j<= nlstate; j++){            for(m=iagemin; m <= iagemax+3; m++)
         for(h=0; h<=nhstepm; h++){              freq[i][jk][m]=0;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      for (i=1; i<=nlstate; i++)  
         }        for(m=iagemin; m <= iagemax+3; m++)
       }          prop[i][m]=0;
            
       for(i=1; i<=npar; i++) /* Computes gradient */        dateintsum=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        k2cpt=0;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (i=1; i<=imx; i++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          bool=1;
            if  (cptcovn>0) {
       if (popbased==1) {            for (z1=1; z1<=cptcoveff; z1++) 
         for(i=1; i<=nlstate;i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           prlim[i][i]=probs[(int)age][i][ij];                bool=0;
       }          }
           if (bool==1){
       for(j=1; j<= nlstate; j++){            for(m=firstpass; m<=lastpass; m++){
         for(h=0; h<=nhstepm; h++){              k2=anint[m][i]+(mint[m][i]/12.);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
       for(j=1; j<= nlstate; j++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         for(h=0; h<=nhstepm; h++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                }
         }                
     } /* End theta */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);                  k2cpt++;
                 }
     for(h=0; h<=nhstepm; h++)                /*}*/
       for(j=1; j<=nlstate;j++)            }
         for(theta=1; theta <=npar; theta++)          }
           trgradg[h][j][theta]=gradg[h][theta][j];        }
          
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)        if  (cptcovn>0) {
         vareij[i][j][(int)age] =0.;          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(h=0;h<=nhstepm;h++){          fprintf(ficresp, "**********\n#");
       for(k=0;k<=nhstepm;k++){        }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        for(i=1; i<=nlstate;i++) 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         for(i=1;i<=nlstate;i++)        fprintf(ficresp, "\n");
           for(j=1;j<=nlstate;j++)        
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        for(i=iagemin; i <= iagemax+3; i++){
       }          if(i==iagemax+3){
     }            fprintf(ficlog,"Total");
           }else{
     fprintf(ficresvij,"%.0f ",age );            if(first==1){
     for(i=1; i<=nlstate;i++)              first=0;
       for(j=1; j<=nlstate;j++){              printf("See log file for details...\n");
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            }
       }            fprintf(ficlog,"Age %d", i);
     fprintf(ficresvij,"\n");          }
     free_matrix(gp,0,nhstepm,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     free_matrix(gm,0,nhstepm,1,nlstate);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              pp[jk] += freq[jk][m][i]; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(jk=1; jk <=nlstate ; jk++){
   } /* End age */            for(m=-1, pos=0; m <=0 ; m++)
                pos += freq[jk][m][i];
   free_vector(xp,1,npar);            if(pp[jk]>=1.e-10){
   free_matrix(doldm,1,nlstate,1,npar);              if(first==1){
   free_matrix(dnewm,1,nlstate,1,nlstate);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
 }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
 /************ Variance of prevlim ******************/              if(first==1)
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   /* Variance of prevalence limit */            }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          }
   double **newm;  
   double **dnewm,**doldm;          for(jk=1; jk <=nlstate ; jk++){
   int i, j, nhstepm, hstepm;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   int k, cptcode;              pp[jk] += freq[jk][m][i];
   double *xp;          }       
   double *gp, *gm;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double **gradg, **trgradg;            pos += pp[jk];
   double age,agelim;            posprop += prop[jk][i];
   int theta;          }
              for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");            if(pos>=1.e-5){
   fprintf(ficresvpl,"# Age");              if(first==1)
   for(i=1; i<=nlstate;i++)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficresvpl," %1d-%1d",i,i);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fprintf(ficresvpl,"\n");            }else{
               if(first==1)
   xp=vector(1,npar);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   dnewm=matrix(1,nlstate,1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   doldm=matrix(1,nlstate,1,nlstate);            }
              if( i <= iagemax){
   hstepm=1*YEARM; /* Every year of age */              if(pos>=1.e-5){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   agelim = AGESUP;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              }
     if (stepm >= YEARM) hstepm=1;              else
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     gradg=matrix(1,npar,1,nlstate);            }
     gp=vector(1,nlstate);          }
     gm=vector(1,nlstate);          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
     for(theta=1; theta <=npar; theta++){            for(m=-1; m <=nlstate+ndeath; m++)
       for(i=1; i<=npar; i++){ /* Computes gradient */              if(freq[jk][m][i] !=0 ) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              if(first==1)
       }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(i=1;i<=nlstate;i++)              }
         gp[i] = prlim[i][i];          if(i <= iagemax)
                fprintf(ficresp,"\n");
       for(i=1; i<=npar; i++) /* Computes gradient */          if(first==1)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            printf("Others in log...\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficlog,"\n");
       for(i=1;i<=nlstate;i++)        }
         gm[i] = prlim[i][i];      }
     }
       for(i=1;i<=nlstate;i++)    dateintmean=dateintsum/k2cpt; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];   
     } /* End theta */    fclose(ficresp);
     free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     trgradg =matrix(1,nlstate,1,npar);    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     for(j=1; j<=nlstate;j++)    /* End of Freq */
       for(theta=1; theta <=npar; theta++)  }
         trgradg[j][theta]=gradg[theta][j];  
   /************ Prevalence ********************/
     for(i=1;i<=nlstate;i++)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       varpl[i][(int)age] =0.;  {  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     for(i=1;i<=nlstate;i++)       We still use firstpass and lastpass as another selection.
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    */
    
     fprintf(ficresvpl,"%.0f ",age );    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     for(i=1; i<=nlstate;i++)    double ***freq; /* Frequencies */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double *pp, **prop;
     fprintf(ficresvpl,"\n");    double pos,posprop; 
     free_vector(gp,1,nlstate);    double  y2; /* in fractional years */
     free_vector(gm,1,nlstate);    int iagemin, iagemax;
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    iagemin= (int) agemin;
   } /* End age */    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
   free_vector(xp,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   free_matrix(doldm,1,nlstate,1,npar);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   free_matrix(dnewm,1,nlstate,1,nlstate);    j1=0;
     
 }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 /************ Variance of one-step probabilities  ******************/    
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    for(k1=1; k1<=j;k1++){
 {      for(i1=1; i1<=ncodemax[k1];i1++){
   int i, j,  i1, k1, l1;        j1++;
   int k2, l2, j1,  z1;        
   int k=0,l, cptcode;        for (i=1; i<=nlstate; i++)  
   int first=1;          for(m=iagemin; m <= iagemax+3; m++)
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;            prop[i][m]=0.0;
   double **dnewm,**doldm;       
   double *xp;        for (i=1; i<=imx; i++) { /* Each individual */
   double *gp, *gm;          bool=1;
   double **gradg, **trgradg;          if  (cptcovn>0) {
   double **mu;            for (z1=1; z1<=cptcoveff; z1++) 
   double age,agelim, cov[NCOVMAX];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */                bool=0;
   int theta;          } 
   char fileresprob[FILENAMELENGTH];          if (bool==1) { 
   char fileresprobcov[FILENAMELENGTH];            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   char fileresprobcor[FILENAMELENGTH];              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   double ***varpij;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   strcpy(fileresprob,"prob");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   strcat(fileresprob,fileres);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     printf("Problem with resultfile: %s\n", fileresprob);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                  prop[s[m][i]][iagemax+3] += weight[i]; 
   strcpy(fileresprobcov,"probcov");                } 
   strcat(fileresprobcov,fileres);              }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {            } /* end selection of waves */
     printf("Problem with resultfile: %s\n", fileresprobcov);          }
   }        }
   strcpy(fileresprobcor,"probcor");        for(i=iagemin; i <= iagemax+3; i++){  
   strcat(fileresprobcor,fileres);          
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     printf("Problem with resultfile: %s\n", fileresprobcor);            posprop += prop[jk][i]; 
   }          } 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          for(jk=1; jk <=nlstate ; jk++){     
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            if( i <=  iagemax){ 
                if(posprop>=1.e-5){ 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");                probs[i][jk][j1]= prop[jk][i]/posprop;
   fprintf(ficresprob,"# Age");              } 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");            } 
   fprintf(ficresprobcov,"# Age");          }/* end jk */ 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        }/* end i */ 
   fprintf(ficresprobcov,"# Age");      } /* end i1 */
     } /* end k1 */
     
   for(i=1; i<=nlstate;i++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     for(j=1; j<=(nlstate+ndeath);j++){    /*free_vector(pp,1,nlstate);*/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  }  /* End of prevalence */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  
     }    /************* Waves Concatenation ***************/
   fprintf(ficresprob,"\n");  
   fprintf(ficresprobcov,"\n");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   fprintf(ficresprobcor,"\n");  {
   xp=vector(1,npar);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);       Death is a valid wave (if date is known).
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);       and mw[mi+1][i]. dh depends on stepm.
   first=1;       */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    int i, mi, m;
     exit(0);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   }       double sum=0., jmean=0.;*/
   else{    int first;
     fprintf(ficgp,"\n# Routine varprob");    int j, k=0,jk, ju, jl;
   }    double sum=0.;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    first=0;
     printf("Problem with html file: %s\n", optionfilehtm);    jmin=1e+5;
     exit(0);    jmax=-1;
   }    jmean=0.;
   else{    for(i=1; i<=imx; i++){
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");      mi=0;
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      m=firstpass;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      while(s[m][i] <= nlstate){
         if(s[m][i]>=1)
   }          mw[++mi][i]=m;
   cov[1]=1;        if(m >=lastpass)
   j=cptcoveff;          break;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        else
   j1=0;          m++;
   for(k1=1; k1<=1;k1++){      }/* end while */
     for(i1=1; i1<=ncodemax[k1];i1++){      if (s[m][i] > nlstate){
     j1++;        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
     if  (cptcovn>0) {           /* Only death is a correct wave */
       fprintf(ficresprob, "\n#********** Variable ");        mw[mi][i]=m;
       fprintf(ficresprobcov, "\n#********** Variable ");      }
       fprintf(ficgp, "\n#********** Variable ");  
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");      wav[i]=mi;
       fprintf(ficresprobcor, "\n#********** Variable ");      if(mi==0){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if(first==0){
       fprintf(ficresprob, "**********\n#");          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          first=1;
       fprintf(ficresprobcov, "**********\n#");        }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if(first==1){
       fprintf(ficgp, "**********\n#");          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
       fprintf(ficgp, "**********\n#");      } /* end mi==0 */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    } /* End individuals */
       fprintf(fichtm, "**********\n#");  
     }    for(i=1; i<=imx; i++){
          for(mi=1; mi<wav[i];mi++){
       for (age=bage; age<=fage; age ++){        if (stepm <=0)
         cov[2]=age;          dh[mi][i]=1;
         for (k=1; k<=cptcovn;k++) {        else{
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         }            if (agedc[i] < 2*AGESUP) {
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         for (k=1; k<=cptcovprod;k++)              if(j==0) j=1;  /* Survives at least one month after exam */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              else if(j<0){
                        printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));                j=1; /* Careful Patch */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         gp=vector(1,(nlstate)*(nlstate+ndeath));                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         gm=vector(1,(nlstate)*(nlstate+ndeath));                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                  }
         for(theta=1; theta <=npar; theta++){              k=k+1;
           for(i=1; i<=npar; i++)              if (j >= jmax) jmax=j;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              if (j <= jmin) jmin=j;
                        sum=sum+j;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                        /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           k=0;            }
           for(i=1; i<= (nlstate); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){          else{
               k=k+1;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
               gp[k]=pmmij[i][j];            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }            k=k+1;
           }            if (j >= jmax) jmax=j;
                      else if (j <= jmin)jmin=j;
           for(i=1; i<=npar; i++)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                if(j<0){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           k=0;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           for(i=1; i<=(nlstate); i++){            }
             for(j=1; j<=(nlstate+ndeath);j++){            sum=sum+j;
               k=k+1;          }
               gm[k]=pmmij[i][j];          jk= j/stepm;
             }          jl= j -jk*stepm;
           }          ju= j -(jk+1)*stepm;
                if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            if(jl==0){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                dh[mi][i]=jk;
         }              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)                    * at the price of an extra matrix product in likelihood */
           for(theta=1; theta <=npar; theta++)              dh[mi][i]=jk+1;
             trgradg[j][theta]=gradg[theta][j];              bh[mi][i]=ju;
                    }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          }else{
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            if(jl <= -ju){
                      dh[mi][i]=jk;
         pmij(pmmij,cov,ncovmodel,x,nlstate);              bh[mi][i]=jl;       /* bias is positive if real duration
                                           * is higher than the multiple of stepm and negative otherwise.
         k=0;                                   */
         for(i=1; i<=(nlstate); i++){            }
           for(j=1; j<=(nlstate+ndeath);j++){            else{
             k=k+1;              dh[mi][i]=jk+1;
             mu[k][(int) age]=pmmij[i][j];              bh[mi][i]=ju;
           }            }
         }            if(dh[mi][i]==0){
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              dh[mi][i]=1; /* At least one step */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)              bh[mi][i]=ju; /* At least one step */
             varpij[i][j][(int)age] = doldm[i][j];              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
         /*printf("\n%d ",(int)age);          } /* end if mle */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      } /* end wave */
      }*/    }
     jmean=sum/k;
         fprintf(ficresprob,"\n%d ",(int)age);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         fprintf(ficresprobcov,"\n%d ",(int)age);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         fprintf(ficresprobcor,"\n%d ",(int)age);   }
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  /*********** Tricode ****************************/
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  void tricode(int *Tvar, int **nbcode, int imx)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  {
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    int Ndum[20],ij=1, k, j, i, maxncov=19;
         }    int cptcode=0;
         i=0;    cptcoveff=0; 
         for (k=1; k<=(nlstate);k++){   
           for (l=1; l<=(nlstate+ndeath);l++){    for (k=0; k<maxncov; k++) Ndum[k]=0;
             i=i++;    for (k=1; k<=7; k++) ncodemax[k]=0;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             for (j=1; j<=i;j++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);                                 modality*/ 
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
             }        Ndum[ij]++; /*store the modality */
           }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         }/* end of loop for state */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       } /* end of loop for age */                                         Tvar[j]. If V=sex and male is 0 and 
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/                                         female is 1, then  cptcode=1.*/
       for (k1=1; k1<=(nlstate);k1++){      }
         for (l1=1; l1<=(nlstate+ndeath);l1++){  
           if(l1==k1) continue;      for (i=0; i<=cptcode; i++) {
           i=(k1-1)*(nlstate+ndeath)+l1;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           for (k2=1; k2<=(nlstate);k2++){      }
             for (l2=1; l2<=(nlstate+ndeath);l2++){  
               if(l2==k2) continue;      ij=1; 
               j=(k2-1)*(nlstate+ndeath)+l2;      for (i=1; i<=ncodemax[j]; i++) {
               if(j<=i) continue;        for (k=0; k<= maxncov; k++) {
               for (age=bage; age<=fage; age ++){          if (Ndum[k] != 0) {
                 if ((int)age %5==0){            nbcode[Tvar[j]][ij]=k; 
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;            
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            ij++;
                   mu1=mu[i][(int) age]/stepm*YEARM ;          }
                   mu2=mu[j][(int) age]/stepm*YEARM;          if (ij > ncodemax[j]) break; 
                   /* Computing eigen value of matrix of covariance */        }  
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      } 
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    }  
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);  
                   /* Eigen vectors */   for (k=0; k< maxncov; k++) Ndum[k]=0;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  
                   v21=sqrt(1.-v11*v11);   for (i=1; i<=ncovmodel-2; i++) { 
                   v12=-v21;     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
                   v22=v11;     ij=Tvar[i];
                   /*printf(fignu*/     Ndum[ij]++;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */   }
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */  
                   if(first==1){   ij=1;
                     first=0;   for (i=1; i<= maxncov; i++) {
                     fprintf(ficgp,"\nset parametric;set nolabel");     if((Ndum[i]!=0) && (i<=ncovcol)){
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);       Tvaraff[ij]=i; /*For printing */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");       ij++;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);     }
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);   }
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);   
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);   cptcoveff=ij-1; /*Number of simple covariates*/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  /*********** Health Expectancies ****************/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  
                   }else{  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
                     first=0;  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  {
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    /* Health expectancies */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    double age, agelim, hf;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    double ***p3mat,***varhe;
                   }/* if first */    double **dnewm,**doldm;
                 } /* age mod 5 */    double *xp;
               } /* end loop age */    double **gp, **gm;
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);    double ***gradg, ***trgradg;
               first=1;    int theta;
             } /*l12 */  
           } /* k12 */    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         } /*l1 */    xp=vector(1,npar);
       }/* k1 */    dnewm=matrix(1,nlstate*nlstate,1,npar);
     } /* loop covariates */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficreseij,"# Health expectancies\n");
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficreseij,"# Age");
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    for(i=1; i<=nlstate;i++)
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for(j=1; j<=nlstate;j++)
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   }    fprintf(ficreseij,"\n");
   free_vector(xp,1,npar);  
   fclose(ficresprob);    if(estepm < stepm){
   fclose(ficresprobcov);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fclose(ficresprobcor);    }
   fclose(ficgp);    else  hstepm=estepm;   
   fclose(fichtm);    /* We compute the life expectancy from trapezoids spaced every estepm months
 }     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
 /******************* Printing html file ***********/     * progression in between and thus overestimating or underestimating according
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \     * to the curvature of the survival function. If, for the same date, we 
                   int lastpass, int stepm, int weightopt, char model[],\     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\     * to compare the new estimate of Life expectancy with the same linear 
                   int popforecast, int estepm ,\     * hypothesis. A more precise result, taking into account a more precise
                   double jprev1, double mprev1,double anprev1, \     * curvature will be obtained if estepm is as small as stepm. */
                   double jprev2, double mprev2,double anprev2){  
   int jj1, k1, i1, cpt;    /* For example we decided to compute the life expectancy with the smallest unit */
   /*char optionfilehtm[FILENAMELENGTH];*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {       nhstepm is the number of hstepm from age to agelim 
     printf("Problem with %s \n",optionfilehtm), exit(0);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n       survival function given by stepm (the optimization length). Unfortunately it
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n       means that if the survival funtion is printed only each two years of age and if
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  - Life expectancies by age and initial health status (estepm=%2d months):       results. So we changed our mind and took the option of the best precision.
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    agelim=AGESUP;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      /* nhstepm age range expressed in number of stepm */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      /* if (stepm >= YEARM) hstepm=1;*/
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
  if(popforecast==1) fprintf(fichtm,"\n      gp=matrix(0,nhstepm,1,nlstate*nlstate);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      gm=matrix(0,nhstepm,1,nlstate*nlstate);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
  else         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 fprintf(fichtm," <li>Graphs</li><p>");   
   
  m=cptcoveff;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
       /* Computing Variances of health expectancies */
  jj1=0;  
  for(k1=1; k1<=m;k1++){       for(theta=1; theta <=npar; theta++){
    for(i1=1; i1<=ncodemax[k1];i1++){        for(i=1; i<=npar; i++){ 
      jj1++;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      if (cptcovn > 0) {        }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        for (cpt=1; cpt<=cptcoveff;cpt++)    
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        cptj=0;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        for(j=1; j<= nlstate; j++){
      }          for(i=1; i<=nlstate; i++){
      /* Pij */            cptj=cptj+1;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
      /* Quasi-incidences */            }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          }
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        }
        /* Stable prevalence in each health state */       
        for(cpt=1; cpt<nlstate;cpt++){       
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        for(i=1; i<=npar; i++) 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for(cpt=1; cpt<=nlstate;cpt++) {        
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        cptj=0;
 interval) in state (%d): v%s%d%d.png <br>        for(j=1; j<= nlstate; j++){
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            for(i=1;i<=nlstate;i++){
      }            cptj=cptj+1;
      for(cpt=1; cpt<=nlstate;cpt++) {            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
      }            }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          }
 health expectancies in states (1) and (2): e%s%d.png<br>        }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(j=1; j<= nlstate*nlstate; j++)
    }          for(h=0; h<=nhstepm-1; h++){
  }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 fclose(fichtm);          }
 }       } 
      
 /******************* Gnuplot file **************/  /* End theta */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;       for(h=0; h<=nhstepm-1; h++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for(j=1; j<=nlstate*nlstate;j++)
     printf("Problem with file %s",optionfilegnuplot);          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
        
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);       for(i=1;i<=nlstate*nlstate;i++)
 #endif        for(j=1;j<=nlstate*nlstate;j++)
 m=pow(2,cptcoveff);          varhe[i][j][(int)age] =0.;
    
  /* 1eme*/       printf("%d|",(int)age);fflush(stdout);
   for (cpt=1; cpt<= nlstate ; cpt ++) {       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
    for (k1=1; k1<= m ; k1 ++) {       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
 #ifdef windows          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          for(i=1;i<=nlstate*nlstate;i++)
 #endif            for(j=1;j<=nlstate*nlstate;j++)
 #ifdef unix              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      }
 #endif      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
 for (i=1; i<= nlstate ; i ++) {        for(j=1; j<=nlstate;j++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 }            
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      fprintf(ficreseij,"%3.0f",age );
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      cptj=0;
      for (i=1; i<= nlstate ; i ++) {      for(i=1; i<=nlstate;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1; j<=nlstate;j++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          cptj++;
 }            fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        }
 #ifdef unix      fprintf(ficreseij,"\n");
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");     
 #endif      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
    }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   /*2 eme*/      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for (k1=1; k1<= m ; k1 ++) {    }
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    printf("\n");
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    fprintf(ficlog,"\n");
      
     for (i=1; i<= nlstate+1 ; i ++) {    free_vector(xp,1,npar);
       k=2*i;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       for (j=1; j<= nlstate+1 ; j ++) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    /************ Variance ******************/
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  {
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    /* Variance of health expectancies */
       for (j=1; j<= nlstate+1 ; j ++) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* double **newm;*/
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double **dnewm,**doldm;
 }      double **dnewmp,**doldmp;
       fprintf(ficgp,"\" t\"\" w l 0,");    int i, j, nhstepm, hstepm, h, nstepm ;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    int k, cptcode;
       for (j=1; j<= nlstate+1 ; j ++) {    double *xp;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double **gp, **gm;  /* for var eij */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double ***gradg, ***trgradg; /*for var eij */
 }      double **gradgp, **trgradgp; /* for var p point j */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    double *gpp, *gmp; /* for var p point j */
       else fprintf(ficgp,"\" t\"\" w l 0,");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     }    double ***p3mat;
   }    double age,agelim, hf;
      double ***mobaverage;
   /*3eme*/    int theta;
     char digit[4];
   for (k1=1; k1<= m ; k1 ++) {    char digitp[25];
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);    char fileresprobmorprev[FILENAMELENGTH];
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    if(popbased==1){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      if(mobilav!=0)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        strcpy(digitp,"-populbased-mobilav-");
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      else strcpy(digitp,"-populbased-nomobil-");
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    else 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      strcpy(digitp,"-stablbased-");
   
 */    if (mobilav!=0) {
       for (i=1; i< nlstate ; i ++) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     }      }
   }    }
    
   /* CV preval stat */    strcpy(fileresprobmorprev,"prmorprev"); 
     for (k1=1; k1<= m ; k1 ++) {    sprintf(digit,"%-d",ij);
     for (cpt=1; cpt<nlstate ; cpt ++) {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       k=3;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       for (i=1; i< nlstate ; i ++)      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficgp,"+$%d",k+i+1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    }
          printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       l=3+(nlstate+ndeath)*cpt;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       for (i=1; i< nlstate ; i ++) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         l=3+(nlstate+ndeath)*cpt;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficgp,"+$%d",l+i+1);      fprintf(ficresprobmorprev," p.%-d SE",j);
       }      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }    }  
   }      fprintf(ficresprobmorprev,"\n");
      fprintf(ficgp,"\n# Routine varevsij");
   /* proba elementaires */    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     for(k=1; k <=(nlstate+ndeath); k++){  /*   } */
       if (k != i) {    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for(j=1; j <=ncovmodel; j++){  
            fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    fprintf(ficresvij,"# Age");
           jk++;    for(i=1; i<=nlstate;i++)
           fprintf(ficgp,"\n");      for(j=1; j<=nlstate;j++)
         }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       }    fprintf(ficresvij,"\n");
     }  
    }    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    doldm=matrix(1,nlstate,1,nlstate);
      for(jk=1; jk <=m; jk++) {    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        if (ng==2)  
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
        else    gpp=vector(nlstate+1,nlstate+ndeath);
          fprintf(ficgp,"\nset title \"Probability\"\n");    gmp=vector(nlstate+1,nlstate+ndeath);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        i=1;    
        for(k2=1; k2<=nlstate; k2++) {    if(estepm < stepm){
          k3=i;      printf ("Problem %d lower than %d\n",estepm, stepm);
          for(k=1; k<=(nlstate+ndeath); k++) {    }
            if (k != k2){    else  hstepm=estepm;   
              if(ng==2)    /* For example we decided to compute the life expectancy with the smallest unit */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
              else       nhstepm is the number of hstepm from age to agelim 
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);       nstepm is the number of stepm from age to agelin. 
              ij=1;       Look at hpijx to understand the reason of that which relies in memory size
              for(j=3; j <=ncovmodel; j++) {       and note for a fixed period like k years */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       survival function given by stepm (the optimization length). Unfortunately it
                  ij++;       means that if the survival funtion is printed every two years of age and if
                }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                else       results. So we changed our mind and took the option of the best precision.
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    */
              }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
              fprintf(ficgp,")/(1");    agelim = AGESUP;
                  for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
              for(k1=1; k1 <=nlstate; k1++){        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                ij=1;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                for(j=3; j <=ncovmodel; j++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      gp=matrix(0,nhstepm,1,nlstate);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      gm=matrix(0,nhstepm,1,nlstate);
                    ij++;  
                  }  
                  else      for(theta=1; theta <=npar; theta++){
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                fprintf(ficgp,")");        }
              }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;        if (popbased==1) {
            }          if(mobilav ==0){
          }            for(i=1; i<=nlstate;i++)
        }              prlim[i][i]=probs[(int)age][i][ij];
      }          }else{ /* mobilav */ 
    }            for(i=1; i<=nlstate;i++)
    fclose(ficgp);              prlim[i][i]=mobaverage[(int)age][i][ij];
 }  /* end gnuplot */          }
         }
     
 /*************** Moving average **************/        for(j=1; j<= nlstate; j++){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   int i, cpt, cptcod;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          }
       for (i=1; i<=nlstate;i++)        }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        /* This for computing probability of death (h=1 means
           mobaverage[(int)agedeb][i][cptcod]=0.;           computed over hstepm matrices product = hstepm*stepm months) 
               as a weighted average of prlim.
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        */
       for (i=1; i<=nlstate;i++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           for (cpt=0;cpt<=4;cpt++){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        }    
           }        /* end probability of death */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 }   
         if (popbased==1) {
           if(mobilav ==0){
 /************** Forecasting ******************/            for(i=1; i<=nlstate;i++)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            for(i=1; i<=nlstate;i++)
   int *popage;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          }
   double *popeffectif,*popcount;        }
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
  agelim=AGESUP;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }
          /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   strcpy(fileresf,"f");           as a weighted average of prlim.
   strcat(fileresf,fileres);        */
   if((ficresf=fopen(fileresf,"w"))==NULL) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("Problem with forecast resultfile: %s\n", fileresf);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   printf("Computing forecasting: result on file '%s' \n", fileresf);        }    
         /* end probability of death */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
         for(j=1; j<= nlstate; j++) /* vareij */
   if (mobilav==1) {          for(h=0; h<=nhstepm; h++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     movingaverage(agedeb, fage, ageminpar, mobaverage);          }
   }  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   stepsize=(int) (stepm+YEARM-1)/YEARM;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   if (stepm<=12) stepsize=1;        }
    
   agelim=AGESUP;      } /* End theta */
    
   hstepm=1;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);      for(h=0; h<=nhstepm; h++) /* veij */
   anprojmean=yp;        for(j=1; j<=nlstate;j++)
   yp2=modf((yp1*12),&yp);          for(theta=1; theta <=npar; theta++)
   mprojmean=yp;            trgradg[h][j][theta]=gradg[h][theta][j];
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   if(jprojmean==0) jprojmean=1;        for(theta=1; theta <=npar; theta++)
   if(mprojmean==0) jprojmean=1;          trgradgp[j][theta]=gradgp[theta][j];
      
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   for(cptcov=1;cptcov<=i2;cptcov++){      for(i=1;i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(j=1;j<=nlstate;j++)
       k=k+1;          vareij[i][j][(int)age] =0.;
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {      for(h=0;h<=nhstepm;h++){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(k=0;k<=nhstepm;k++){
       }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficresf,"******\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       fprintf(ficresf,"# StartingAge FinalAge");          for(i=1;i<=nlstate;i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            for(j=1;j<=nlstate;j++)
                    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
              }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      }
         fprintf(ficresf,"\n");    
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           nhstepm = nhstepm/hstepm;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                    varppt[j][i]=doldmp[j][i];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* end ppptj */
           oldm=oldms;savm=savms;      /*  x centered again */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
              prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           for (h=0; h<=nhstepm; h++){   
             if (h==(int) (calagedate+YEARM*cpt)) {      if (popbased==1) {
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        if(mobilav ==0){
             }          for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {            prlim[i][i]=probs[(int)age][i][ij];
               kk1=0.;kk2=0;        }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++) {                        for(i=1; i<=nlstate;i++)
                 if (mobilav==1)            prlim[i][i]=mobaverage[(int)age][i][ij];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        }
                 else {      }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];               
                 }      /* This for computing probability of death (h=1 means
                         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
               }         as a weighted average of prlim.
               if (h==(int)(calagedate+12*cpt)){      */
                 fprintf(ficresf," %.3f", kk1);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                                for(i=1,gmp[j]=0.;i<= nlstate; i++) 
               }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
             }      }    
           }      /* end probability of death */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   }        for(i=1; i<=nlstate;i++){
                  fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
       } 
   fclose(ficresf);      fprintf(ficresprobmorprev,"\n");
 }  
 /************** Forecasting ******************/      fprintf(ficresvij,"%.0f ",age );
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   int *popage;        }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      fprintf(ficresvij,"\n");
   double *popeffectif,*popcount;      free_matrix(gp,0,nhstepm,1,nlstate);
   double ***p3mat,***tabpop,***tabpopprev;      free_matrix(gm,0,nhstepm,1,nlstate);
   char filerespop[FILENAMELENGTH];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    } /* End age */
   agelim=AGESUP;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   strcpy(filerespop,"pop");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   strcat(filerespop,fileres);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     printf("Problem with forecast resultfile: %s\n", filerespop);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   printf("Computing forecasting: result on file '%s' \n", filerespop);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   if (mobilav==1) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  */
     movingaverage(agedeb, fage, ageminpar, mobaverage);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_vector(xp,1,npar);
   if (stepm<=12) stepsize=1;    free_matrix(doldm,1,nlstate,1,nlstate);
      free_matrix(dnewm,1,nlstate,1,npar);
   agelim=AGESUP;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   hstepm=1;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fclose(ficresprobmorprev);
   if (popforecast==1) {    fflush(ficgp);
     if((ficpop=fopen(popfile,"r"))==NULL) {    fflush(fichtm); 
       printf("Problem with population file : %s\n",popfile);exit(0);  }  /* end varevsij */
     }  
     popage=ivector(0,AGESUP);  /************ Variance of prevlim ******************/
     popeffectif=vector(0,AGESUP);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
     popcount=vector(0,AGESUP);  {
        /* Variance of prevalence limit */
     i=1;      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    double **newm;
        double **dnewm,**doldm;
     imx=i;    int i, j, nhstepm, hstepm;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    int k, cptcode;
   }    double *xp;
     double *gp, *gm;
   for(cptcov=1;cptcov<=i2;cptcov++){    double **gradg, **trgradg;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double age,agelim;
       k=k+1;    int theta;
       fprintf(ficrespop,"\n#******");     
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresvpl,"# Age");
       }    for(i=1; i<=nlstate;i++)
       fprintf(ficrespop,"******\n");        fprintf(ficresvpl," %1d-%1d",i,i);
       fprintf(ficrespop,"# Age");    fprintf(ficresvpl,"\n");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");    xp=vector(1,npar);
          dnewm=matrix(1,nlstate,1,npar);
       for (cpt=0; cpt<=0;cpt++) {    doldm=matrix(1,nlstate,1,nlstate);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      
            hstepm=1*YEARM; /* Every year of age */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    agelim = AGESUP;
           nhstepm = nhstepm/hstepm;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (stepm >= YEARM) hstepm=1;
           oldm=oldms;savm=savms;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        gradg=matrix(1,npar,1,nlstate);
              gp=vector(1,nlstate);
           for (h=0; h<=nhstepm; h++){      gm=vector(1,nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(theta=1; theta <=npar; theta++){
             }        for(i=1; i<=npar; i++){ /* Computes gradient */
             for(j=1; j<=nlstate+ndeath;j++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                      prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 if (mobilav==1)        for(i=1;i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          gp[i] = prlim[i][i];
                 else {      
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(i=1; i<=npar; i++) /* Computes gradient */
                 }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               if (h==(int)(calagedate+12*cpt)){        for(i=1;i<=nlstate;i++)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          gm[i] = prlim[i][i];
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        for(i=1;i<=nlstate;i++)
               }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
             }      } /* End theta */
             for(i=1; i<=nlstate;i++){  
               kk1=0.;      trgradg =matrix(1,nlstate,1,npar);
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      for(j=1; j<=nlstate;j++)
                 }        for(theta=1; theta <=npar; theta++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          trgradg[j][theta]=gradg[theta][j];
             }  
       for(i=1;i<=nlstate;i++)
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        varpl[i][(int)age] =0.;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1;i<=nlstate;i++)
         }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       }  
        fprintf(ficresvpl,"%.0f ",age );
   /******/      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      fprintf(ficresvpl,"\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        free_vector(gp,1,nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      free_vector(gm,1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      free_matrix(gradg,1,npar,1,nlstate);
           nhstepm = nhstepm/hstepm;      free_matrix(trgradg,1,nlstate,1,npar);
              } /* End age */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    free_vector(xp,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_matrix(doldm,1,nlstate,1,npar);
           for (h=0; h<=nhstepm; h++){    free_matrix(dnewm,1,nlstate,1,nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  }
             }  
             for(j=1; j<=nlstate+ndeath;j++) {  /************ Variance of one-step probabilities  ******************/
               kk1=0.;kk2=0;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
               for(i=1; i<=nlstate;i++) {                {
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        int i, j=0,  i1, k1, l1, t, tj;
               }    int k2, l2, j1,  z1;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    int k=0,l, cptcode;
             }    int first=1, first1;
           }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **dnewm,**doldm;
         }    double *xp;
       }    double *gp, *gm;
    }    double **gradg, **trgradg;
   }    double **mu;
      double age,agelim, cov[NCOVMAX];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
   if (popforecast==1) {    char fileresprob[FILENAMELENGTH];
     free_ivector(popage,0,AGESUP);    char fileresprobcov[FILENAMELENGTH];
     free_vector(popeffectif,0,AGESUP);    char fileresprobcor[FILENAMELENGTH];
     free_vector(popcount,0,AGESUP);  
   }    double ***varpij;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcpy(fileresprob,"prob"); 
   fclose(ficrespop);    strcat(fileresprob,fileres);
 }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
 /***********************************************/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 /**************** Main Program *****************/    }
 /***********************************************/    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
 int main(int argc, char *argv[])    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 {      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    }
   double agedeb, agefin,hf;    strcpy(fileresprobcor,"probcor"); 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   double fret;      printf("Problem with resultfile: %s\n", fileresprobcor);
   double **xi,tmp,delta;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   double dum; /* Dummy variable */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   double ***p3mat;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   int *indx;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   int firstobs=1, lastobs=10;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   int sdeb, sfin; /* Status at beginning and end */    
   int c,  h , cpt,l;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   int ju,jl, mi;    fprintf(ficresprob,"# Age");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    fprintf(ficresprobcov,"# Age");
   int mobilav=0,popforecast=0;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   int hstepm, nhstepm;    fprintf(ficresprobcov,"# Age");
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
   
   double bage, fage, age, agelim, agebase;    for(i=1; i<=nlstate;i++)
   double ftolpl=FTOL;      for(j=1; j<=(nlstate+ndeath);j++){
   double **prlim;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   double *severity;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   double ***param; /* Matrix of parameters */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   double  *p;      }  
   double **matcov; /* Matrix of covariance */   /* fprintf(ficresprob,"\n");
   double ***delti3; /* Scale */    fprintf(ficresprobcov,"\n");
   double *delti; /* Scale */    fprintf(ficresprobcor,"\n");
   double ***eij, ***vareij;   */
   double **varpl; /* Variances of prevalence limits by age */   xp=vector(1,npar);
   double *epj, vepp;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   double kk1, kk2;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
      varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   char z[1]="c", occ;  
 #include <sys/time.h>    fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
 #include <time.h>    fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
    
   /* long total_usecs;    cov[1]=1;
   struct timeval start_time, end_time;    tj=cptcoveff;
      if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    j1=0;
   getcwd(pathcd, size);    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
   printf("\n%s",version);        j1++;
   if(argc <=1){        if  (cptcovn>0) {
     printf("\nEnter the parameter file name: ");          fprintf(ficresprob, "\n#********** Variable "); 
     scanf("%s",pathtot);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprob, "**********\n#\n");
   else{          fprintf(ficresprobcov, "\n#********** Variable "); 
     strcpy(pathtot,argv[1]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcov, "**********\n#\n");
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          
   /*cygwin_split_path(pathtot,path,optionfile);          fprintf(ficgp, "\n#********** Variable "); 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* cutv(path,optionfile,pathtot,'\\');*/          fprintf(ficgp, "**********\n#\n");
           
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   chdir(path);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   replace(pathc,path);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
 /*-------- arguments in the command line --------*/          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcpy(fileres,"r");          fprintf(ficresprobcor, "**********\n#");    
   strcat(fileres, optionfilefiname);        }
   strcat(fileres,".txt");    /* Other files have txt extension */        
         for (age=bage; age<=fage; age ++){ 
   /*---------arguments file --------*/          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     printf("Problem with optionfile %s\n",optionfile);          }
     goto end;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }          for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   strcpy(filereso,"o");          
   strcat(filereso,fileres);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   if((ficparo=fopen(filereso,"w"))==NULL) {          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          gp=vector(1,(nlstate)*(nlstate+ndeath));
   }          gm=vector(1,(nlstate)*(nlstate+ndeath));
       
   /* Reads comments: lines beginning with '#' */          for(theta=1; theta <=npar; theta++){
   while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=npar; i++)
     ungetc(c,ficpar);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     fgets(line, MAXLINE, ficpar);            
     puts(line);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fputs(line,ficparo);            
   }            k=0;
   ungetc(c,ficpar);            for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                k=k+1;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                gp[k]=pmmij[i][j];
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);              }
 while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);            
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=npar; i++)
     puts(line);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     fputs(line,ficparo);      
   }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   ungetc(c,ficpar);            k=0;
              for(i=1; i<=(nlstate); i++){
                  for(j=1; j<=(nlstate+ndeath);j++){
   covar=matrix(0,NCOVMAX,1,n);                k=k+1;
   cptcovn=0;                gm[k]=pmmij[i][j];
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;              }
             }
   ncovmodel=2+cptcovn;       
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   /* Read guess parameters */          }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     ungetc(c,ficpar);            for(theta=1; theta <=npar; theta++)
     fgets(line, MAXLINE, ficpar);              trgradg[j][theta]=gradg[theta][j];
     puts(line);          
     fputs(line,ficparo);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   ungetc(c,ficpar);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     for(i=1; i <=nlstate; i++)          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);          pmij(pmmij,cov,ncovmodel,x,nlstate);
       fprintf(ficparo,"%1d%1d",i1,j1);          
       printf("%1d%1d",i,j);          k=0;
       for(k=1; k<=ncovmodel;k++){          for(i=1; i<=(nlstate); i++){
         fscanf(ficpar," %lf",&param[i][j][k]);            for(j=1; j<=(nlstate+ndeath);j++){
         printf(" %lf",param[i][j][k]);              k=k+1;
         fprintf(ficparo," %lf",param[i][j][k]);              mu[k][(int) age]=pmmij[i][j];
       }            }
       fscanf(ficpar,"\n");          }
       printf("\n");          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       fprintf(ficparo,"\n");            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     }              varpij[i][j][(int)age] = doldm[i][j];
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   p=param[1][1];            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   /* Reads comments: lines beginning with '#' */            }*/
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          fprintf(ficresprob,"\n%d ",(int)age);
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprobcov,"\n%d ",(int)age);
     puts(line);          fprintf(ficresprobcor,"\n%d ",(int)age);
     fputs(line,ficparo);  
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   ungetc(c,ficpar);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   for(i=1; i <=nlstate; i++){          }
     for(j=1; j <=nlstate+ndeath-1; j++){          i=0;
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for (k=1; k<=(nlstate);k++){
       printf("%1d%1d",i,j);            for (l=1; l<=(nlstate+ndeath);l++){ 
       fprintf(ficparo,"%1d%1d",i1,j1);              i=i++;
       for(k=1; k<=ncovmodel;k++){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         fscanf(ficpar,"%le",&delti3[i][j][k]);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
         printf(" %le",delti3[i][j][k]);              for (j=1; j<=i;j++){
         fprintf(ficparo," %le",delti3[i][j][k]);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       fscanf(ficpar,"\n");              }
       printf("\n");            }
       fprintf(ficparo,"\n");          }/* end of loop for state */
     }        } /* end of loop for age */
   }  
   delti=delti3[1][1];        /* Confidence intervalle of pij  */
          /*
   /* Reads comments: lines beginning with '#' */          fprintf(ficgp,"\nset noparametric;unset label");
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     ungetc(c,ficpar);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     fgets(line, MAXLINE, ficpar);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     puts(line);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     fputs(line,ficparo);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   }          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   ungetc(c,ficpar);        */
    
   matcov=matrix(1,npar,1,npar);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   for(i=1; i <=npar; i++){        first1=1;
     fscanf(ficpar,"%s",&str);        for (k2=1; k2<=(nlstate);k2++){
     printf("%s",str);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     fprintf(ficparo,"%s",str);            if(l2==k2) continue;
     for(j=1; j <=i; j++){            j=(k2-1)*(nlstate+ndeath)+l2;
       fscanf(ficpar," %le",&matcov[i][j]);            for (k1=1; k1<=(nlstate);k1++){
       printf(" %.5le",matcov[i][j]);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       fprintf(ficparo," %.5le",matcov[i][j]);                if(l1==k1) continue;
     }                i=(k1-1)*(nlstate+ndeath)+l1;
     fscanf(ficpar,"\n");                if(i<=j) continue;
     printf("\n");                for (age=bage; age<=fage; age ++){ 
     fprintf(ficparo,"\n");                  if ((int)age %5==0){
   }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   for(i=1; i <=npar; i++)                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     for(j=i+1;j<=npar;j++)                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       matcov[i][j]=matcov[j][i];                    mu1=mu[i][(int) age]/stepm*YEARM ;
                        mu2=mu[j][(int) age]/stepm*YEARM;
   printf("\n");                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     /*-------- Rewriting paramater file ----------*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      strcpy(rfileres,"r");    /* "Rparameterfile */                    /* Eigen vectors */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
      strcat(rfileres,".");    /* */                    /*v21=sqrt(1.-v11*v11); *//* error */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */                    v21=(lc1-v1)/cv12*v11;
     if((ficres =fopen(rfileres,"w"))==NULL) {                    v12=-v21;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;                    v22=v11;
     }                    tnalp=v21/v11;
     fprintf(ficres,"#%s\n",version);                    if(first1==1){
                          first1=0;
     /*-------- data file ----------*/                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     if((fic=fopen(datafile,"r"))==NULL)    {                    }
       printf("Problem with datafile: %s\n", datafile);goto end;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     }                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     n= lastobs;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     severity = vector(1,maxwav);                    if(first==1){
     outcome=imatrix(1,maxwav+1,1,n);                      first=0;
     num=ivector(1,n);                      fprintf(ficgp,"\nset parametric;unset label");
     moisnais=vector(1,n);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     annais=vector(1,n);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     moisdc=vector(1,n);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     andc=vector(1,n);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     agedc=vector(1,n);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     cod=ivector(1,n);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     weight=vector(1,n);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                      fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     mint=matrix(1,maxwav,1,n);                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     anint=matrix(1,maxwav,1,n);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     s=imatrix(1,maxwav+1,1,n);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     adl=imatrix(1,maxwav+1,1,n);                          fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     tab=ivector(1,NCOVMAX);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     ncodemax=ivector(1,8);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     i=1;                    }else{
     while (fgets(line, MAXLINE, fic) != NULL)    {                      first=0;
       if ((i >= firstobs) && (i <=lastobs)) {                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
                              fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         for (j=maxwav;j>=1;j--){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           strcpy(line,stra);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                    }/* if first */
         }                  } /* age mod 5 */
                        } /* end loop age */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);                first=1;
               } /*l12 */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            } /* k12 */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          } /*l1 */
         }/* k1 */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      } /* loop covariates */
         for (j=ncovcol;j>=1;j--){    }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         num[i]=atol(stra);    free_vector(xp,1,npar);
            fclose(ficresprob);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    fclose(ficresprobcov);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fclose(ficresprobcor);
     /*  fclose(ficgp);*/
         i=i+1;  }
       }  
     }  
     /* printf("ii=%d", ij);  /******************* Printing html file ***********/
        scanf("%d",i);*/  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   imx=i-1; /* Number of individuals */                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   /* for (i=1; i<=imx; i++){                    int popforecast, int estepm ,\
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                    double jprev1, double mprev1,double anprev1, \
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                    double jprev2, double mprev2,double anprev2){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    int jj1, k1, i1, cpt;
     }*/    /*char optionfilehtm[FILENAMELENGTH];*/
    /*  for (i=1; i<=imx; i++){  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
      if (s[4][i]==9)  s[4][i]=-1;  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
    /*   } */
    
   /* Calculation of the number of parameter from char model*/     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
   Tvar=ivector(1,15);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
   Tprod=ivector(1,15);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
   Tvaraff=ivector(1,15);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
   Tvard=imatrix(1,15,1,2);   - Life expectancies by age and initial health status (estepm=%2d months): \
   Tage=ivector(1,15);           <a href=\"%s\">%s</a> <br>\n</li>", \
                 jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
   if (strlen(model) >1){             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
     j=0, j1=0, k1=1, k2=1;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
     j=nbocc(model,'+');             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     j1=nbocc(model,'*');  
     cptcovn=j+1;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     cptcovprod=j1;  
       m=cptcoveff;
     strcpy(modelsav,model);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);   jj1=0;
       goto end;   for(k1=1; k1<=m;k1++){
     }     for(i1=1; i1<=ncodemax[k1];i1++){
           jj1++;
     for(i=(j+1); i>=1;i--){       if (cptcovn > 0) {
       cutv(stra,strb,modelsav,'+');         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);         for (cpt=1; cpt<=cptcoveff;cpt++) 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       /*scanf("%d",i);*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       if (strchr(strb,'*')) {       }
         cutv(strd,strc,strb,'*');       /* Pij */
         if (strcmp(strc,"age")==0) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
           cptcovprod--;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           cutv(strb,stre,strd,'V');       /* Quasi-incidences */
           Tvar[i]=atoi(stre);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
           cptcovage++;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
             Tage[cptcovage]=i;  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
             /*printf("stre=%s ", stre);*/         /* Stable prevalence in each health state */
         }         for(cpt=1; cpt<nlstate;cpt++){
         else if (strcmp(strd,"age")==0) {           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
           cptcovprod--;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           cutv(strb,stre,strc,'V');         }
           Tvar[i]=atoi(stre);       for(cpt=1; cpt<=nlstate;cpt++) {
           cptcovage++;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
           Tage[cptcovage]=i;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         }       }
         else {       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
           cutv(strb,stre,strc,'V');  health expectancies in states (1) and (2): %s%d.png<br>\
           Tvar[i]=ncovcol+k1;  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
           cutv(strb,strc,strd,'V');     } /* end i1 */
           Tprod[k1]=i;   }/* End k1 */
           Tvard[k1][1]=atoi(strc);   fprintf(fichtm,"</ul>");
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
           for (k=1; k<=lastobs;k++)   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
           k1++;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
           k2=k2+2;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
         }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
       }   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
       else {   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/           rfileres,rfileres,\
        /*  scanf("%d",i);*/           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
       cutv(strd,strc,strb,'V');           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
       Tvar[i]=atoi(strc);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
       }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
       strcpy(modelsav,stra);             subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
         scanf("%d",i);*/  
     }  /*  if(popforecast==1) fprintf(fichtm,"\n */
 }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
    /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  /*      <br>",fileres,fileres,fileres,fileres); */
   printf("cptcovprod=%d ", cptcovprod);  /*  else  */
   scanf("%d ",i);*/  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     fclose(fic);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
     /*  if(mle==1){*/   m=cptcoveff;
     if (weightopt != 1) { /* Maximisation without weights*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }   jj1=0;
     /*-calculation of age at interview from date of interview and age at death -*/   for(k1=1; k1<=m;k1++){
     agev=matrix(1,maxwav,1,imx);     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
     for (i=1; i<=imx; i++) {       if (cptcovn > 0) {
       for(m=2; (m<= maxwav); m++) {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){         for (cpt=1; cpt<=cptcoveff;cpt++) 
          anint[m][i]=9999;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          s[m][i]=-1;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }       }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;       for(cpt=1; cpt<=nlstate;cpt++) {
       }         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
     }  interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"vr"),cpt,jj1,subdirf2(optionfilefiname,"vr"),cpt,jj1);  
     for (i=1; i<=imx; i++)  {       }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);     } /* end i1 */
       for(m=1; (m<= maxwav); m++){   }/* End k1 */
         if(s[m][i] >0){   fprintf(fichtm,"</ul>");
           if (s[m][i] >= nlstate+1) {   fflush(fichtm);
             if(agedc[i]>0)  }
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];  /******************* Gnuplot file **************/
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
            else {  
               if (andc[i]!=9999){    char dirfileres[132],optfileres[132];
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
               agev[m][i]=-1;    int ng;
               }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
             }  /*     printf("Problem with file %s",optionfilegnuplot); */
           }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
           else if(s[m][i] !=9){ /* Should no more exist */  /*   } */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)    /*#ifdef windows */
               agev[m][i]=1;    fprintf(ficgp,"cd \"%s\" \n",pathc);
             else if(agev[m][i] <agemin){      /*#endif */
               agemin=agev[m][i];    m=pow(2,cptcoveff);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }    strcpy(dirfileres,optionfilefiname);
             else if(agev[m][i] >agemax){    strcpy(optfileres,"vpl");
               agemax=agev[m][i];   /* 1eme*/
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    for (cpt=1; cpt<= nlstate ; cpt ++) {
             }     for (k1=1; k1<= m ; k1 ++) {
             /*agev[m][i]=anint[m][i]-annais[i];*/       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
             /*   agev[m][i] = age[i]+2*m;*/       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
           }       fprintf(ficgp,"set xlabel \"Age\" \n\
           else { /* =9 */  set ylabel \"Probability\" \n\
             agev[m][i]=1;  set ter png small\n\
             s[m][i]=-1;  set size 0.65,0.65\n\
           }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
         }  
         else /*= 0 Unknown */       for (i=1; i<= nlstate ; i ++) {
           agev[m][i]=1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }         else fprintf(ficgp," \%%*lf (\%%*lf)");
           }
     }       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     for (i=1; i<=imx; i++)  {       for (i=1; i<= nlstate ; i ++) {
       for(m=1; (m<= maxwav); m++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         if (s[m][i] > (nlstate+ndeath)) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
           printf("Error: Wrong value in nlstate or ndeath\n");         } 
           goto end;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         }       for (i=1; i<= nlstate ; i ++) {
       }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     }         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     free_vector(severity,1,maxwav);    }
     free_imatrix(outcome,1,maxwav+1,1,n);    /*2 eme*/
     free_vector(moisnais,1,n);    
     free_vector(annais,1,n);    for (k1=1; k1<= m ; k1 ++) { 
     /* free_matrix(mint,1,maxwav,1,n);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
        free_matrix(anint,1,maxwav,1,n);*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     free_vector(moisdc,1,n);      
     free_vector(andc,1,n);      for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
            fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     wav=ivector(1,imx);        for (j=1; j<= nlstate+1 ; j ++) {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          else fprintf(ficgp," \%%*lf (\%%*lf)");
            }   
     /* Concatenates waves */        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
       Tcode=ivector(1,100);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       ncodemax[1]=1;        }   
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        fprintf(ficgp,"\" t\"\" w l 0,");
              fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
    codtab=imatrix(1,100,1,10);        for (j=1; j<= nlstate+1 ; j ++) {
    h=0;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
    m=pow(2,cptcoveff);          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
    for(k=1;k<=cptcoveff; k++){        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
      for(i=1; i <=(m/pow(2,k));i++){        else fprintf(ficgp,"\" t\"\" w l 0,");
        for(j=1; j <= ncodemax[k]; j++){      }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    }
            h++;    
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    /*3eme*/
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    
          }    for (k1=1; k1<= m ; k1 ++) { 
        }      for (cpt=1; cpt<= nlstate ; cpt ++) {
      }        k=2+nlstate*(2*cpt-2);
    }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        fprintf(ficgp,"set ter png small\n\
       codtab[1][2]=1;codtab[2][2]=2; */  set size 0.65,0.65\n\
    /* for(i=1; i <=m ;i++){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       for(k=1; k <=cptcovn; k++){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       printf("\n");          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       scanf("%d",i);*/          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
              
    /* Calculates basic frequencies. Computes observed prevalence at single age        */
        and prints on file fileres'p'. */        for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
              
            } 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* CV preval stable (period) */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    for (k1=1; k1<= m ; k1 ++) { 
            for (cpt=1; cpt<=nlstate ; cpt ++) {
     /* For Powell, parameters are in a vector p[] starting at p[1]        k=3;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
     if(mle==1){  unset log y\n\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     }        
            for (i=1; i< nlstate ; i ++)
     /*--------- results files --------------*/          fprintf(ficgp,"+$%d",k+i+1);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
          
         l=3+(nlstate+ndeath)*cpt;
    jk=1;        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for (i=1; i< nlstate ; i ++) {
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          l=3+(nlstate+ndeath)*cpt;
    for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficgp,"+$%d",l+i+1);
      for(k=1; k <=(nlstate+ndeath); k++){        }
        if (k != i)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
          {      } 
            printf("%d%d ",i,k);    }  
            fprintf(ficres,"%1d%1d ",i,k);    
            for(j=1; j <=ncovmodel; j++){    /* proba elementaires */
              printf("%f ",p[jk]);    for(i=1,jk=1; i <=nlstate; i++){
              fprintf(ficres,"%f ",p[jk]);      for(k=1; k <=(nlstate+ndeath); k++){
              jk++;        if (k != i) {
            }          for(j=1; j <=ncovmodel; j++){
            printf("\n");            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
            fprintf(ficres,"\n");            jk++; 
          }            fprintf(ficgp,"\n");
      }          }
    }        }
  if(mle==1){      }
     /* Computing hessian and covariance matrix */     }
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
  }       for(jk=1; jk <=m; jk++) {
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
     printf("# Scales (for hessian or gradient estimation)\n");         if (ng==2)
      for(i=1,jk=1; i <=nlstate; i++){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       for(j=1; j <=nlstate+ndeath; j++){         else
         if (j!=i) {           fprintf(ficgp,"\nset title \"Probability\"\n");
           fprintf(ficres,"%1d%1d",i,j);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           printf("%1d%1d",i,j);         i=1;
           for(k=1; k<=ncovmodel;k++){         for(k2=1; k2<=nlstate; k2++) {
             printf(" %.5e",delti[jk]);           k3=i;
             fprintf(ficres," %.5e",delti[jk]);           for(k=1; k<=(nlstate+ndeath); k++) {
             jk++;             if (k != k2){
           }               if(ng==2)
           printf("\n");                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           fprintf(ficres,"\n");               else
         }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       }               ij=1;
      }               for(j=3; j <=ncovmodel; j++) {
                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     k=1;                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                   ij++;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                 }
     for(i=1;i<=npar;i++){                 else
       /*  if (k>nlstate) k=1;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       i1=(i-1)/(ncovmodel*nlstate)+1;               }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);               fprintf(ficgp,")/(1");
       printf("%s%d%d",alph[k],i1,tab[i]);*/               
       fprintf(ficres,"%3d",i);               for(k1=1; k1 <=nlstate; k1++){   
       printf("%3d",i);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       for(j=1; j<=i;j++){                 ij=1;
         fprintf(ficres," %.5e",matcov[i][j]);                 for(j=3; j <=ncovmodel; j++){
         printf(" %.5e",matcov[i][j]);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       fprintf(ficres,"\n");                     ij++;
       printf("\n");                   }
       k++;                   else
     }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                     }
     while((c=getc(ficpar))=='#' && c!= EOF){                 fprintf(ficgp,")");
       ungetc(c,ficpar);               }
       fgets(line, MAXLINE, ficpar);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       puts(line);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       fputs(line,ficparo);               i=i+ncovmodel;
     }             }
     ungetc(c,ficpar);           } /* end k */
     estepm=0;         } /* end k2 */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);       } /* end jk */
     if (estepm==0 || estepm < stepm) estepm=stepm;     } /* end ng */
     if (fage <= 2) {     fflush(ficgp); 
       bage = ageminpar;  }  /* end gnuplot */
       fage = agemaxpar;  
     }  
      /*************** Moving average **************/
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    int i, cpt, cptcod;
      int modcovmax =1;
     while((c=getc(ficpar))=='#' && c!= EOF){    int mobilavrange, mob;
     ungetc(c,ficpar);    double age;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     fputs(line,ficparo);                             a covariate has 2 modalities */
   }    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   ungetc(c,ficpar);  
      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      if(mobilav==1) mobilavrange=5; /* default */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      else mobilavrange=mobilav;
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for (age=bage; age<=fage; age++)
              for (i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     ungetc(c,ficpar);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     fgets(line, MAXLINE, ficpar);      /* We keep the original values on the extreme ages bage, fage and for 
     puts(line);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     fputs(line,ficparo);         we use a 5 terms etc. until the borders are no more concerned. 
   }      */ 
   ungetc(c,ficpar);      for (mob=3;mob <=mobilavrange;mob=mob+2){
          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   fprintf(ficparo,"pop_based=%d\n",popbased);                    mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   fprintf(ficres,"pop_based=%d\n",popbased);                  }
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);        }/* end age */
     puts(line);      }/* end mob */
     fputs(line,ficparo);    }else return -1;
   }    return 0;
   ungetc(c,ficpar);  }/* End movingaverage */
   
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /************** Forecasting ******************/
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
 while((c=getc(ficpar))=='#' && c!= EOF){       dateprev1 dateprev2 range of dates during which prevalence is computed
     ungetc(c,ficpar);       anproj2 year of en of projection (same day and month as proj1).
     fgets(line, MAXLINE, ficpar);    */
     puts(line);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     fputs(line,ficparo);    int *popage;
   }    double agec; /* generic age */
   ungetc(c,ficpar);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    double ***p3mat;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    double ***mobaverage;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    char fileresf[FILENAMELENGTH];
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 /*------------ gnuplot -------------*/   
   strcpy(optionfilegnuplot,optionfilefiname);    strcpy(fileresf,"f"); 
   strcat(optionfilegnuplot,".gp");    strcat(fileresf,fileres);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    if((ficresf=fopen(fileresf,"w"))==NULL) {
     printf("Problem with file %s",optionfilegnuplot);      printf("Problem with forecast resultfile: %s\n", fileresf);
   }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   fclose(ficgp);    }
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    printf("Computing forecasting: result on file '%s' \n", fileresf);
 /*--------- index.htm --------*/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
   strcpy(optionfilehtm,optionfile);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    if (mobilav!=0) {
     printf("Problem with %s \n",optionfilehtm), exit(0);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      }
 \n    }
 Total number of observations=%d <br>\n  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    stepsize=(int) (stepm+YEARM-1)/YEARM;
 <hr  size=\"2\" color=\"#EC5E5E\">    if (stepm<=12) stepsize=1;
  <ul><li>Parameter files<br>\n    if(estepm < stepm){
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      printf ("Problem %d lower than %d\n",estepm, stepm);
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);    }
   fclose(fichtm);    else  hstepm=estepm;   
   
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    hstepm=hstepm/stepm; 
      yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 /*------------ free_vector  -------------*/                                 fractional in yp1 */
  chdir(path);    anprojmean=yp;
      yp2=modf((yp1*12),&yp);
  free_ivector(wav,1,imx);    mprojmean=yp;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    yp1=modf((yp2*30.5),&yp);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      jprojmean=yp;
  free_ivector(num,1,n);    if(jprojmean==0) jprojmean=1;
  free_vector(agedc,1,n);    if(mprojmean==0) jprojmean=1;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);    i1=cptcoveff;
  fclose(ficres);    if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   /*--------------- Prevalence limit --------------*/    
      fprintf(ficresf,"#****** Routine prevforecast **\n");
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);  /*            if (h==(int)(YEARM*yearp)){ */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   }        k=k+1;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        fprintf(ficresf,"\n#******");
   fprintf(ficrespl,"#Prevalence limit\n");        for(j=1;j<=cptcoveff;j++) {
   fprintf(ficrespl,"#Age ");          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        }
   fprintf(ficrespl,"\n");        fprintf(ficresf,"******\n");
          fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   prlim=matrix(1,nlstate,1,nlstate);        for(j=1; j<=nlstate+ndeath;j++){ 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(i=1; i<=nlstate;i++)              
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            fprintf(ficresf," p%d%d",i,j);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresf," p.%d",j);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   k=0;          fprintf(ficresf,"\n");
   agebase=ageminpar;          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   agelim=agemaxpar;  
   ftolpl=1.e-10;          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   i1=cptcoveff;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   if (cptcovn < 1){i1=1;}            nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(cptcov=1;cptcov<=i1;cptcov++){            oldm=oldms;savm=savms;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
         k=k+1;          
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            for (h=0; h<=nhstepm; h++){
         fprintf(ficrespl,"\n#******");              if (h*hstepm/YEARM*stepm ==yearp) {
         for(j=1;j<=cptcoveff;j++)                fprintf(ficresf,"\n");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                for(j=1;j<=cptcoveff;j++) 
         fprintf(ficrespl,"******\n");                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                        fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
         for (age=agebase; age<=agelim; age++){              } 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              for(j=1; j<=nlstate+ndeath;j++) {
           fprintf(ficrespl,"%.0f",age );                ppij=0.;
           for(i=1; i<=nlstate;i++)                for(i=1; i<=nlstate;i++) {
           fprintf(ficrespl," %.5f", prlim[i][i]);                  if (mobilav==1) 
           fprintf(ficrespl,"\n");                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
         }                  else {
       }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
     }                  }
   fclose(ficrespl);                  if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
   /*------------- h Pij x at various ages ------------*/                  }
                  } /* end i */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                if (h*hstepm/YEARM*stepm==yearp) {
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                  fprintf(ficresf," %.3f", ppij);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                }
   }              }/* end j */
   printf("Computing pij: result on file '%s' \n", filerespij);            } /* end h */
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          } /* end agec */
   /*if (stepm<=24) stepsize=2;*/        } /* end yearp */
       } /* end cptcod */
   agelim=AGESUP;    } /* end  cptcov */
   hstepm=stepsize*YEARM; /* Every year of age */         
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    
   k=0;    fclose(ficresf);
   for(cptcov=1;cptcov<=i1;cptcov++){  }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  /************** Forecasting *****not tested NB*************/
         fprintf(ficrespij,"\n#****** ");  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
         for(j=1;j<=cptcoveff;j++)    
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
         fprintf(ficrespij,"******\n");    int *popage;
            double calagedatem, agelim, kk1, kk2;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    double *popeffectif,*popcount;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double ***p3mat,***tabpop,***tabpopprev;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double ***mobaverage;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    char filerespop[FILENAMELENGTH];
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespij,"# Age");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for(i=1; i<=nlstate;i++)    agelim=AGESUP;
             for(j=1; j<=nlstate+ndeath;j++)    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
               fprintf(ficrespij," %1d-%1d",i,j);    
           fprintf(ficrespij,"\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
            for (h=0; h<=nhstepm; h++){    
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    
             for(i=1; i<=nlstate;i++)    strcpy(filerespop,"pop"); 
               for(j=1; j<=nlstate+ndeath;j++)    strcat(filerespop,fileres);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
             fprintf(ficrespij,"\n");      printf("Problem with forecast resultfile: %s\n", filerespop);
              }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           fprintf(ficrespij,"\n");    printf("Computing forecasting: result on file '%s' \n", filerespop);
         }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
     }  
   }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficrespij);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /*---------- Forecasting ------------------*/      }
   if((stepm == 1) && (strcmp(model,".")==0)){    }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   }    if (stepm<=12) stepsize=1;
   else{    
     erreur=108;    agelim=AGESUP;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    
   }    hstepm=1;
      hstepm=hstepm/stepm; 
     
   /*---------- Health expectancies and variances ------------*/    if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
   strcpy(filerest,"t");        printf("Problem with population file : %s\n",popfile);exit(0);
   strcat(filerest,fileres);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   if((ficrest=fopen(filerest,"w"))==NULL) {      } 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      popage=ivector(0,AGESUP);
   }      popeffectif=vector(0,AGESUP);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      popcount=vector(0,AGESUP);
       
       i=1;   
   strcpy(filerese,"e");      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   strcat(filerese,fileres);     
   if((ficreseij=fopen(filerese,"w"))==NULL) {      imx=i;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   }    }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
  strcpy(fileresv,"v");     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   strcat(fileresv,fileres);        k=k+1;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        fprintf(ficrespop,"\n#******");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        for(j=1;j<=cptcoveff;j++) {
   }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        }
   calagedate=-1;        fprintf(ficrespop,"******\n");
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   k=0;        if (popforecast==1)  fprintf(ficrespop," [Population]");
   for(cptcov=1;cptcov<=i1;cptcov++){        
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for (cpt=0; cpt<=0;cpt++) { 
       k=k+1;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
       fprintf(ficrest,"\n#****** ");          
       for(j=1;j<=cptcoveff;j++)          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
       fprintf(ficrest,"******\n");            nhstepm = nhstepm/hstepm; 
             
       fprintf(ficreseij,"\n#****** ");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1;j<=cptcoveff;j++)            oldm=oldms;savm=savms;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       fprintf(ficreseij,"******\n");          
             for (h=0; h<=nhstepm; h++){
       fprintf(ficresvij,"\n#****** ");              if (h==(int) (calagedatem+YEARM*cpt)) {
       for(j=1;j<=cptcoveff;j++)                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              } 
       fprintf(ficresvij,"******\n");              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                for(i=1; i<=nlstate;i++) {              
       oldm=oldms;savm=savms;                  if (mobilav==1) 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                      kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                    else {
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
       oldm=oldms;savm=savms;                  }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);                }
                    if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                      /*fprintf(ficrespop," %.3f", kk1);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                }
       fprintf(ficrest,"\n");              }
               for(i=1; i<=nlstate;i++){
       epj=vector(1,nlstate+1);                kk1=0.;
       for(age=bage; age <=fage ;age++){                  for(j=1; j<=nlstate;j++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
         if (popbased==1) {                  }
           for(i=1; i<=nlstate;i++)                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
             prlim[i][i]=probs[(int)age][i][k];              }
         }  
                      if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
         fprintf(ficrest," %4.0f",age);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        }
           }   
           epj[nlstate+1] +=epj[j];    /******/
         }  
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
         for(i=1, vepp=0.;i <=nlstate;i++)          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for(j=1;j <=nlstate;j++)          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             vepp += vareij[i][j][(int)age];            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            nhstepm = nhstepm/hstepm; 
         for(j=1;j <=nlstate;j++){            
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }            oldm=oldms;savm=savms;
         fprintf(ficrest,"\n");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       }            for (h=0; h<=nhstepm; h++){
     }              if (h==(int) (calagedatem+YEARM*cpt)) {
   }                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 free_matrix(mint,1,maxwav,1,n);              } 
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);              for(j=1; j<=nlstate+ndeath;j++) {
     free_vector(weight,1,n);                kk1=0.;kk2=0;
   fclose(ficreseij);                for(i=1; i<=nlstate;i++) {              
   fclose(ficresvij);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   fclose(ficrest);                }
   fclose(ficpar);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   free_vector(epj,1,nlstate+1);              }
              }
   /*------- Variance limit prevalence------*/              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
   strcpy(fileresvpl,"vpl");        }
   strcat(fileresvpl,fileres);     } 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   
     exit(0);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
   k=0;      free_vector(popeffectif,0,AGESUP);
   for(cptcov=1;cptcov<=i1;cptcov++){      free_vector(popcount,0,AGESUP);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficresvpl,"\n#****** ");    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(j=1;j<=cptcoveff;j++)    fclose(ficrespop);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  } /* End of popforecast */
       fprintf(ficresvpl,"******\n");  
        int fileappend(FILE *fichier, char *optionfich)
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  {
       oldm=oldms;savm=savms;    if((fichier=fopen(optionfich,"a"))==NULL) {
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      printf("Problem with file: %s\n", optionfich);
     }      fprintf(ficlog,"Problem with file: %s\n", optionfich);
  }      return (0);
     }
   fclose(ficresvpl);    fflush(fichier);
     return (1);
   /*---------- End : free ----------------*/  }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
    {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    char ca[32], cb[32], cc[32];
      int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
      int numlinepar;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    for(i=1; i <=nlstate; i++){
        jj=0;
   free_matrix(matcov,1,npar,1,npar);      for(j=1; j <=nlstate+ndeath; j++){
   free_vector(delti,1,npar);        if(j==i) continue;
   free_matrix(agev,1,maxwav,1,imx);        jj++;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
   fprintf(fichtm,"\n</body>");        fprintf(ficparo,"%1d%1d",i,j);
   fclose(fichtm);        for(k=1; k<=ncovmodel;k++){
   fclose(ficgp);          /*        printf(" %lf",param[i][j][k]); */
            /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
   if(erreur >0)          fprintf(ficparo," 0.");
     printf("End of Imach with error or warning %d\n",erreur);        }
   else   printf("End of Imach\n");        printf("\n");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        fprintf(ficparo,"\n");
        }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    }
   /*printf("Total time was %d uSec.\n", total_usecs);*/    printf("# Scales (for hessian or gradient estimation)\n");
   /*------ End -----------*/    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
  end:      jj=0;
 #ifdef windows      for(j=1; j <=nlstate+ndeath; j++){
   /* chdir(pathcd);*/        if(j==i) continue;
 #endif        jj++;
  /*system("wgnuplot graph.plt");*/        fprintf(ficparo,"%1d%1d",i,j);
  /*system("../gp37mgw/wgnuplot graph.plt");*/        printf("%1d%1d",i,j);
  /*system("cd ../gp37mgw");*/        fflush(stdout);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        for(k=1; k<=ncovmodel;k++){
  strcpy(plotcmd,GNUPLOTPROGRAM);          /*      printf(" %le",delti3[i][j][k]); */
  strcat(plotcmd," ");          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
  strcat(plotcmd,optionfilegnuplot);          printf(" 0.");
  system(plotcmd);          fprintf(ficparo," 0.");
         }
 #ifdef windows        numlinepar++;
   while (z[0] != 'q') {        printf("\n");
     /* chdir(path); */        fprintf(ficparo,"\n");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      }
     scanf("%s",z);    }
     if (z[0] == 'c') system("./imach");    printf("# Covariance matrix\n");
     else if (z[0] == 'e') system(optionfilehtm);  /* # 121 Var(a12)\n\ */
     else if (z[0] == 'g') system(plotcmd);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
     else if (z[0] == 'q') exit(0);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   }  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 #endif  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 }  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.89


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>