Diff for /imach/src/imach.c between versions 1.49 and 1.100

version 1.49, 2002/06/20 14:03:39 version 1.100, 2004/07/12 18:29:06
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.100  2004/07/12 18:29:06  brouard
      Add version for Mac OS X. Just define UNIX in Makefile
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.99  2004/06/05 08:57:40  brouard
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.98  2004/05/16 15:05:56  brouard
   second wave of interviews ("longitudinal") which measure each change    New version 0.97 . First attempt to estimate force of mortality
   (if any) in individual health status.  Health expectancies are    directly from the data i.e. without the need of knowing the health
   computed from the time spent in each health state according to a    state at each age, but using a Gompertz model: log u =a + b*age .
   model. More health states you consider, more time is necessary to reach the    This is the basic analysis of mortality and should be done before any
   Maximum Likelihood of the parameters involved in the model.  The    other analysis, in order to test if the mortality estimated from the
   simplest model is the multinomial logistic model where pij is the    cross-longitudinal survey is different from the mortality estimated
   probability to be observed in state j at the second wave    from other sources like vital statistic data.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    The same imach parameter file can be used but the option for mle should be -3.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Agnès, who wrote this part of the code, tried to keep most of the
   where the markup *Covariates have to be included here again* invites    former routines in order to include the new code within the former code.
   you to do it.  More covariates you add, slower the  
   convergence.    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Current limitations:
   identical for each individual. Also, if a individual missed an    A) Even if you enter covariates, i.e. with the
   intermediate interview, the information is lost, but taken into    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   account using an interpolation or extrapolation.      B) There is no computation of Life Expectancy nor Life Table.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.97  2004/02/20 13:25:42  lievre
   conditional to the observed state i at age x. The delay 'h' can be    Version 0.96d. Population forecasting command line is (temporarily)
   split into an exact number (nh*stepm) of unobserved intermediate    suppressed.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.96  2003/07/15 15:38:55  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   and the contribution of each individual to the likelihood is simply    rewritten within the same printf. Workaround: many printfs.
   hPijx.  
     Revision 1.95  2003/07/08 07:54:34  brouard
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Repository):
   of the life expectancies. It also computes the prevalence limits.    (Repository): Using imachwizard code to output a more meaningful covariance
      matrix (cov(a12,c31) instead of numbers.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.94  2003/06/27 13:00:02  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Just cleaning
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.93  2003/06/25 16:33:55  brouard
   software can be distributed freely for non commercial use. Latest version    (Module): On windows (cygwin) function asctime_r doesn't
   can be accessed at http://euroreves.ined.fr/imach .    exist so I changed back to asctime which exists.
   **********************************************************************/    (Module): Version 0.96b
    
 #include <math.h>    Revision 1.92  2003/06/25 16:30:45  brouard
 #include <stdio.h>    (Module): On windows (cygwin) function asctime_r doesn't
 #include <stdlib.h>    exist so I changed back to asctime which exists.
 #include <unistd.h>  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define MAXLINE 256    * imach.c (Repository): Duplicated warning errors corrected.
 #define GNUPLOTPROGRAM "gnuplot"    (Repository): Elapsed time after each iteration is now output. It
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    helps to forecast when convergence will be reached. Elapsed time
 #define FILENAMELENGTH 80    is stamped in powell.  We created a new html file for the graphs
 /*#define DEBUG*/    concerning matrix of covariance. It has extension -cov.htm.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.90  2003/06/24 12:34:15  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    of the covariance matrix to be input.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.89  2003/06/24 12:30:52  brouard
 #define NINTERVMAX 8    (Module): Some bugs corrected for windows. Also, when
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    of the covariance matrix to be input.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.88  2003/06/23 17:54:56  brouard
 #define YEARM 12. /* Number of months per year */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.87  2003/06/18 12:26:01  brouard
 #ifdef windows    Version 0.96
 #define DIRSEPARATOR '\\'  
 #else    Revision 1.86  2003/06/17 20:04:08  brouard
 #define DIRSEPARATOR '/'    (Module): Change position of html and gnuplot routines and added
 #endif    routine fileappend.
   
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Revision 1.85  2003/06/17 13:12:43  brouard
 int erreur; /* Error number */    * imach.c (Repository): Check when date of death was earlier that
 int nvar;    current date of interview. It may happen when the death was just
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    prior to the death. In this case, dh was negative and likelihood
 int npar=NPARMAX;    was wrong (infinity). We still send an "Error" but patch by
 int nlstate=2; /* Number of live states */    assuming that the date of death was just one stepm after the
 int ndeath=1; /* Number of dead states */    interview.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Repository): Because some people have very long ID (first column)
 int popbased=0;    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 int *wav; /* Number of waves for this individuual 0 is possible */    truncation)
 int maxwav; /* Maxim number of waves */    (Repository): No more line truncation errors.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.84  2003/06/13 21:44:43  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Repository): Replace "freqsummary" at a correct
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    place. It differs from routine "prevalence" which may be called
 double jmean; /* Mean space between 2 waves */    many times. Probs is memory consuming and must be used with
 double **oldm, **newm, **savm; /* Working pointers to matrices */    parcimony.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.83  2003/06/10 13:39:11  lievre
 FILE *fichtm; /* Html File */    *** empty log message ***
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.82  2003/06/05 15:57:20  brouard
 FILE  *ficresvij;    Add log in  imach.c and  fullversion number is now printed.
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;  */
 char fileresvpl[FILENAMELENGTH];  /*
 char title[MAXLINE];     Interpolated Markov Chain
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Short summary of the programme:
     
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 char filerest[FILENAMELENGTH];    first survey ("cross") where individuals from different ages are
 char fileregp[FILENAMELENGTH];    interviewed on their health status or degree of disability (in the
 char popfile[FILENAMELENGTH];    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 #define NR_END 1    model. More health states you consider, more time is necessary to reach the
 #define FREE_ARG char*    Maximum Likelihood of the parameters involved in the model.  The
 #define FTOL 1.0e-10    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 #define NRANSI    conditional to be observed in state i at the first wave. Therefore
 #define ITMAX 200    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 #define TOL 2.0e-4    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 #define CGOLD 0.3819660    you to do it.  More covariates you add, slower the
 #define ZEPS 1.0e-10    convergence.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     The advantage of this computer programme, compared to a simple
 #define GOLD 1.618034    multinomial logistic model, is clear when the delay between waves is not
 #define GLIMIT 100.0    identical for each individual. Also, if a individual missed an
 #define TINY 1.0e-20    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    hPijx is the probability to be observed in state i at age x+h
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    conditional to the observed state i at age x. The delay 'h' can be
      split into an exact number (nh*stepm) of unobserved intermediate
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    states. This elementary transition (by month, quarter,
 #define rint(a) floor(a+0.5)    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 static double sqrarg;    and the contribution of each individual to the likelihood is simply
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    hPijx.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Also this programme outputs the covariance matrix of the parameters but also
 int imx;    of the life expectancies. It also computes the stable prevalence. 
 int stepm;    
 /* Stepm, step in month: minimum step interpolation*/    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 int estepm;    This software have been partly granted by Euro-REVES, a concerted action
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 int m,nb;    software can be distributed freely for non commercial use. Latest version
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    can be accessed at http://euroreves.ined.fr/imach .
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 double dateintmean=0;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 double *weight;    **********************************************************************/
 int **s; /* Status */  /*
 double *agedc, **covar, idx;    main
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    read parameterfile
     read datafile
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    concatwav
 double ftolhess; /* Tolerance for computing hessian */    freqsummary
     if (mle >= 1)
 /**************** split *************************/      mlikeli
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    print results files
 {    if mle==1 
    char *s;                             /* pointer */       computes hessian
    int  l1, l2;                         /* length counters */    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
    l1 = strlen( path );                 /* length of path */    open gnuplot file
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    open html file
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    stable prevalence
    if ( s == NULL ) {                   /* no directory, so use current */     for age prevalim()
 #if     defined(__bsd__)                /* get current working directory */    h Pij x
       extern char       *getwd( );    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
       if ( getwd( dirc ) == NULL ) {    health expectancies
 #else    Variance-covariance of DFLE
       extern char       *getcwd( );    prevalence()
      movingaverage()
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    varevsij() 
 #endif    if popbased==1 varevsij(,popbased)
          return( GLOCK_ERROR_GETCWD );    total life expectancies
       }    Variance of stable prevalence
       strcpy( name, path );             /* we've got it */   end
    } else {                             /* strip direcotry from path */  */
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */   
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #include <math.h>
       dirc[l1-l2] = 0;                  /* add zero */  #include <stdio.h>
    }  #include <stdlib.h>
    l1 = strlen( dirc );                 /* length of directory */  #include <unistd.h>
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  /* #include <sys/time.h> */
 #else  #include <time.h>
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #include "timeval.h"
 #endif  
    s = strrchr( name, '.' );            /* find last / */  /* #include <libintl.h> */
    s++;  /* #define _(String) gettext (String) */
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  #define MAXLINE 256
    l2= strlen( s)+1;  #define GNUPLOTPROGRAM "gnuplot"
    strncpy( finame, name, l1-l2);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    finame[l1-l2]= 0;  #define FILENAMELENGTH 132
    return( 0 );                         /* we're done */  /*#define DEBUG*/
 }  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /******************************************/  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 void replace(char *s, char*t)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   int i;  #define NINTERVMAX 8
   int lg=20;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   i=0;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   lg=strlen(t);  #define NCOVMAX 8 /* Maximum number of covariates */
   for(i=0; i<= lg; i++) {  #define MAXN 20000
     (s[i] = t[i]);  #define YEARM 12. /* Number of months per year */
     if (t[i]== '\\') s[i]='/';  #define AGESUP 130
   }  #define AGEBASE 40
 }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 int nbocc(char *s, char occ)  #define DIRSEPARATOR '/'
 {  #define ODIRSEPARATOR '\\'
   int i,j=0;  #else
   int lg=20;  #define DIRSEPARATOR '\\'
   i=0;  #define ODIRSEPARATOR '/'
   lg=strlen(s);  #endif
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  /* $Id$ */
   }  /* $State$ */
   return j;  
 }  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 void cutv(char *u,char *v, char*t, char occ)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nvar;
   int i,lg,j,p=0;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   i=0;  int npar=NPARMAX;
   for(j=0; j<=strlen(t)-1; j++) {  int nlstate=2; /* Number of live states */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  int ndeath=1; /* Number of dead states */
   }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
   lg=strlen(t);  
   for(j=0; j<p; j++) {  int *wav; /* Number of waves for this individuual 0 is possible */
     (u[j] = t[j]);  int maxwav; /* Maxim number of waves */
   }  int jmin, jmax; /* min, max spacing between 2 waves */
      u[p]='\0';  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
    for(j=0; j<= lg; j++) {  int mle, weightopt;
     if (j>=(p+1))(v[j-p-1] = t[j]);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /********************** nrerror ********************/  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 void nrerror(char error_text[])  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   fprintf(stderr,"ERREUR ...\n");  FILE *ficlog, *ficrespow;
   fprintf(stderr,"%s\n",error_text);  int globpr; /* Global variable for printing or not */
   exit(1);  double fretone; /* Only one call to likelihood */
 }  long ipmx; /* Number of contributions */
 /*********************** vector *******************/  double sw; /* Sum of weights */
 double *vector(int nl, int nh)  char filerespow[FILENAMELENGTH];
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   double *v;  FILE *ficresilk;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if (!v) nrerror("allocation failure in vector");  FILE *ficresprobmorprev;
   return v-nl+NR_END;  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /************************ free vector ******************/  FILE  *ficresvij;
 void free_vector(double*v, int nl, int nh)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   free((FREE_ARG)(v+nl-NR_END));  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /************************ivector *******************************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 int *ivector(long nl,long nh)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 {  char command[FILENAMELENGTH];
   int *v;  int  outcmd=0;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   return v-nl+NR_END;  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /******************free ivector **************************/  char fileregp[FILENAMELENGTH];
 void free_ivector(int *v, long nl, long nh)  char popfile[FILENAMELENGTH];
 {  
   free((FREE_ARG)(v+nl-NR_END));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 }  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /******************* imatrix *******************************/  struct timezone tzp;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  extern int gettimeofday();
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  extern long time();
   int **m;  char strcurr[80], strfor[80];
    
   /* allocate pointers to rows */  #define NR_END 1
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define FREE_ARG char*
   if (!m) nrerror("allocation failure 1 in matrix()");  #define FTOL 1.0e-10
   m += NR_END;  
   m -= nrl;  #define NRANSI 
    #define ITMAX 200 
    
   /* allocate rows and set pointers to them */  #define TOL 2.0e-4 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define CGOLD 0.3819660 
   m[nrl] += NR_END;  #define ZEPS 1.0e-10 
   m[nrl] -= ncl;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define GOLD 1.618034 
    #define GLIMIT 100.0 
   /* return pointer to array of pointers to rows */  #define TINY 1.0e-20 
   return m;  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /****************** free_imatrix *************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 void free_imatrix(m,nrl,nrh,ncl,nch)    
       int **m;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       long nch,ncl,nrh,nrl;  #define rint(a) floor(a+0.5)
      /* free an int matrix allocated by imatrix() */  
 {  static double sqrarg;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   free((FREE_ARG) (m+nrl-NR_END));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 }  int agegomp= AGEGOMP;
   
 /******************* matrix *******************************/  int imx; 
 double **matrix(long nrl, long nrh, long ncl, long nch)  int stepm=1;
 {  /* Stepm, step in month: minimum step interpolation*/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  int m,nb;
   m += NR_END;  long *num;
   m -= nrl;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double **pmmij, ***probs;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double *ageexmed,*agecens;
   m[nrl] += NR_END;  double dateintmean=0;
   m[nrl] -= ncl;  
   double *weight;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int **s; /* Status */
   return m;  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /*************************free matrix ************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double ftolhess; /* Tolerance for computing hessian */
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /**************** split *************************/
   free((FREE_ARG)(m+nrl-NR_END));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
 /******************* ma3x *******************************/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    */ 
 {    char  *ss;                            /* pointer */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    int   l1, l2;                         /* length counters */
   double ***m;  
     l1 = strlen(path );                   /* length of path */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!m) nrerror("allocation failure 1 in matrix()");    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m += NR_END;    if ( ss == NULL ) {                   /* no directory, so use current */
   m -= nrl;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      /* get current working directory */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      /*    extern  char* getcwd ( char *buf , int len);*/
   m[nrl] += NR_END;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m[nrl] -= ncl;        return( GLOCK_ERROR_GETCWD );
       }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      ss++;                               /* after this, the filename */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      l2 = strlen( ss );                  /* length of filename */
   m[nrl][ncl] += NR_END;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl][ncl] -= nll;      strcpy( name, ss );         /* save file name */
   for (j=ncl+1; j<=nch; j++)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     m[nrl][j]=m[nrl][j-1]+nlay;      dirc[l1-l2] = 0;                    /* add zero */
      }
   for (i=nrl+1; i<=nrh; i++) {    l1 = strlen( dirc );                  /* length of directory */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    /*#ifdef windows
     for (j=ncl+1; j<=nch; j++)    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
       m[i][j]=m[i][j-1]+nlay;  #else
   }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   return m;  #endif
 }    */
     ss = strrchr( name, '.' );            /* find last / */
 /*************************free ma3x ************************/    if (ss >0){
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      ss++;
 {      strcpy(ext,ss);                     /* save extension */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      l1= strlen( name);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      l2= strlen(ss)+1;
   free((FREE_ARG)(m+nrl-NR_END));      strncpy( finame, name, l1-l2);
 }      finame[l1-l2]= 0;
     }
 /***************** f1dim *************************/    return( 0 );                          /* we're done */
 extern int ncom;  }
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  
    /******************************************/
 double f1dim(double x)  
 {  void replace_back_to_slash(char *s, char*t)
   int j;  {
   double f;    int i;
   double *xt;    int lg=0;
      i=0;
   xt=vector(1,ncom);    lg=strlen(t);
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    for(i=0; i<= lg; i++) {
   f=(*nrfunc)(xt);      (s[i] = t[i]);
   free_vector(xt,1,ncom);      if (t[i]== '\\') s[i]='/';
   return f;    }
 }  }
   
 /*****************brent *************************/  int nbocc(char *s, char occ)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  {
 {    int i,j=0;
   int iter;    int lg=20;
   double a,b,d,etemp;    i=0;
   double fu,fv,fw,fx;    lg=strlen(s);
   double ftemp;    for(i=0; i<= lg; i++) {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    if  (s[i] == occ ) j++;
   double e=0.0;    }
      return j;
   a=(ax < cx ? ax : cx);  }
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  void cutv(char *u,char *v, char*t, char occ)
   fw=fv=fx=(*f)(x);  {
   for (iter=1;iter<=ITMAX;iter++) {    /* cuts string t into u and v where u is ended by char occ excluding it
     xm=0.5*(a+b);       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);       gives u="abcedf" and v="ghi2j" */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    int i,lg,j,p=0;
     printf(".");fflush(stdout);    i=0;
 #ifdef DEBUG    for(j=0; j<=strlen(t)-1; j++) {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    }
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    lg=strlen(t);
       *xmin=x;    for(j=0; j<p; j++) {
       return fx;      (u[j] = t[j]);
     }    }
     ftemp=fu;       u[p]='\0';
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);     for(j=0; j<= lg; j++) {
       q=(x-v)*(fx-fw);      if (j>=(p+1))(v[j-p-1] = t[j]);
       p=(x-v)*q-(x-w)*r;    }
       q=2.0*(q-r);  }
       if (q > 0.0) p = -p;  
       q=fabs(q);  /********************** nrerror ********************/
       etemp=e;  
       e=d;  void nrerror(char error_text[])
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    fprintf(stderr,"ERREUR ...\n");
       else {    fprintf(stderr,"%s\n",error_text);
         d=p/q;    exit(EXIT_FAILURE);
         u=x+d;  }
         if (u-a < tol2 || b-u < tol2)  /*********************** vector *******************/
           d=SIGN(tol1,xm-x);  double *vector(int nl, int nh)
       }  {
     } else {    double *v;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     }    if (!v) nrerror("allocation failure in vector");
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    return v-nl+NR_END;
     fu=(*f)(u);  }
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  /************************ free vector ******************/
       SHFT(v,w,x,u)  void free_vector(double*v, int nl, int nh)
         SHFT(fv,fw,fx,fu)  {
         } else {    free((FREE_ARG)(v+nl-NR_END));
           if (u < x) a=u; else b=u;  }
           if (fu <= fw || w == x) {  
             v=w;  /************************ivector *******************************/
             w=u;  int *ivector(long nl,long nh)
             fv=fw;  {
             fw=fu;    int *v;
           } else if (fu <= fv || v == x || v == w) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
             v=u;    if (!v) nrerror("allocation failure in ivector");
             fv=fu;    return v-nl+NR_END;
           }  }
         }  
   }  /******************free ivector **************************/
   nrerror("Too many iterations in brent");  void free_ivector(int *v, long nl, long nh)
   *xmin=x;  {
   return fx;    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /****************** mnbrak ***********************/  /************************lvector *******************************/
   long *lvector(long nl,long nh)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  {
             double (*func)(double))    long *v;
 {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double ulim,u,r,q, dum;    if (!v) nrerror("allocation failure in ivector");
   double fu;    return v-nl+NR_END;
    }
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  /******************free lvector **************************/
   if (*fb > *fa) {  void free_lvector(long *v, long nl, long nh)
     SHFT(dum,*ax,*bx,dum)  {
       SHFT(dum,*fb,*fa,dum)    free((FREE_ARG)(v+nl-NR_END));
       }  }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /******************* imatrix *******************************/
   while (*fb > *fc) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     r=(*bx-*ax)*(*fb-*fc);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     q=(*bx-*cx)*(*fb-*fa);  { 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    int **m; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    
     if ((*bx-u)*(u-*cx) > 0.0) {    /* allocate pointers to rows */ 
       fu=(*func)(u);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
       fu=(*func)(u);    m += NR_END; 
       if (fu < *fc) {    m -= nrl; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    
           SHFT(*fb,*fc,fu,(*func)(u))    
           }    /* allocate rows and set pointers to them */ 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       u=ulim;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       fu=(*func)(u);    m[nrl] += NR_END; 
     } else {    m[nrl] -= ncl; 
       u=(*cx)+GOLD*(*cx-*bx);    
       fu=(*func)(u);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     }    
     SHFT(*ax,*bx,*cx,u)    /* return pointer to array of pointers to rows */ 
       SHFT(*fa,*fb,*fc,fu)    return m; 
       }  } 
 }  
   /****************** free_imatrix *************************/
 /*************** linmin ************************/  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
 int ncom;        long nch,ncl,nrh,nrl; 
 double *pcom,*xicom;       /* free an int matrix allocated by imatrix() */ 
 double (*nrfunc)(double []);  { 
      free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    free((FREE_ARG) (m+nrl-NR_END)); 
 {  } 
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /******************* matrix *******************************/
   double f1dim(double x);  double **matrix(long nrl, long nrh, long ncl, long nch)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   int j;    double **m;
   double xx,xmin,bx,ax;  
   double fx,fb,fa;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      if (!m) nrerror("allocation failure 1 in matrix()");
   ncom=n;    m += NR_END;
   pcom=vector(1,n);    m -= nrl;
   xicom=vector(1,n);  
   nrfunc=func;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     pcom[j]=p[j];    m[nrl] += NR_END;
     xicom[j]=xi[j];    m[nrl] -= ncl;
   }  
   ax=0.0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   xx=1.0;    return m;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     */
 #ifdef DEBUG  }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  /*************************free matrix ************************/
   for (j=1;j<=n;j++) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     xi[j] *= xmin;  {
     p[j] += xi[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }    free((FREE_ARG)(m+nrl-NR_END));
   free_vector(xicom,1,n);  }
   free_vector(pcom,1,n);  
 }  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 /*************** powell ************************/  {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
             double (*func)(double []))    double ***m;
 {  
   void linmin(double p[], double xi[], int n, double *fret,    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
               double (*func)(double []));    if (!m) nrerror("allocation failure 1 in matrix()");
   int i,ibig,j;    m += NR_END;
   double del,t,*pt,*ptt,*xit;    m -= nrl;
   double fp,fptt;  
   double *xits;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   pt=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   ptt=vector(1,n);    m[nrl] += NR_END;
   xit=vector(1,n);    m[nrl] -= ncl;
   xits=vector(1,n);  
   *fret=(*func)(p);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     fp=(*fret);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     ibig=0;    m[nrl][ncl] += NR_END;
     del=0.0;    m[nrl][ncl] -= nll;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for (j=ncl+1; j<=nch; j++) 
     for (i=1;i<=n;i++)      m[nrl][j]=m[nrl][j-1]+nlay;
       printf(" %d %.12f",i, p[i]);    
     printf("\n");    for (i=nrl+1; i<=nrh; i++) {
     for (i=1;i<=n;i++) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      for (j=ncl+1; j<=nch; j++) 
       fptt=(*fret);        m[i][j]=m[i][j-1]+nlay;
 #ifdef DEBUG    }
       printf("fret=%lf \n",*fret);    return m; 
 #endif    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       printf("%d",i);fflush(stdout);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       linmin(p,xit,n,fret,func);    */
       if (fabs(fptt-(*fret)) > del) {  }
         del=fabs(fptt-(*fret));  
         ibig=i;  /*************************free ma3x ************************/
       }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #ifdef DEBUG  {
       printf("%d %.12e",i,(*fret));    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    free((FREE_ARG)(m+nrl-NR_END));
         printf(" x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++)  /*************** function subdirf ***********/
         printf(" p=%.12e",p[j]);  char *subdirf(char fileres[])
       printf("\n");  {
 #endif    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    strcat(tmpout,"/"); /* Add to the right */
 #ifdef DEBUG    strcat(tmpout,fileres);
       int k[2],l;    return tmpout;
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /*************** function subdirf2 ***********/
       for (j=1;j<=n;j++)  char *subdirf2(char fileres[], char *preop)
         printf(" %.12e",p[j]);  {
       printf("\n");    
       for(l=0;l<=1;l++) {    /* Caution optionfilefiname is hidden */
         for (j=1;j<=n;j++) {    strcpy(tmpout,optionfilefiname);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    strcat(tmpout,"/");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcat(tmpout,preop);
         }    strcat(tmpout,fileres);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return tmpout;
       }  }
 #endif  
   /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    
       free_vector(ptt,1,n);    /* Caution optionfilefiname is hidden */
       free_vector(pt,1,n);    strcpy(tmpout,optionfilefiname);
       return;    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    strcat(tmpout,preop2);
     for (j=1;j<=n;j++) {    strcat(tmpout,fileres);
       ptt[j]=2.0*p[j]-pt[j];    return tmpout;
       xit[j]=p[j]-pt[j];  }
       pt[j]=p[j];  
     }  /***************** f1dim *************************/
     fptt=(*func)(ptt);  extern int ncom; 
     if (fptt < fp) {  extern double *pcom,*xicom;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  extern double (*nrfunc)(double []); 
       if (t < 0.0) {   
         linmin(p,xit,n,fret,func);  double f1dim(double x) 
         for (j=1;j<=n;j++) {  { 
           xi[j][ibig]=xi[j][n];    int j; 
           xi[j][n]=xit[j];    double f;
         }    double *xt; 
 #ifdef DEBUG   
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    xt=vector(1,ncom); 
         for(j=1;j<=n;j++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
           printf(" %.12e",xit[j]);    f=(*nrfunc)(xt); 
         printf("\n");    free_vector(xt,1,ncom); 
 #endif    return f; 
       }  } 
     }  
   }  /*****************brent *************************/
 }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
 /**** Prevalence limit ****************/    int iter; 
     double a,b,d,etemp;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double fu,fv,fw,fx;
 {    double ftemp;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    double p,q,r,tol1,tol2,u,v,w,x,xm; 
      matrix by transitions matrix until convergence is reached */    double e=0.0; 
    
   int i, ii,j,k;    a=(ax < cx ? ax : cx); 
   double min, max, maxmin, maxmax,sumnew=0.;    b=(ax > cx ? ax : cx); 
   double **matprod2();    x=w=v=bx; 
   double **out, cov[NCOVMAX], **pmij();    fw=fv=fx=(*f)(x); 
   double **newm;    for (iter=1;iter<=ITMAX;iter++) { 
   double agefin, delaymax=50 ; /* Max number of years to converge */      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for (ii=1;ii<=nlstate+ndeath;ii++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for (j=1;j<=nlstate+ndeath;j++){      printf(".");fflush(stdout);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
    cov[1]=1.;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #endif
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     newm=savm;        *xmin=x; 
     /* Covariates have to be included here again */        return fx; 
      cov[2]=agefin;      } 
        ftemp=fu;
       for (k=1; k<=cptcovn;k++) {      if (fabs(e) > tol1) { 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        r=(x-w)*(fx-fv); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        q=(x-v)*(fx-fw); 
       }        p=(x-v)*q-(x-w)*r; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        q=2.0*(q-r); 
       for (k=1; k<=cptcovprod;k++)        if (q > 0.0) p = -p; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        q=fabs(q); 
         etemp=e; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        e=d; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        else { 
           d=p/q; 
     savm=oldm;          u=x+d; 
     oldm=newm;          if (u-a < tol2 || b-u < tol2) 
     maxmax=0.;            d=SIGN(tol1,xm-x); 
     for(j=1;j<=nlstate;j++){        } 
       min=1.;      } else { 
       max=0.;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for(i=1; i<=nlstate; i++) {      } 
         sumnew=0;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      fu=(*f)(u); 
         prlim[i][j]= newm[i][j]/(1-sumnew);      if (fu <= fx) { 
         max=FMAX(max,prlim[i][j]);        if (u >= x) a=x; else b=x; 
         min=FMIN(min,prlim[i][j]);        SHFT(v,w,x,u) 
       }          SHFT(fv,fw,fx,fu) 
       maxmin=max-min;          } else { 
       maxmax=FMAX(maxmax,maxmin);            if (u < x) a=u; else b=u; 
     }            if (fu <= fw || w == x) { 
     if(maxmax < ftolpl){              v=w; 
       return prlim;              w=u; 
     }              fv=fw; 
   }              fw=fu; 
 }            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
 /*************** transition probabilities ***************/              fv=fu; 
             } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          } 
 {    } 
   double s1, s2;    nrerror("Too many iterations in brent"); 
   /*double t34;*/    *xmin=x; 
   int i,j,j1, nc, ii, jj;    return fx; 
   } 
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  /****************** mnbrak ***********************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];              double (*func)(double)) 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  { 
       }    double ulim,u,r,q, dum;
       ps[i][j]=s2;    double fu; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/   
     }    *fa=(*func)(*ax); 
     for(j=i+1; j<=nlstate+ndeath;j++){    *fb=(*func)(*bx); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    if (*fb > *fa) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      SHFT(dum,*ax,*bx,dum) 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        SHFT(dum,*fb,*fa,dum) 
       }        } 
       ps[i][j]=s2;    *cx=(*bx)+GOLD*(*bx-*ax); 
     }    *fc=(*func)(*cx); 
   }    while (*fb > *fc) { 
     /*ps[3][2]=1;*/      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
   for(i=1; i<= nlstate; i++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
      s1=0;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for(j=1; j<i; j++)      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       s1+=exp(ps[i][j]);      if ((*bx-u)*(u-*cx) > 0.0) { 
     for(j=i+1; j<=nlstate+ndeath; j++)        fu=(*func)(u); 
       s1+=exp(ps[i][j]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     ps[i][i]=1./(s1+1.);        fu=(*func)(u); 
     for(j=1; j<i; j++)        if (fu < *fc) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for(j=i+1; j<=nlstate+ndeath; j++)            SHFT(*fb,*fc,fu,(*func)(u)) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            } 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   } /* end i */        u=ulim; 
         fu=(*func)(u); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      } else { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        u=(*cx)+GOLD*(*cx-*bx); 
       ps[ii][jj]=0;        fu=(*func)(u); 
       ps[ii][ii]=1;      } 
     }      SHFT(*ax,*bx,*cx,u) 
   }        SHFT(*fa,*fb,*fc,fu) 
         } 
   } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*************** linmin ************************/
      printf("%lf ",ps[ii][jj]);  
    }  int ncom; 
     printf("\n ");  double *pcom,*xicom;
     }  double (*nrfunc)(double []); 
     printf("\n ");printf("%lf ",cov[2]);*/   
 /*  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  { 
   goto end;*/    double brent(double ax, double bx, double cx, 
     return ps;                 double (*f)(double), double tol, double *xmin); 
 }    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 /**************** Product of 2 matrices ******************/                double *fc, double (*func)(double)); 
     int j; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double xx,xmin,bx,ax; 
 {    double fx,fb,fa;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times   
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    ncom=n; 
   /* in, b, out are matrice of pointers which should have been initialized    pcom=vector(1,n); 
      before: only the contents of out is modified. The function returns    xicom=vector(1,n); 
      a pointer to pointers identical to out */    nrfunc=func; 
   long i, j, k;    for (j=1;j<=n;j++) { 
   for(i=nrl; i<= nrh; i++)      pcom[j]=p[j]; 
     for(k=ncolol; k<=ncoloh; k++)      xicom[j]=xi[j]; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    } 
         out[i][k] +=in[i][j]*b[j][k];    ax=0.0; 
     xx=1.0; 
   return out;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /************* Higher Matrix Product ***************/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    for (j=1;j<=n;j++) { 
 {      xi[j] *= xmin; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      p[j] += xi[j]; 
      duration (i.e. until    } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    free_vector(xicom,1,n); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    free_vector(pcom,1,n); 
      (typically every 2 years instead of every month which is too big).  } 
      Model is determined by parameters x and covariates have to be  
      included manually here.  char *asc_diff_time(long time_sec, char ascdiff[])
   {
      */    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   int i, j, d, h, k;    sec_left = (time_sec) % (60*60*24);
   double **out, cov[NCOVMAX];    hours = (sec_left) / (60*60) ;
   double **newm;    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
   /* Hstepm could be zero and should return the unit matrix */    sec_left = (sec_left) % (60);
   for (i=1;i<=nlstate+ndeath;i++)    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     for (j=1;j<=nlstate+ndeath;j++){    return ascdiff;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  }
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }  /*************** powell ************************/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   for(h=1; h <=nhstepm; h++){              double (*func)(double [])) 
     for(d=1; d <=hstepm; d++){  { 
       newm=savm;    void linmin(double p[], double xi[], int n, double *fret, 
       /* Covariates have to be included here again */                double (*func)(double [])); 
       cov[1]=1.;    int i,ibig,j; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    double del,t,*pt,*ptt,*xit;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double fp,fptt;
       for (k=1; k<=cptcovage;k++)    double *xits;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int niterf, itmp;
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    pt=vector(1,n); 
     ptt=vector(1,n); 
     xit=vector(1,n); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    xits=vector(1,n); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    *fret=(*func)(p); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    for (j=1;j<=n;j++) pt[j]=p[j]; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    for (*iter=1;;++(*iter)) { 
       savm=oldm;      fp=(*fret); 
       oldm=newm;      ibig=0; 
     }      del=0.0; 
     for(i=1; i<=nlstate+ndeath; i++)      last_time=curr_time;
       for(j=1;j<=nlstate+ndeath;j++) {      (void) gettimeofday(&curr_time,&tzp);
         po[i][j][h]=newm[i][j];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
          */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       }      */
   } /* end h */     for (i=1;i<=n;i++) {
   return po;        printf(" %d %.12f",i, p[i]);
 }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
       }
 /*************** log-likelihood *************/      printf("\n");
 double func( double *x)      fprintf(ficlog,"\n");
 {      fprintf(ficrespow,"\n");fflush(ficrespow);
   int i, ii, j, k, mi, d, kk;      if(*iter <=3){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        tm = *localtime(&curr_time.tv_sec);
   double **out;        strcpy(strcurr,asctime(&tmf));
   double sw; /* Sum of weights */  /*       asctime_r(&tm,strcurr); */
   double lli; /* Individual log likelihood */        forecast_time=curr_time;
   long ipmx;        itmp = strlen(strcurr);
   /*extern weight */        if(strcurr[itmp-1]=='\n')
   /* We are differentiating ll according to initial status */          strcurr[itmp-1]='\0';
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /*for(i=1;i<imx;i++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     printf(" %d\n",s[4][i]);        for(niterf=10;niterf<=30;niterf+=10){
   */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   cov[1]=1.;          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   for(k=1; k<=nlstate; k++) ll[k]=0.;          strcpy(strfor,asctime(&tmf));
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          itmp = strlen(strfor);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          if(strfor[itmp-1]=='\n')
     for(mi=1; mi<= wav[i]-1; mi++){          strfor[itmp-1]='\0';
       for (ii=1;ii<=nlstate+ndeath;ii++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for(d=0; d<dh[mi][i]; d++){        }
         newm=savm;      }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for (i=1;i<=n;i++) { 
         for (kk=1; kk<=cptcovage;kk++) {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        fptt=(*fret); 
         }  #ifdef DEBUG
                printf("fret=%lf \n",*fret);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fprintf(ficlog,"fret=%lf \n",*fret);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
         savm=oldm;        printf("%d",i);fflush(stdout);
         oldm=newm;        fprintf(ficlog,"%d",i);fflush(ficlog);
                linmin(p,xit,n,fret,func); 
                if (fabs(fptt-(*fret)) > del) { 
       } /* end mult */          del=fabs(fptt-(*fret)); 
                ibig=i; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  #ifdef DEBUG
       ipmx +=1;        printf("%d %.12e",i,(*fret));
       sw += weight[i];        fprintf(ficlog,"%d %.12e",i,(*fret));
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for (j=1;j<=n;j++) {
     } /* end of wave */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   } /* end of individual */          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        for(j=1;j<=n;j++) {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          printf(" p=%.12e",p[j]);
   return -l;          fprintf(ficlog," p=%.12e",p[j]);
 }        }
         printf("\n");
         fprintf(ficlog,"\n");
 /*********** Maximum Likelihood Estimation ***************/  #endif
       } 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 {  #ifdef DEBUG
   int i,j, iter;        int k[2],l;
   double **xi,*delti;        k[0]=1;
   double fret;        k[1]=-1;
   xi=matrix(1,npar,1,npar);        printf("Max: %.12e",(*func)(p));
   for (i=1;i<=npar;i++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for (j=1;j<=npar;j++)        for (j=1;j<=n;j++) {
       xi[i][j]=(i==j ? 1.0 : 0.0);          printf(" %.12e",p[j]);
   printf("Powell\n");          fprintf(ficlog," %.12e",p[j]);
   powell(p,xi,npar,ftol,&iter,&fret,func);        }
         printf("\n");
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        fprintf(ficlog,"\n");
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
 }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 /**** Computes Hessian and covariance matrix ***/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          }
 {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double  **a,**y,*x,pd;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double **hess;        }
   int i, j,jk;  #endif
   int *indx;  
   
   double hessii(double p[], double delta, int theta, double delti[]);        free_vector(xit,1,n); 
   double hessij(double p[], double delti[], int i, int j);        free_vector(xits,1,n); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        free_vector(ptt,1,n); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        free_vector(pt,1,n); 
         return; 
   hess=matrix(1,npar,1,npar);      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   printf("\nCalculation of the hessian matrix. Wait...\n");      for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++){        ptt[j]=2.0*p[j]-pt[j]; 
     printf("%d",i);fflush(stdout);        xit[j]=p[j]-pt[j]; 
     hess[i][i]=hessii(p,ftolhess,i,delti);        pt[j]=p[j]; 
     /*printf(" %f ",p[i]);*/      } 
     /*printf(" %lf ",hess[i][i]);*/      fptt=(*func)(ptt); 
   }      if (fptt < fp) { 
          t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for (i=1;i<=npar;i++) {        if (t < 0.0) { 
     for (j=1;j<=npar;j++)  {          linmin(p,xit,n,fret,func); 
       if (j>i) {          for (j=1;j<=n;j++) { 
         printf(".%d%d",i,j);fflush(stdout);            xi[j][ibig]=xi[j][n]; 
         hess[i][j]=hessij(p,delti,i,j);            xi[j][n]=xit[j]; 
         hess[j][i]=hess[i][j];              }
         /*printf(" %lf ",hess[i][j]);*/  #ifdef DEBUG
       }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          for(j=1;j<=n;j++){
   printf("\n");            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          }
            printf("\n");
   a=matrix(1,npar,1,npar);          fprintf(ficlog,"\n");
   y=matrix(1,npar,1,npar);  #endif
   x=vector(1,npar);        }
   indx=ivector(1,npar);      } 
   for (i=1;i<=npar;i++)    } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  } 
   ludcmp(a,npar,indx,&pd);  
   /**** Prevalence limit (stable prevalence)  ****************/
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for (i=1;i<=npar;i++){       matrix by transitions matrix until convergence is reached */
       matcov[i][j]=x[i];  
     }    int i, ii,j,k;
   }    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   printf("\n#Hessian matrix#\n");    double **out, cov[NCOVMAX], **pmij();
   for (i=1;i<=npar;i++) {    double **newm;
     for (j=1;j<=npar;j++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
       printf("%.3e ",hess[i][j]);  
     }    for (ii=1;ii<=nlstate+ndeath;ii++)
     printf("\n");      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)     cov[1]=1.;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];   
   ludcmp(a,npar,indx,&pd);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   /*  printf("\n#Hessian matrix recomputed#\n");      newm=savm;
       /* Covariates have to be included here again */
   for (j=1;j<=npar;j++) {       cov[2]=agefin;
     for (i=1;i<=npar;i++) x[i]=0;    
     x[j]=1;        for (k=1; k<=cptcovn;k++) {
     lubksb(a,npar,indx,x);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for (i=1;i<=npar;i++){          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       y[i][j]=x[i];        }
       printf("%.3e ",y[i][j]);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     }        for (k=1; k<=cptcovprod;k++)
     printf("\n");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
   */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   free_matrix(a,1,npar,1,npar);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   free_matrix(y,1,npar,1,npar);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);      savm=oldm;
   free_matrix(hess,1,npar,1,npar);      oldm=newm;
       maxmax=0.;
       for(j=1;j<=nlstate;j++){
 }        min=1.;
         max=0.;
 /*************** hessian matrix ****************/        for(i=1; i<=nlstate; i++) {
 double hessii( double x[], double delta, int theta, double delti[])          sumnew=0;
 {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   int i;          prlim[i][j]= newm[i][j]/(1-sumnew);
   int l=1, lmax=20;          max=FMAX(max,prlim[i][j]);
   double k1,k2;          min=FMIN(min,prlim[i][j]);
   double p2[NPARMAX+1];        }
   double res;        maxmin=max-min;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        maxmax=FMAX(maxmax,maxmin);
   double fx;      }
   int k=0,kmax=10;      if(maxmax < ftolpl){
   double l1;        return prlim;
       }
   fx=func(x);    }
   for (i=1;i<=npar;i++) p2[i]=x[i];  }
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  /*************** transition probabilities ***************/ 
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       delt = delta*(l1*k);  {
       p2[theta]=x[theta] +delt;    double s1, s2;
       k1=func(p2)-fx;    /*double t34;*/
       p2[theta]=x[theta]-delt;    int i,j,j1, nc, ii, jj;
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */      for(i=1; i<= nlstate; i++){
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        for(j=1; j<i;j++){
                for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 #ifdef DEBUG            /*s2 += param[i][j][nc]*cov[nc];*/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 #endif  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          ps[i][j]=s2;
         k=kmax;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       }        }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for(j=i+1; j<=nlstate+ndeath;j++){
         k=kmax; l=lmax*10.;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         delts=delt;          }
       }          ps[i][j]=s2;
     }        }
   }      }
   delti[theta]=delts;      /*ps[3][2]=1;*/
   return res;      
        for(i=1; i<= nlstate; i++){
 }        s1=0;
         for(j=1; j<i; j++)
 double hessij( double x[], double delti[], int thetai,int thetaj)          s1+=exp(ps[i][j]);
 {        for(j=i+1; j<=nlstate+ndeath; j++)
   int i;          s1+=exp(ps[i][j]);
   int l=1, l1, lmax=20;        ps[i][i]=1./(s1+1.);
   double k1,k2,k3,k4,res,fx;        for(j=1; j<i; j++)
   double p2[NPARMAX+1];          ps[i][j]= exp(ps[i][j])*ps[i][i];
   int k;        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
   fx=func(x);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for (k=1; k<=2; k++) {      } /* end i */
     for (i=1;i<=npar;i++) p2[i]=x[i];      
     p2[thetai]=x[thetai]+delti[thetai]/k;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(jj=1; jj<= nlstate+ndeath; jj++){
     k1=func(p2)-fx;          ps[ii][jj]=0;
            ps[ii][ii]=1;
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k2=func(p2)-fx;      
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     k3=func(p2)-fx;  /*         printf("ddd %lf ",ps[ii][jj]); */
    /*       } */
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*       printf("\n "); */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*        } */
     k4=func(p2)-fx;  /*        printf("\n ");printf("%lf ",cov[2]); */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */         /*
 #ifdef DEBUG        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        goto end;*/
 #endif      return ps;
   }  }
   return res;  
 }  /**************** Product of 2 matrices ******************/
   
 /************** Inverse of matrix **************/  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 void ludcmp(double **a, int n, int *indx, double *d)  {
 {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   int i,imax,j,k;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double big,dum,sum,temp;    /* in, b, out are matrice of pointers which should have been initialized 
   double *vv;       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
   vv=vector(1,n);    long i, j, k;
   *d=1.0;    for(i=nrl; i<= nrh; i++)
   for (i=1;i<=n;i++) {      for(k=ncolol; k<=ncoloh; k++)
     big=0.0;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for (j=1;j<=n;j++)          out[i][k] +=in[i][j]*b[j][k];
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    return out;
     vv[i]=1.0/big;  }
   }  
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  /************* Higher Matrix Product ***************/
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       a[i][j]=sum;  {
     }    /* Computes the transition matrix starting at age 'age' over 
     big=0.0;       'nhstepm*hstepm*stepm' months (i.e. until
     for (i=j;i<=n;i++) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       sum=a[i][j];       nhstepm*hstepm matrices. 
       for (k=1;k<j;k++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         sum -= a[i][k]*a[k][j];       (typically every 2 years instead of every month which is too big 
       a[i][j]=sum;       for the memory).
       if ( (dum=vv[i]*fabs(sum)) >= big) {       Model is determined by parameters x and covariates have to be 
         big=dum;       included manually here. 
         imax=i;  
       }       */
     }  
     if (j != imax) {    int i, j, d, h, k;
       for (k=1;k<=n;k++) {    double **out, cov[NCOVMAX];
         dum=a[imax][k];    double **newm;
         a[imax][k]=a[j][k];  
         a[j][k]=dum;    /* Hstepm could be zero and should return the unit matrix */
       }    for (i=1;i<=nlstate+ndeath;i++)
       *d = -(*d);      for (j=1;j<=nlstate+ndeath;j++){
       vv[imax]=vv[j];        oldm[i][j]=(i==j ? 1.0 : 0.0);
     }        po[i][j][0]=(i==j ? 1.0 : 0.0);
     indx[j]=imax;      }
     if (a[j][j] == 0.0) a[j][j]=TINY;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if (j != n) {    for(h=1; h <=nhstepm; h++){
       dum=1.0/(a[j][j]);      for(d=1; d <=hstepm; d++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        newm=savm;
     }        /* Covariates have to be included here again */
   }        cov[1]=1.;
   free_vector(vv,1,n);  /* Doesn't work */        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 ;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 }        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 void lubksb(double **a, int n, int *indx, double b[])        for (k=1; k<=cptcovprod;k++)
 {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int i,ii=0,ip,j;  
   double sum;  
          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for (i=1;i<=n;i++) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     ip=indx[i];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     sum=b[ip];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     b[ip]=b[i];        savm=oldm;
     if (ii)        oldm=newm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      }
     else if (sum) ii=i;      for(i=1; i<=nlstate+ndeath; i++)
     b[i]=sum;        for(j=1;j<=nlstate+ndeath;j++) {
   }          po[i][j][h]=newm[i][j];
   for (i=n;i>=1;i--) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     sum=b[i];           */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        }
     b[i]=sum/a[i][i];    } /* end h */
   }    return po;
 }  }
   
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  /*************** log-likelihood *************/
 {  /* Some frequencies */  double func( double *x)
    {
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    int i, ii, j, k, mi, d, kk;
   double ***freq; /* Frequencies */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double *pp;    double **out;
   double pos, k2, dateintsum=0,k2cpt=0;    double sw; /* Sum of weights */
   FILE *ficresp;    double lli; /* Individual log likelihood */
   char fileresp[FILENAMELENGTH];    int s1, s2;
      double bbh, survp;
   pp=vector(1,nlstate);    long ipmx;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*extern weight */
   strcpy(fileresp,"p");    /* We are differentiating ll according to initial status */
   strcat(fileresp,fileres);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   if((ficresp=fopen(fileresp,"w"))==NULL) {    /*for(i=1;i<imx;i++) 
     printf("Problem with prevalence resultfile: %s\n", fileresp);      printf(" %d\n",s[4][i]);
     exit(0);    */
   }    cov[1]=1.;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   j=cptcoveff;    if(mle==1){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(k1=1; k1<=j;k1++){        for(mi=1; mi<= wav[i]-1; mi++){
     for(i1=1; i1<=ncodemax[k1];i1++){          for (ii=1;ii<=nlstate+ndeath;ii++)
       j1++;            for (j=1;j<=nlstate+ndeath;j++){
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         scanf("%d", i);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)              }
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for(d=0; d<dh[mi][i]; d++){
           for(m=agemin; m <= agemax+3; m++)            newm=savm;
             freq[i][jk][m]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
       dateintsum=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       k2cpt=0;            }
       for (i=1; i<=imx; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         bool=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if  (cptcovn>0) {            savm=oldm;
           for (z1=1; z1<=cptcoveff; z1++)            oldm=newm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          } /* end mult */
               bool=0;        
         }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         if (bool==1) {          /* But now since version 0.9 we anticipate for bias and large stepm.
           for(m=firstpass; m<=lastpass; m++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             k2=anint[m][i]+(mint[m][i]/12.);           * (in months) between two waves is not a multiple of stepm, we rounded to 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {           * the nearest (and in case of equal distance, to the lowest) interval but now
               if(agev[m][i]==0) agev[m][i]=agemax+1;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
               if(agev[m][i]==1) agev[m][i]=agemax+2;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
               if (m<lastpass) {           * probability in order to take into account the bias as a fraction of the way
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           * -stepm/2 to stepm/2 .
               }           * For stepm=1 the results are the same as for previous versions of Imach.
                         * For stepm > 1 the results are less biased than in previous versions. 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {           */
                 dateintsum=dateintsum+k2;          s1=s[mw[mi][i]][i];
                 k2cpt++;          s2=s[mw[mi+1][i]][i];
               }          bbh=(double)bh[mi][i]/(double)stepm; 
             }          /* bias is positive if real duration
           }           * is higher than the multiple of stepm and negative otherwise.
         }           */
       }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                  if( s2 > nlstate){ 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                to the likelihood is the probability to die between last step unit time and current 
       if  (cptcovn>0) {               step unit time, which is also the differences between probability to die before dh 
         fprintf(ficresp, "\n#********** Variable ");               and probability to die before dh-stepm . 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);               In version up to 0.92 likelihood was computed
         fprintf(ficresp, "**********\n#");          as if date of death was unknown. Death was treated as any other
       }          health state: the date of the interview describes the actual state
       for(i=1; i<=nlstate;i++)          and not the date of a change in health state. The former idea was
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          to consider that at each interview the state was recorded
       fprintf(ficresp, "\n");          (healthy, disable or death) and IMaCh was corrected; but when we
                introduced the exact date of death then we should have modified
       for(i=(int)agemin; i <= (int)agemax+3; i++){          the contribution of an exact death to the likelihood. This new
         if(i==(int)agemax+3)          contribution is smaller and very dependent of the step unit
           printf("Total");          stepm. It is no more the probability to die between last interview
         else          and month of death but the probability to survive from last
           printf("Age %d", i);          interview up to one month before death multiplied by the
         for(jk=1; jk <=nlstate ; jk++){          probability to die within a month. Thanks to Chris
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          Jackson for correcting this bug.  Former versions increased
             pp[jk] += freq[jk][m][i];          mortality artificially. The bad side is that we add another loop
         }          which slows down the processing. The difference can be up to 10%
         for(jk=1; jk <=nlstate ; jk++){          lower mortality.
           for(m=-1, pos=0; m <=0 ; m++)            */
             pos += freq[jk][m][i];            lli=log(out[s1][s2] - savm[s1][s2]);
           if(pp[jk]>=1.e-10)          }else{
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           else            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          } 
         }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
         for(jk=1; jk <=nlstate ; jk++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          ipmx +=1;
             pp[jk] += freq[jk][m][i];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
         for(jk=1,pos=0; jk <=nlstate ; jk++)      } /* end of individual */
           pos += pp[jk];    }  else if(mle==2){
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if(pos>=1.e-5)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(mi=1; mi<= wav[i]-1; mi++){
           else          for (ii=1;ii<=nlstate+ndeath;ii++)
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            for (j=1;j<=nlstate+ndeath;j++){
           if( i <= (int) agemax){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(pos>=1.e-5){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            }
               probs[i][jk][j1]= pp[jk]/pos;          for(d=0; d<=dh[mi][i]; d++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             else            for (kk=1; kk<=cptcovage;kk++) {
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=-1; jk <=nlstate+ndeath; jk++)            savm=oldm;
           for(m=-1; m <=nlstate+ndeath; m++)            oldm=newm;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          } /* end mult */
         if(i <= (int) agemax)        
           fprintf(ficresp,"\n");          s1=s[mw[mi][i]][i];
         printf("\n");          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
     }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   }          ipmx +=1;
   dateintmean=dateintsum/k2cpt;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fclose(ficresp);        } /* end of wave */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      } /* end of individual */
   free_vector(pp,1,nlstate);    }  else if(mle==3){  /* exponential inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* End of Freq */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /************ Prevalence ********************/            for (j=1;j<=nlstate+ndeath;j++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {  /* Some frequencies */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          for(d=0; d<dh[mi][i]; d++){
   double ***freq; /* Frequencies */            newm=savm;
   double *pp;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double pos, k2;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   pp=vector(1,nlstate);            }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            savm=oldm;
   j1=0;            oldm=newm;
            } /* end mult */
   j=cptcoveff;        
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   for(k1=1; k1<=j;k1++){          bbh=(double)bh[mi][i]/(double)stepm; 
     for(i1=1; i1<=ncodemax[k1];i1++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       j1++;          ipmx +=1;
                sw += weight[i];
       for (i=-1; i<=nlstate+ndeath; i++)            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (jk=-1; jk<=nlstate+ndeath; jk++)          } /* end of wave */
           for(m=agemin; m <= agemax+3; m++)      } /* end of individual */
             freq[i][jk][m]=0;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (i=1; i<=imx; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         bool=1;        for(mi=1; mi<= wav[i]-1; mi++){
         if  (cptcovn>0) {          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (z1=1; z1<=cptcoveff; z1++)            for (j=1;j<=nlstate+ndeath;j++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               bool=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         if (bool==1) {          for(d=0; d<dh[mi][i]; d++){
           for(m=firstpass; m<=lastpass; m++){            newm=savm;
             k2=anint[m][i]+(mint[m][i]/12.);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            for (kk=1; kk<=cptcovage;kk++) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if(agev[m][i]==1) agev[m][i]=agemax+2;            }
               if (m<lastpass) {          
                 if (calagedate>0)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 else            savm=oldm;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            oldm=newm;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          } /* end mult */
               }        
             }          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
         }          if( s2 > nlstate){ 
       }            lli=log(out[s1][s2] - savm[s1][s2]);
       for(i=(int)agemin; i <= (int)agemax+3; i++){          }else{
         for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          }
             pp[jk] += freq[jk][m][i];          ipmx +=1;
         }          sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=-1, pos=0; m <=0 ; m++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             pos += freq[jk][m][i];        } /* end of wave */
         }      } /* end of individual */
            }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pp[jk] += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){                }
           if( i <= (int) agemax){          for(d=0; d<dh[mi][i]; d++){
             if(pos>=1.e-5){            newm=savm;
               probs[i][jk][j1]= pp[jk]/pos;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             }            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
                  
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
             oldm=newm;
            } /* end mult */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        
   free_vector(pp,1,nlstate);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
 }  /* End of Freq */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
 /************* Waves Concatenation ***************/          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 {        } /* end of wave */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      } /* end of individual */
      Death is a valid wave (if date is known).    } /* End of if */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      and mw[mi+1][i]. dh depends on stepm.    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      */    return -l;
   }
   int i, mi, m;  
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  /*************** log-likelihood *************/
      double sum=0., jmean=0.;*/  double funcone( double *x)
   {
   int j, k=0,jk, ju, jl;    /* Same as likeli but slower because of a lot of printf and if */
   double sum=0.;    int i, ii, j, k, mi, d, kk;
   jmin=1e+5;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   jmax=-1;    double **out;
   jmean=0.;    double lli; /* Individual log likelihood */
   for(i=1; i<=imx; i++){    double llt;
     mi=0;    int s1, s2;
     m=firstpass;    double bbh, survp;
     while(s[m][i] <= nlstate){    /*extern weight */
       if(s[m][i]>=1)    /* We are differentiating ll according to initial status */
         mw[++mi][i]=m;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if(m >=lastpass)    /*for(i=1;i<imx;i++) 
         break;      printf(" %d\n",s[4][i]);
       else    */
         m++;    cov[1]=1.;
     }/* end while */  
     if (s[m][i] > nlstate){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          /* Only death is a correct wave */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       mw[mi][i]=m;      for(mi=1; mi<= wav[i]-1; mi++){
     }        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
     wav[i]=mi;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if(mi==0)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          }
   }        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
   for(i=1; i<=imx; i++){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(mi=1; mi<wav[i];mi++){          for (kk=1; kk<=cptcovage;kk++) {
       if (stepm <=0)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         dh[mi][i]=1;          }
       else{          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (s[mw[mi+1][i]][i] > nlstate) {                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (agedc[i] < 2*AGESUP) {          savm=oldm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          oldm=newm;
           if(j==0) j=1;  /* Survives at least one month after exam */        } /* end mult */
           k=k+1;        
           if (j >= jmax) jmax=j;        s1=s[mw[mi][i]][i];
           if (j <= jmin) jmin=j;        s2=s[mw[mi+1][i]][i];
           sum=sum+j;        bbh=(double)bh[mi][i]/(double)stepm; 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        /* bias is positive if real duration
           }         * is higher than the multiple of stepm and negative otherwise.
         }         */
         else{        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          lli=log(out[s1][s2] - savm[s1][s2]);
           k=k+1;        } else if (mle==1){
           if (j >= jmax) jmax=j;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           else if (j <= jmin)jmin=j;        } else if(mle==2){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           sum=sum+j;        } else if(mle==3){  /* exponential inter-extrapolation */
         }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         jk= j/stepm;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         jl= j -jk*stepm;          lli=log(out[s1][s2]); /* Original formula */
         ju= j -(jk+1)*stepm;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         if(jl <= -ju)          lli=log(out[s1][s2]); /* Original formula */
           dh[mi][i]=jk;        } /* End of if */
         else        ipmx +=1;
           dh[mi][i]=jk+1;        sw += weight[i];
         if(dh[mi][i]==0)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           dh[mi][i]=1; /* At least one step */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       }        if(globpr){
     }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   }   %10.6f %10.6f %10.6f ", \
   jmean=sum/k;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
  }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 /*********** Tricode ****************************/            llt +=ll[k]*gipmx/gsw;
 void tricode(int *Tvar, int **nbcode, int imx)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 {          }
   int Ndum[20],ij=1, k, j, i;          fprintf(ficresilk," %10.6f\n", -llt);
   int cptcode=0;        }
   cptcoveff=0;      } /* end of wave */
      } /* end of individual */
   for (k=0; k<19; k++) Ndum[k]=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for (k=1; k<=7; k++) ncodemax[k]=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    if(globpr==0){ /* First time we count the contributions and weights */
     for (i=1; i<=imx; i++) {      gipmx=ipmx;
       ij=(int)(covar[Tvar[j]][i]);      gsw=sw;
       Ndum[ij]++;    }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    return -l;
       if (ij > cptcode) cptcode=ij;  }
     }  
   
     for (i=0; i<=cptcode; i++) {  /*************** function likelione ***********/
       if(Ndum[i]!=0) ncodemax[j]++;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     }  {
     ij=1;    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
        to check the exact contribution to the likelihood.
     for (i=1; i<=ncodemax[j]; i++) {       Plotting could be done.
       for (k=0; k<=19; k++) {     */
         if (Ndum[k] != 0) {    int k;
           nbcode[Tvar[j]][ij]=k;  
              if(*globpri !=0){ /* Just counts and sums, no printings */
           ij++;      strcpy(fileresilk,"ilk"); 
         }      strcat(fileresilk,fileres);
         if (ij > ncodemax[j]) break;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       }          printf("Problem with resultfile: %s\n", fileresilk);
     }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   }        }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
  for (k=0; k<19; k++) Ndum[k]=0;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
  for (i=1; i<=ncovmodel-2; i++) {      for(k=1; k<=nlstate; k++) 
       ij=Tvar[i];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       Ndum[ij]++;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }    }
   
  ij=1;    *fretone=(*funcone)(p);
  for (i=1; i<=10; i++) {    if(*globpri !=0){
    if((Ndum[i]!=0) && (i<=ncovcol)){      fclose(ficresilk);
      Tvaraff[ij]=i;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      ij++;      fflush(fichtm); 
    }    } 
  }    return;
    }
     cptcoveff=ij-1;  
 }  
   /*********** Maximum Likelihood Estimation ***************/
 /*********** Health Expectancies ****************/  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  {
     int i,j, iter;
 {    double **xi;
   /* Health expectancies */    double fret;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    double fretone; /* Only one call to likelihood */
   double age, agelim, hf;    /*  char filerespow[FILENAMELENGTH];*/
   double ***p3mat,***varhe;    xi=matrix(1,npar,1,npar);
   double **dnewm,**doldm;    for (i=1;i<=npar;i++)
   double *xp;      for (j=1;j<=npar;j++)
   double **gp, **gm;        xi[i][j]=(i==j ? 1.0 : 0.0);
   double ***gradg, ***trgradg;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   int theta;    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   xp=vector(1,npar);      printf("Problem with resultfile: %s\n", filerespow);
   dnewm=matrix(1,nlstate*2,1,npar);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   doldm=matrix(1,nlstate*2,1,nlstate*2);    }
      fprintf(ficrespow,"# Powell\n# iter -2*LL");
   fprintf(ficreseij,"# Health expectancies\n");    for (i=1;i<=nlstate;i++)
   fprintf(ficreseij,"# Age");      for(j=1;j<=nlstate+ndeath;j++)
   for(i=1; i<=nlstate;i++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for(j=1; j<=nlstate;j++)    fprintf(ficrespow,"\n");
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");    powell(p,xi,npar,ftol,&iter,&fret,func);
   
   if(estepm < stepm){    fclose(ficrespow);
     printf ("Problem %d lower than %d\n",estepm, stepm);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   else  hstepm=estepm;      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example  }
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear  /**** Computes Hessian and covariance matrix ***/
    * progression inbetween and thus overestimating or underestimating according  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    * to the curvature of the survival function. If, for the same date, we  {
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    double  **a,**y,*x,pd;
    * to compare the new estimate of Life expectancy with the same linear    double **hess;
    * hypothesis. A more precise result, taking into account a more precise    int i, j,jk;
    * curvature will be obtained if estepm is as small as stepm. */    int *indx;
   
   /* For example we decided to compute the life expectancy with the smallest unit */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      nhstepm is the number of hstepm from age to agelim    void lubksb(double **a, int npar, int *indx, double b[]) ;
      nstepm is the number of stepm from age to agelin.    void ludcmp(double **a, int npar, int *indx, double *d) ;
      Look at hpijx to understand the reason of that which relies in memory size    double gompertz(double p[]);
      and note for a fixed period like estepm months */    hess=matrix(1,npar,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    printf("\nCalculation of the hessian matrix. Wait...\n");
      means that if the survival funtion is printed only each two years of age and if    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (i=1;i<=npar;i++){
      results. So we changed our mind and took the option of the best precision.      printf("%d",i);fflush(stdout);
   */      fprintf(ficlog,"%d",i);fflush(ficlog);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   agelim=AGESUP;      
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      /*  printf(" %f ",p[i]);
     /* nhstepm age range expressed in number of stepm */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    
     /* if (stepm >= YEARM) hstepm=1;*/    for (i=1;i<=npar;i++) {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      for (j=1;j<=npar;j++)  {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (j>i) { 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          printf(".%d%d",i,j);fflush(stdout);
     gp=matrix(0,nhstepm,1,nlstate*2);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     gm=matrix(0,nhstepm,1,nlstate*2);          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          hess[j][i]=hess[i][j];    
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          /*printf(" %lf ",hess[i][j]);*/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          }
        }
     }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    printf("\n");
     fprintf(ficlog,"\n");
     /* Computing Variances of health expectancies */  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      for(theta=1; theta <=npar; theta++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(i=1; i<=npar; i++){    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    a=matrix(1,npar,1,npar);
       }    y=matrix(1,npar,1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      x=vector(1,npar);
      indx=ivector(1,npar);
       cptj=0;    for (i=1;i<=npar;i++)
       for(j=1; j<= nlstate; j++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         for(i=1; i<=nlstate; i++){    ludcmp(a,npar,indx,&pd);
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    for (j=1;j<=npar;j++) {
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for (i=1;i<=npar;i++) x[i]=0;
           }      x[j]=1;
         }      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
              matcov[i][j]=x[i];
            }
       for(i=1; i<=npar; i++)    }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("\n#Hessian matrix#\n");
          fprintf(ficlog,"\n#Hessian matrix#\n");
       cptj=0;    for (i=1;i<=npar;i++) { 
       for(j=1; j<= nlstate; j++){      for (j=1;j<=npar;j++) { 
         for(i=1;i<=nlstate;i++){        printf("%.3e ",hess[i][j]);
           cptj=cptj+1;        fprintf(ficlog,"%.3e ",hess[i][j]);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      printf("\n");
           }      fprintf(ficlog,"\n");
         }    }
       }  
       for(j=1; j<= nlstate*2; j++)    /* Recompute Inverse */
         for(h=0; h<=nhstepm-1; h++){    for (i=1;i<=npar;i++)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         }    ludcmp(a,npar,indx,&pd);
      }  
        /*  printf("\n#Hessian matrix recomputed#\n");
 /* End theta */  
     for (j=1;j<=npar;j++) {
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
      for(h=0; h<=nhstepm-1; h++)      lubksb(a,npar,indx,x);
       for(j=1; j<=nlstate*2;j++)      for (i=1;i<=npar;i++){ 
         for(theta=1; theta <=npar; theta++)        y[i][j]=x[i];
           trgradg[h][j][theta]=gradg[h][theta][j];        printf("%.3e ",y[i][j]);
              fprintf(ficlog,"%.3e ",y[i][j]);
       }
      for(i=1;i<=nlstate*2;i++)      printf("\n");
       for(j=1;j<=nlstate*2;j++)      fprintf(ficlog,"\n");
         varhe[i][j][(int)age] =0.;    }
     */
      printf("%d|",(int)age);fflush(stdout);  
      for(h=0;h<=nhstepm-1;h++){    free_matrix(a,1,npar,1,npar);
       for(k=0;k<=nhstepm-1;k++){    free_matrix(y,1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    free_vector(x,1,npar);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    free_ivector(indx,1,npar);
         for(i=1;i<=nlstate*2;i++)    free_matrix(hess,1,npar,1,npar);
           for(j=1;j<=nlstate*2;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }  }
     }  
     /* Computing expectancies */  /*************** hessian matrix ****************/
     for(i=1; i<=nlstate;i++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       for(j=1; j<=nlstate;j++)  {
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    int i;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    int l=1, lmax=20;
              double k1,k2;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double p2[NPARMAX+1];
     double res;
         }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
     fprintf(ficreseij,"%3.0f",age );    int k=0,kmax=10;
     cptj=0;    double l1;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    fx=func(x);
         cptj++;    for (i=1;i<=npar;i++) p2[i]=x[i];
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for(l=0 ; l <=lmax; l++){
       }      l1=pow(10,l);
     fprintf(ficreseij,"\n");      delts=delt;
          for(k=1 ; k <kmax; k=k+1){
     free_matrix(gm,0,nhstepm,1,nlstate*2);        delt = delta*(l1*k);
     free_matrix(gp,0,nhstepm,1,nlstate*2);        p2[theta]=x[theta] +delt;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        k1=func(p2)-fx;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        p2[theta]=x[theta]-delt;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        k2=func(p2)-fx;
   }        /*res= (k1-2.0*fx+k2)/delt/delt; */
   printf("\n");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
   free_vector(xp,1,npar);  #ifdef DEBUG
   free_matrix(dnewm,1,nlstate*2,1,npar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  #endif
 }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 /************ Variance ******************/          k=kmax;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        }
 {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   /* Variance of health expectancies */          k=kmax; l=lmax*10.;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   double **newm;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double **dnewm,**doldm;          delts=delt;
   int i, j, nhstepm, hstepm, h, nstepm ;        }
   int k, cptcode;      }
   double *xp;    }
   double **gp, **gm;    delti[theta]=delts;
   double ***gradg, ***trgradg;    return res; 
   double ***p3mat;    
   double age,agelim, hf;  }
   int theta;  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  {
   fprintf(ficresvij,"# Age");    int i;
   for(i=1; i<=nlstate;i++)    int l=1, l1, lmax=20;
     for(j=1; j<=nlstate;j++)    double k1,k2,k3,k4,res,fx;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double p2[NPARMAX+1];
   fprintf(ficresvij,"\n");    int k;
   
   xp=vector(1,npar);    fx=func(x);
   dnewm=matrix(1,nlstate,1,npar);    for (k=1; k<=2; k++) {
   doldm=matrix(1,nlstate,1,nlstate);      for (i=1;i<=npar;i++) p2[i]=x[i];
        p2[thetai]=x[thetai]+delti[thetai]/k;
   if(estepm < stepm){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     printf ("Problem %d lower than %d\n",estepm, stepm);      k1=func(p2)-fx;
   }    
   else  hstepm=estepm;        p2[thetai]=x[thetai]+delti[thetai]/k;
   /* For example we decided to compute the life expectancy with the smallest unit */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      k2=func(p2)-fx;
      nhstepm is the number of hstepm from age to agelim    
      nstepm is the number of stepm from age to agelin.      p2[thetai]=x[thetai]-delti[thetai]/k;
      Look at hpijx to understand the reason of that which relies in memory size      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      and note for a fixed period like k years */      k3=func(p2)-fx;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    
      survival function given by stepm (the optimization length). Unfortunately it      p2[thetai]=x[thetai]-delti[thetai]/k;
      means that if the survival funtion is printed only each two years of age and if      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      k4=func(p2)-fx;
      results. So we changed our mind and took the option of the best precision.      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   */  #ifdef DEBUG
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   agelim = AGESUP;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #endif
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    return res;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);  /************** Inverse of matrix **************/
     gm=matrix(0,nhstepm,1,nlstate);  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
     for(theta=1; theta <=npar; theta++){    int i,imax,j,k; 
       for(i=1; i<=npar; i++){ /* Computes gradient */    double big,dum,sum,temp; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double *vv; 
       }   
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      vv=vector(1,n); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    *d=1.0; 
     for (i=1;i<=n;i++) { 
       if (popbased==1) {      big=0.0; 
         for(i=1; i<=nlstate;i++)      for (j=1;j<=n;j++) 
           prlim[i][i]=probs[(int)age][i][ij];        if ((temp=fabs(a[i][j])) > big) big=temp; 
       }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
        vv[i]=1.0/big; 
       for(j=1; j<= nlstate; j++){    } 
         for(h=0; h<=nhstepm; h++){    for (j=1;j<=n;j++) { 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for (i=1;i<j;i++) { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        sum=a[i][j]; 
         }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       }        a[i][j]=sum; 
          } 
       for(i=1; i<=npar; i++) /* Computes gradient */      big=0.0; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=j;i<=n;i++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          sum=a[i][j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
       if (popbased==1) {        a[i][j]=sum; 
         for(i=1; i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           prlim[i][i]=probs[(int)age][i][ij];          big=dum; 
       }          imax=i; 
         } 
       for(j=1; j<= nlstate; j++){      } 
         for(h=0; h<=nhstepm; h++){      if (j != imax) { 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        for (k=1;k<=n;k++) { 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          dum=a[imax][k]; 
         }          a[imax][k]=a[j][k]; 
       }          a[j][k]=dum; 
         } 
       for(j=1; j<= nlstate; j++)        *d = -(*d); 
         for(h=0; h<=nhstepm; h++){        vv[imax]=vv[j]; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      } 
         }      indx[j]=imax; 
     } /* End theta */      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for(h=0; h<=nhstepm; h++)      } 
       for(j=1; j<=nlstate;j++)    } 
         for(theta=1; theta <=npar; theta++)    free_vector(vv,1,n);  /* Doesn't work */
           trgradg[h][j][theta]=gradg[h][theta][j];  ;
   } 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)  void lubksb(double **a, int n, int *indx, double b[]) 
       for(j=1;j<=nlstate;j++)  { 
         vareij[i][j][(int)age] =0.;    int i,ii=0,ip,j; 
     double sum; 
     for(h=0;h<=nhstepm;h++){   
       for(k=0;k<=nhstepm;k++){    for (i=1;i<=n;i++) { 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      ip=indx[i]; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      sum=b[ip]; 
         for(i=1;i<=nlstate;i++)      b[ip]=b[i]; 
           for(j=1;j<=nlstate;j++)      if (ii) 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       }      else if (sum) ii=i; 
     }      b[i]=sum; 
     } 
     fprintf(ficresvij,"%.0f ",age );    for (i=n;i>=1;i--) { 
     for(i=1; i<=nlstate;i++)      sum=b[i]; 
       for(j=1; j<=nlstate;j++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      b[i]=sum/a[i][i]; 
       }    } 
     fprintf(ficresvij,"\n");  } 
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);  /************ Frequencies ********************/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  {  /* Some frequencies */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
   } /* End age */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      int first;
   free_vector(xp,1,npar);    double ***freq; /* Frequencies */
   free_matrix(doldm,1,nlstate,1,npar);    double *pp, **prop;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
 }    char fileresp[FILENAMELENGTH];
     
 /************ Variance of prevlim ******************/    pp=vector(1,nlstate);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    prop=matrix(1,nlstate,iagemin,iagemax+3);
 {    strcpy(fileresp,"p");
   /* Variance of prevalence limit */    strcat(fileresp,fileres);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    if((ficresp=fopen(fileresp,"w"))==NULL) {
   double **newm;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   double **dnewm,**doldm;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   int i, j, nhstepm, hstepm;      exit(0);
   int k, cptcode;    }
   double *xp;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   double *gp, *gm;    j1=0;
   double **gradg, **trgradg;    
   double age,agelim;    j=cptcoveff;
   int theta;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    first=1;
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    for(k1=1; k1<=j;k1++){
       fprintf(ficresvpl," %1d-%1d",i,i);      for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficresvpl,"\n");        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   xp=vector(1,npar);          scanf("%d", i);*/
   dnewm=matrix(1,nlstate,1,npar);        for (i=-1; i<=nlstate+ndeath; i++)  
   doldm=matrix(1,nlstate,1,nlstate);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
              for(m=iagemin; m <= iagemax+3; m++)
   hstepm=1*YEARM; /* Every year of age */              freq[i][jk][m]=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;      for (i=1; i<=nlstate; i++)  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(m=iagemin; m <= iagemax+3; m++)
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          prop[i][m]=0;
     if (stepm >= YEARM) hstepm=1;        
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        dateintsum=0;
     gradg=matrix(1,npar,1,nlstate);        k2cpt=0;
     gp=vector(1,nlstate);        for (i=1; i<=imx; i++) {
     gm=vector(1,nlstate);          bool=1;
           if  (cptcovn>0) {
     for(theta=1; theta <=npar; theta++){            for (z1=1; z1<=cptcoveff; z1++) 
       for(i=1; i<=npar; i++){ /* Computes gradient */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                bool=0;
       }          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if (bool==1){
       for(i=1;i<=nlstate;i++)            for(m=firstpass; m<=lastpass; m++){
         gp[i] = prlim[i][i];              k2=anint[m][i]+(mint[m][i]/12.);
                  /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for(i=1; i<=npar; i++) /* Computes gradient */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(i=1;i<=nlstate;i++)                if (m<lastpass) {
         gm[i] = prlim[i][i];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for(i=1;i<=nlstate;i++)                }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                
     } /* End theta */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
     trgradg =matrix(1,nlstate,1,npar);                  k2cpt++;
                 }
     for(j=1; j<=nlstate;j++)                /*}*/
       for(theta=1; theta <=npar; theta++)            }
         trgradg[j][theta]=gradg[theta][j];          }
         }
     for(i=1;i<=nlstate;i++)         
       varpl[i][(int)age] =0.;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        if  (cptcovn>0) {
     for(i=1;i<=nlstate;i++)          fprintf(ficresp, "\n#********** Variable "); 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
     fprintf(ficresvpl,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)        for(i=1; i<=nlstate;i++) 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fprintf(ficresvpl,"\n");        fprintf(ficresp, "\n");
     free_vector(gp,1,nlstate);        
     free_vector(gm,1,nlstate);        for(i=iagemin; i <= iagemax+3; i++){
     free_matrix(gradg,1,npar,1,nlstate);          if(i==iagemax+3){
     free_matrix(trgradg,1,nlstate,1,npar);            fprintf(ficlog,"Total");
   } /* End age */          }else{
             if(first==1){
   free_vector(xp,1,npar);              first=0;
   free_matrix(doldm,1,nlstate,1,npar);              printf("See log file for details...\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);            }
             fprintf(ficlog,"Age %d", i);
 }          }
           for(jk=1; jk <=nlstate ; jk++){
 /************ Variance of one-step probabilities  ******************/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              pp[jk] += freq[jk][m][i]; 
 {          }
   int i, j=0,  i1, k1, l1, t, tj;          for(jk=1; jk <=nlstate ; jk++){
   int k2, l2, j1,  z1;            for(m=-1, pos=0; m <=0 ; m++)
   int k=0,l, cptcode;              pos += freq[jk][m][i];
   int first=1;            if(pp[jk]>=1.e-10){
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;              if(first==1){
   double **dnewm,**doldm;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double *xp;              }
   double *gp, *gm;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double **gradg, **trgradg;            }else{
   double **mu;              if(first==1)
   double age,agelim, cov[NCOVMAX];                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int theta;            }
   char fileresprob[FILENAMELENGTH];          }
   char fileresprobcov[FILENAMELENGTH];  
   char fileresprobcor[FILENAMELENGTH];          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double ***varpij;              pp[jk] += freq[jk][m][i];
           }       
   strcpy(fileresprob,"prob");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   strcat(fileresprob,fileres);            pos += pp[jk];
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            posprop += prop[jk][i];
     printf("Problem with resultfile: %s\n", fileresprob);          }
   }          for(jk=1; jk <=nlstate ; jk++){
   strcpy(fileresprobcov,"probcov");            if(pos>=1.e-5){
   strcat(fileresprobcov,fileres);              if(first==1)
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     printf("Problem with resultfile: %s\n", fileresprobcov);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }            }else{
   strcpy(fileresprobcor,"probcor");              if(first==1)
   strcat(fileresprobcor,fileres);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     printf("Problem with resultfile: %s\n", fileresprobcor);            }
   }            if( i <= iagemax){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              if(pos>=1.e-5){
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");              }
   fprintf(ficresprob,"# Age");              else
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   fprintf(ficresprobcov,"# Age");            }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          }
   fprintf(ficresprobcov,"# Age");          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   for(i=1; i<=nlstate;i++)              if(freq[jk][m][i] !=0 ) {
     for(j=1; j<=(nlstate+ndeath);j++){              if(first==1)
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);              }
     }            if(i <= iagemax)
   fprintf(ficresprob,"\n");            fprintf(ficresp,"\n");
   fprintf(ficresprobcov,"\n");          if(first==1)
   fprintf(ficresprobcor,"\n");            printf("Others in log...\n");
   xp=vector(1,npar);          fprintf(ficlog,"\n");
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      }
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    }
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    dateintmean=dateintsum/k2cpt; 
   first=1;   
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    fclose(ficresp);
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     exit(0);    free_vector(pp,1,nlstate);
   }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   else{    /* End of Freq */
     fprintf(ficgp,"\n# Routine varprob");  }
   }  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  /************ Prevalence ********************/
     printf("Problem with html file: %s\n", optionfilehtm);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     exit(0);  {  
   }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   else{       in each health status at the date of interview (if between dateprev1 and dateprev2).
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");       We still use firstpass and lastpass as another selection.
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   }    double ***freq; /* Frequencies */
     double *pp, **prop;
      double pos,posprop; 
   cov[1]=1;    double  y2; /* in fractional years */
   tj=cptcoveff;    int iagemin, iagemax;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  
   j1=0;    iagemin= (int) agemin;
   for(t=1; t<=tj;t++){    iagemax= (int) agemax;
     for(i1=1; i1<=ncodemax[t];i1++){    /*pp=vector(1,nlstate);*/
       j1++;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
          /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       if  (cptcovn>0) {    j1=0;
         fprintf(ficresprob, "\n#********** Variable ");    
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    j=cptcoveff;
         fprintf(ficresprob, "**********\n#");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         fprintf(ficresprobcov, "\n#********** Variable ");    
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for(k1=1; k1<=j;k1++){
         fprintf(ficresprobcov, "**********\n#");      for(i1=1; i1<=ncodemax[k1];i1++){
                j1++;
         fprintf(ficgp, "\n#********** Variable ");        
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (i=1; i<=nlstate; i++)  
         fprintf(ficgp, "**********\n#");          for(m=iagemin; m <= iagemax+3; m++)
                    prop[i][m]=0.0;
               
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");        for (i=1; i<=imx; i++) { /* Each individual */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          bool=1;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");          if  (cptcovn>0) {
                    for (z1=1; z1<=cptcoveff; z1++) 
         fprintf(ficresprobcor, "\n#********** Variable ");                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                bool=0;
         fprintf(ficgp, "**********\n#");              } 
       }          if (bool==1) { 
                  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for (age=bage; age<=fage; age ++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         cov[2]=age;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         for (k=1; k<=cptcovn;k++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         for (k=1; k<=cptcovprod;k++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                          prop[s[m][i]][iagemax+3] += weight[i]; 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));                } 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              }
         gp=vector(1,(nlstate)*(nlstate+ndeath));            } /* end selection of waves */
         gm=vector(1,(nlstate)*(nlstate+ndeath));          }
            }
         for(theta=1; theta <=npar; theta++){        for(i=iagemin; i <= iagemax+3; i++){  
           for(i=1; i<=npar; i++)          
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                      posprop += prop[jk][i]; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          } 
            
           k=0;          for(jk=1; jk <=nlstate ; jk++){     
           for(i=1; i<= (nlstate); i++){            if( i <=  iagemax){ 
             for(j=1; j<=(nlstate+ndeath);j++){              if(posprop>=1.e-5){ 
               k=k+1;                probs[i][jk][j1]= prop[jk][i]/posprop;
               gp[k]=pmmij[i][j];              } 
             }            } 
           }          }/* end jk */ 
                  }/* end i */ 
           for(i=1; i<=npar; i++)      } /* end i1 */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    } /* end k1 */
        
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           k=0;    /*free_vector(pp,1,nlstate);*/
           for(i=1; i<=(nlstate); i++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             for(j=1; j<=(nlstate+ndeath);j++){  }  /* End of prevalence */
               k=k+1;  
               gm[k]=pmmij[i][j];  /************* Waves Concatenation ***************/
             }  
           }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
        {
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];         Death is a valid wave (if date is known).
         }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)       and mw[mi+1][i]. dh depends on stepm.
           for(theta=1; theta <=npar; theta++)       */
             trgradg[j][theta]=gradg[theta][j];  
            int i, mi, m;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);       double sum=0., jmean=0.;*/
            int first;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    int j, k=0,jk, ju, jl;
            double sum=0.;
         k=0;    first=0;
         for(i=1; i<=(nlstate); i++){    jmin=1e+5;
           for(j=1; j<=(nlstate+ndeath);j++){    jmax=-1;
             k=k+1;    jmean=0.;
             mu[k][(int) age]=pmmij[i][j];    for(i=1; i<=imx; i++){
           }      mi=0;
         }      m=firstpass;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      while(s[m][i] <= nlstate){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        if(s[m][i]>=1)
             varpij[i][j][(int)age] = doldm[i][j];          mw[++mi][i]=m;
         if(m >=lastpass)
         /*printf("\n%d ",(int)age);          break;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        else
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          m++;
      }*/      }/* end while */
       if (s[m][i] > nlstate){
         fprintf(ficresprob,"\n%d ",(int)age);        mi++;     /* Death is another wave */
         fprintf(ficresprobcov,"\n%d ",(int)age);        /* if(mi==0)  never been interviewed correctly before death */
         fprintf(ficresprobcor,"\n%d ",(int)age);           /* Only death is a correct wave */
         mw[mi][i]=m;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      wav[i]=mi;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      if(mi==0){
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        nbwarn++;
         }        if(first==0){
         i=0;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         for (k=1; k<=(nlstate);k++){          first=1;
           for (l=1; l<=(nlstate+ndeath);l++){        }
             i=i++;        if(first==1){
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        }
             for (j=1; j<=i;j++){      } /* end mi==0 */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    } /* End individuals */
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  
             }    for(i=1; i<=imx; i++){
           }      for(mi=1; mi<wav[i];mi++){
         }/* end of loop for state */        if (stepm <=0)
       } /* end of loop for age */          dh[mi][i]=1;
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        else{
       for (k1=1; k1<=(nlstate);k1++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         for (l1=1; l1<=(nlstate+ndeath);l1++){            if (agedc[i] < 2*AGESUP) {
           if(l1==k1) continue;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           i=(k1-1)*(nlstate+ndeath)+l1;              if(j==0) j=1;  /* Survives at least one month after exam */
           for (k2=1; k2<=(nlstate);k2++){              else if(j<0){
             for (l2=1; l2<=(nlstate+ndeath);l2++){                nberr++;
               if(l2==k2) continue;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               j=(k2-1)*(nlstate+ndeath)+l2;                j=1; /* Temporary Dangerous patch */
               if(j<=i) continue;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
               for (age=bage; age<=fage; age ++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 if ((int)age %5==0){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;              }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              k=k+1;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              if (j >= jmax) jmax=j;
                   mu1=mu[i][(int) age]/stepm*YEARM ;              if (j <= jmin) jmin=j;
                   mu2=mu[j][(int) age]/stepm*YEARM;              sum=sum+j;
                   /* Computing eigen value of matrix of covariance */              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            }
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);          }
                   /* Eigen vectors */          else{
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                   v21=sqrt(1.-v11*v11);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   v12=-v21;            k=k+1;
                   v22=v11;            if (j >= jmax) jmax=j;
                   /*printf(fignu*/            else if (j <= jmin)jmin=j;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                   if(first==1){            if(j<0){
                     first=0;              nberr++;
                     fprintf(ficgp,"\nset parametric;set nolabel");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            }
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);            sum=sum+j;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);          }
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);          jk= j/stepm;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          jl= j -jk*stepm;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          ju= j -(jk+1)*stepm;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            if(jl==0){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              dh[mi][i]=jk;
                   }else{              bh[mi][i]=0;
                     first=0;            }else{ /* We want a negative bias in order to only have interpolation ie
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);                    * at the price of an extra matrix product in likelihood */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              dh[mi][i]=jk+1;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              bh[mi][i]=ju;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          }else{
                   }/* if first */            if(jl <= -ju){
                 } /* age mod 5 */              dh[mi][i]=jk;
               } /* end loop age */              bh[mi][i]=jl;       /* bias is positive if real duration
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);                                   * is higher than the multiple of stepm and negative otherwise.
               first=1;                                   */
             } /*l12 */            }
           } /* k12 */            else{
         } /*l1 */              dh[mi][i]=jk+1;
       }/* k1 */              bh[mi][i]=ju;
     } /* loop covariates */            }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);            if(dh[mi][i]==0){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              dh[mi][i]=1; /* At least one step */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              bh[mi][i]=ju; /* At least one step */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          } /* end if mle */
   }        }
   free_vector(xp,1,npar);      } /* end wave */
   fclose(ficresprob);    }
   fclose(ficresprobcov);    jmean=sum/k;
   fclose(ficresprobcor);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   fclose(ficgp);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   fclose(fichtm);   }
 }  
   /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
 /******************* Printing html file ***********/  {
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    
                   int lastpass, int stepm, int weightopt, char model[],\    int Ndum[20],ij=1, k, j, i, maxncov=19;
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    int cptcode=0;
                   int popforecast, int estepm ,\    cptcoveff=0; 
                   double jprev1, double mprev1,double anprev1, \   
                   double jprev2, double mprev2,double anprev2){    for (k=0; k<maxncov; k++) Ndum[k]=0;
   int jj1, k1, i1, cpt;    for (k=1; k<=7; k++) ncodemax[k]=0;
   /*char optionfilehtm[FILENAMELENGTH];*/  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     printf("Problem with %s \n",optionfilehtm), exit(0);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   }                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n        Ndum[ij]++; /*store the modality */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n                                         Tvar[j]. If V=sex and male is 0 and 
  - Life expectancies by age and initial health status (estepm=%2d months):                                         female is 1, then  cptcode=1.*/
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
       for (i=0; i<=cptcode; i++) {
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      }
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      ij=1; 
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      for (i=1; i<=ncodemax[j]; i++) {
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        for (k=0; k<= maxncov; k++) {
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          if (Ndum[k] != 0) {
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
  if(popforecast==1) fprintf(fichtm,"\n            
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            ij++;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          }
         <br>",fileres,fileres,fileres,fileres);          if (ij > ncodemax[j]) break; 
  else        }  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      } 
 fprintf(fichtm," <li><b>Graphs</b></li><p>");    }  
   
  m=cptcoveff;   for (k=0; k< maxncov; k++) Ndum[k]=0;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
    for (i=1; i<=ncovmodel-2; i++) { 
  jj1=0;     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
  for(k1=1; k1<=m;k1++){     ij=Tvar[i];
    for(i1=1; i1<=ncodemax[k1];i1++){     Ndum[ij]++;
      jj1++;   }
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");   ij=1;
        for (cpt=1; cpt<=cptcoveff;cpt++)   for (i=1; i<= maxncov; i++) {
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);     if((Ndum[i]!=0) && (i<=ncovcol)){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       Tvaraff[ij]=i; /*For printing */
      }       ij++;
      /* Pij */     }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>   }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);       
      /* Quasi-incidences */   cptcoveff=ij-1; /*Number of simple covariates*/
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  }
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
        /* Stable prevalence in each health state */  /*********** Health Expectancies ****************/
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }  {
     for(cpt=1; cpt<=nlstate;cpt++) {    /* Health expectancies */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 interval) in state (%d): v%s%d%d.png <br>    double age, agelim, hf;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      double ***p3mat,***varhe;
      }    double **dnewm,**doldm;
      for(cpt=1; cpt<=nlstate;cpt++) {    double *xp;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    double **gp, **gm;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double ***gradg, ***trgradg;
      }    int theta;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.png<br>    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    xp=vector(1,npar);
    }    dnewm=matrix(1,nlstate*nlstate,1,npar);
  }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 fclose(fichtm);    
 }    fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficreseij,"# Age");
 /******************* Gnuplot file **************/    for(i=1; i<=nlstate;i++)
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      for(j=1; j<=nlstate;j++)
         fprintf(ficreseij," %1d-%1d (SE)",i,j);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    fprintf(ficreseij,"\n");
   int ng;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    if(estepm < stepm){
     printf("Problem with file %s",optionfilegnuplot);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
     else  hstepm=estepm;   
 #ifdef windows    /* We compute the life expectancy from trapezoids spaced every estepm months
     fprintf(ficgp,"cd \"%s\" \n",pathc);     * This is mainly to measure the difference between two models: for example
 #endif     * if stepm=24 months pijx are given only every 2 years and by summing them
 m=pow(2,cptcoveff);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
  /* 1eme*/     * to the curvature of the survival function. If, for the same date, we 
   for (cpt=1; cpt<= nlstate ; cpt ++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
    for (k1=1; k1<= m ; k1 ++) {     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
 #ifdef windows     * curvature will be obtained if estepm is as small as stepm. */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    /* For example we decided to compute the life expectancy with the smallest unit */
 #endif    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 #ifdef unix       nhstepm is the number of hstepm from age to agelim 
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       nstepm is the number of stepm from age to agelin. 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);       Look at hpijx to understand the reason of that which relies in memory size
 #endif       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 for (i=1; i<= nlstate ; i ++) {       survival function given by stepm (the optimization length). Unfortunately it
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       means that if the survival funtion is printed only each two years of age and if
   else fprintf(ficgp," \%%*lf (\%%*lf)");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 }       results. So we changed our mind and took the option of the best precision.
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    */
     for (i=1; i<= nlstate ; i ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    agelim=AGESUP;
 }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      /* nhstepm age range expressed in number of stepm */
      for (i=1; i<= nlstate ; i ++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* if (stepm >= YEARM) hstepm=1;*/
 }        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #ifdef unix      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
 #endif      gm=matrix(0,nhstepm,1,nlstate*nlstate);
    }  
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /*2 eme*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   for (k1=1; k1<= m ; k1 ++) {   
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      
     for (i=1; i<= nlstate+1 ; i ++) {      /* Computing  Variances of health expectancies */
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);       for(theta=1; theta <=npar; theta++){
       for (j=1; j<= nlstate+1 ; j ++) {        for(i=1; i<=npar; i++){ 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        cptj=0;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<= nlstate; j++){
       for (j=1; j<= nlstate+1 ; j ++) {          for(i=1; i<=nlstate; i++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            cptj=cptj+1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 }                gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       fprintf(ficgp,"\" t\"\" w l 0,");            }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {        }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       
   else fprintf(ficgp," \%%*lf (\%%*lf)");       
 }          for(i=1; i<=npar; i++) 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       else fprintf(ficgp,"\" t\"\" w l 0,");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        
   }        cptj=0;
          for(j=1; j<= nlstate; j++){
   /*3eme*/          for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
   for (k1=1; k1<= m ; k1 ++) {            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            }
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for(j=1; j<= nlstate*nlstate; j++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          for(h=0; h<=nhstepm-1; h++){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       } 
      
 */  /* End theta */
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
       }       for(h=0; h<=nhstepm-1; h++)
     }        for(j=1; j<=nlstate*nlstate;j++)
   }          for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
   /* CV preval stat */       
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {       for(i=1;i<=nlstate*nlstate;i++)
       k=3;        for(j=1;j<=nlstate*nlstate;j++)
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          varhe[i][j][(int)age] =0.;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
        printf("%d|",(int)age);fflush(stdout);
       for (i=1; i< nlstate ; i ++)       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fprintf(ficgp,"+$%d",k+i+1);       for(h=0;h<=nhstepm-1;h++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        for(k=0;k<=nhstepm-1;k++){
                matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       l=3+(nlstate+ndeath)*cpt;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          for(i=1;i<=nlstate*nlstate;i++)
       for (i=1; i< nlstate ; i ++) {            for(j=1;j<=nlstate*nlstate;j++)
         l=3+(nlstate+ndeath)*cpt;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         fprintf(ficgp,"+$%d",l+i+1);        }
       }      }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        /* Computing expectancies */
     }      for(i=1; i<=nlstate;i++)
   }          for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /* proba elementaires */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
    for(i=1,jk=1; i <=nlstate; i++){            
     for(k=1; k <=(nlstate+ndeath); k++){  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){          }
          
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      fprintf(ficreseij,"%3.0f",age );
           jk++;      cptj=0;
           fprintf(ficgp,"\n");      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++){
       }          cptj++;
     }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
    }        }
       fprintf(ficreseij,"\n");
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/     
      for(jk=1; jk <=m; jk++) {      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        if (ng==2)      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
        else      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          fprintf(ficgp,"\nset title \"Probability\"\n");    }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    printf("\n");
        i=1;    fprintf(ficlog,"\n");
        for(k2=1; k2<=nlstate; k2++) {  
          k3=i;    free_vector(xp,1,npar);
          for(k=1; k<=(nlstate+ndeath); k++) {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
            if (k != k2){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
              if(ng==2)    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  }
              else  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  /************ Variance ******************/
              ij=1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
              for(j=3; j <=ncovmodel; j++) {  {
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* Variance of health expectancies */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                  ij++;    /* double **newm;*/
                }    double **dnewm,**doldm;
                else    double **dnewmp,**doldmp;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int i, j, nhstepm, hstepm, h, nstepm ;
              }    int k, cptcode;
              fprintf(ficgp,")/(1");    double *xp;
                  double **gp, **gm;  /* for var eij */
              for(k1=1; k1 <=nlstate; k1++){      double ***gradg, ***trgradg; /*for var eij */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    double **gradgp, **trgradgp; /* for var p point j */
                ij=1;    double *gpp, *gmp; /* for var p point j */
                for(j=3; j <=ncovmodel; j++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double ***p3mat;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double age,agelim, hf;
                    ij++;    double ***mobaverage;
                  }    int theta;
                  else    char digit[4];
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    char digitp[25];
                }  
                fprintf(ficgp,")");    char fileresprobmorprev[FILENAMELENGTH];
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    if(popbased==1){
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      if(mobilav!=0)
              i=i+ncovmodel;        strcpy(digitp,"-populbased-mobilav-");
            }      else strcpy(digitp,"-populbased-nomobil-");
          }    }
        }    else 
      }      strcpy(digitp,"-stablbased-");
    }  
    fclose(ficgp);    if (mobilav!=0) {
 }  /* end gnuplot */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 /*************** Moving average **************/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      }
     }
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    strcpy(fileresprobmorprev,"prmorprev"); 
       for (i=1; i<=nlstate;i++)    sprintf(digit,"%-d",ij);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           mobaverage[(int)agedeb][i][cptcod]=0.;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
        strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    strcat(fileresprobmorprev,fileres);
       for (i=1; i<=nlstate;i++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           for (cpt=0;cpt<=4;cpt++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    }
           }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," p.%-d SE",j);
 }      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
 /************** Forecasting ******************/    fprintf(ficresprobmorprev,"\n");
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    fprintf(ficgp,"\n# Routine varevsij");
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   int *popage;  /*   } */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double *popeffectif,*popcount;  
   double ***p3mat;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   char fileresf[FILENAMELENGTH];    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
  agelim=AGESUP;      for(j=1; j<=nlstate;j++)
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficresvij,"\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
      xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
   strcpy(fileresf,"f");    doldm=matrix(1,nlstate,1,nlstate);
   strcat(fileresf,fileres);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     printf("Problem with forecast resultfile: %s\n", fileresf);  
   }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
   if (mobilav==1) {    if(estepm < stepm){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf ("Problem %d lower than %d\n",estepm, stepm);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    }
   }    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (stepm<=12) stepsize=1;       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   agelim=AGESUP;       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like k years */
   hstepm=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   hstepm=hstepm/stepm;       survival function given by stepm (the optimization length). Unfortunately it
   yp1=modf(dateintmean,&yp);       means that if the survival funtion is printed every two years of age and if
   anprojmean=yp;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   yp2=modf((yp1*12),&yp);       results. So we changed our mind and took the option of the best precision.
   mprojmean=yp;    */
   yp1=modf((yp2*30.5),&yp);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   jprojmean=yp;    agelim = AGESUP;
   if(jprojmean==0) jprojmean=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   if(mprojmean==0) jprojmean=1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   for(cptcov=1;cptcov<=i2;cptcov++){      gp=matrix(0,nhstepm,1,nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      gm=matrix(0,nhstepm,1,nlstate);
       k=k+1;  
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {      for(theta=1; theta <=npar; theta++){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficresf,"******\n");        }
       fprintf(ficresf,"# StartingAge FinalAge");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        
              if (popbased==1) {
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          if(mobilav ==0){
         fprintf(ficresf,"\n");            for(i=1; i<=nlstate;i++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            for(i=1; i<=nlstate;i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              prlim[i][i]=mobaverage[(int)age][i][ij];
           nhstepm = nhstepm/hstepm;          }
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;        for(j=1; j<= nlstate; j++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(h=0; h<=nhstepm; h++){
                    for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        }
             }        /* This for computing probability of death (h=1 means
             for(j=1; j<=nlstate+ndeath;j++) {           computed over hstepm matrices product = hstepm*stepm months) 
               kk1=0.;kk2=0;           as a weighted average of prlim.
               for(i=1; i<=nlstate;i++) {                      */
                 if (mobilav==1)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                 else {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        }    
                 }        /* end probability of death */
                  
               }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
               if (h==(int)(calagedate+12*cpt)){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                 fprintf(ficresf," %.3f", kk1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                                prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               }   
             }        if (popbased==1) {
           }          if(mobilav ==0){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=probs[(int)age][i][ij];
       }          }else{ /* mobilav */ 
     }            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
                  }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   
   fclose(ficresf);        for(j=1; j<= nlstate; j++){
 }          for(h=0; h<=nhstepm; h++){
 /************** Forecasting ******************/            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;        /* This for computing probability of death (h=1 means
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;           computed over hstepm matrices product = hstepm*stepm months) 
   double *popeffectif,*popcount;           as a weighted average of prlim.
   double ***p3mat,***tabpop,***tabpopprev;        */
   char filerespop[FILENAMELENGTH];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }    
   agelim=AGESUP;        /* end probability of death */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
          for(j=1; j<= nlstate; j++) /* vareij */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     printf("Problem with forecast resultfile: %s\n", filerespop);        }
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);      } /* End theta */
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
   if (mobilav==1) {      for(h=0; h<=nhstepm; h++) /* veij */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<=nlstate;j++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   if (stepm<=12) stepsize=1;        for(theta=1; theta <=npar; theta++)
            trgradgp[j][theta]=gradgp[theta][j];
   agelim=AGESUP;    
    
   hstepm=1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   hstepm=hstepm/stepm;      for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
   if (popforecast==1) {          vareij[i][j][(int)age] =0.;
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);      for(h=0;h<=nhstepm;h++){
     }        for(k=0;k<=nhstepm;k++){
     popage=ivector(0,AGESUP);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     popeffectif=vector(0,AGESUP);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     popcount=vector(0,AGESUP);          for(i=1;i<=nlstate;i++)
                for(j=1;j<=nlstate;j++)
     i=1;                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        }
          }
     imx=i;    
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      /* pptj */
   }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   for(cptcov=1;cptcov<=i2;cptcov++){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       k=k+1;          varppt[j][i]=doldmp[j][i];
       fprintf(ficrespop,"\n#******");      /* end ppptj */
       for(j=1;j<=cptcoveff;j++) {      /*  x centered again */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       fprintf(ficrespop,"******\n");   
       fprintf(ficrespop,"# Age");      if (popbased==1) {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        if(mobilav ==0){
       if (popforecast==1)  fprintf(ficrespop," [Population]");          for(i=1; i<=nlstate;i++)
                  prlim[i][i]=probs[(int)age][i][ij];
       for (cpt=0; cpt<=0;cpt++) {        }else{ /* mobilav */ 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for(i=1; i<=nlstate;i++)
                    prlim[i][i]=mobaverage[(int)age][i][ij];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      }
           nhstepm = nhstepm/hstepm;               
                /* This for computing probability of death (h=1 means
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           oldm=oldms;savm=savms;         as a weighted average of prlim.
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        */
              for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for (h=0; h<=nhstepm; h++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
             if (h==(int) (calagedate+YEARM*cpt)) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      }    
             }      /* end probability of death */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
               for(i=1; i<=nlstate;i++) {                    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                 if (mobilav==1)        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(i=1; i<=nlstate;i++){
                 else {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        }
                 }      } 
               }      fprintf(ficresprobmorprev,"\n");
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      fprintf(ficresvij,"%.0f ",age );
                   /*fprintf(ficrespop," %.3f", kk1);      for(i=1; i<=nlstate;i++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        for(j=1; j<=nlstate;j++){
               }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
             }        }
             for(i=1; i<=nlstate;i++){      fprintf(ficresvij,"\n");
               kk1=0.;      free_matrix(gp,0,nhstepm,1,nlstate);
                 for(j=1; j<=nlstate;j++){      free_matrix(gm,0,nhstepm,1,nlstate);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                 }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    free_vector(gmp,nlstate+1,nlstate+ndeath);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /******/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           nhstepm = nhstepm/hstepm;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
              /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  */
           oldm=oldms;savm=savms;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    free_vector(xp,1,npar);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    free_matrix(doldm,1,nlstate,1,nlstate);
             }    free_matrix(dnewm,1,nlstate,1,npar);
             for(j=1; j<=nlstate+ndeath;j++) {    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               kk1=0.;kk2=0;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
               for(i=1; i<=nlstate;i++) {                  free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               }    fclose(ficresprobmorprev);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fflush(ficgp);
             }    fflush(fichtm); 
           }  }  /* end varevsij */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }  /************ Variance of prevlim ******************/
       }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
    }  {
   }    /* Variance of prevalence limit */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **newm;
     double **dnewm,**doldm;
   if (popforecast==1) {    int i, j, nhstepm, hstepm;
     free_ivector(popage,0,AGESUP);    int k, cptcode;
     free_vector(popeffectif,0,AGESUP);    double *xp;
     free_vector(popcount,0,AGESUP);    double *gp, *gm;
   }    double **gradg, **trgradg;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double age,agelim;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int theta;
   fclose(ficrespop);     
 }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
 /***********************************************/    for(i=1; i<=nlstate;i++)
 /**************** Main Program *****************/        fprintf(ficresvpl," %1d-%1d",i,i);
 /***********************************************/    fprintf(ficresvpl,"\n");
   
 int main(int argc, char *argv[])    xp=vector(1,npar);
 {    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    
   double agedeb, agefin,hf;    hstepm=1*YEARM; /* Every year of age */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
   double fret;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double **xi,tmp,delta;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
   double dum; /* Dummy variable */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   double ***p3mat;      gradg=matrix(1,npar,1,nlstate);
   int *indx;      gp=vector(1,nlstate);
   char line[MAXLINE], linepar[MAXLINE];      gm=vector(1,nlstate);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;      for(theta=1; theta <=npar; theta++){
   int sdeb, sfin; /* Status at beginning and end */        for(i=1; i<=npar; i++){ /* Computes gradient */
   int c,  h , cpt,l;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int ju,jl, mi;        }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        for(i=1;i<=nlstate;i++)
   int mobilav=0,popforecast=0;          gp[i] = prlim[i][i];
   int hstepm, nhstepm;      
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double bage, fage, age, agelim, agebase;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double ftolpl=FTOL;        for(i=1;i<=nlstate;i++)
   double **prlim;          gm[i] = prlim[i][i];
   double *severity;  
   double ***param; /* Matrix of parameters */        for(i=1;i<=nlstate;i++)
   double  *p;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   double **matcov; /* Matrix of covariance */      } /* End theta */
   double ***delti3; /* Scale */  
   double *delti; /* Scale */      trgradg =matrix(1,nlstate,1,npar);
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */      for(j=1; j<=nlstate;j++)
   double *epj, vepp;        for(theta=1; theta <=npar; theta++)
   double kk1, kk2;          trgradg[j][theta]=gradg[theta][j];
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
        for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
   char *alph[]={"a","a","b","c","d","e"}, str[4];      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   char z[1]="c", occ;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 #include <sys/time.h>  
 #include <time.h>      fprintf(ficresvpl,"%.0f ",age );
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   /* long total_usecs;      fprintf(ficresvpl,"\n");
   struct timeval start_time, end_time;      free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      free_matrix(gradg,1,npar,1,nlstate);
   getcwd(pathcd, size);      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   printf("\n%s",version);  
   if(argc <=1){    free_vector(xp,1,npar);
     printf("\nEnter the parameter file name: ");    free_matrix(doldm,1,nlstate,1,npar);
     scanf("%s",pathtot);    free_matrix(dnewm,1,nlstate,1,nlstate);
   }  
   else{  }
     strcpy(pathtot,argv[1]);  
   }  /************ Variance of one-step probabilities  ******************/
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   /*cygwin_split_path(pathtot,path,optionfile);  {
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    int i, j=0,  i1, k1, l1, t, tj;
   /* cutv(path,optionfile,pathtot,'\\');*/    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    int first=1, first1;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   chdir(path);    double **dnewm,**doldm;
   replace(pathc,path);    double *xp;
     double *gp, *gm;
 /*-------- arguments in the command line --------*/    double **gradg, **trgradg;
     double **mu;
   strcpy(fileres,"r");    double age,agelim, cov[NCOVMAX];
   strcat(fileres, optionfilefiname);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   strcat(fileres,".txt");    /* Other files have txt extension */    int theta;
     char fileresprob[FILENAMELENGTH];
   /*---------arguments file --------*/    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);    double ***varpij;
     goto end;  
   }    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   strcpy(filereso,"o");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   strcat(filereso,fileres);      printf("Problem with resultfile: %s\n", fileresprob);
   if((ficparo=fopen(filereso,"w"))==NULL) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    }
   }    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
   /* Reads comments: lines beginning with '#' */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   while((c=getc(ficpar))=='#' && c!= EOF){      printf("Problem with resultfile: %s\n", fileresprobcov);
     ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    strcpy(fileresprobcor,"probcor"); 
     fputs(line,ficparo);    strcat(fileresprobcor,fileres);
   }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 while((c=getc(ficpar))=='#' && c!= EOF){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     ungetc(c,ficpar);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fgets(line, MAXLINE, ficpar);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     puts(line);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fputs(line,ficparo);    
   }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   ungetc(c,ficpar);    fprintf(ficresprob,"# Age");
      fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
        fprintf(ficresprobcov,"# Age");
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   cptcovn=0;    fprintf(ficresprobcov,"# Age");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
   
   ncovmodel=2+cptcovn;    for(i=1; i<=nlstate;i++)
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      for(j=1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   /* Read guess parameters */        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   /* Reads comments: lines beginning with '#' */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){      }  
     ungetc(c,ficpar);   /* fprintf(ficresprob,"\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobcov,"\n");
     puts(line);    fprintf(ficresprobcor,"\n");
     fputs(line,ficparo);   */
   }   xp=vector(1,npar);
   ungetc(c,ficpar);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     for(i=1; i <=nlstate; i++)    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     for(j=1; j <=nlstate+ndeath-1; j++){    first=1;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficgp,"\n# Routine varprob");
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       printf("%1d%1d",i,j);    fprintf(fichtm,"\n");
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         printf(" %lf",param[i][j][k]);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         fprintf(ficparo," %lf",param[i][j][k]);    file %s<br>\n",optionfilehtmcov);
       }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       fscanf(ficpar,"\n");  and drawn. It helps understanding how is the covariance between two incidences.\
       printf("\n");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(ficparo,"\n");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   p=param[1][1];   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
    To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    cov[1]=1;
     ungetc(c,ficpar);    tj=cptcoveff;
     fgets(line, MAXLINE, ficpar);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     puts(line);    j1=0;
     fputs(line,ficparo);    for(t=1; t<=tj;t++){
   }      for(i1=1; i1<=ncodemax[t];i1++){ 
   ungetc(c,ficpar);        j1++;
         if  (cptcovn>0) {
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(ficresprob, "\n#********** Variable "); 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(i=1; i <=nlstate; i++){          fprintf(ficresprob, "**********\n#\n");
     for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(ficresprobcov, "\n#********** Variable "); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("%1d%1d",i,j);          fprintf(ficresprobcov, "**********\n#\n");
       fprintf(ficparo,"%1d%1d",i1,j1);          
       for(k=1; k<=ncovmodel;k++){          fprintf(ficgp, "\n#********** Variable "); 
         fscanf(ficpar,"%le",&delti3[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         printf(" %le",delti3[i][j][k]);          fprintf(ficgp, "**********\n#\n");
         fprintf(ficparo," %le",delti3[i][j][k]);          
       }          
       fscanf(ficpar,"\n");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       printf("\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficparo,"\n");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     }          
   }          fprintf(ficresprobcor, "\n#********** Variable ");    
   delti=delti3[1][1];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcor, "**********\n#");    
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){        
     ungetc(c,ficpar);        for (age=bage; age<=fage; age ++){ 
     fgets(line, MAXLINE, ficpar);          cov[2]=age;
     puts(line);          for (k=1; k<=cptcovn;k++) {
     fputs(line,ficparo);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   }          }
   ungetc(c,ficpar);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            for (k=1; k<=cptcovprod;k++)
   matcov=matrix(1,npar,1,npar);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for(i=1; i <=npar; i++){          
     fscanf(ficpar,"%s",&str);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     printf("%s",str);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     fprintf(ficparo,"%s",str);          gp=vector(1,(nlstate)*(nlstate+ndeath));
     for(j=1; j <=i; j++){          gm=vector(1,(nlstate)*(nlstate+ndeath));
       fscanf(ficpar," %le",&matcov[i][j]);      
       printf(" %.5le",matcov[i][j]);          for(theta=1; theta <=npar; theta++){
       fprintf(ficparo," %.5le",matcov[i][j]);            for(i=1; i<=npar; i++)
     }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     fscanf(ficpar,"\n");            
     printf("\n");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fprintf(ficparo,"\n");            
   }            k=0;
   for(i=1; i <=npar; i++)            for(i=1; i<= (nlstate); i++){
     for(j=i+1;j<=npar;j++)              for(j=1; j<=(nlstate+ndeath);j++){
       matcov[i][j]=matcov[j][i];                k=k+1;
                    gp[k]=pmmij[i][j];
   printf("\n");              }
             }
             
     /*-------- Rewriting paramater file ----------*/            for(i=1; i<=npar; i++)
      strcpy(rfileres,"r");    /* "Rparameterfile */              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      
      strcat(rfileres,".");    /* */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            k=0;
     if((ficres =fopen(rfileres,"w"))==NULL) {            for(i=1; i<=(nlstate); i++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;              for(j=1; j<=(nlstate+ndeath);j++){
     }                k=k+1;
     fprintf(ficres,"#%s\n",version);                gm[k]=pmmij[i][j];
                  }
     /*-------- data file ----------*/            }
     if((fic=fopen(datafile,"r"))==NULL)    {       
       printf("Problem with datafile: %s\n", datafile);goto end;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
     n= lastobs;  
     severity = vector(1,maxwav);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     outcome=imatrix(1,maxwav+1,1,n);            for(theta=1; theta <=npar; theta++)
     num=ivector(1,n);              trgradg[j][theta]=gradg[theta][j];
     moisnais=vector(1,n);          
     annais=vector(1,n);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     moisdc=vector(1,n);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     andc=vector(1,n);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     agedc=vector(1,n);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     cod=ivector(1,n);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     weight=vector(1,n);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);          pmij(pmmij,cov,ncovmodel,x,nlstate);
     anint=matrix(1,maxwav,1,n);          
     s=imatrix(1,maxwav+1,1,n);          k=0;
     adl=imatrix(1,maxwav+1,1,n);              for(i=1; i<=(nlstate); i++){
     tab=ivector(1,NCOVMAX);            for(j=1; j<=(nlstate+ndeath);j++){
     ncodemax=ivector(1,8);              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
     i=1;            }
     while (fgets(line, MAXLINE, fic) != NULL)    {          }
       if ((i >= firstobs) && (i <=lastobs)) {          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                    for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         for (j=maxwav;j>=1;j--){              varpij[i][j][(int)age] = doldm[i][j];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);          /*printf("\n%d ",(int)age);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                    }*/
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcor,"\n%d ",(int)age);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         for (j=ncovcol;j>=1;j--){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         num[i]=atol(stra);          }
                  i=0;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          for (k=1; k<=(nlstate);k++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
         i=i+1;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     }              for (j=1; j<=i;j++){
     /* printf("ii=%d", ij);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
        scanf("%d",i);*/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   imx=i-1; /* Number of individuals */              }
             }
   /* for (i=1; i<=imx; i++){          }/* end of loop for state */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        } /* end of loop for age */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        /* Confidence intervalle of pij  */
     }*/        /*
    /*  for (i=1; i<=imx; i++){          fprintf(ficgp,"\nset noparametric;unset label");
      if (s[4][i]==9)  s[4][i]=-1;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
            fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
            fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   /* Calculation of the number of parameter from char model*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   Tvar=ivector(1,15);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   Tprod=ivector(1,15);        */
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   Tage=ivector(1,15);              first1=1;
            for (k2=1; k2<=(nlstate);k2++){
   if (strlen(model) >1){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     j=0, j1=0, k1=1, k2=1;            if(l2==k2) continue;
     j=nbocc(model,'+');            j=(k2-1)*(nlstate+ndeath)+l2;
     j1=nbocc(model,'*');            for (k1=1; k1<=(nlstate);k1++){
     cptcovn=j+1;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     cptcovprod=j1;                if(l1==k1) continue;
                    i=(k1-1)*(nlstate+ndeath)+l1;
     strcpy(modelsav,model);                if(i<=j) continue;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                for (age=bage; age<=fage; age ++){ 
       printf("Error. Non available option model=%s ",model);                  if ((int)age %5==0){
       goto end;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                        cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     for(i=(j+1); i>=1;i--){                    mu1=mu[i][(int) age]/stepm*YEARM ;
       cutv(stra,strb,modelsav,'+');                    mu2=mu[j][(int) age]/stepm*YEARM;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                    c12=cv12/sqrt(v1*v2);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                    /* Computing eigen value of matrix of covariance */
       /*scanf("%d",i);*/                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       if (strchr(strb,'*')) {                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         cutv(strd,strc,strb,'*');                    /* Eigen vectors */
         if (strcmp(strc,"age")==0) {                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           cptcovprod--;                    /*v21=sqrt(1.-v11*v11); *//* error */
           cutv(strb,stre,strd,'V');                    v21=(lc1-v1)/cv12*v11;
           Tvar[i]=atoi(stre);                    v12=-v21;
           cptcovage++;                    v22=v11;
             Tage[cptcovage]=i;                    tnalp=v21/v11;
             /*printf("stre=%s ", stre);*/                    if(first1==1){
         }                      first1=0;
         else if (strcmp(strd,"age")==0) {                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           cptcovprod--;                    }
           cutv(strb,stre,strc,'V');                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           Tvar[i]=atoi(stre);                    /*printf(fignu*/
           cptcovage++;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           Tage[cptcovage]=i;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         }                    if(first==1){
         else {                      first=0;
           cutv(strb,stre,strc,'V');                      fprintf(ficgp,"\nset parametric;unset label");
           Tvar[i]=ncovcol+k1;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           cutv(strb,strc,strd,'V');                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           Tprod[k1]=i;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           Tvard[k1][1]=atoi(strc);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           Tvard[k1][2]=atoi(stre);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           Tvar[cptcovn+k2]=Tvard[k1][1];                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           for (k=1; k<=lastobs;k++)                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
           k1++;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           k2=k2+2;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       else {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
        /*  scanf("%d",i);*/                    }else{
       cutv(strd,strc,strb,'V');                      first=0;
       Tvar[i]=atoi(strc);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       strcpy(modelsav,stra);                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         scanf("%d",i);*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 }                    }/* if first */
                    } /* age mod 5 */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                } /* end loop age */
   printf("cptcovprod=%d ", cptcovprod);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   scanf("%d ",i);*/                first=1;
     fclose(fic);              } /*l12 */
             } /* k12 */
     /*  if(mle==1){*/          } /*l1 */
     if (weightopt != 1) { /* Maximisation without weights*/        }/* k1 */
       for(i=1;i<=n;i++) weight[i]=1.0;      } /* loop covariates */
     }    }
     /*-calculation of age at interview from date of interview and age at death -*/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     agev=matrix(1,maxwav,1,imx);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     for (i=1; i<=imx; i++) {    fclose(ficresprob);
       for(m=2; (m<= maxwav); m++) {    fclose(ficresprobcov);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    fclose(ficresprobcor);
          anint[m][i]=9999;    fflush(ficgp);
          s[m][i]=-1;    fflush(fichtmcov);
        }  }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }  
     }  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     for (i=1; i<=imx; i++)  {                    int lastpass, int stepm, int weightopt, char model[],\
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       for(m=1; (m<= maxwav); m++){                    int popforecast, int estepm ,\
         if(s[m][i] >0){                    double jprev1, double mprev1,double anprev1, \
           if (s[m][i] >= nlstate+1) {                    double jprev2, double mprev2,double anprev2){
             if(agedc[i]>0)    int jj1, k1, i1, cpt;
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
            else {             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
               if (andc[i]!=9999){     fprintf(fichtm,"\
               printf("Warning negative age at death: %d line:%d\n",num[i],i);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
               agev[m][i]=-1;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
               }     fprintf(fichtm,"\
             }   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
           }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
           else if(s[m][i] !=9){ /* Should no more exist */     fprintf(fichtm,"\
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);   - Life expectancies by age and initial health status (estepm=%2d months): \
             if(mint[m][i]==99 || anint[m][i]==9999)     <a href=\"%s\">%s</a> <br>\n</li>",
               agev[m][i]=1;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }   m=cptcoveff;
             else if(agev[m][i] >agemax){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   jj1=0;
             }   for(k1=1; k1<=m;k1++){
             /*agev[m][i]=anint[m][i]-annais[i];*/     for(i1=1; i1<=ncodemax[k1];i1++){
             /*   agev[m][i] = age[i]+2*m;*/       jj1++;
           }       if (cptcovn > 0) {
           else { /* =9 */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             agev[m][i]=1;         for (cpt=1; cpt<=cptcoveff;cpt++) 
             s[m][i]=-1;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }       }
         else /*= 0 Unknown */       /* Pij */
           agev[m][i]=1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
       }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           /* Quasi-incidences */
     }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     for (i=1; i<=imx; i++)  {   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
       for(m=1; (m<= maxwav); m++){  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
         if (s[m][i] > (nlstate+ndeath)) {         /* Stable prevalence in each health state */
           printf("Error: Wrong value in nlstate or ndeath\n");           for(cpt=1; cpt<nlstate;cpt++){
           goto end;           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
         }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       }         }
     }       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
     free_vector(severity,1,maxwav);     } /* end i1 */
     free_imatrix(outcome,1,maxwav+1,1,n);   }/* End k1 */
     free_vector(moisnais,1,n);   fprintf(fichtm,"</ul>");
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/   fprintf(fichtm,"\
     free_vector(moisdc,1,n);  \n<br><li><h4> Result files (second order: variances)</h4>\n\
     free_vector(andc,1,n);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
       fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     wav=ivector(1,imx);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   fprintf(fichtm,"\
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
               subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);   fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       Tcode=ivector(1,100);   fprintf(fichtm,"\
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       ncodemax[1]=1;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   fprintf(fichtm,"\
         - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
    codtab=imatrix(1,100,1,10);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    h=0;   fprintf(fichtm,"\
    m=pow(2,cptcoveff);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
             subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){  /*  if(popforecast==1) fprintf(fichtm,"\n */
        for(j=1; j <= ncodemax[k]; j++){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
            h++;  /*      <br>",fileres,fileres,fileres,fileres); */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  /*  else  */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
          }   fflush(fichtm);
        }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
      }  
    }   m=cptcoveff;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){   jj1=0;
       for(k=1; k <=cptcovn; k++){   for(k1=1; k1<=m;k1++){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);     for(i1=1; i1<=ncodemax[k1];i1++){
       }       jj1++;
       printf("\n");       if (cptcovn > 0) {
       }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       scanf("%d",i);*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
               fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    /* Calculates basic frequencies. Computes observed prevalence at single age         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        and prints on file fileres'p'. */       }
        for(cpt=1; cpt<=nlstate;cpt++) {
             fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
      prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  health expectancies in states (1) and (2): %s%d.png<br>\
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
           } /* end i1 */
     /* For Powell, parameters are in a vector p[] starting at p[1]   }/* End k1 */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   fprintf(fichtm,"</ul>");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */   fflush(fichtm);
   }
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  /******************* Gnuplot file **************/
     }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
      
     /*--------- results files --------------*/    char dirfileres[132],optfileres[132];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
      int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
    jk=1;  /*     printf("Problem with file %s",optionfilegnuplot); */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /*   } */
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){    /*#ifdef windows */
        if (k != i)    fprintf(ficgp,"cd \"%s\" \n",pathc);
          {      /*#endif */
            printf("%d%d ",i,k);    m=pow(2,cptcoveff);
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){    strcpy(dirfileres,optionfilefiname);
              printf("%f ",p[jk]);    strcpy(optfileres,"vpl");
              fprintf(ficres,"%f ",p[jk]);   /* 1eme*/
              jk++;    for (cpt=1; cpt<= nlstate ; cpt ++) {
            }     for (k1=1; k1<= m ; k1 ++) {
            printf("\n");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
            fprintf(ficres,"\n");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
          }       fprintf(ficgp,"set xlabel \"Age\" \n\
      }  set ylabel \"Probability\" \n\
    }  set ter png small\n\
  if(mle==1){  set size 0.65,0.65\n\
     /* Computing hessian and covariance matrix */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);       for (i=1; i<= nlstate ; i ++) {
  }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("# Scales (for hessian or gradient estimation)\n");       }
      for(i=1,jk=1; i <=nlstate; i++){       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       for(j=1; j <=nlstate+ndeath; j++){       for (i=1; i<= nlstate ; i ++) {
         if (j!=i) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficres,"%1d%1d",i,j);         else fprintf(ficgp," \%%*lf (\%%*lf)");
           printf("%1d%1d",i,j);       } 
           for(k=1; k<=ncovmodel;k++){       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
             printf(" %.5e",delti[jk]);       for (i=1; i<= nlstate ; i ++) {
             fprintf(ficres," %.5e",delti[jk]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             jk++;         else fprintf(ficgp," \%%*lf (\%%*lf)");
           }       }  
           printf("\n");       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
           fprintf(ficres,"\n");     }
         }    }
       }    /*2 eme*/
      }    
        for (k1=1; k1<= m ; k1 ++) { 
     k=1;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      
     for(i=1;i<=npar;i++){      for (i=1; i<= nlstate+1 ; i ++) {
       /*  if (k>nlstate) k=1;        k=2*i;
       i1=(i-1)/(ncovmodel*nlstate)+1;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        for (j=1; j<= nlstate+1 ; j ++) {
       printf("%s%d%d",alph[k],i1,tab[i]);*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficres,"%3d",i);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       printf("%3d",i);        }   
       for(j=1; j<=i;j++){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         fprintf(ficres," %.5e",matcov[i][j]);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         printf(" %.5e",matcov[i][j]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       }        for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficres,"\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       printf("\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
       k++;        }   
     }        fprintf(ficgp,"\" t\"\" w l 0,");
            fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     while((c=getc(ficpar))=='#' && c!= EOF){        for (j=1; j<= nlstate+1 ; j ++) {
       ungetc(c,ficpar);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fgets(line, MAXLINE, ficpar);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       puts(line);        }   
       fputs(line,ficparo);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     }        else fprintf(ficgp,"\" t\"\" w l 0,");
     ungetc(c,ficpar);      }
     estepm=0;    }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    
     if (estepm==0 || estepm < stepm) estepm=stepm;    /*3eme*/
     if (fage <= 2) {    
       bage = ageminpar;    for (k1=1; k1<= m ; k1 ++) { 
       fage = agemaxpar;      for (cpt=1; cpt<= nlstate ; cpt ++) {
     }        k=2+nlstate*(2*cpt-2);
            fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        fprintf(ficgp,"set ter png small\n\
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  set size 0.65,0.65\n\
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
          /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     while((c=getc(ficpar))=='#' && c!= EOF){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     ungetc(c,ficpar);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     puts(line);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     fputs(line,ficparo);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   }          
   ungetc(c,ficpar);        */
          for (i=1; i< nlstate ; i ++) {
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        } 
            }
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    /* CV preval stable (period) */
     puts(line);    for (k1=1; k1<= m ; k1 ++) { 
     fputs(line,ficparo);      for (cpt=1; cpt<=nlstate ; cpt ++) {
   }        k=3;
   ungetc(c,ficpar);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  unset log y\n\
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
   fscanf(ficpar,"pop_based=%d\n",&popbased);        for (i=1; i< nlstate ; i ++)
   fprintf(ficparo,"pop_based=%d\n",popbased);            fprintf(ficgp,"+$%d",k+i+1);
   fprintf(ficres,"pop_based=%d\n",popbased);          fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
          
   while((c=getc(ficpar))=='#' && c!= EOF){        l=3+(nlstate+ndeath)*cpt;
     ungetc(c,ficpar);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     fgets(line, MAXLINE, ficpar);        for (i=1; i< nlstate ; i ++) {
     puts(line);          l=3+(nlstate+ndeath)*cpt;
     fputs(line,ficparo);          fprintf(ficgp,"+$%d",l+i+1);
   }        }
   ungetc(c,ficpar);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    }  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
 while((c=getc(ficpar))=='#' && c!= EOF){        if (k != i) {
     ungetc(c,ficpar);          for(j=1; j <=ncovmodel; j++){
     fgets(line, MAXLINE, ficpar);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     puts(line);            jk++; 
     fputs(line,ficparo);            fprintf(ficgp,"\n");
   }          }
   ungetc(c,ficpar);        }
       }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);     }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
 /*------------ gnuplot -------------*/           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   strcpy(optionfilegnuplot,optionfilefiname);         else
   strcat(optionfilegnuplot,".gp");           fprintf(ficgp,"\nset title \"Probability\"\n");
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     printf("Problem with file %s",optionfilegnuplot);         i=1;
   }         for(k2=1; k2<=nlstate; k2++) {
   fclose(ficgp);           k3=i;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);           for(k=1; k<=(nlstate+ndeath); k++) {
 /*--------- index.htm --------*/             if (k != k2){
                if(ng==2)
   strcpy(optionfilehtm,optionfile);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   strcat(optionfilehtm,".htm");               else
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     printf("Problem with %s \n",optionfilehtm), exit(0);               ij=1;
   }               for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                   ij++;
 \n                 }
 Total number of observations=%d <br>\n                 else
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 <hr  size=\"2\" color=\"#EC5E5E\">               }
  <ul><li><h4>Parameter files</h4>\n               fprintf(ficgp,")/(1");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n               
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);               for(k1=1; k1 <=nlstate; k1++){   
   fclose(fichtm);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                 for(j=3; j <=ncovmodel; j++){
                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 /*------------ free_vector  -------------*/                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
  chdir(path);                     ij++;
                     }
  free_ivector(wav,1,imx);                   else
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                   }
  free_ivector(num,1,n);                 fprintf(ficgp,")");
  free_vector(agedc,1,n);               }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
  fclose(ficparo);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
  fclose(ficres);               i=i+ncovmodel;
              }
            } /* end k */
   /*--------------- Prevalence limit --------------*/         } /* end k2 */
         } /* end jk */
   strcpy(filerespl,"pl");     } /* end ng */
   strcat(filerespl,fileres);     fflush(ficgp); 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  }  /* end gnuplot */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  /*************** Moving average **************/
   fprintf(ficrespl,"#Prevalence limit\n");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    int i, cpt, cptcod;
   fprintf(ficrespl,"\n");    int modcovmax =1;
      int mobilavrange, mob;
   prlim=matrix(1,nlstate,1,nlstate);    double age;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                             a covariate has 2 modalities */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   agebase=ageminpar;      if(mobilav==1) mobilavrange=5; /* default */
   agelim=agemaxpar;      else mobilavrange=mobilav;
   ftolpl=1.e-10;      for (age=bage; age<=fage; age++)
   i1=cptcoveff;        for (i=1; i<=nlstate;i++)
   if (cptcovn < 1){i1=1;}          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   for(cptcov=1;cptcov<=i1;cptcov++){      /* We keep the original values on the extreme ages bage, fage and for 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         k=k+1;         we use a 5 terms etc. until the borders are no more concerned. 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      */ 
         fprintf(ficrespl,"\n#******");      for (mob=3;mob <=mobilavrange;mob=mob+2){
         for(j=1;j<=cptcoveff;j++)        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (i=1; i<=nlstate;i++){
         fprintf(ficrespl,"******\n");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
                      mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         for (age=agebase; age<=agelim; age++){                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           fprintf(ficrespl,"%.0f",age );                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           for(i=1; i<=nlstate;i++)                }
           fprintf(ficrespl," %.5f", prlim[i][i]);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
           fprintf(ficrespl,"\n");            }
         }          }
       }        }/* end age */
     }      }/* end mob */
   fclose(ficrespl);    }else return -1;
     return 0;
   /*------------- h Pij x at various ages ------------*/  }/* End movingaverage */
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  /************** Forecasting ******************/
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   }    /* proj1, year, month, day of starting projection 
   printf("Computing pij: result on file '%s' \n", filerespij);       agemin, agemax range of age
         dateprev1 dateprev2 range of dates during which prevalence is computed
   stepsize=(int) (stepm+YEARM-1)/YEARM;       anproj2 year of en of projection (same day and month as proj1).
   /*if (stepm<=24) stepsize=2;*/    */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   agelim=AGESUP;    int *popage;
   hstepm=stepsize*YEARM; /* Every year of age */    double agec; /* generic age */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
   /* hstepm=1;   aff par mois*/    double ***p3mat;
     double ***mobaverage;
   k=0;    char fileresf[FILENAMELENGTH];
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    agelim=AGESUP;
       k=k+1;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         fprintf(ficrespij,"\n#****** ");   
         for(j=1;j<=cptcoveff;j++)    strcpy(fileresf,"f"); 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(fileresf,fileres);
         fprintf(ficrespij,"******\n");    if((ficresf=fopen(fileresf,"w"))==NULL) {
              printf("Problem with forecast resultfile: %s\n", fileresf);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    if (mobilav!=0) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespij,"# Age");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           for(i=1; i<=nlstate;i++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             for(j=1; j<=nlstate+ndeath;j++)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               fprintf(ficrespij," %1d-%1d",i,j);      }
           fprintf(ficrespij,"\n");    }
            for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    stepsize=(int) (stepm+YEARM-1)/YEARM;
             for(i=1; i<=nlstate;i++)    if (stepm<=12) stepsize=1;
               for(j=1; j<=nlstate+ndeath;j++)    if(estepm < stepm){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      printf ("Problem %d lower than %d\n",estepm, stepm);
             fprintf(ficrespij,"\n");    }
              }    else  hstepm=estepm;   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");    hstepm=hstepm/stepm; 
         }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     }                                 fractional in yp1 */
   }    anprojmean=yp;
     yp2=modf((yp1*12),&yp);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
   fclose(ficrespij);    jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){    i1=cptcoveff;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    if (cptcovn < 1){i1=1;}
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    
   }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   else{    
     erreur=108;    fprintf(ficresf,"#****** Routine prevforecast **\n");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }  /*            if (h==(int)(YEARM*yearp)){ */
      for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   /*---------- Health expectancies and variances ------------*/        k=k+1;
         fprintf(ficresf,"\n#******");
   strcpy(filerest,"t");        for(j=1;j<=cptcoveff;j++) {
   strcat(filerest,fileres);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   if((ficrest=fopen(filerest,"w"))==NULL) {        }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        fprintf(ficresf,"******\n");
   }        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
   strcpy(filerese,"e");          fprintf(ficresf," p.%d",j);
   strcat(filerese,fileres);        }
   if((ficreseij=fopen(filerese,"w"))==NULL) {        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          fprintf(ficresf,"\n");
   }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
  strcpy(fileresv,"v");            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   strcat(fileresv,fileres);            nhstepm = nhstepm/hstepm; 
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            oldm=oldms;savm=savms;
   }            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          
   calagedate=-1;            for (h=0; h<=nhstepm; h++){
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
   k=0;                for(j=1;j<=cptcoveff;j++) 
   for(cptcov=1;cptcov<=i1;cptcov++){                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       k=k+1;              } 
       fprintf(ficrest,"\n#****** ");              for(j=1; j<=nlstate+ndeath;j++) {
       for(j=1;j<=cptcoveff;j++)                ppij=0.;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                for(i=1; i<=nlstate;i++) {
       fprintf(ficrest,"******\n");                  if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       fprintf(ficreseij,"\n#****** ");                  else {
       for(j=1;j<=cptcoveff;j++)                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  }
       fprintf(ficreseij,"******\n");                  if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
       fprintf(ficresvij,"\n#****** ");                  }
       for(j=1;j<=cptcoveff;j++)                } /* end i */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if (h*hstepm/YEARM*stepm==yearp) {
       fprintf(ficresvij,"******\n");                  fprintf(ficresf," %.3f", ppij);
                 }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              }/* end j */
       oldm=oldms;savm=savms;            } /* end h */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            } /* end agec */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        } /* end yearp */
       oldm=oldms;savm=savms;      } /* end cptcod */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    } /* end  cptcov */
             
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fclose(ficresf);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  }
       fprintf(ficrest,"\n");  
   /************** Forecasting *****not tested NB*************/
       epj=vector(1,nlstate+1);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       for(age=bage; age <=fage ;age++){    
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
         if (popbased==1) {    int *popage;
           for(i=1; i<=nlstate;i++)    double calagedatem, agelim, kk1, kk2;
             prlim[i][i]=probs[(int)age][i][k];    double *popeffectif,*popcount;
         }    double ***p3mat,***tabpop,***tabpopprev;
            double ***mobaverage;
         fprintf(ficrest," %4.0f",age);    char filerespop[FILENAMELENGTH];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    agelim=AGESUP;
           }    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
           epj[nlstate+1] +=epj[j];    
         }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
         for(i=1, vepp=0.;i <=nlstate;i++)    
           for(j=1;j <=nlstate;j++)    strcpy(filerespop,"pop"); 
             vepp += vareij[i][j][(int)age];    strcat(filerespop,fileres);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    if((ficrespop=fopen(filerespop,"w"))==NULL) {
         for(j=1;j <=nlstate;j++){      printf("Problem with forecast resultfile: %s\n", filerespop);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
         }    }
         fprintf(ficrest,"\n");    printf("Computing forecasting: result on file '%s' \n", filerespop);
       }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
     }  
   }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    if (mobilav!=0) {
     free_vector(weight,1,n);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficreseij);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   fclose(ficresvij);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficrest);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficpar);      }
   free_vector(epj,1,nlstate+1);    }
    
   /*------- Variance limit prevalence------*/      stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
   strcpy(fileresvpl,"vpl");    
   strcat(fileresvpl,fileres);    agelim=AGESUP;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    hstepm=1;
     exit(0);    hstepm=hstepm/stepm; 
   }    
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
   k=0;        printf("Problem with population file : %s\n",popfile);exit(0);
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } 
       k=k+1;      popage=ivector(0,AGESUP);
       fprintf(ficresvpl,"\n#****** ");      popeffectif=vector(0,AGESUP);
       for(j=1;j<=cptcoveff;j++)      popcount=vector(0,AGESUP);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
       fprintf(ficresvpl,"******\n");      i=1;   
            while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);     
       oldm=oldms;savm=savms;      imx=i;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }    }
  }  
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   fclose(ficresvpl);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   /*---------- End : free ----------------*/        fprintf(ficrespop,"\n#******");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        for(j=1;j<=cptcoveff;j++) {
            fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficrespop,"******\n");
          fprintf(ficrespop,"# Age");
          for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        if (popforecast==1)  fprintf(ficrespop," [Population]");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        for (cpt=0; cpt<=0;cpt++) { 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
            
   free_matrix(matcov,1,npar,1,npar);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   free_vector(delti,1,npar);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   free_matrix(agev,1,maxwav,1,imx);            nhstepm = nhstepm/hstepm; 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(fichtm,"\n</body>");            oldm=oldms;savm=savms;
   fclose(fichtm);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   fclose(ficgp);          
              for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
   if(erreur >0)                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     printf("End of Imach with error or warning %d\n",erreur);              } 
   else   printf("End of Imach\n");              for(j=1; j<=nlstate+ndeath;j++) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                kk1=0.;kk2=0;
                  for(i=1; i<=nlstate;i++) {              
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                  if (mobilav==1) 
   /*printf("Total time was %d uSec.\n", total_usecs);*/                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   /*------ End -----------*/                  else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
  end:                }
 #ifdef windows                if (h==(int)(calagedatem+12*cpt)){
   /* chdir(pathcd);*/                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
 #endif                    /*fprintf(ficrespop," %.3f", kk1);
  /*system("wgnuplot graph.plt");*/                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
  /*system("../gp37mgw/wgnuplot graph.plt");*/                }
  /*system("cd ../gp37mgw");*/              }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/              for(i=1; i<=nlstate;i++){
  strcpy(plotcmd,GNUPLOTPROGRAM);                kk1=0.;
  strcat(plotcmd," ");                  for(j=1; j<=nlstate;j++){
  strcat(plotcmd,optionfilegnuplot);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
  system(plotcmd);                  }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 #ifdef windows              }
   while (z[0] != 'q') {  
     /* chdir(path); */              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
     scanf("%s",z);            }
     if (z[0] == 'c') system("./imach");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     else if (z[0] == 'e') system(optionfilehtm);          }
     else if (z[0] == 'g') system(plotcmd);        }
     else if (z[0] == 'q') exit(0);   
   }    /******/
 #endif  
 }        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.49  
changed lines
  Added in v.1.100


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>