Diff for /imach/src/imach.c between versions 1.49 and 1.131

version 1.49, 2002/06/20 14:03:39 version 1.131, 2009/06/20 16:22:47
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.131  2009/06/20 16:22:47  brouard
      Some dimensions resccaled
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.130  2009/05/26 06:44:34  brouard
   first survey ("cross") where individuals from different ages are    (Module): Max Covariate is now set to 20 instead of 8. A
   interviewed on their health status or degree of disability (in the    lot of cleaning with variables initialized to 0. Trying to make
   case of a health survey which is our main interest) -2- at least a    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.129  2007/08/31 13:49:27  lievre
   computed from the time spent in each health state according to a    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.128  2006/06/30 13:02:05  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Clarifications on computing e.j
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.127  2006/04/28 18:11:50  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Yes the sum of survivors was wrong since
   'age' is age and 'sex' is a covariate. If you want to have a more    imach-114 because nhstepm was no more computed in the age
   complex model than "constant and age", you should modify the program    loop. Now we define nhstepma in the age loop.
   where the markup *Covariates have to be included here again* invites    (Module): In order to speed up (in case of numerous covariates) we
   you to do it.  More covariates you add, slower the    compute health expectancies (without variances) in a first step
   convergence.    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
   The advantage of this computer programme, compared to a simple    computation.
   multinomial logistic model, is clear when the delay between waves is not    In the future we should be able to stop the program is only health
   identical for each individual. Also, if a individual missed an    expectancies and graph are needed without standard deviations.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
   hPijx is the probability to be observed in state i at age x+h    imach-114 because nhstepm was no more computed in the age
   conditional to the observed state i at age x. The delay 'h' can be    loop. Now we define nhstepma in the age loop.
   split into an exact number (nh*stepm) of unobserved intermediate    Version 0.98h
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.125  2006/04/04 15:20:31  lievre
   matrix is simply the matrix product of nh*stepm elementary matrices    Errors in calculation of health expectancies. Age was not initialized.
   and the contribution of each individual to the likelihood is simply    Forecasting file added.
   hPijx.  
     Revision 1.124  2006/03/22 17:13:53  lievre
   Also this programme outputs the covariance matrix of the parameters but also    Parameters are printed with %lf instead of %f (more numbers after the comma).
   of the life expectancies. It also computes the prevalence limits.    The log-likelihood is printed in the log file
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.123  2006/03/20 10:52:43  brouard
            Institut national d'études démographiques, Paris.    * imach.c (Module): <title> changed, corresponds to .htm file
   This software have been partly granted by Euro-REVES, a concerted action    name. <head> headers where missing.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    * imach.c (Module): Weights can have a decimal point as for
   software can be distributed freely for non commercial use. Latest version    English (a comma might work with a correct LC_NUMERIC environment,
   can be accessed at http://euroreves.ined.fr/imach .    otherwise the weight is truncated).
   **********************************************************************/    Modification of warning when the covariates values are not 0 or
      1.
 #include <math.h>    Version 0.98g
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.122  2006/03/20 09:45:41  brouard
 #include <unistd.h>    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define MAXLINE 256    otherwise the weight is truncated).
 #define GNUPLOTPROGRAM "gnuplot"    Modification of warning when the covariates values are not 0 or
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    1.
 #define FILENAMELENGTH 80    Version 0.98g
 /*#define DEBUG*/  
 #define windows    Revision 1.121  2006/03/16 17:45:01  lievre
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    * imach.c (Module): Comments concerning covariates added
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     * imach.c (Module): refinements in the computation of lli if
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    status=-2 in order to have more reliable computation if stepm is
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    not 1 month. Version 0.98f
   
 #define NINTERVMAX 8    Revision 1.120  2006/03/16 15:10:38  lievre
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): refinements in the computation of lli if
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    status=-2 in order to have more reliable computation if stepm is
 #define NCOVMAX 8 /* Maximum number of covariates */    not 1 month. Version 0.98f
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.119  2006/03/15 17:42:26  brouard
 #define AGESUP 130    (Module): Bug if status = -2, the loglikelihood was
 #define AGEBASE 40    computed as likelihood omitting the logarithm. Version O.98e
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.118  2006/03/14 18:20:07  brouard
 #else    (Module): varevsij Comments added explaining the second
 #define DIRSEPARATOR '/'    table of variances if popbased=1 .
 #endif    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    (Module): Version 0.98d
 int erreur; /* Error number */  
 int nvar;    Revision 1.117  2006/03/14 17:16:22  brouard
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    (Module): varevsij Comments added explaining the second
 int npar=NPARMAX;    table of variances if popbased=1 .
 int nlstate=2; /* Number of live states */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int ndeath=1; /* Number of dead states */    (Module): Function pstamp added
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Version 0.98d
 int popbased=0;  
     Revision 1.116  2006/03/06 10:29:27  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Variance-covariance wrong links and
 int maxwav; /* Maxim number of waves */    varian-covariance of ej. is needed (Saito).
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.115  2006/02/27 12:17:45  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): One freematrix added in mlikeli! 0.98c
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.114  2006/02/26 12:57:58  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Some improvements in processing parameter
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    filename with strsep.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.113  2006/02/24 14:20:24  brouard
 FILE *fichtm; /* Html File */    (Module): Memory leaks checks with valgrind and:
 FILE *ficreseij;    datafile was not closed, some imatrix were not freed and on matrix
 char filerese[FILENAMELENGTH];    allocation too.
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.112  2006/01/30 09:55:26  brouard
 FILE  *ficresvpl;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.111  2006/01/25 20:38:18  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    (Module): Lots of cleaning and bugs added (Gompertz)
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
     Revision 1.110  2006/01/25 00:51:50  brouard
 char filerest[FILENAMELENGTH];    (Module): Lots of cleaning and bugs added (Gompertz)
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.108  2006/01/19 18:05:42  lievre
 #define NR_END 1    Gnuplot problem appeared...
 #define FREE_ARG char*    To be fixed
 #define FTOL 1.0e-10  
     Revision 1.107  2006/01/19 16:20:37  brouard
 #define NRANSI    Test existence of gnuplot in imach path
 #define ITMAX 200  
     Revision 1.106  2006/01/19 13:24:36  brouard
 #define TOL 2.0e-4    Some cleaning and links added in html output
   
 #define CGOLD 0.3819660    Revision 1.105  2006/01/05 20:23:19  lievre
 #define ZEPS 1.0e-10    *** empty log message ***
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.104  2005/09/30 16:11:43  lievre
 #define GOLD 1.618034    (Module): sump fixed, loop imx fixed, and simplifications.
 #define GLIMIT 100.0    (Module): If the status is missing at the last wave but we know
 #define TINY 1.0e-20    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 static double maxarg1,maxarg2;    contributions to the likelihood is 1 - Prob of dying from last
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    the healthy state at last known wave). Version is 0.98
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.103  2005/09/30 15:54:49  lievre
 #define rint(a) floor(a+0.5)    (Module): sump fixed, loop imx fixed, and simplifications.
   
 static double sqrarg;    Revision 1.102  2004/09/15 17:31:30  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Add the possibility to read data file including tab characters.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.101  2004/09/15 10:38:38  brouard
 int imx;    Fix on curr_time
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.98  2004/05/16 15:05:56  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    New version 0.97 . First attempt to estimate force of mortality
 double **pmmij, ***probs, ***mobaverage;    directly from the data i.e. without the need of knowing the health
 double dateintmean=0;    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 double *weight;    other analysis, in order to test if the mortality estimated from the
 int **s; /* Status */    cross-longitudinal survey is different from the mortality estimated
 double *agedc, **covar, idx;    from other sources like vital statistic data.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     The same imach parameter file can be used but the option for mle should be -3.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    The output is very simple: only an estimate of the intercept and of
 {    the slope with 95% confident intervals.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Current limitations:
     A) Even if you enter covariates, i.e. with the
    l1 = strlen( path );                 /* length of path */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    B) There is no computation of Life Expectancy nor Life Table.
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.97  2004/02/20 13:25:42  lievre
 #if     defined(__bsd__)                /* get current working directory */    Version 0.96d. Population forecasting command line is (temporarily)
       extern char       *getwd( );    suppressed.
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.96  2003/07/15 15:38:55  brouard
 #else    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       extern char       *getcwd( );    rewritten within the same printf. Workaround: many printfs.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.95  2003/07/08 07:54:34  brouard
 #endif    * imach.c (Repository):
          return( GLOCK_ERROR_GETCWD );    (Repository): Using imachwizard code to output a more meaningful covariance
       }    matrix (cov(a12,c31) instead of numbers.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.94  2003/06/27 13:00:02  brouard
       s++;                              /* after this, the filename */    Just cleaning
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.93  2003/06/25 16:33:55  brouard
       strcpy( name, s );                /* save file name */    (Module): On windows (cygwin) function asctime_r doesn't
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    exist so I changed back to asctime which exists.
       dirc[l1-l2] = 0;                  /* add zero */    (Module): Version 0.96b
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.92  2003/06/25 16:30:45  brouard
 #ifdef windows    (Module): On windows (cygwin) function asctime_r doesn't
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    exist so I changed back to asctime which exists.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.91  2003/06/25 15:30:29  brouard
 #endif    * imach.c (Repository): Duplicated warning errors corrected.
    s = strrchr( name, '.' );            /* find last / */    (Repository): Elapsed time after each iteration is now output. It
    s++;    helps to forecast when convergence will be reached. Elapsed time
    strcpy(ext,s);                       /* save extension */    is stamped in powell.  We created a new html file for the graphs
    l1= strlen( name);    concerning matrix of covariance. It has extension -cov.htm.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.90  2003/06/24 12:34:15  brouard
    finame[l1-l2]= 0;    (Module): Some bugs corrected for windows. Also, when
    return( 0 );                         /* we're done */    mle=-1 a template is output in file "or"mypar.txt with the design
 }    of the covariance matrix to be input.
   
     Revision 1.89  2003/06/24 12:30:52  brouard
 /******************************************/    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 void replace(char *s, char*t)    of the covariance matrix to be input.
 {  
   int i;    Revision 1.88  2003/06/23 17:54:56  brouard
   int lg=20;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   i=0;  
   lg=strlen(t);    Revision 1.87  2003/06/18 12:26:01  brouard
   for(i=0; i<= lg; i++) {    Version 0.96
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.86  2003/06/17 20:04:08  brouard
   }    (Module): Change position of html and gnuplot routines and added
 }    routine fileappend.
   
 int nbocc(char *s, char occ)    Revision 1.85  2003/06/17 13:12:43  brouard
 {    * imach.c (Repository): Check when date of death was earlier that
   int i,j=0;    current date of interview. It may happen when the death was just
   int lg=20;    prior to the death. In this case, dh was negative and likelihood
   i=0;    was wrong (infinity). We still send an "Error" but patch by
   lg=strlen(s);    assuming that the date of death was just one stepm after the
   for(i=0; i<= lg; i++) {    interview.
   if  (s[i] == occ ) j++;    (Repository): Because some people have very long ID (first column)
   }    we changed int to long in num[] and we added a new lvector for
   return j;    memory allocation. But we also truncated to 8 characters (left
 }    truncation)
     (Repository): No more line truncation errors.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.84  2003/06/13 21:44:43  brouard
   int i,lg,j,p=0;    * imach.c (Repository): Replace "freqsummary" at a correct
   i=0;    place. It differs from routine "prevalence" which may be called
   for(j=0; j<=strlen(t)-1; j++) {    many times. Probs is memory consuming and must be used with
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    parcimony.
   }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   lg=strlen(t);    Revision 1.83  2003/06/10 13:39:11  lievre
   for(j=0; j<p; j++) {    *** empty log message ***
     (u[j] = t[j]);  
   }    Revision 1.82  2003/06/05 15:57:20  brouard
      u[p]='\0';    Add log in  imach.c and  fullversion number is now printed.
   
    for(j=0; j<= lg; j++) {  */
     if (j>=(p+1))(v[j-p-1] = t[j]);  /*
   }     Interpolated Markov Chain
 }  
     Short summary of the programme:
 /********************** nrerror ********************/    
     This program computes Healthy Life Expectancies from
 void nrerror(char error_text[])    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
   fprintf(stderr,"ERREUR ...\n");    interviewed on their health status or degree of disability (in the
   fprintf(stderr,"%s\n",error_text);    case of a health survey which is our main interest) -2- at least a
   exit(1);    second wave of interviews ("longitudinal") which measure each change
 }    (if any) in individual health status.  Health expectancies are
 /*********************** vector *******************/    computed from the time spent in each health state according to a
 double *vector(int nl, int nh)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   double *v;    simplest model is the multinomial logistic model where pij is the
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    probability to be observed in state j at the second wave
   if (!v) nrerror("allocation failure in vector");    conditional to be observed in state i at the first wave. Therefore
   return v-nl+NR_END;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 /************************ free vector ******************/    where the markup *Covariates have to be included here again* invites
 void free_vector(double*v, int nl, int nh)    you to do it.  More covariates you add, slower the
 {    convergence.
   free((FREE_ARG)(v+nl-NR_END));  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 /************************ivector *******************************/    identical for each individual. Also, if a individual missed an
 int *ivector(long nl,long nh)    intermediate interview, the information is lost, but taken into
 {    account using an interpolation or extrapolation.  
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    hPijx is the probability to be observed in state i at age x+h
   if (!v) nrerror("allocation failure in ivector");    conditional to the observed state i at age x. The delay 'h' can be
   return v-nl+NR_END;    split into an exact number (nh*stepm) of unobserved intermediate
 }    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 /******************free ivector **************************/    matrix is simply the matrix product of nh*stepm elementary matrices
 void free_ivector(int *v, long nl, long nh)    and the contribution of each individual to the likelihood is simply
 {    hPijx.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence. 
 /******************* imatrix *******************************/    
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */             Institut national d'études démographiques, Paris.
 {    This software have been partly granted by Euro-REVES, a concerted action
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    from the European Union.
   int **m;    It is copyrighted identically to a GNU software product, ie programme and
      software can be distributed freely for non commercial use. Latest version
   /* allocate pointers to rows */    can be accessed at http://euroreves.ined.fr/imach .
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m += NR_END;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   m -= nrl;    
      **********************************************************************/
    /*
   /* allocate rows and set pointers to them */    main
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    read parameterfile
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    read datafile
   m[nrl] += NR_END;    concatwav
   m[nrl] -= ncl;    freqsummary
      if (mle >= 1)
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      mlikeli
      print results files
   /* return pointer to array of pointers to rows */    if mle==1 
   return m;       computes hessian
 }    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 /****************** free_imatrix *************************/    open gnuplot file
 void free_imatrix(m,nrl,nrh,ncl,nch)    open html file
       int **m;    period (stable) prevalence
       long nch,ncl,nrh,nrl;     for age prevalim()
      /* free an int matrix allocated by imatrix() */    h Pij x
 {    variance of p varprob
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    forecasting if prevfcast==1 prevforecast call prevalence()
   free((FREE_ARG) (m+nrl-NR_END));    health expectancies
 }    Variance-covariance of DFLE
     prevalence()
 /******************* matrix *******************************/     movingaverage()
 double **matrix(long nrl, long nrh, long ncl, long nch)    varevsij() 
 {    if popbased==1 varevsij(,popbased)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    total life expectancies
   double **m;    Variance of period (stable) prevalence
    end
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  
   m -= nrl;  
    
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include <math.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <stdio.h>
   m[nrl] += NR_END;  #include <stdlib.h>
   m[nrl] -= ncl;  #include <string.h>
   #include <unistd.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #include <limits.h>
 }  #include <sys/types.h>
   #include <sys/stat.h>
 /*************************free matrix ************************/  #include <errno.h>
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  extern int errno;
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /* #include <sys/time.h> */
   free((FREE_ARG)(m+nrl-NR_END));  #include <time.h>
 }  #include "timeval.h"
   
 /******************* ma3x *******************************/  /* #include <libintl.h> */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  /* #define _(String) gettext (String) */
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define MAXLINE 256
   double ***m;  
   #define GNUPLOTPROGRAM "gnuplot"
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   if (!m) nrerror("allocation failure 1 in matrix()");  #define FILENAMELENGTH 132
   m += NR_END;  
   m -= nrl;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   m[nrl] += NR_END;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   m[nrl] -= ncl;  
   #define NINTERVMAX 8
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define NCOVMAX 20 /* Maximum number of covariates */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define MAXN 20000
   m[nrl][ncl] += NR_END;  #define YEARM 12. /* Number of months per year */
   m[nrl][ncl] -= nll;  #define AGESUP 130
   for (j=ncl+1; j<=nch; j++)  #define AGEBASE 40
     m[nrl][j]=m[nrl][j-1]+nlay;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
    #ifdef UNIX
   for (i=nrl+1; i<=nrh; i++) {  #define DIRSEPARATOR '/'
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define CHARSEPARATOR "/"
     for (j=ncl+1; j<=nch; j++)  #define ODIRSEPARATOR '\\'
       m[i][j]=m[i][j-1]+nlay;  #else
   }  #define DIRSEPARATOR '\\'
   return m;  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #endif
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /* $Id$ */
 {  /* $State$ */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char version[]="Imach version 0.98k, June 2006, INED-EUROREVES-Institut de longevite ";
   free((FREE_ARG)(m+nrl-NR_END));  char fullversion[]="$Revision$ $Date$"; 
 }  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 /***************** f1dim *************************/  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 extern int ncom;  int nvar=0;
 extern double *pcom,*xicom;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
 extern double (*nrfunc)(double []);  int npar=NPARMAX;
    int nlstate=2; /* Number of live states */
 double f1dim(double x)  int ndeath=1; /* Number of dead states */
 {  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int j;  int popbased=0;
   double f;  
   double *xt;  int *wav; /* Number of waves for this individuual 0 is possible */
    int maxwav=0; /* Maxim number of waves */
   xt=vector(1,ncom);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   f=(*nrfunc)(xt);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   free_vector(xt,1,ncom);                     to the likelihood and the sum of weights (done by funcone)*/
   return f;  int mle=1, weightopt=0;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /*****************brent *************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean=1; /* Mean space between 2 waves */
   int iter;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double a,b,d,etemp;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double fu,fv,fw,fx;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   double ftemp;  FILE *ficlog, *ficrespow;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int globpr=0; /* Global variable for printing or not */
   double e=0.0;  double fretone; /* Only one call to likelihood */
    long ipmx=0; /* Number of contributions */
   a=(ax < cx ? ax : cx);  double sw; /* Sum of weights */
   b=(ax > cx ? ax : cx);  char filerespow[FILENAMELENGTH];
   x=w=v=bx;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   fw=fv=fx=(*f)(x);  FILE *ficresilk;
   for (iter=1;iter<=ITMAX;iter++) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     xm=0.5*(a+b);  FILE *ficresprobmorprev;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  FILE *fichtm, *fichtmcov; /* Html File */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  FILE *ficreseij;
     printf(".");fflush(stdout);  char filerese[FILENAMELENGTH];
 #ifdef DEBUG  FILE *ficresstdeij;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char fileresstde[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  FILE *ficrescveij;
 #endif  char filerescve[FILENAMELENGTH];
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  FILE  *ficresvij;
       *xmin=x;  char fileresv[FILENAMELENGTH];
       return fx;  FILE  *ficresvpl;
     }  char fileresvpl[FILENAMELENGTH];
     ftemp=fu;  char title[MAXLINE];
     if (fabs(e) > tol1) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       r=(x-w)*(fx-fv);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       q=(x-v)*(fx-fw);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       p=(x-v)*q-(x-w)*r;  char command[FILENAMELENGTH];
       q=2.0*(q-r);  int  outcmd=0;
       if (q > 0.0) p = -p;  
       q=fabs(q);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       etemp=e;  
       e=d;  char filelog[FILENAMELENGTH]; /* Log file */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char filerest[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char fileregp[FILENAMELENGTH];
       else {  char popfile[FILENAMELENGTH];
         d=p/q;  
         u=x+d;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       }  struct timezone tzp;
     } else {  extern int gettimeofday();
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     }  long time_value;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  extern long time();
     fu=(*f)(u);  char strcurr[80], strfor[80];
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  char *endptr;
       SHFT(v,w,x,u)  long lval;
         SHFT(fv,fw,fx,fu)  double dval;
         } else {  
           if (u < x) a=u; else b=u;  #define NR_END 1
           if (fu <= fw || w == x) {  #define FREE_ARG char*
             v=w;  #define FTOL 1.0e-10
             w=u;  
             fv=fw;  #define NRANSI 
             fw=fu;  #define ITMAX 200 
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  #define TOL 2.0e-4 
             fv=fu;  
           }  #define CGOLD 0.3819660 
         }  #define ZEPS 1.0e-10 
   }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   nrerror("Too many iterations in brent");  
   *xmin=x;  #define GOLD 1.618034 
   return fx;  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
 /****************** mnbrak ***********************/  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
             double (*func)(double))    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double ulim,u,r,q, dum;  #define rint(a) floor(a+0.5)
   double fu;  
    static double sqrarg;
   *fa=(*func)(*ax);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   *fb=(*func)(*bx);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   if (*fb > *fa) {  int agegomp= AGEGOMP;
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  int imx; 
       }  int stepm=1;
   *cx=(*bx)+GOLD*(*bx-*ax);  /* Stepm, step in month: minimum step interpolation*/
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  int estepm;
     r=(*bx-*ax)*(*fb-*fc);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int m,nb;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  long *num;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     if ((*bx-u)*(u-*cx) > 0.0) {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       fu=(*func)(u);  double **pmmij, ***probs;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double *ageexmed,*agecens;
       fu=(*func)(u);  double dateintmean=0;
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  double *weight;
           SHFT(*fb,*fc,fu,(*func)(u))  int **s; /* Status */
           }  double *agedc, **covar, idx;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       u=ulim;  double *lsurv, *lpop, *tpop;
       fu=(*func)(u);  
     } else {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       u=(*cx)+GOLD*(*cx-*bx);  double ftolhess; /* Tolerance for computing hessian */
       fu=(*func)(u);  
     }  /**************** split *************************/
     SHFT(*ax,*bx,*cx,u)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       SHFT(*fa,*fb,*fc,fu)  {
       }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
 /*************** linmin ************************/    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 int ncom;  
 double *pcom,*xicom;    l1 = strlen(path );                   /* length of path */
 double (*nrfunc)(double []);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 {      strcpy( name, path );               /* we got the fullname name because no directory */
   double brent(double ax, double bx, double cx,      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
                double (*f)(double), double tol, double *xmin);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double f1dim(double x);      /* get current working directory */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      /*    extern  char* getcwd ( char *buf , int len);*/
               double *fc, double (*func)(double));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   int j;        return( GLOCK_ERROR_GETCWD );
   double xx,xmin,bx,ax;      }
   double fx,fb,fa;      /* got dirc from getcwd*/
        printf(" DIRC = %s \n",dirc);
   ncom=n;    } else {                              /* strip direcotry from path */
   pcom=vector(1,n);      ss++;                               /* after this, the filename */
   xicom=vector(1,n);      l2 = strlen( ss );                  /* length of filename */
   nrfunc=func;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (j=1;j<=n;j++) {      strcpy( name, ss );         /* save file name */
     pcom[j]=p[j];      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     xicom[j]=xi[j];      dirc[l1-l2] = 0;                    /* add zero */
   }      printf(" DIRC2 = %s \n",dirc);
   ax=0.0;    }
   xx=1.0;    /* We add a separator at the end of dirc if not exists */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    l1 = strlen( dirc );                  /* length of directory */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if( dirc[l1-1] != DIRSEPARATOR ){
 #ifdef DEBUG      dirc[l1] =  DIRSEPARATOR;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      dirc[l1+1] = 0; 
 #endif      printf(" DIRC3 = %s \n",dirc);
   for (j=1;j<=n;j++) {    }
     xi[j] *= xmin;    ss = strrchr( name, '.' );            /* find last / */
     p[j] += xi[j];    if (ss >0){
   }      ss++;
   free_vector(xicom,1,n);      strcpy(ext,ss);                     /* save extension */
   free_vector(pcom,1,n);      l1= strlen( name);
 }      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
 /*************** powell ************************/      finame[l1-l2]= 0;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    }
             double (*func)(double []))  
 {    return( 0 );                          /* we're done */
   void linmin(double p[], double xi[], int n, double *fret,  }
               double (*func)(double []));  
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /******************************************/
   double fp,fptt;  
   double *xits;  void replace_back_to_slash(char *s, char*t)
   pt=vector(1,n);  {
   ptt=vector(1,n);    int i;
   xit=vector(1,n);    int lg=0;
   xits=vector(1,n);    i=0;
   *fret=(*func)(p);    lg=strlen(t);
   for (j=1;j<=n;j++) pt[j]=p[j];    for(i=0; i<= lg; i++) {
   for (*iter=1;;++(*iter)) {      (s[i] = t[i]);
     fp=(*fret);      if (t[i]== '\\') s[i]='/';
     ibig=0;    }
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  int nbocc(char *s, char occ)
       printf(" %d %.12f",i, p[i]);  {
     printf("\n");    int i,j=0;
     for (i=1;i<=n;i++) {    int lg=20;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    i=0;
       fptt=(*fret);    lg=strlen(s);
 #ifdef DEBUG    for(i=0; i<= lg; i++) {
       printf("fret=%lf \n",*fret);    if  (s[i] == occ ) j++;
 #endif    }
       printf("%d",i);fflush(stdout);    return j;
       linmin(p,xit,n,fret,func);  }
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  void cutv(char *u,char *v, char*t, char occ)
         ibig=i;  {
       }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 #ifdef DEBUG       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       printf("%d %.12e",i,(*fret));       gives u="abcedf" and v="ghi2j" */
       for (j=1;j<=n;j++) {    int i,lg,j,p=0;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    i=0;
         printf(" x(%d)=%.12e",j,xit[j]);    for(j=0; j<=strlen(t)-1; j++) {
       }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       for(j=1;j<=n;j++)    }
         printf(" p=%.12e",p[j]);  
       printf("\n");    lg=strlen(t);
 #endif    for(j=0; j<p; j++) {
     }      (u[j] = t[j]);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    }
 #ifdef DEBUG       u[p]='\0';
       int k[2],l;  
       k[0]=1;     for(j=0; j<= lg; j++) {
       k[1]=-1;      if (j>=(p+1))(v[j-p-1] = t[j]);
       printf("Max: %.12e",(*func)(p));    }
       for (j=1;j<=n;j++)  }
         printf(" %.12e",p[j]);  
       printf("\n");  /********************** nrerror ********************/
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  void nrerror(char error_text[])
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  {
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    fprintf(stderr,"ERREUR ...\n");
         }    fprintf(stderr,"%s\n",error_text);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    exit(EXIT_FAILURE);
       }  }
 #endif  /*********************** vector *******************/
   double *vector(int nl, int nh)
   {
       free_vector(xit,1,n);    double *v;
       free_vector(xits,1,n);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       free_vector(ptt,1,n);    if (!v) nrerror("allocation failure in vector");
       free_vector(pt,1,n);    return v-nl+NR_END;
       return;  }
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /************************ free vector ******************/
     for (j=1;j<=n;j++) {  void free_vector(double*v, int nl, int nh)
       ptt[j]=2.0*p[j]-pt[j];  {
       xit[j]=p[j]-pt[j];    free((FREE_ARG)(v+nl-NR_END));
       pt[j]=p[j];  }
     }  
     fptt=(*func)(ptt);  /************************ivector *******************************/
     if (fptt < fp) {  int *ivector(long nl,long nh)
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  {
       if (t < 0.0) {    int *v;
         linmin(p,xit,n,fret,func);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in ivector");
           xi[j][ibig]=xi[j][n];    return v-nl+NR_END;
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /******************free ivector **************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  void free_ivector(int *v, long nl, long nh)
         for(j=1;j<=n;j++)  {
           printf(" %.12e",xit[j]);    free((FREE_ARG)(v+nl-NR_END));
         printf("\n");  }
 #endif  
       }  /************************lvector *******************************/
     }  long *lvector(long nl,long nh)
   }  {
 }    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 /**** Prevalence limit ****************/    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /******************free lvector **************************/
      matrix by transitions matrix until convergence is reached */  void free_lvector(long *v, long nl, long nh)
   {
   int i, ii,j,k;    free((FREE_ARG)(v+nl-NR_END));
   double min, max, maxmin, maxmax,sumnew=0.;  }
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /******************* imatrix *******************************/
   double **newm;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double agefin, delaymax=50 ; /* Max number of years to converge */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
   for (ii=1;ii<=nlstate+ndeath;ii++)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     for (j=1;j<=nlstate+ndeath;j++){    int **m; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    
     }    /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
    cov[1]=1.;    if (!m) nrerror("allocation failure 1 in matrix()"); 
      m += NR_END; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m -= nrl; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    
     newm=savm;    
     /* Covariates have to be included here again */    /* allocate rows and set pointers to them */ 
      cov[2]=agefin;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       for (k=1; k<=cptcovn;k++) {    m[nrl] += NR_END; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl] -= ncl; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    
       }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    
       for (k=1; k<=cptcovprod;k++)    /* return pointer to array of pointers to rows */ 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    return m; 
   } 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /****************** free_imatrix *************************/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  void free_imatrix(m,nrl,nrh,ncl,nch)
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        int **m;
         long nch,ncl,nrh,nrl; 
     savm=oldm;       /* free an int matrix allocated by imatrix() */ 
     oldm=newm;  { 
     maxmax=0.;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     for(j=1;j<=nlstate;j++){    free((FREE_ARG) (m+nrl-NR_END)); 
       min=1.;  } 
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /******************* matrix *******************************/
         sumnew=0;  double **matrix(long nrl, long nrh, long ncl, long nch)
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  {
         prlim[i][j]= newm[i][j]/(1-sumnew);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         max=FMAX(max,prlim[i][j]);    double **m;
         min=FMIN(min,prlim[i][j]);  
       }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       maxmin=max-min;    if (!m) nrerror("allocation failure 1 in matrix()");
       maxmax=FMAX(maxmax,maxmin);    m += NR_END;
     }    m -= nrl;
     if(maxmax < ftolpl){  
       return prlim;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
 }    m[nrl] -= ncl;
   
 /*************** transition probabilities ***************/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 {     */
   double s1, s2;  }
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     for(i=1; i<= nlstate; i++){  {
     for(j=1; j<i;j++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free((FREE_ARG)(m+nrl-NR_END));
         /*s2 += param[i][j][nc]*cov[nc];*/  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /******************* ma3x *******************************/
       }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       ps[i][j]=s2;  {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     }    double ***m;
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    if (!m) nrerror("allocation failure 1 in matrix()");
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    m += NR_END;
       }    m -= nrl;
       ps[i][j]=s2;  
     }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     /*ps[3][2]=1;*/    m[nrl] += NR_END;
     m[nrl] -= ncl;
   for(i=1; i<= nlstate; i++){  
      s1=0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     for(j=i+1; j<=nlstate+ndeath; j++)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       s1+=exp(ps[i][j]);    m[nrl][ncl] += NR_END;
     ps[i][i]=1./(s1+1.);    m[nrl][ncl] -= nll;
     for(j=1; j<i; j++)    for (j=ncl+1; j<=nch; j++) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      m[nrl][j]=m[nrl][j-1]+nlay;
     for(j=i+1; j<=nlstate+ndeath; j++)    
       ps[i][j]= exp(ps[i][j])*ps[i][i];    for (i=nrl+1; i<=nrh; i++) {
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   } /* end i */      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    }
     for(jj=1; jj<= nlstate+ndeath; jj++){    return m; 
       ps[ii][jj]=0;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       ps[ii][ii]=1;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     }    */
   }  }
   
   /*************************free ma3x ************************/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
      printf("%lf ",ps[ii][jj]);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
    }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     printf("\n ");    free((FREE_ARG)(m+nrl-NR_END));
     }  }
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  /*************** function subdirf ***********/
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  char *subdirf(char fileres[])
   goto end;*/  {
     return ps;    /* Caution optionfilefiname is hidden */
 }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
 /**************** Product of 2 matrices ******************/    strcat(tmpout,fileres);
     return tmpout;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  }
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /*************** function subdirf2 ***********/
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  char *subdirf2(char fileres[], char *preop)
   /* in, b, out are matrice of pointers which should have been initialized  {
      before: only the contents of out is modified. The function returns    
      a pointer to pointers identical to out */    /* Caution optionfilefiname is hidden */
   long i, j, k;    strcpy(tmpout,optionfilefiname);
   for(i=nrl; i<= nrh; i++)    strcat(tmpout,"/");
     for(k=ncolol; k<=ncoloh; k++)    strcat(tmpout,preop);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    strcat(tmpout,fileres);
         out[i][k] +=in[i][j]*b[j][k];    return tmpout;
   }
   return out;  
 }  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   {
 /************* Higher Matrix Product ***************/    
     /* Caution optionfilefiname is hidden */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    strcpy(tmpout,optionfilefiname);
 {    strcat(tmpout,"/");
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    strcat(tmpout,preop);
      duration (i.e. until    strcat(tmpout,preop2);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    strcat(tmpout,fileres);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    return tmpout;
      (typically every 2 years instead of every month which is too big).  }
      Model is determined by parameters x and covariates have to be  
      included manually here.  /***************** f1dim *************************/
   extern int ncom; 
      */  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
   int i, j, d, h, k;   
   double **out, cov[NCOVMAX];  double f1dim(double x) 
   double **newm;  { 
     int j; 
   /* Hstepm could be zero and should return the unit matrix */    double f;
   for (i=1;i<=nlstate+ndeath;i++)    double *xt; 
     for (j=1;j<=nlstate+ndeath;j++){   
       oldm[i][j]=(i==j ? 1.0 : 0.0);    xt=vector(1,ncom); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     }    f=(*nrfunc)(xt); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free_vector(xt,1,ncom); 
   for(h=1; h <=nhstepm; h++){    return f; 
     for(d=1; d <=hstepm; d++){  } 
       newm=savm;  
       /* Covariates have to be included here again */  /*****************brent *************************/
       cov[1]=1.;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    int iter; 
       for (k=1; k<=cptcovage;k++)    double a,b,d,etemp;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double fu,fv,fw,fx;
       for (k=1; k<=cptcovprod;k++)    double ftemp;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
    
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    a=(ax < cx ? ax : cx); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    b=(ax > cx ? ax : cx); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    x=w=v=bx; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    fw=fv=fx=(*f)(x); 
       savm=oldm;    for (iter=1;iter<=ITMAX;iter++) { 
       oldm=newm;      xm=0.5*(a+b); 
     }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for(i=1; i<=nlstate+ndeath; i++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       for(j=1;j<=nlstate+ndeath;j++) {      printf(".");fflush(stdout);
         po[i][j][h]=newm[i][j];      fprintf(ficlog,".");fflush(ficlog);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  #ifdef DEBUG
          */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   } /* end h */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   return po;  #endif
 }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
         return fx; 
 /*************** log-likelihood *************/      } 
 double func( double *x)      ftemp=fu;
 {      if (fabs(e) > tol1) { 
   int i, ii, j, k, mi, d, kk;        r=(x-w)*(fx-fv); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        q=(x-v)*(fx-fw); 
   double **out;        p=(x-v)*q-(x-w)*r; 
   double sw; /* Sum of weights */        q=2.0*(q-r); 
   double lli; /* Individual log likelihood */        if (q > 0.0) p = -p; 
   long ipmx;        q=fabs(q); 
   /*extern weight */        etemp=e; 
   /* We are differentiating ll according to initial status */        e=d; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   /*for(i=1;i<imx;i++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     printf(" %d\n",s[4][i]);        else { 
   */          d=p/q; 
   cov[1]=1.;          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
   for(k=1; k<=nlstate; k++) ll[k]=0.;            d=SIGN(tol1,xm-x); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        } 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      } else { 
     for(mi=1; mi<= wav[i]-1; mi++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (ii=1;ii<=nlstate+ndeath;ii++)      } 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       for(d=0; d<dh[mi][i]; d++){      fu=(*f)(u); 
         newm=savm;      if (fu <= fx) { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        if (u >= x) a=x; else b=x; 
         for (kk=1; kk<=cptcovage;kk++) {        SHFT(v,w,x,u) 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          SHFT(fv,fw,fx,fu) 
         }          } else { 
                    if (u < x) a=u; else b=u; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            if (fu <= fw || w == x) { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              v=w; 
         savm=oldm;              w=u; 
         oldm=newm;              fv=fw; 
                      fw=fu; 
                    } else if (fu <= fv || v == x || v == w) { 
       } /* end mult */              v=u; 
                    fv=fu; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);            } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          } 
       ipmx +=1;    } 
       sw += weight[i];    nrerror("Too many iterations in brent"); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    *xmin=x; 
     } /* end of wave */    return fx; 
   } /* end of individual */  } 
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /****************** mnbrak ***********************/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   return -l;              double (*func)(double)) 
 }  { 
     double ulim,u,r,q, dum;
     double fu; 
 /*********** Maximum Likelihood Estimation ***************/   
     *fa=(*func)(*ax); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    *fb=(*func)(*bx); 
 {    if (*fb > *fa) { 
   int i,j, iter;      SHFT(dum,*ax,*bx,dum) 
   double **xi,*delti;        SHFT(dum,*fb,*fa,dum) 
   double fret;        } 
   xi=matrix(1,npar,1,npar);    *cx=(*bx)+GOLD*(*bx-*ax); 
   for (i=1;i<=npar;i++)    *fc=(*func)(*cx); 
     for (j=1;j<=npar;j++)    while (*fb > *fc) { 
       xi[i][j]=(i==j ? 1.0 : 0.0);      r=(*bx-*ax)*(*fb-*fc); 
   printf("Powell\n");      q=(*bx-*cx)*(*fb-*fa); 
   powell(p,xi,npar,ftol,&iter,&fret,func);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
 }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
 /**** Computes Hessian and covariance matrix ***/        if (fu < *fc) { 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 {            SHFT(*fb,*fc,fu,(*func)(u)) 
   double  **a,**y,*x,pd;            } 
   double **hess;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   int i, j,jk;        u=ulim; 
   int *indx;        fu=(*func)(u); 
       } else { 
   double hessii(double p[], double delta, int theta, double delti[]);        u=(*cx)+GOLD*(*cx-*bx); 
   double hessij(double p[], double delti[], int i, int j);        fu=(*func)(u); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      } 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   hess=matrix(1,npar,1,npar);        } 
   } 
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  /*************** linmin ************************/
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  int ncom; 
     /*printf(" %f ",p[i]);*/  double *pcom,*xicom;
     /*printf(" %lf ",hess[i][i]);*/  double (*nrfunc)(double []); 
   }   
    void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   for (i=1;i<=npar;i++) {  { 
     for (j=1;j<=npar;j++)  {    double brent(double ax, double bx, double cx, 
       if (j>i) {                 double (*f)(double), double tol, double *xmin); 
         printf(".%d%d",i,j);fflush(stdout);    double f1dim(double x); 
         hess[i][j]=hessij(p,delti,i,j);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         hess[j][i]=hess[i][j];                    double *fc, double (*func)(double)); 
         /*printf(" %lf ",hess[i][j]);*/    int j; 
       }    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
   }   
   printf("\n");    ncom=n; 
     pcom=vector(1,n); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    xicom=vector(1,n); 
      nrfunc=func; 
   a=matrix(1,npar,1,npar);    for (j=1;j<=n;j++) { 
   y=matrix(1,npar,1,npar);      pcom[j]=p[j]; 
   x=vector(1,npar);      xicom[j]=xi[j]; 
   indx=ivector(1,npar);    } 
   for (i=1;i<=npar;i++)    ax=0.0; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    xx=1.0; 
   ludcmp(a,npar,indx,&pd);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for (j=1;j<=npar;j++) {  #ifdef DEBUG
     for (i=1;i<=npar;i++) x[i]=0;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     x[j]=1;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     lubksb(a,npar,indx,x);  #endif
     for (i=1;i<=npar;i++){    for (j=1;j<=n;j++) { 
       matcov[i][j]=x[i];      xi[j] *= xmin; 
     }      p[j] += xi[j]; 
   }    } 
     free_vector(xicom,1,n); 
   printf("\n#Hessian matrix#\n");    free_vector(pcom,1,n); 
   for (i=1;i<=npar;i++) {  } 
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);  char *asc_diff_time(long time_sec, char ascdiff[])
     }  {
     printf("\n");    long sec_left, days, hours, minutes;
   }    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
   /* Recompute Inverse */    hours = (sec_left) / (60*60) ;
   for (i=1;i<=npar;i++)    sec_left = (sec_left) %(60*60);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    minutes = (sec_left) /60;
   ludcmp(a,npar,indx,&pd);    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   /*  printf("\n#Hessian matrix recomputed#\n");    return ascdiff;
   }
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /*************** powell ************************/
     x[j]=1;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     lubksb(a,npar,indx,x);              double (*func)(double [])) 
     for (i=1;i<=npar;i++){  { 
       y[i][j]=x[i];    void linmin(double p[], double xi[], int n, double *fret, 
       printf("%.3e ",y[i][j]);                double (*func)(double [])); 
     }    int i,ibig,j; 
     printf("\n");    double del,t,*pt,*ptt,*xit;
   }    double fp,fptt;
   */    double *xits;
     int niterf, itmp;
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);    pt=vector(1,n); 
   free_vector(x,1,npar);    ptt=vector(1,n); 
   free_ivector(indx,1,npar);    xit=vector(1,n); 
   free_matrix(hess,1,npar,1,npar);    xits=vector(1,n); 
     *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
 }    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
 /*************** hessian matrix ****************/      ibig=0; 
 double hessii( double x[], double delta, int theta, double delti[])      del=0.0; 
 {      last_time=curr_time;
   int i;      (void) gettimeofday(&curr_time,&tzp);
   int l=1, lmax=20;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double k1,k2;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   double p2[NPARMAX+1];  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   double res;     for (i=1;i<=n;i++) {
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        printf(" %d %.12f",i, p[i]);
   double fx;        fprintf(ficlog," %d %.12lf",i, p[i]);
   int k=0,kmax=10;        fprintf(ficrespow," %.12lf", p[i]);
   double l1;      }
       printf("\n");
   fx=func(x);      fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++) p2[i]=x[i];      fprintf(ficrespow,"\n");fflush(ficrespow);
   for(l=0 ; l <=lmax; l++){      if(*iter <=3){
     l1=pow(10,l);        tm = *localtime(&curr_time.tv_sec);
     delts=delt;        strcpy(strcurr,asctime(&tm));
     for(k=1 ; k <kmax; k=k+1){  /*       asctime_r(&tm,strcurr); */
       delt = delta*(l1*k);        forecast_time=curr_time; 
       p2[theta]=x[theta] +delt;        itmp = strlen(strcurr);
       k1=func(p2)-fx;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       p2[theta]=x[theta]-delt;          strcurr[itmp-1]='\0';
       k2=func(p2)-fx;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       /*res= (k1-2.0*fx+k2)/delt/delt; */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        for(niterf=10;niterf<=30;niterf+=10){
                forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 #ifdef DEBUG          tmf = *localtime(&forecast_time.tv_sec);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*      asctime_r(&tmf,strfor); */
 #endif          strcpy(strfor,asctime(&tmf));
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          itmp = strlen(strfor);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          if(strfor[itmp-1]=='\n')
         k=kmax;          strfor[itmp-1]='\0';
       }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         k=kmax; l=lmax*10.;        }
       }      }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      for (i=1;i<=n;i++) { 
         delts=delt;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       }        fptt=(*fret); 
     }  #ifdef DEBUG
   }        printf("fret=%lf \n",*fret);
   delti[theta]=delts;        fprintf(ficlog,"fret=%lf \n",*fret);
   return res;  #endif
          printf("%d",i);fflush(stdout);
 }        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
 double hessij( double x[], double delti[], int thetai,int thetaj)        if (fabs(fptt-(*fret)) > del) { 
 {          del=fabs(fptt-(*fret)); 
   int i;          ibig=i; 
   int l=1, l1, lmax=20;        } 
   double k1,k2,k3,k4,res,fx;  #ifdef DEBUG
   double p2[NPARMAX+1];        printf("%d %.12e",i,(*fret));
   int k;        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   fx=func(x);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for (k=1; k<=2; k++) {          printf(" x(%d)=%.12e",j,xit[j]);
     for (i=1;i<=npar;i++) p2[i]=x[i];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(j=1;j<=n;j++) {
     k1=func(p2)-fx;          printf(" p=%.12e",p[j]);
            fprintf(ficlog," p=%.12e",p[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        printf("\n");
     k2=func(p2)-fx;        fprintf(ficlog,"\n");
    #endif
     p2[thetai]=x[thetai]-delti[thetai]/k;      } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     k3=func(p2)-fx;  #ifdef DEBUG
          int k[2],l;
     p2[thetai]=x[thetai]-delti[thetai]/k;        k[0]=1;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        k[1]=-1;
     k4=func(p2)-fx;        printf("Max: %.12e",(*func)(p));
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        fprintf(ficlog,"Max: %.12e",(*func)(p));
 #ifdef DEBUG        for (j=1;j<=n;j++) {
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          printf(" %.12e",p[j]);
 #endif          fprintf(ficlog," %.12e",p[j]);
   }        }
   return res;        printf("\n");
 }        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 /************** Inverse of matrix **************/          for (j=1;j<=n;j++) {
 void ludcmp(double **a, int n, int *indx, double *d)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i,imax,j,k;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double big,dum,sum,temp;          }
   double *vv;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   vv=vector(1,n);        }
   *d=1.0;  #endif
   for (i=1;i<=n;i++) {  
     big=0.0;  
     for (j=1;j<=n;j++)        free_vector(xit,1,n); 
       if ((temp=fabs(a[i][j])) > big) big=temp;        free_vector(xits,1,n); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        free_vector(ptt,1,n); 
     vv[i]=1.0/big;        free_vector(pt,1,n); 
   }        return; 
   for (j=1;j<=n;j++) {      } 
     for (i=1;i<j;i++) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       sum=a[i][j];      for (j=1;j<=n;j++) { 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        ptt[j]=2.0*p[j]-pt[j]; 
       a[i][j]=sum;        xit[j]=p[j]-pt[j]; 
     }        pt[j]=p[j]; 
     big=0.0;      } 
     for (i=j;i<=n;i++) {      fptt=(*func)(ptt); 
       sum=a[i][j];      if (fptt < fp) { 
       for (k=1;k<j;k++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         sum -= a[i][k]*a[k][j];        if (t < 0.0) { 
       a[i][j]=sum;          linmin(p,xit,n,fret,func); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {          for (j=1;j<=n;j++) { 
         big=dum;            xi[j][ibig]=xi[j][n]; 
         imax=i;            xi[j][n]=xit[j]; 
       }          }
     }  #ifdef DEBUG
     if (j != imax) {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for (k=1;k<=n;k++) {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         dum=a[imax][k];          for(j=1;j<=n;j++){
         a[imax][k]=a[j][k];            printf(" %.12e",xit[j]);
         a[j][k]=dum;            fprintf(ficlog," %.12e",xit[j]);
       }          }
       *d = -(*d);          printf("\n");
       vv[imax]=vv[j];          fprintf(ficlog,"\n");
     }  #endif
     indx[j]=imax;        }
     if (a[j][j] == 0.0) a[j][j]=TINY;      } 
     if (j != n) {    } 
       dum=1.0/(a[j][j]);  } 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }  /**** Prevalence limit (stable or period prevalence)  ****************/
   }  
   free_vector(vv,1,n);  /* Doesn't work */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 ;  {
 }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
 void lubksb(double **a, int n, int *indx, double b[])  
 {    int i, ii,j,k;
   int i,ii=0,ip,j;    double min, max, maxmin, maxmax,sumnew=0.;
   double sum;    double **matprod2();
      double **out, cov[NCOVMAX+1], **pmij();
   for (i=1;i<=n;i++) {    double **newm;
     ip=indx[i];    double agefin, delaymax=50 ; /* Max number of years to converge */
     sum=b[ip];  
     b[ip]=b[i];    for (ii=1;ii<=nlstate+ndeath;ii++)
     if (ii)      for (j=1;j<=nlstate+ndeath;j++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     else if (sum) ii=i;      }
     b[i]=sum;  
   }     cov[1]=1.;
   for (i=n;i>=1;i--) {   
     sum=b[i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     b[i]=sum/a[i][i];      newm=savm;
   }      /* Covariates have to be included here again */
 }       cov[2]=agefin;
     
 /************ Frequencies ********************/        for (k=1; k<=cptcovn;k++) {
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 {  /* Some frequencies */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovprod;k++)
   double *pp;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   char fileresp[FILENAMELENGTH];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
          /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   pp=vector(1,nlstate);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");      savm=oldm;
   strcat(fileresp,fileres);      oldm=newm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {      maxmax=0.;
     printf("Problem with prevalence resultfile: %s\n", fileresp);      for(j=1;j<=nlstate;j++){
     exit(0);        min=1.;
   }        max=0.;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(i=1; i<=nlstate; i++) {
   j1=0;          sumnew=0;
            for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   j=cptcoveff;          prlim[i][j]= newm[i][j]/(1-sumnew);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
   for(k1=1; k1<=j;k1++){        }
     for(i1=1; i1<=ncodemax[k1];i1++){        maxmin=max-min;
       j1++;        maxmax=FMAX(maxmax,maxmin);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      }
         scanf("%d", i);*/      if(maxmax < ftolpl){
       for (i=-1; i<=nlstate+ndeath; i++)          return prlim;
         for (jk=-1; jk<=nlstate+ndeath; jk++)        }
           for(m=agemin; m <= agemax+3; m++)    }
             freq[i][jk][m]=0;  }
        
       dateintsum=0;  /*************** transition probabilities ***************/ 
       k2cpt=0;  
       for (i=1; i<=imx; i++) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         bool=1;  {
         if  (cptcovn>0) {    double s1, s2;
           for (z1=1; z1<=cptcoveff; z1++)    /*double t34;*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    int i,j,j1, nc, ii, jj;
               bool=0;  
         }      for(i=1; i<= nlstate; i++){
         if (bool==1) {        for(j=1; j<i;j++){
           for(m=firstpass; m<=lastpass; m++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             k2=anint[m][i]+(mint[m][i]/12.);            /*s2 += param[i][j][nc]*cov[nc];*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
               if(agev[m][i]==0) agev[m][i]=agemax+1;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          }
               if (m<lastpass) {          ps[i][j]=s2;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        }
               }        for(j=i+1; j<=nlstate+ndeath;j++){
                        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                 dateintsum=dateintsum+k2;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
                 k2cpt++;          }
               }          ps[i][j]=s2;
             }        }
           }      }
         }      /*ps[3][2]=1;*/
       }      
              for(i=1; i<= nlstate; i++){
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        s1=0;
         for(j=1; j<i; j++){
       if  (cptcovn>0) {          s1+=exp(ps[i][j]);
         fprintf(ficresp, "\n#********** Variable ");          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficresp, "**********\n#");        for(j=i+1; j<=nlstate+ndeath; j++){
       }          s1+=exp(ps[i][j]);
       for(i=1; i<=nlstate;i++)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        }
       fprintf(ficresp, "\n");        ps[i][i]=1./(s1+1.);
              for(j=1; j<i; j++)
       for(i=(int)agemin; i <= (int)agemax+3; i++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
         if(i==(int)agemax+3)        for(j=i+1; j<=nlstate+ndeath; j++)
           printf("Total");          ps[i][j]= exp(ps[i][j])*ps[i][i];
         else        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           printf("Age %d", i);      } /* end i */
         for(jk=1; jk <=nlstate ; jk++){      
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
             pp[jk] += freq[jk][m][i];        for(jj=1; jj<= nlstate+ndeath; jj++){
         }          ps[ii][jj]=0;
         for(jk=1; jk <=nlstate ; jk++){          ps[ii][ii]=1;
           for(m=-1, pos=0; m <=0 ; m++)        }
             pos += freq[jk][m][i];      }
           if(pp[jk]>=1.e-10)      
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           else  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         }  /*         printf("ddd %lf ",ps[ii][jj]); */
   /*       } */
         for(jk=1; jk <=nlstate ; jk++){  /*       printf("\n "); */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*        } */
             pp[jk] += freq[jk][m][i];  /*        printf("\n ");printf("%lf ",cov[2]); */
         }         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
         for(jk=1,pos=0; jk <=nlstate ; jk++)        goto end;*/
           pos += pp[jk];      return ps;
         for(jk=1; jk <=nlstate ; jk++){  }
           if(pos>=1.e-5)  
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /**************** Product of 2 matrices ******************/
           else  
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           if( i <= (int) agemax){  {
             if(pos>=1.e-5){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
               probs[i][jk][j1]= pp[jk]/pos;    /* in, b, out are matrice of pointers which should have been initialized 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/       before: only the contents of out is modified. The function returns
             }       a pointer to pointers identical to out */
             else    long i, j, k;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    for(i=nrl; i<= nrh; i++)
           }      for(k=ncolol; k<=ncoloh; k++)
         }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
                  out[i][k] +=in[i][j]*b[j][k];
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)    return out;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  }
         if(i <= (int) agemax)  
           fprintf(ficresp,"\n");  
         printf("\n");  /************* Higher Matrix Product ***************/
       }  
     }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   }  {
   dateintmean=dateintsum/k2cpt;    /* Computes the transition matrix starting at age 'age' over 
         'nhstepm*hstepm*stepm' months (i.e. until
   fclose(ficresp);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);       nhstepm*hstepm matrices. 
   free_vector(pp,1,nlstate);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         (typically every 2 years instead of every month which is too big 
   /* End of Freq */       for the memory).
 }       Model is determined by parameters x and covariates have to be 
        included manually here. 
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)       */
 {  /* Some frequencies */  
      int i, j, d, h, k;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    double **out, cov[NCOVMAX+1];
   double ***freq; /* Frequencies */    double **newm;
   double *pp;  
   double pos, k2;    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   pp=vector(1,nlstate);      for (j=1;j<=nlstate+ndeath;j++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        oldm[i][j]=(i==j ? 1.0 : 0.0);
          po[i][j][0]=(i==j ? 1.0 : 0.0);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      }
   j1=0;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(h=1; h <=nhstepm; h++){
   j=cptcoveff;      for(d=1; d <=hstepm; d++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        newm=savm;
          /* Covariates have to be included here again */
   for(k1=1; k1<=j;k1++){        cov[1]=1.;
     for(i1=1; i1<=ncodemax[k1];i1++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       j1++;        for (k=1; k<=cptcovn;k++) 
                cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovage;k++)
         for (jk=-1; jk<=nlstate+ndeath; jk++)            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for(m=agemin; m <= agemax+3; m++)        for (k=1; k<=cptcovprod;k++)
             freq[i][jk][m]=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        
       for (i=1; i<=imx; i++) {  
         bool=1;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         if  (cptcovn>0) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           for (z1=1; z1<=cptcoveff; z1++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])                     pmij(pmmij,cov,ncovmodel,x,nlstate));
               bool=0;        savm=oldm;
         }        oldm=newm;
         if (bool==1) {      }
           for(m=firstpass; m<=lastpass; m++){      for(i=1; i<=nlstate+ndeath; i++)
             k2=anint[m][i]+(mint[m][i]/12.);        for(j=1;j<=nlstate+ndeath;j++) {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          po[i][j][h]=newm[i][j];
               if(agev[m][i]==0) agev[m][i]=agemax+1;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
               if(agev[m][i]==1) agev[m][i]=agemax+2;        }
               if (m<lastpass) {      /*printf("h=%d ",h);*/
                 if (calagedate>0)    } /* end h */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  /*     printf("\n H=%d \n",h); */
                 else    return po;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  }
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  
               }  
             }  /*************** log-likelihood *************/
           }  double func( double *x)
         }  {
       }    int i, ii, j, k, mi, d, kk;
       for(i=(int)agemin; i <= (int)agemax+3; i++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         for(jk=1; jk <=nlstate ; jk++){    double **out;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double sw; /* Sum of weights */
             pp[jk] += freq[jk][m][i];    double lli; /* Individual log likelihood */
         }    int s1, s2;
         for(jk=1; jk <=nlstate ; jk++){    double bbh, survp;
           for(m=-1, pos=0; m <=0 ; m++)    long ipmx;
             pos += freq[jk][m][i];    /*extern weight */
         }    /* We are differentiating ll according to initial status */
            /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for(jk=1; jk <=nlstate ; jk++){    /*for(i=1;i<imx;i++) 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      printf(" %d\n",s[4][i]);
             pp[jk] += freq[jk][m][i];    */
         }    cov[1]=1.;
          
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    for(k=1; k<=nlstate; k++) ll[k]=0.;
          
         for(jk=1; jk <=nlstate ; jk++){        if(mle==1){
           if( i <= (int) agemax){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if(pos>=1.e-5){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               probs[i][jk][j1]= pp[jk]/pos;        for(mi=1; mi<= wav[i]-1; mi++){
             }          for (ii=1;ii<=nlstate+ndeath;ii++)
           }            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     }          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_vector(pp,1,nlstate);            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }  /* End of Freq */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /************* Waves Concatenation ***************/            oldm=newm;
           } /* end mult */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        
 {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          /* But now since version 0.9 we anticipate for bias at large stepm.
      Death is a valid wave (if date is known).           * If stepm is larger than one month (smallest stepm) and if the exact delay 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i           * (in months) between two waves is not a multiple of stepm, we rounded to 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]           * the nearest (and in case of equal distance, to the lowest) interval but now
      and mw[mi+1][i]. dh depends on stepm.           * we keep into memory the bias bh[mi][i] and also the previous matrix product
      */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   int i, mi, m;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;           * -stepm/2 to stepm/2 .
      double sum=0., jmean=0.;*/           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
   int j, k=0,jk, ju, jl;           */
   double sum=0.;          s1=s[mw[mi][i]][i];
   jmin=1e+5;          s2=s[mw[mi+1][i]][i];
   jmax=-1;          bbh=(double)bh[mi][i]/(double)stepm; 
   jmean=0.;          /* bias bh is positive if real duration
   for(i=1; i<=imx; i++){           * is higher than the multiple of stepm and negative otherwise.
     mi=0;           */
     m=firstpass;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     while(s[m][i] <= nlstate){          if( s2 > nlstate){ 
       if(s[m][i]>=1)            /* i.e. if s2 is a death state and if the date of death is known 
         mw[++mi][i]=m;               then the contribution to the likelihood is the probability to 
       if(m >=lastpass)               die between last step unit time and current  step unit time, 
         break;               which is also equal to probability to die before dh 
       else               minus probability to die before dh-stepm . 
         m++;               In version up to 0.92 likelihood was computed
     }/* end while */          as if date of death was unknown. Death was treated as any other
     if (s[m][i] > nlstate){          health state: the date of the interview describes the actual state
       mi++;     /* Death is another wave */          and not the date of a change in health state. The former idea was
       /* if(mi==0)  never been interviewed correctly before death */          to consider that at each interview the state was recorded
          /* Only death is a correct wave */          (healthy, disable or death) and IMaCh was corrected; but when we
       mw[mi][i]=m;          introduced the exact date of death then we should have modified
     }          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
     wav[i]=mi;          stepm. It is no more the probability to die between last interview
     if(mi==0)          and month of death but the probability to survive from last
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          interview up to one month before death multiplied by the
   }          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
   for(i=1; i<=imx; i++){          mortality artificially. The bad side is that we add another loop
     for(mi=1; mi<wav[i];mi++){          which slows down the processing. The difference can be up to 10%
       if (stepm <=0)          lower mortality.
         dh[mi][i]=1;            */
       else{            lli=log(out[s1][s2] - savm[s1][s2]);
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          } else if  (s2==-2) {
           if(j==0) j=1;  /* Survives at least one month after exam */            for (j=1,survp=0. ; j<=nlstate; j++) 
           k=k+1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           if (j >= jmax) jmax=j;            /*survp += out[s1][j]; */
           if (j <= jmin) jmin=j;            lli= log(survp);
           sum=sum+j;          }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          
           }          else if  (s2==-4) { 
         }            for (j=3,survp=0. ; j<=nlstate; j++)  
         else{              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            lli= log(survp); 
           k=k+1;          } 
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;          else if  (s2==-5) { 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            for (j=1,survp=0. ; j<=2; j++)  
           sum=sum+j;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
         jk= j/stepm;          } 
         jl= j -jk*stepm;          
         ju= j -(jk+1)*stepm;          else{
         if(jl <= -ju)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           dh[mi][i]=jk;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         else          } 
           dh[mi][i]=jk+1;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         if(dh[mi][i]==0)          /*if(lli ==000.0)*/
           dh[mi][i]=1; /* At least one step */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       }          ipmx +=1;
     }          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmean=sum/k;        } /* end of wave */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      } /* end of individual */
  }    }  else if(mle==2){
 /*********** Tricode ****************************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void tricode(int *Tvar, int **nbcode, int imx)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   int Ndum[20],ij=1, k, j, i;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int cptcode=0;            for (j=1;j<=nlstate+ndeath;j++){
   cptcoveff=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=0; k<19; k++) Ndum[k]=0;            }
   for (k=1; k<=7; k++) ncodemax[k]=0;          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1; i<=imx; i++) {            for (kk=1; kk<=cptcovage;kk++) {
       ij=(int)(covar[Tvar[j]][i]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       Ndum[ij]++;            }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if (ij > cptcode) cptcode=ij;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
             oldm=newm;
     for (i=0; i<=cptcode; i++) {          } /* end mult */
       if(Ndum[i]!=0) ncodemax[j]++;        
     }          s1=s[mw[mi][i]][i];
     ij=1;          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for (i=1; i<=ncodemax[j]; i++) {          ipmx +=1;
       for (k=0; k<=19; k++) {          sw += weight[i];
         if (Ndum[k] != 0) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           nbcode[Tvar[j]][ij]=k;        } /* end of wave */
                } /* end of individual */
           ij++;    }  else if(mle==3){  /* exponential inter-extrapolation */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if (ij > ncodemax[j]) break;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }          for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
   }              for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (k=0; k<19; k++) Ndum[k]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  for (i=1; i<=ncovmodel-2; i++) {          for(d=0; d<dh[mi][i]; d++){
       ij=Tvar[i];            newm=savm;
       Ndum[ij]++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  ij=1;            }
  for (i=1; i<=10; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    if((Ndum[i]!=0) && (i<=ncovcol)){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      Tvaraff[ij]=i;            savm=oldm;
      ij++;            oldm=newm;
    }          } /* end mult */
  }        
            s1=s[mw[mi][i]][i];
     cptcoveff=ij-1;          s2=s[mw[mi+1][i]][i];
 }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 /*********** Health Expectancies ****************/          ipmx +=1;
           sw += weight[i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 {      } /* end of individual */
   /* Health expectancies */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double age, agelim, hf;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double ***p3mat,***varhe;        for(mi=1; mi<= wav[i]-1; mi++){
   double **dnewm,**doldm;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double *xp;            for (j=1;j<=nlstate+ndeath;j++){
   double **gp, **gm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***gradg, ***trgradg;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int theta;            }
           for(d=0; d<dh[mi][i]; d++){
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);            newm=savm;
   xp=vector(1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   dnewm=matrix(1,nlstate*2,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   doldm=matrix(1,nlstate*2,1,nlstate*2);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   fprintf(ficreseij,"# Health expectancies\n");          
   fprintf(ficreseij,"# Age");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(j=1; j<=nlstate;j++)            savm=oldm;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            oldm=newm;
   fprintf(ficreseij,"\n");          } /* end mult */
         
   if(estepm < stepm){          s1=s[mw[mi][i]][i];
     printf ("Problem %d lower than %d\n",estepm, stepm);          s2=s[mw[mi+1][i]][i];
   }          if( s2 > nlstate){ 
   else  hstepm=estepm;              lli=log(out[s1][s2] - savm[s1][s2]);
   /* We compute the life expectancy from trapezoids spaced every estepm months          }else{
    * This is mainly to measure the difference between two models: for example            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
    * if stepm=24 months pijx are given only every 2 years and by summing them          }
    * we are calculating an estimate of the Life Expectancy assuming a linear          ipmx +=1;
    * progression inbetween and thus overestimating or underestimating according          sw += weight[i];
    * to the curvature of the survival function. If, for the same date, we          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    * to compare the new estimate of Life expectancy with the same linear        } /* end of wave */
    * hypothesis. A more precise result, taking into account a more precise      } /* end of individual */
    * curvature will be obtained if estepm is as small as stepm. */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* For example we decided to compute the life expectancy with the smallest unit */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        for(mi=1; mi<= wav[i]-1; mi++){
      nhstepm is the number of hstepm from age to agelim          for (ii=1;ii<=nlstate+ndeath;ii++)
      nstepm is the number of stepm from age to agelin.            for (j=1;j<=nlstate+ndeath;j++){
      Look at hpijx to understand the reason of that which relies in memory size              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      and note for a fixed period like estepm months */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            }
      survival function given by stepm (the optimization length). Unfortunately it          for(d=0; d<dh[mi][i]; d++){
      means that if the survival funtion is printed only each two years of age and if            newm=savm;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      results. So we changed our mind and took the option of the best precision.            for (kk=1; kk<=cptcovage;kk++) {
   */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            }
           
   agelim=AGESUP;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /* nhstepm age range expressed in number of stepm */            savm=oldm;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            oldm=newm;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          } /* end mult */
     /* if (stepm >= YEARM) hstepm=1;*/        
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          s1=s[mw[mi][i]][i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          s2=s[mw[mi+1][i]][i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     gp=matrix(0,nhstepm,1,nlstate*2);          ipmx +=1;
     gm=matrix(0,nhstepm,1,nlstate*2);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        } /* end of wave */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        } /* end of individual */
      } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     /* Computing Variances of health expectancies */    return -l;
   }
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){  /*************** log-likelihood *************/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  double funcone( double *x)
       }  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* Same as likeli but slower because of a lot of printf and if */
      int i, ii, j, k, mi, d, kk;
       cptj=0;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       for(j=1; j<= nlstate; j++){    double **out;
         for(i=1; i<=nlstate; i++){    double lli; /* Individual log likelihood */
           cptj=cptj+1;    double llt;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    int s1, s2;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double bbh, survp;
           }    /*extern weight */
         }    /* We are differentiating ll according to initial status */
       }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
          /*for(i=1;i<imx;i++) 
            printf(" %d\n",s[4][i]);
       for(i=1; i<=npar; i++)    */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    cov[1]=1.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
          for(k=1; k<=nlstate; k++) ll[k]=0.;
       cptj=0;  
       for(j=1; j<= nlstate; j++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(i=1;i<=nlstate;i++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           cptj=cptj+1;      for(mi=1; mi<= wav[i]-1; mi++){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        for (ii=1;ii<=nlstate+ndeath;ii++)
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          for (j=1;j<=nlstate+ndeath;j++){
           }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }          }
       for(j=1; j<= nlstate*2; j++)        for(d=0; d<dh[mi][i]; d++){
         for(h=0; h<=nhstepm-1; h++){          newm=savm;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
      }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
 /* End theta */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          savm=oldm;
           oldm=newm;
      for(h=0; h<=nhstepm-1; h++)        } /* end mult */
       for(j=1; j<=nlstate*2;j++)        
         for(theta=1; theta <=npar; theta++)        s1=s[mw[mi][i]][i];
           trgradg[h][j][theta]=gradg[h][theta][j];        s2=s[mw[mi+1][i]][i];
              bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
      for(i=1;i<=nlstate*2;i++)         * is higher than the multiple of stepm and negative otherwise.
       for(j=1;j<=nlstate*2;j++)         */
         varhe[i][j][(int)age] =0.;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
      printf("%d|",(int)age);fflush(stdout);        } else if  (s2==-2) {
      for(h=0;h<=nhstepm-1;h++){          for (j=1,survp=0. ; j<=nlstate; j++) 
       for(k=0;k<=nhstepm-1;k++){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          lli= log(survp);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        }else if (mle==1){
         for(i=1;i<=nlstate*2;i++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           for(j=1;j<=nlstate*2;j++)        } else if(mle==2){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       }        } else if(mle==3){  /* exponential inter-extrapolation */
     }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     /* Computing expectancies */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for(i=1; i<=nlstate;i++)          lli=log(out[s1][s2]); /* Original formula */
       for(j=1; j<=nlstate;j++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          lli=log(out[s1][s2]); /* Original formula */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        } /* End of if */
                  ipmx +=1;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); 
         if(globpr){
     fprintf(ficreseij,"%3.0f",age );          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     cptj=0;   %11.6f %11.6f %11.6f ", \
     for(i=1; i<=nlstate;i++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for(j=1; j<=nlstate;j++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         cptj++;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );            llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     fprintf(ficreseij,"\n");          }
              fprintf(ficresilk," %10.6f\n", -llt);
     free_matrix(gm,0,nhstepm,1,nlstate*2);        }
     free_matrix(gp,0,nhstepm,1,nlstate*2);      } /* end of wave */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    } /* end of individual */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   printf("\n");    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   free_vector(xp,1,npar);      gsw=sw;
   free_matrix(dnewm,1,nlstate*2,1,npar);    }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    return -l;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  }
 }  
   
 /************ Variance ******************/  /*************** function likelione ***********/
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 {  {
   /* Variance of health expectancies */    /* This routine should help understanding what is done with 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/       the selection of individuals/waves and
   double **newm;       to check the exact contribution to the likelihood.
   double **dnewm,**doldm;       Plotting could be done.
   int i, j, nhstepm, hstepm, h, nstepm ;     */
   int k, cptcode;    int k;
   double *xp;  
   double **gp, **gm;    if(*globpri !=0){ /* Just counts and sums, no printings */
   double ***gradg, ***trgradg;      strcpy(fileresilk,"ilk"); 
   double ***p3mat;      strcat(fileresilk,fileres);
   double age,agelim, hf;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int theta;        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      }
   fprintf(ficresvij,"# Age");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   for(i=1; i<=nlstate;i++)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     for(j=1; j<=nlstate;j++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for(k=1; k<=nlstate; k++) 
   fprintf(ficresvij,"\n");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    *fretone=(*funcone)(p);
      if(*globpri !=0){
   if(estepm < stepm){      fclose(ficresilk);
     printf ("Problem %d lower than %d\n",estepm, stepm);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   }      fflush(fichtm); 
   else  hstepm=estepm;      } 
   /* For example we decided to compute the life expectancy with the smallest unit */    return;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  }
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  /*********** Maximum Likelihood Estimation ***************/
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      survival function given by stepm (the optimization length). Unfortunately it  {
      means that if the survival funtion is printed only each two years of age and if    int i,j, iter;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double **xi;
      results. So we changed our mind and took the option of the best precision.    double fret;
   */    double fretone; /* Only one call to likelihood */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    /*  char filerespow[FILENAMELENGTH];*/
   agelim = AGESUP;    xi=matrix(1,npar,1,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (i=1;i<=npar;i++)
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (j=1;j<=npar;j++)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        xi[i][j]=(i==j ? 1.0 : 0.0);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    strcpy(filerespow,"pow"); 
     gp=matrix(0,nhstepm,1,nlstate);    strcat(filerespow,fileres);
     gm=matrix(0,nhstepm,1,nlstate);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
     for(theta=1; theta <=npar; theta++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(i=1; i<=npar; i++){ /* Computes gradient */    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       }    for (i=1;i<=nlstate;i++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(j=1;j<=nlstate+ndeath;j++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
           prlim[i][i]=probs[(int)age][i][ij];  
       }    free_matrix(xi,1,npar,1,npar);
      fclose(ficrespow);
       for(j=1; j<= nlstate; j++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         for(h=0; h<=nhstepm; h++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  }
       }  
      /**** Computes Hessian and covariance matrix ***/
       for(i=1; i<=npar; i++) /* Computes gradient */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double  **a,**y,*x,pd;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double **hess;
      int i, j,jk;
       if (popbased==1) {    int *indx;
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(j=1; j<= nlstate; j++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
         for(h=0; h<=nhstepm; h++){    double gompertz(double p[]);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    hess=matrix(1,npar,1,npar);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    printf("\nCalculation of the hessian matrix. Wait...\n");
       }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
       for(j=1; j<= nlstate; j++)      printf("%d",i);fflush(stdout);
         for(h=0; h<=nhstepm; h++){      fprintf(ficlog,"%d",i);fflush(ficlog);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];     
         }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     } /* End theta */      
       /*  printf(" %f ",p[i]);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
     for(h=0; h<=nhstepm; h++)    
       for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++) {
         for(theta=1; theta <=npar; theta++)      for (j=1;j<=npar;j++)  {
           trgradg[h][j][theta]=gradg[h][theta][j];        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     for(i=1;i<=nlstate;i++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
       for(j=1;j<=nlstate;j++)          
         vareij[i][j][(int)age] =0.;          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
     for(h=0;h<=nhstepm;h++){        }
       for(k=0;k<=nhstepm;k++){      }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    printf("\n");
         for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n");
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     }    
     a=matrix(1,npar,1,npar);
     fprintf(ficresvij,"%.0f ",age );    y=matrix(1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    x=vector(1,npar);
       for(j=1; j<=nlstate;j++){    indx=ivector(1,npar);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     fprintf(ficresvij,"\n");    ludcmp(a,npar,indx,&pd);
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);    for (j=1;j<=npar;j++) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      x[j]=1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      lubksb(a,npar,indx,x);
   } /* End age */      for (i=1;i<=npar;i++){ 
          matcov[i][j]=x[i];
   free_vector(xp,1,npar);      }
   free_matrix(doldm,1,nlstate,1,npar);    }
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     printf("\n#Hessian matrix#\n");
 }    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
 /************ Variance of prevlim ******************/      for (j=1;j<=npar;j++) { 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        printf("%.3e ",hess[i][j]);
 {        fprintf(ficlog,"%.3e ",hess[i][j]);
   /* Variance of prevalence limit */      }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      printf("\n");
   double **newm;      fprintf(ficlog,"\n");
   double **dnewm,**doldm;    }
   int i, j, nhstepm, hstepm;  
   int k, cptcode;    /* Recompute Inverse */
   double *xp;    for (i=1;i<=npar;i++)
   double *gp, *gm;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double **gradg, **trgradg;    ludcmp(a,npar,indx,&pd);
   double age,agelim;  
   int theta;    /*  printf("\n#Hessian matrix recomputed#\n");
      
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    for (j=1;j<=npar;j++) {
   fprintf(ficresvpl,"# Age");      for (i=1;i<=npar;i++) x[i]=0;
   for(i=1; i<=nlstate;i++)      x[j]=1;
       fprintf(ficresvpl," %1d-%1d",i,i);      lubksb(a,npar,indx,x);
   fprintf(ficresvpl,"\n");      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
   xp=vector(1,npar);        printf("%.3e ",y[i][j]);
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficlog,"%.3e ",y[i][j]);
   doldm=matrix(1,nlstate,1,nlstate);      }
        printf("\n");
   hstepm=1*YEARM; /* Every year of age */      fprintf(ficlog,"\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    }
   agelim = AGESUP;    */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_matrix(a,1,npar,1,npar);
     if (stepm >= YEARM) hstepm=1;    free_matrix(y,1,npar,1,npar);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_vector(x,1,npar);
     gradg=matrix(1,npar,1,nlstate);    free_ivector(indx,1,npar);
     gp=vector(1,nlstate);    free_matrix(hess,1,npar,1,npar);
     gm=vector(1,nlstate);  
   
     for(theta=1; theta <=npar; theta++){  }
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  /*************** hessian matrix ****************/
       }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
       for(i=1;i<=nlstate;i++)    int i;
         gp[i] = prlim[i][i];    int l=1, lmax=20;
        double k1,k2;
       for(i=1; i<=npar; i++) /* Computes gradient */    double p2[NPARMAX+1];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double res;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(i=1;i<=nlstate;i++)    double fx;
         gm[i] = prlim[i][i];    int k=0,kmax=10;
     double l1;
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    fx=func(x);
     } /* End theta */    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
     trgradg =matrix(1,nlstate,1,npar);      l1=pow(10,l);
       delts=delt;
     for(j=1; j<=nlstate;j++)      for(k=1 ; k <kmax; k=k+1){
       for(theta=1; theta <=npar; theta++)        delt = delta*(l1*k);
         trgradg[j][theta]=gradg[theta][j];        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
     for(i=1;i<=nlstate;i++)        p2[theta]=x[theta]-delt;
       varpl[i][(int)age] =0.;        k2=func(p2)-fx;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     for(i=1;i<=nlstate;i++)        
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficresvpl,"%.0f ",age );        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(i=1; i<=nlstate;i++)  #endif
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     fprintf(ficresvpl,"\n");        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     free_vector(gp,1,nlstate);          k=kmax;
     free_vector(gm,1,nlstate);        }
     free_matrix(gradg,1,npar,1,nlstate);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     free_matrix(trgradg,1,nlstate,1,npar);          k=kmax; l=lmax*10.;
   } /* End age */        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   free_vector(xp,1,npar);          delts=delt;
   free_matrix(doldm,1,nlstate,1,npar);        }
   free_matrix(dnewm,1,nlstate,1,nlstate);      }
     }
 }    delti[theta]=delts;
     return res; 
 /************ Variance of one-step probabilities  ******************/    
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  }
 {  
   int i, j=0,  i1, k1, l1, t, tj;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   int k2, l2, j1,  z1;  {
   int k=0,l, cptcode;    int i;
   int first=1;    int l=1, l1, lmax=20;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    double k1,k2,k3,k4,res,fx;
   double **dnewm,**doldm;    double p2[NPARMAX+1];
   double *xp;    int k;
   double *gp, *gm;  
   double **gradg, **trgradg;    fx=func(x);
   double **mu;    for (k=1; k<=2; k++) {
   double age,agelim, cov[NCOVMAX];      for (i=1;i<=npar;i++) p2[i]=x[i];
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      p2[thetai]=x[thetai]+delti[thetai]/k;
   int theta;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   char fileresprob[FILENAMELENGTH];      k1=func(p2)-fx;
   char fileresprobcov[FILENAMELENGTH];    
   char fileresprobcor[FILENAMELENGTH];      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double ***varpij;      k2=func(p2)-fx;
     
   strcpy(fileresprob,"prob");      p2[thetai]=x[thetai]-delti[thetai]/k;
   strcat(fileresprob,fileres);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      k3=func(p2)-fx;
     printf("Problem with resultfile: %s\n", fileresprob);    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
   strcpy(fileresprobcov,"probcov");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   strcat(fileresprobcov,fileres);      k4=func(p2)-fx;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     printf("Problem with resultfile: %s\n", fileresprobcov);  #ifdef DEBUG
   }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   strcpy(fileresprobcor,"probcor");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   strcat(fileresprobcor,fileres);  #endif
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprobcor);    return res;
   }  }
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  /************** Inverse of matrix **************/
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  void ludcmp(double **a, int n, int *indx, double *d) 
    { 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    int i,imax,j,k; 
   fprintf(ficresprob,"# Age");    double big,dum,sum,temp; 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    double *vv; 
   fprintf(ficresprobcov,"# Age");   
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    vv=vector(1,n); 
   fprintf(ficresprobcov,"# Age");    *d=1.0; 
     for (i=1;i<=n;i++) { 
       big=0.0; 
   for(i=1; i<=nlstate;i++)      for (j=1;j<=n;j++) 
     for(j=1; j<=(nlstate+ndeath);j++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      vv[i]=1.0/big; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    } 
     }      for (j=1;j<=n;j++) { 
   fprintf(ficresprob,"\n");      for (i=1;i<j;i++) { 
   fprintf(ficresprobcov,"\n");        sum=a[i][j]; 
   fprintf(ficresprobcor,"\n");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   xp=vector(1,npar);        a[i][j]=sum; 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      } 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      big=0.0; 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      for (i=j;i<=n;i++) { 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        sum=a[i][j]; 
   first=1;        for (k=1;k<j;k++) 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          sum -= a[i][k]*a[k][j]; 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        a[i][j]=sum; 
     exit(0);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   }          big=dum; 
   else{          imax=i; 
     fprintf(ficgp,"\n# Routine varprob");        } 
   }      } 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      if (j != imax) { 
     printf("Problem with html file: %s\n", optionfilehtm);        for (k=1;k<=n;k++) { 
     exit(0);          dum=a[imax][k]; 
   }          a[imax][k]=a[j][k]; 
   else{          a[j][k]=dum; 
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");        } 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        *d = -(*d); 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        vv[imax]=vv[j]; 
       } 
   }      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
        if (j != n) { 
   cov[1]=1;        dum=1.0/(a[j][j]); 
   tj=cptcoveff;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      } 
   j1=0;    } 
   for(t=1; t<=tj;t++){    free_vector(vv,1,n);  /* Doesn't work */
     for(i1=1; i1<=ncodemax[t];i1++){  ;
       j1++;  } 
        
       if  (cptcovn>0) {  void lubksb(double **a, int n, int *indx, double b[]) 
         fprintf(ficresprob, "\n#********** Variable ");  { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int i,ii=0,ip,j; 
         fprintf(ficresprob, "**********\n#");    double sum; 
         fprintf(ficresprobcov, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=1;i<=n;i++) { 
         fprintf(ficresprobcov, "**********\n#");      ip=indx[i]; 
              sum=b[ip]; 
         fprintf(ficgp, "\n#********** Variable ");      b[ip]=b[i]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if (ii) 
         fprintf(ficgp, "**********\n#");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
              else if (sum) ii=i; 
              b[i]=sum; 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=n;i>=1;i--) { 
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      sum=b[i]; 
              for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficresprobcor, "\n#********** Variable ");          b[i]=sum/a[i][i]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    } 
         fprintf(ficgp, "**********\n#");      } 
       }  
        void pstamp(FILE *fichier)
       for (age=bage; age<=fage; age ++){  {
         cov[2]=age;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         for (k=1; k<=cptcovn;k++) {  }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }  /************ Frequencies ********************/
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         for (k=1; k<=cptcovprod;k++)  {  /* Some frequencies */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
            int i, m, jk, k1,i1, j1, bool, z1,j;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    int first;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    double ***freq; /* Frequencies */
         gp=vector(1,(nlstate)*(nlstate+ndeath));    double *pp, **prop;
         gm=vector(1,(nlstate)*(nlstate+ndeath));    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        char fileresp[FILENAMELENGTH];
         for(theta=1; theta <=npar; theta++){    
           for(i=1; i<=npar; i++)    pp=vector(1,nlstate);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    prop=matrix(1,nlstate,iagemin,iagemax+3);
              strcpy(fileresp,"p");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    strcat(fileresp,fileres);
              if((ficresp=fopen(fileresp,"w"))==NULL) {
           k=0;      printf("Problem with prevalence resultfile: %s\n", fileresp);
           for(i=1; i<= (nlstate); i++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
             for(j=1; j<=(nlstate+ndeath);j++){      exit(0);
               k=k+1;    }
               gp[k]=pmmij[i][j];    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
             }    j1=0;
           }    
              j=cptcoveff;
           for(i=1; i<=npar; i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
        first=1;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;    for(k1=1; k1<=j;k1++){
           for(i=1; i<=(nlstate); i++){      for(i1=1; i1<=ncodemax[k1];i1++){
             for(j=1; j<=(nlstate+ndeath);j++){        j1++;
               k=k+1;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
               gm[k]=pmmij[i][j];          scanf("%d", i);*/
             }        for (i=-5; i<=nlstate+ndeath; i++)  
           }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                  for(m=iagemin; m <= iagemax+3; m++)
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)              freq[i][jk][m]=0;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
         }      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          prop[i][m]=0;
           for(theta=1; theta <=npar; theta++)        
             trgradg[j][theta]=gradg[theta][j];        dateintsum=0;
                k2cpt=0;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        for (i=1; i<=imx; i++) {
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          bool=1;
                  if  (cptcovn>0) {
         pmij(pmmij,cov,ncovmodel,x,nlstate);            for (z1=1; z1<=cptcoveff; z1++) 
                      if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         k=0;                bool=0;
         for(i=1; i<=(nlstate); i++){          }
           for(j=1; j<=(nlstate+ndeath);j++){          if (bool==1){
             k=k+1;            for(m=firstpass; m<=lastpass; m++){
             mu[k][(int) age]=pmmij[i][j];              k2=anint[m][i]+(mint[m][i]/12.);
           }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
             varpij[i][j][(int)age] = doldm[i][j];                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         /*printf("\n%d ",(int)age);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                
      }*/                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
         fprintf(ficresprob,"\n%d ",(int)age);                  k2cpt++;
         fprintf(ficresprobcov,"\n%d ",(int)age);                }
         fprintf(ficresprobcor,"\n%d ",(int)age);                /*}*/
             }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){         
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        pstamp(ficresp);
         }        if  (cptcovn>0) {
         i=0;          fprintf(ficresp, "\n#********** Variable "); 
         for (k=1; k<=(nlstate);k++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for (l=1; l<=(nlstate+ndeath);l++){          fprintf(ficresp, "**********\n#");
             i=i++;        }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        for(i=1; i<=nlstate;i++) 
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             for (j=1; j<=i;j++){        fprintf(ficresp, "\n");
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        for(i=iagemin; i <= iagemax+3; i++){
             }          if(i==iagemax+3){
           }            fprintf(ficlog,"Total");
         }/* end of loop for state */          }else{
       } /* end of loop for age */            if(first==1){
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              first=0;
       for (k1=1; k1<=(nlstate);k1++){              printf("See log file for details...\n");
         for (l1=1; l1<=(nlstate+ndeath);l1++){            }
           if(l1==k1) continue;            fprintf(ficlog,"Age %d", i);
           i=(k1-1)*(nlstate+ndeath)+l1;          }
           for (k2=1; k2<=(nlstate);k2++){          for(jk=1; jk <=nlstate ; jk++){
             for (l2=1; l2<=(nlstate+ndeath);l2++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               if(l2==k2) continue;              pp[jk] += freq[jk][m][i]; 
               j=(k2-1)*(nlstate+ndeath)+l2;          }
               if(j<=i) continue;          for(jk=1; jk <=nlstate ; jk++){
               for (age=bage; age<=fage; age ++){            for(m=-1, pos=0; m <=0 ; m++)
                 if ((int)age %5==0){              pos += freq[jk][m][i];
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            if(pp[jk]>=1.e-10){
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              if(first==1){
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   mu1=mu[i][(int) age]/stepm*YEARM ;              }
                   mu2=mu[j][(int) age]/stepm*YEARM;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   /* Computing eigen value of matrix of covariance */            }else{
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              if(first==1)
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   /* Eigen vectors */            }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          }
                   v21=sqrt(1.-v11*v11);  
                   v12=-v21;          for(jk=1; jk <=nlstate ; jk++){
                   v22=v11;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   /*printf(fignu*/              pp[jk] += freq[jk][m][i];
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          }       
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                   if(first==1){            pos += pp[jk];
                     first=0;            posprop += prop[jk][i];
                     fprintf(ficgp,"\nset parametric;set nolabel");          }
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);          for(jk=1; jk <=nlstate ; jk++){
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            if(pos>=1.e-5){
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);              if(first==1)
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            }else{
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);              if(first==1)
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);            }
                   }else{            if( i <= iagemax){
                     first=0;              if(pos>=1.e-5){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              else
                   }/* if first */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                 } /* age mod 5 */            }
               } /* end loop age */          }
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);          
               first=1;          for(jk=-1; jk <=nlstate+ndeath; jk++)
             } /*l12 */            for(m=-1; m <=nlstate+ndeath; m++)
           } /* k12 */              if(freq[jk][m][i] !=0 ) {
         } /*l1 */              if(first==1)
       }/* k1 */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     } /* loop covariates */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);              }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          if(i <= iagemax)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            fprintf(ficresp,"\n");
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);          if(first==1)
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            printf("Others in log...\n");
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          fprintf(ficlog,"\n");
   }        }
   free_vector(xp,1,npar);      }
   fclose(ficresprob);    }
   fclose(ficresprobcov);    dateintmean=dateintsum/k2cpt; 
   fclose(ficresprobcor);   
   fclose(ficgp);    fclose(ficresp);
   fclose(fichtm);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 }    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
 /******************* Printing html file ***********/  }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\  /************ Prevalence ********************/
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                   int popforecast, int estepm ,\  {  
                   double jprev1, double mprev1,double anprev1, \    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   double jprev2, double mprev2,double anprev2){       in each health status at the date of interview (if between dateprev1 and dateprev2).
   int jj1, k1, i1, cpt;       We still use firstpass and lastpass as another selection.
   /*char optionfilehtm[FILENAMELENGTH];*/    */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {   
     printf("Problem with %s \n",optionfilehtm), exit(0);    int i, m, jk, k1, i1, j1, bool, z1,j;
   }    double ***freq; /* Frequencies */
     double *pp, **prop;
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    double pos,posprop; 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    double  y2; /* in fractional years */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    int iagemin, iagemax;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months):    iagemin= (int) agemin;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    iagemax= (int) agemax;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    j1=0;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    j=cptcoveff;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    for(k1=1; k1<=j;k1++){
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
  if(popforecast==1) fprintf(fichtm,"\n        
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        for (i=1; i<=nlstate; i++)  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          for(m=iagemin; m <= iagemax+3; m++)
         <br>",fileres,fileres,fileres,fileres);            prop[i][m]=0.0;
  else       
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        for (i=1; i<=imx; i++) { /* Each individual */
 fprintf(fichtm," <li><b>Graphs</b></li><p>");          bool=1;
           if  (cptcovn>0) {
  m=cptcoveff;            for (z1=1; z1<=cptcoveff; z1++) 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
  jj1=0;          } 
  for(k1=1; k1<=m;k1++){          if (bool==1) { 
    for(i1=1; i1<=ncodemax[k1];i1++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      jj1++;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
      if (cptcovn > 0) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
        for (cpt=1; cpt<=cptcoveff;cpt++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
      }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
      /* Pij */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>                  prop[s[m][i]][iagemax+3] += weight[i]; 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                    } 
      /* Quasi-incidences */              }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>            } /* end selection of waves */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }
        /* Stable prevalence in each health state */        }
        for(cpt=1; cpt<nlstate;cpt++){        for(i=iagemin; i <= iagemax+3; i++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
        }            posprop += prop[jk][i]; 
     for(cpt=1; cpt<=nlstate;cpt++) {          } 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>          for(jk=1; jk <=nlstate ; jk++){     
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              if( i <=  iagemax){ 
      }              if(posprop>=1.e-5){ 
      for(cpt=1; cpt<=nlstate;cpt++) {                probs[i][jk][j1]= prop[jk][i]/posprop;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              } else
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
      }            } 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          }/* end jk */ 
 health expectancies in states (1) and (2): e%s%d.png<br>        }/* end i */ 
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      } /* end i1 */
    }    } /* end k1 */
  }    
 fclose(fichtm);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 }    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 /******************* Gnuplot file **************/  }  /* End of prevalence */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
   /************* Waves Concatenation ***************/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  {
     printf("Problem with file %s",optionfilegnuplot);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   }       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 #ifdef windows       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fprintf(ficgp,"cd \"%s\" \n",pathc);       and mw[mi+1][i]. dh depends on stepm.
 #endif       */
 m=pow(2,cptcoveff);  
      int i, mi, m;
  /* 1eme*/    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   for (cpt=1; cpt<= nlstate ; cpt ++) {       double sum=0., jmean=0.;*/
    for (k1=1; k1<= m ; k1 ++) {    int first;
     int j, k=0,jk, ju, jl;
 #ifdef windows    double sum=0.;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    first=0;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    jmin=1e+5;
 #endif    jmax=-1;
 #ifdef unix    jmean=0.;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    for(i=1; i<=imx; i++){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      mi=0;
 #endif      m=firstpass;
       while(s[m][i] <= nlstate){
 for (i=1; i<= nlstate ; i ++) {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          mw[++mi][i]=m;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if(m >=lastpass)
 }          break;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        else
     for (i=1; i<= nlstate ; i ++) {          m++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }/* end while */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if (s[m][i] > nlstate){
 }        mi++;     /* Death is another wave */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        /* if(mi==0)  never been interviewed correctly before death */
      for (i=1; i<= nlstate ; i ++) {           /* Only death is a correct wave */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        mw[mi][i]=m;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      wav[i]=mi;
 #ifdef unix      if(mi==0){
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        nbwarn++;
 #endif        if(first==0){
    }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   }          first=1;
   /*2 eme*/        }
         if(first==1){
   for (k1=1; k1<= m ; k1 ++) {          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      } /* end mi==0 */
        } /* End individuals */
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;    for(i=1; i<=imx; i++){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      for(mi=1; mi<wav[i];mi++){
       for (j=1; j<= nlstate+1 ; j ++) {        if (stepm <=0)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          dh[mi][i]=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        else{
 }            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            if (agedc[i] < 2*AGESUP) {
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              if(j==0) j=1;  /* Survives at least one month after exam */
       for (j=1; j<= nlstate+1 ; j ++) {              else if(j<0){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                nberr++;
         else fprintf(ficgp," \%%*lf (\%%*lf)");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }                  j=1; /* Temporary Dangerous patch */
       fprintf(ficgp,"\" t\"\" w l 0,");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (j=1; j<= nlstate+1 ; j ++) {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              }
   else fprintf(ficgp," \%%*lf (\%%*lf)");              k=k+1;
 }                if (j >= jmax){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                jmax=j;
       else fprintf(ficgp,"\" t\"\" w l 0,");                ijmax=i;
     }              }
   }              if (j <= jmin){
                  jmin=j;
   /*3eme*/                ijmin=i;
               }
   for (k1=1; k1<= m ; k1 ++) {              sum=sum+j;
     for (cpt=1; cpt<= nlstate ; cpt ++) {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       k=2+nlstate*(2*cpt-2);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            }
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          else{
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            k=k+1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            if (j >= jmax) {
               jmax=j;
 */              ijmax=i;
       for (i=1; i< nlstate ; i ++) {            }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            else if (j <= jmin){
               jmin=j;
       }              ijmin=i;
     }            }
   }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   /* CV preval stat */            if(j<0){
     for (k1=1; k1<= m ; k1 ++) {              nberr++;
     for (cpt=1; cpt<nlstate ; cpt ++) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       k=3;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            sum=sum+j;
           }
       for (i=1; i< nlstate ; i ++)          jk= j/stepm;
         fprintf(ficgp,"+$%d",k+i+1);          jl= j -jk*stepm;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          ju= j -(jk+1)*stepm;
                if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       l=3+(nlstate+ndeath)*cpt;            if(jl==0){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              dh[mi][i]=jk;
       for (i=1; i< nlstate ; i ++) {              bh[mi][i]=0;
         l=3+(nlstate+ndeath)*cpt;            }else{ /* We want a negative bias in order to only have interpolation ie
         fprintf(ficgp,"+$%d",l+i+1);                    * at the price of an extra matrix product in likelihood */
       }              dh[mi][i]=jk+1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                bh[mi][i]=ju;
     }            }
   }            }else{
              if(jl <= -ju){
   /* proba elementaires */              dh[mi][i]=jk;
    for(i=1,jk=1; i <=nlstate; i++){              bh[mi][i]=jl;       /* bias is positive if real duration
     for(k=1; k <=(nlstate+ndeath); k++){                                   * is higher than the multiple of stepm and negative otherwise.
       if (k != i) {                                   */
         for(j=1; j <=ncovmodel; j++){            }
                    else{
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              dh[mi][i]=jk+1;
           jk++;              bh[mi][i]=ju;
           fprintf(ficgp,"\n");            }
         }            if(dh[mi][i]==0){
       }              dh[mi][i]=1; /* At least one step */
     }              bh[mi][i]=ju; /* At least one step */
    }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          } /* end if mle */
      for(jk=1; jk <=m; jk++) {        }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      } /* end wave */
        if (ng==2)    }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    jmean=sum/k;
        else    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
          fprintf(ficgp,"\nset title \"Probability\"\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);   }
        i=1;  
        for(k2=1; k2<=nlstate; k2++) {  /*********** Tricode ****************************/
          k3=i;  void tricode(int *Tvar, int **nbcode, int imx)
          for(k=1; k<=(nlstate+ndeath); k++) {  {
            if (k != k2){    
              if(ng==2)    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  
              else    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    int cptcode=0;
              ij=1;    cptcoveff=0; 
              for(j=3; j <=ncovmodel; j++) {   
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
                  ij++;  
                }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
                else      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                                 modality*/ 
              }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
              fprintf(ficgp,")/(1");        Ndum[ij]++; /*counts the occurence of this modality */
                      /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
              for(k1=1; k1 <=nlstate; k1++){          if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                                         Tvar[j]. If V=sex and male is 0 and 
                ij=1;                                         female is 1, then  cptcode=1.*/
                for(j=3; j <=ncovmodel; j++){      }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
                    ij++;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariate. In fact ncodemax[j]=2 (dichotom. variables only) but it can be more */
                  }      } /* Ndum[-1] number of undefined modalities */
                  else  
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      ij=1; 
                }      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
                fprintf(ficgp,")");        for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
              }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                                       k is a modality. If we have model=V1+V1*sex 
              i=i+ncovmodel;                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
            }            ij++;
          }          }
        }          if (ij > ncodemax[j]) break; 
      }        }  
    }      } 
    fclose(ficgp);    }  
 }  /* end gnuplot */  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
   
 /*************** Moving average **************/   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   int i, cpt, cptcod;     Ndum[ij]++;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)   }
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)   ij=1;
           mobaverage[(int)agedeb][i][cptcod]=0.;   for (i=1; i<= maxncov; i++) {
         if((Ndum[i]!=0) && (i<=ncovcol)){
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){       Tvaraff[ij]=i; /*For printing */
       for (i=1; i<=nlstate;i++){       ij++;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     }
           for (cpt=0;cpt<=4;cpt++){   }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];   ij--;
           }   cptcoveff=ij; /*Number of simple covariates*/
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  }
         }  
       }  /*********** Health Expectancies ****************/
     }  
      void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 }  
   {
     /* Health expectancies, no variances */
 /************** Forecasting ******************/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    int nhstepma, nstepma; /* Decreasing with age */
      double age, agelim, hf;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double ***p3mat;
   int *popage;    double eip;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    pstamp(ficreseij);
   double ***p3mat;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   char fileresf[FILENAMELENGTH];    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
  agelim=AGESUP;      for(j=1; j<=nlstate;j++){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        fprintf(ficreseij," e%1d%1d ",i,j);
       }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      fprintf(ficreseij," e%1d. ",i);
      }
      fprintf(ficreseij,"\n");
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);    
   if((ficresf=fopen(fileresf,"w"))==NULL) {    if(estepm < stepm){
     printf("Problem with forecast resultfile: %s\n", fileresf);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   printf("Computing forecasting: result on file '%s' \n", fileresf);    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   if (mobilav==1) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * progression in between and thus overestimating or underestimating according
     movingaverage(agedeb, fage, ageminpar, mobaverage);     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
   stepsize=(int) (stepm+YEARM-1)/YEARM;     * hypothesis. A more precise result, taking into account a more precise
   if (stepm<=12) stepsize=1;     * curvature will be obtained if estepm is as small as stepm. */
    
   agelim=AGESUP;    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   hstepm=1;       nhstepm is the number of hstepm from age to agelim 
   hstepm=hstepm/stepm;       nstepm is the number of stepm from age to agelin. 
   yp1=modf(dateintmean,&yp);       Look at hpijx to understand the reason of that which relies in memory size
   anprojmean=yp;       and note for a fixed period like estepm months */
   yp2=modf((yp1*12),&yp);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   mprojmean=yp;       survival function given by stepm (the optimization length). Unfortunately it
   yp1=modf((yp2*30.5),&yp);       means that if the survival funtion is printed only each two years of age and if
   jprojmean=yp;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if(jprojmean==0) jprojmean=1;       results. So we changed our mind and took the option of the best precision.
   if(mprojmean==0) jprojmean=1;    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
      agelim=AGESUP;
   for(cptcov=1;cptcov<=i2;cptcov++){    /* If stepm=6 months */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       k=k+1;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       fprintf(ficresf,"\n#******");      
       for(j=1;j<=cptcoveff;j++) {  /* nhstepm age range expressed in number of stepm */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficresf,"******\n");    /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficresf,"# StartingAge FinalAge");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        
          for (age=bage; age<=fage; age ++){ 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         fprintf(ficresf,"\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      /* If stepm=6 months */
           nhstepm = nhstepm/hstepm;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
           oldm=oldms;savm=savms;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        
              hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           for (h=0; h<=nhstepm; h++){      
             if (h==(int) (calagedate+YEARM*cpt)) {      printf("%d|",(int)age);fflush(stdout);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             }      
             for(j=1; j<=nlstate+ndeath;j++) {      /* Computing expectancies */
               kk1=0.;kk2=0;      for(i=1; i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                      for(j=1; j<=nlstate;j++)
                 if (mobilav==1)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                 else {            
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                 }  
                          }
               }  
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficreseij,"%3.0f",age );
                 fprintf(ficresf," %.3f", kk1);      for(i=1; i<=nlstate;i++){
                                eip=0;
               }        for(j=1; j<=nlstate;j++){
             }          eip +=eij[i][j][(int)age];
           }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }        fprintf(ficreseij,"%9.4f", eip );
       }      }
     }      fprintf(ficreseij,"\n");
   }      
            }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
   fclose(ficresf);    fprintf(ficlog,"\n");
 }    
 /************** Forecasting ******************/  }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
    void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;  {
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /* Covariances of health expectancies eij and of total life expectancies according
   double *popeffectif,*popcount;     to initial status i, ei. .
   double ***p3mat,***tabpop,***tabpopprev;    */
   char filerespop[FILENAMELENGTH];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double age, agelim, hf;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ***p3matp, ***p3matm, ***varhe;
   agelim=AGESUP;    double **dnewm,**doldm;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    double *xp, *xm;
      double **gp, **gm;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double ***gradg, ***trgradg;
      int theta;
    
   strcpy(filerespop,"pop");    double eip, vip;
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     printf("Problem with forecast resultfile: %s\n", filerespop);    xp=vector(1,npar);
   }    xm=vector(1,npar);
   printf("Computing forecasting: result on file '%s' \n", filerespop);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    
     pstamp(ficresstdeij);
   if (mobilav==1) {    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresstdeij,"# Age");
     movingaverage(agedeb, fage, ageminpar, mobaverage);    for(i=1; i<=nlstate;i++){
   }      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficresstdeij," e%1d. ",i);
   if (stepm<=12) stepsize=1;    }
      fprintf(ficresstdeij,"\n");
   agelim=AGESUP;  
      pstamp(ficrescveij);
   hstepm=1;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   hstepm=hstepm/stepm;    fprintf(ficrescveij,"# Age");
      for(i=1; i<=nlstate;i++)
   if (popforecast==1) {      for(j=1; j<=nlstate;j++){
     if((ficpop=fopen(popfile,"r"))==NULL) {        cptj= (j-1)*nlstate+i;
       printf("Problem with population file : %s\n",popfile);exit(0);        for(i2=1; i2<=nlstate;i2++)
     }          for(j2=1; j2<=nlstate;j2++){
     popage=ivector(0,AGESUP);            cptj2= (j2-1)*nlstate+i2;
     popeffectif=vector(0,AGESUP);            if(cptj2 <= cptj)
     popcount=vector(0,AGESUP);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
              }
     i=1;        }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    fprintf(ficrescveij,"\n");
        
     imx=i;    if(estepm < stepm){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
     else  hstepm=estepm;   
   for(cptcov=1;cptcov<=i2;cptcov++){    /* We compute the life expectancy from trapezoids spaced every estepm months
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     * This is mainly to measure the difference between two models: for example
       k=k+1;     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficrespop,"\n#******");     * we are calculating an estimate of the Life Expectancy assuming a linear 
       for(j=1;j<=cptcoveff;j++) {     * progression in between and thus overestimating or underestimating according
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * to the curvature of the survival function. If, for the same date, we 
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficrespop,"******\n");     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficrespop,"# Age");     * hypothesis. A more precise result, taking into account a more precise
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);     * curvature will be obtained if estepm is as small as stepm. */
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
          /* For example we decided to compute the life expectancy with the smallest unit */
       for (cpt=0; cpt<=0;cpt++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         nhstepm is the number of hstepm from age to agelim 
               nstepm is the number of stepm from age to agelin. 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       Look at hpijx to understand the reason of that which relies in memory size
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       and note for a fixed period like estepm months */
           nhstepm = nhstepm/hstepm;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 survival function given by stepm (the optimization length). Unfortunately it
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       means that if the survival funtion is printed only each two years of age and if
           oldm=oldms;savm=savms;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         results. So we changed our mind and took the option of the best precision.
            */
           for (h=0; h<=nhstepm; h++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /* If stepm=6 months */
             }    /* nhstepm age range expressed in number of stepm */
             for(j=1; j<=nlstate+ndeath;j++) {    agelim=AGESUP;
               kk1=0.;kk2=0;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
               for(i=1; i<=nlstate;i++) {                  /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                 if (mobilav==1)    /* if (stepm >= YEARM) hstepm=1;*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                 else {    
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
               if (h==(int)(calagedate+12*cpt)){    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   /*fprintf(ficrespop," %.3f", kk1);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  
               }    for (age=bage; age<=fage; age ++){ 
             }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
             for(i=1; i<=nlstate;i++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               kk1=0.;      /* if (stepm >= YEARM) hstepm=1;*/
                 for(j=1; j<=nlstate;j++){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }      /* If stepm=6 months */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }      /* Computing  Variances of health expectancies */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         }         decrease memory allocation */
       }      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
   /******/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;        for(j=1; j<= nlstate; j++){
                    for(i=1; i<=nlstate; i++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(h=0; h<=nhstepm-1; h++){
           oldm=oldms;savm=savms;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           for (h=0; h<=nhstepm; h++){            }
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }
             }       
             for(j=1; j<=nlstate+ndeath;j++) {        for(ij=1; ij<= nlstate*nlstate; ij++)
               kk1=0.;kk2=0;          for(h=0; h<=nhstepm-1; h++){
               for(i=1; i<=nlstate;i++) {                          gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              }
               }      }/* End theta */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      
             }      
           }      for(h=0; h<=nhstepm-1; h++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<=nlstate*nlstate;j++)
         }          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
    }      
   }  
         for(ij=1;ij<=nlstate*nlstate;ij++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);       printf("%d|",(int)age);fflush(stdout);
     free_vector(popeffectif,0,AGESUP);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     free_vector(popcount,0,AGESUP);       for(h=0;h<=nhstepm-1;h++){
   }        for(k=0;k<=nhstepm-1;k++){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   fclose(ficrespop);          for(ij=1;ij<=nlstate*nlstate;ij++)
 }            for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 /***********************************************/        }
 /**************** Main Program *****************/      }
 /***********************************************/  
       /* Computing expectancies */
 int main(int argc, char *argv[])      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 {      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double agedeb, agefin,hf;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double fret;  
   double **xi,tmp,delta;          }
   
   double dum; /* Dummy variable */      fprintf(ficresstdeij,"%3.0f",age );
   double ***p3mat;      for(i=1; i<=nlstate;i++){
   int *indx;        eip=0.;
   char line[MAXLINE], linepar[MAXLINE];        vip=0.;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        for(j=1; j<=nlstate;j++){
   int firstobs=1, lastobs=10;          eip += eij[i][j][(int)age];
   int sdeb, sfin; /* Status at beginning and end */          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   int c,  h , cpt,l;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   int ju,jl, mi;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   int mobilav=0,popforecast=0;      }
   int hstepm, nhstepm;      fprintf(ficresstdeij,"\n");
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
       fprintf(ficrescveij,"%3.0f",age );
   double bage, fage, age, agelim, agebase;      for(i=1; i<=nlstate;i++)
   double ftolpl=FTOL;        for(j=1; j<=nlstate;j++){
   double **prlim;          cptj= (j-1)*nlstate+i;
   double *severity;          for(i2=1; i2<=nlstate;i2++)
   double ***param; /* Matrix of parameters */            for(j2=1; j2<=nlstate;j2++){
   double  *p;              cptj2= (j2-1)*nlstate+i2;
   double **matcov; /* Matrix of covariance */              if(cptj2 <= cptj)
   double ***delti3; /* Scale */                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   double *delti; /* Scale */            }
   double ***eij, ***vareij;        }
   double **varpl; /* Variances of prevalence limits by age */      fprintf(ficrescveij,"\n");
   double *epj, vepp;     
   double kk1, kk2;    }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char z[1]="c", occ;    printf("\n");
 #include <sys/time.h>    fprintf(ficlog,"\n");
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_vector(xm,1,npar);
      free_vector(xp,1,npar);
   /* long total_usecs;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   struct timeval start_time, end_time;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  }
   getcwd(pathcd, size);  
   /************ Variance ******************/
   printf("\n%s",version);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   if(argc <=1){  {
     printf("\nEnter the parameter file name: ");    /* Variance of health expectancies */
     scanf("%s",pathtot);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   }    /* double **newm;*/
   else{    double **dnewm,**doldm;
     strcpy(pathtot,argv[1]);    double **dnewmp,**doldmp;
   }    int i, j, nhstepm, hstepm, h, nstepm ;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    int k, cptcode;
   /*cygwin_split_path(pathtot,path,optionfile);    double *xp;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    double **gp, **gm;  /* for var eij */
   /* cutv(path,optionfile,pathtot,'\\');*/    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    double *gpp, *gmp; /* for var p point j */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   chdir(path);    double ***p3mat;
   replace(pathc,path);    double age,agelim, hf;
     double ***mobaverage;
 /*-------- arguments in the command line --------*/    int theta;
     char digit[4];
   strcpy(fileres,"r");    char digitp[25];
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */    char fileresprobmorprev[FILENAMELENGTH];
   
   /*---------arguments file --------*/    if(popbased==1){
       if(mobilav!=0)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        strcpy(digitp,"-populbased-mobilav-");
     printf("Problem with optionfile %s\n",optionfile);      else strcpy(digitp,"-populbased-nomobil-");
     goto end;    }
   }    else 
       strcpy(digitp,"-stablbased-");
   strcpy(filereso,"o");  
   strcat(filereso,fileres);    if (mobilav!=0) {
   if((ficparo=fopen(filereso,"w"))==NULL) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /* Reads comments: lines beginning with '#' */      }
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    strcpy(fileresprobmorprev,"prmorprev"); 
     puts(line);    sprintf(digit,"%-d",ij);
     fputs(line,ficparo);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   ungetc(c,ficpar);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fgets(line, MAXLINE, ficpar);   
     puts(line);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fputs(line,ficparo);    pstamp(ficresprobmorprev);
   }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   ungetc(c,ficpar);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," p.%-d SE",j);
   covar=matrix(0,NCOVMAX,1,n);      for(i=1; i<=nlstate;i++)
   cptcovn=0;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    }  
     fprintf(ficresprobmorprev,"\n");
   ncovmodel=2+cptcovn;    fprintf(ficgp,"\n# Routine varevsij");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   /* Read guess parameters */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /* Reads comments: lines beginning with '#' */  /*   } */
   while((c=getc(ficpar))=='#' && c!= EOF){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    pstamp(ficresvij);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     puts(line);    if(popbased==1)
     fputs(line,ficparo);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   }    else
   ungetc(c,ficpar);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      fprintf(ficresvij,"# Age");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for(i=1; i<=nlstate;i++)
     for(i=1; i <=nlstate; i++)      for(j=1; j<=nlstate;j++)
     for(j=1; j <=nlstate+ndeath-1; j++){        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficresvij,"\n");
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);    xp=vector(1,npar);
       for(k=1; k<=ncovmodel;k++){    dnewm=matrix(1,nlstate,1,npar);
         fscanf(ficpar," %lf",&param[i][j][k]);    doldm=matrix(1,nlstate,1,nlstate);
         printf(" %lf",param[i][j][k]);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficparo," %lf",param[i][j][k]);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }  
       fscanf(ficpar,"\n");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       printf("\n");    gpp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficparo,"\n");    gmp=vector(nlstate+1,nlstate+ndeath);
     }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   p=param[1][1];    }
      else  hstepm=estepm;   
   /* Reads comments: lines beginning with '#' */    /* For example we decided to compute the life expectancy with the smallest unit */
   while((c=getc(ficpar))=='#' && c!= EOF){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     ungetc(c,ficpar);       nhstepm is the number of hstepm from age to agelim 
     fgets(line, MAXLINE, ficpar);       nstepm is the number of stepm from age to agelin. 
     puts(line);       Look at function hpijx to understand why (it is linked to memory size questions) */
     fputs(line,ficparo);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   ungetc(c,ficpar);       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       results. So we changed our mind and took the option of the best precision.
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    */
   for(i=1; i <=nlstate; i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     for(j=1; j <=nlstate+ndeath-1; j++){    agelim = AGESUP;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       printf("%1d%1d",i,j);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fprintf(ficparo,"%1d%1d",i1,j1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(k=1; k<=ncovmodel;k++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fscanf(ficpar,"%le",&delti3[i][j][k]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         printf(" %le",delti3[i][j][k]);      gp=matrix(0,nhstepm,1,nlstate);
         fprintf(ficparo," %le",delti3[i][j][k]);      gm=matrix(0,nhstepm,1,nlstate);
       }  
       fscanf(ficpar,"\n");  
       printf("\n");      for(theta=1; theta <=npar; theta++){
       fprintf(ficparo,"\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   delti=delti3[1][1];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){        if (popbased==1) {
     ungetc(c,ficpar);          if(mobilav ==0){
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=nlstate;i++)
     puts(line);              prlim[i][i]=probs[(int)age][i][ij];
     fputs(line,ficparo);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   matcov=matrix(1,npar,1,npar);        }
   for(i=1; i <=npar; i++){    
     fscanf(ficpar,"%s",&str);        for(j=1; j<= nlstate; j++){
     printf("%s",str);          for(h=0; h<=nhstepm; h++){
     fprintf(ficparo,"%s",str);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     for(j=1; j <=i; j++){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       fscanf(ficpar," %le",&matcov[i][j]);          }
       printf(" %.5le",matcov[i][j]);        }
       fprintf(ficparo," %.5le",matcov[i][j]);        /* This for computing probability of death (h=1 means
     }           computed over hstepm matrices product = hstepm*stepm months) 
     fscanf(ficpar,"\n");           as a weighted average of prlim.
     printf("\n");        */
     fprintf(ficparo,"\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   for(i=1; i <=npar; i++)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     for(j=i+1;j<=npar;j++)        }    
       matcov[i][j]=matcov[j][i];        /* end probability of death */
      
   printf("\n");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     /*-------- Rewriting paramater file ----------*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      strcpy(rfileres,"r");    /* "Rparameterfile */   
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        if (popbased==1) {
      strcat(rfileres,".");    /* */          if(mobilav ==0){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            for(i=1; i<=nlstate;i++)
     if((ficres =fopen(rfileres,"w"))==NULL) {              prlim[i][i]=probs[(int)age][i][ij];
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          }else{ /* mobilav */ 
     }            for(i=1; i<=nlstate;i++)
     fprintf(ficres,"#%s\n",version);              prlim[i][i]=mobaverage[(int)age][i][ij];
              }
     /*-------- data file ----------*/        }
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     }          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     n= lastobs;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     severity = vector(1,maxwav);          }
     outcome=imatrix(1,maxwav+1,1,n);        }
     num=ivector(1,n);        /* This for computing probability of death (h=1 means
     moisnais=vector(1,n);           computed over hstepm matrices product = hstepm*stepm months) 
     annais=vector(1,n);           as a weighted average of prlim.
     moisdc=vector(1,n);        */
     andc=vector(1,n);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     agedc=vector(1,n);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     cod=ivector(1,n);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     weight=vector(1,n);        }    
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        /* end probability of death */
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);        for(j=1; j<= nlstate; j++) /* vareij */
     s=imatrix(1,maxwav+1,1,n);          for(h=0; h<=nhstepm; h++){
     adl=imatrix(1,maxwav+1,1,n);                gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     tab=ivector(1,NCOVMAX);          }
     ncodemax=ivector(1,8);  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     i=1;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     while (fgets(line, MAXLINE, fic) != NULL)    {        }
       if ((i >= firstobs) && (i <=lastobs)) {  
              } /* End theta */
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(h=0; h<=nhstepm; h++) /* veij */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<=nlstate;j++)
         }          for(theta=1; theta <=npar; theta++)
                    trgradg[h][j][theta]=gradg[h][theta][j];
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          trgradgp[j][theta]=gradgp[theta][j];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for (j=ncovcol;j>=1;j--){      for(i=1;i<=nlstate;i++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1;j<=nlstate;j++)
         }          vareij[i][j][(int)age] =0.;
         num[i]=atol(stra);  
              for(h=0;h<=nhstepm;h++){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        for(k=0;k<=nhstepm;k++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         i=i+1;          for(i=1;i<=nlstate;i++)
       }            for(j=1;j<=nlstate;j++)
     }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     /* printf("ii=%d", ij);        }
        scanf("%d",i);*/      }
   imx=i-1; /* Number of individuals */    
       /* pptj */
   /* for (i=1; i<=imx; i++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     }*/          varppt[j][i]=doldmp[j][i];
    /*  for (i=1; i<=imx; i++){      /* end ppptj */
      if (s[4][i]==9)  s[4][i]=-1;      /*  x centered again */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     
   /* Calculation of the number of parameter from char model*/      if (popbased==1) {
   Tvar=ivector(1,15);        if(mobilav ==0){
   Tprod=ivector(1,15);          for(i=1; i<=nlstate;i++)
   Tvaraff=ivector(1,15);            prlim[i][i]=probs[(int)age][i][ij];
   Tvard=imatrix(1,15,1,2);        }else{ /* mobilav */ 
   Tage=ivector(1,15);                for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   if (strlen(model) >1){        }
     j=0, j1=0, k1=1, k2=1;      }
     j=nbocc(model,'+');               
     j1=nbocc(model,'*');      /* This for computing probability of death (h=1 means
     cptcovn=j+1;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     cptcovprod=j1;         as a weighted average of prlim.
          */
     strcpy(modelsav,model);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       printf("Error. Non available option model=%s ",model);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       goto end;      }    
     }      /* end probability of death */
      
     for(i=(j+1); i>=1;i--){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       cutv(stra,strb,modelsav,'+');      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        for(i=1; i<=nlstate;i++){
       /*scanf("%d",i);*/          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       if (strchr(strb,'*')) {        }
         cutv(strd,strc,strb,'*');      } 
         if (strcmp(strc,"age")==0) {      fprintf(ficresprobmorprev,"\n");
           cptcovprod--;  
           cutv(strb,stre,strd,'V');      fprintf(ficresvij,"%.0f ",age );
           Tvar[i]=atoi(stre);      for(i=1; i<=nlstate;i++)
           cptcovage++;        for(j=1; j<=nlstate;j++){
             Tage[cptcovage]=i;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
             /*printf("stre=%s ", stre);*/        }
         }      fprintf(ficresvij,"\n");
         else if (strcmp(strd,"age")==0) {      free_matrix(gp,0,nhstepm,1,nlstate);
           cptcovprod--;      free_matrix(gm,0,nhstepm,1,nlstate);
           cutv(strb,stre,strc,'V');      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           Tvar[i]=atoi(stre);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           cptcovage++;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tage[cptcovage]=i;    } /* End age */
         }    free_vector(gpp,nlstate+1,nlstate+ndeath);
         else {    free_vector(gmp,nlstate+1,nlstate+ndeath);
           cutv(strb,stre,strc,'V');    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           Tvar[i]=ncovcol+k1;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           cutv(strb,strc,strd,'V');    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
           Tprod[k1]=i;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           Tvard[k1][1]=atoi(strc);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           Tvard[k1][2]=atoi(stre);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           Tvar[cptcovn+k2]=Tvard[k1][1];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           for (k=1; k<=lastobs;k++)    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
           k1++;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           k2=k2+2;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       else {  */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
        /*  scanf("%d",i);*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);    free_vector(xp,1,npar);
       }    free_matrix(doldm,1,nlstate,1,nlstate);
       strcpy(modelsav,stra);      free_matrix(dnewm,1,nlstate,1,npar);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         scanf("%d",i);*/    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fclose(ficresprobmorprev);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    fflush(ficgp);
   printf("cptcovprod=%d ", cptcovprod);    fflush(fichtm); 
   scanf("%d ",i);*/  }  /* end varevsij */
     fclose(fic);  
   /************ Variance of prevlim ******************/
     /*  if(mle==1){*/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     if (weightopt != 1) { /* Maximisation without weights*/  {
       for(i=1;i<=n;i++) weight[i]=1.0;    /* Variance of prevalence limit */
     }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     /*-calculation of age at interview from date of interview and age at death -*/    double **newm;
     agev=matrix(1,maxwav,1,imx);    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     for (i=1; i<=imx; i++) {    int k, cptcode;
       for(m=2; (m<= maxwav); m++) {    double *xp;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    double *gp, *gm;
          anint[m][i]=9999;    double **gradg, **trgradg;
          s[m][i]=-1;    double age,agelim;
        }    int theta;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    
       }    pstamp(ficresvpl);
     }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for (i=1; i<=imx; i++)  {    for(i=1; i<=nlstate;i++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        fprintf(ficresvpl," %1d-%1d",i,i);
       for(m=1; (m<= maxwav); m++){    fprintf(ficresvpl,"\n");
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {    xp=vector(1,npar);
             if(agedc[i]>0)    dnewm=matrix(1,nlstate,1,npar);
               if(moisdc[i]!=99 && andc[i]!=9999)    doldm=matrix(1,nlstate,1,nlstate);
                 agev[m][i]=agedc[i];    
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    hstepm=1*YEARM; /* Every year of age */
            else {    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
               if (andc[i]!=9999){    agelim = AGESUP;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               agev[m][i]=-1;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
               }      if (stepm >= YEARM) hstepm=1;
             }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           }      gradg=matrix(1,npar,1,nlstate);
           else if(s[m][i] !=9){ /* Should no more exist */      gp=vector(1,nlstate);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      gm=vector(1,nlstate);
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;      for(theta=1; theta <=npar; theta++){
             else if(agev[m][i] <agemin){        for(i=1; i<=npar; i++){ /* Computes gradient */
               agemin=agev[m][i];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        }
             }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             else if(agev[m][i] >agemax){        for(i=1;i<=nlstate;i++)
               agemax=agev[m][i];          gp[i] = prlim[i][i];
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      
             }        for(i=1; i<=npar; i++) /* Computes gradient */
             /*agev[m][i]=anint[m][i]-annais[i];*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             /*   agev[m][i] = age[i]+2*m;*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           }        for(i=1;i<=nlstate;i++)
           else { /* =9 */          gm[i] = prlim[i][i];
             agev[m][i]=1;  
             s[m][i]=-1;        for(i=1;i<=nlstate;i++)
           }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         }      } /* End theta */
         else /*= 0 Unknown */  
           agev[m][i]=1;      trgradg =matrix(1,nlstate,1,npar);
       }  
          for(j=1; j<=nlstate;j++)
     }        for(theta=1; theta <=npar; theta++)
     for (i=1; i<=imx; i++)  {          trgradg[j][theta]=gradg[theta][j];
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {      for(i=1;i<=nlstate;i++)
           printf("Error: Wrong value in nlstate or ndeath\n");          varpl[i][(int)age] =0.;
           goto end;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }      for(i=1;i<=nlstate;i++)
     }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
     free_vector(severity,1,maxwav);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     free_imatrix(outcome,1,maxwav+1,1,n);      fprintf(ficresvpl,"\n");
     free_vector(moisnais,1,n);      free_vector(gp,1,nlstate);
     free_vector(annais,1,n);      free_vector(gm,1,nlstate);
     /* free_matrix(mint,1,maxwav,1,n);      free_matrix(gradg,1,npar,1,nlstate);
        free_matrix(anint,1,maxwav,1,n);*/      free_matrix(trgradg,1,nlstate,1,npar);
     free_vector(moisdc,1,n);    } /* End age */
     free_vector(andc,1,n);  
     free_vector(xp,1,npar);
        free_matrix(doldm,1,nlstate,1,npar);
     wav=ivector(1,imx);    free_matrix(dnewm,1,nlstate,1,nlstate);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  }
      
     /* Concatenates waves */  /************ Variance of one-step probabilities  ******************/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
       Tcode=ivector(1,100);    int k2, l2, j1,  z1;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    int k=0,l, cptcode;
       ncodemax[1]=1;    int first=1, first1;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
          double **dnewm,**doldm;
    codtab=imatrix(1,100,1,10);    double *xp;
    h=0;    double *gp, *gm;
    m=pow(2,cptcoveff);    double **gradg, **trgradg;
      double **mu;
    for(k=1;k<=cptcoveff; k++){    double age,agelim, cov[NCOVMAX];
      for(i=1; i <=(m/pow(2,k));i++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
        for(j=1; j <= ncodemax[k]; j++){    int theta;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    char fileresprob[FILENAMELENGTH];
            h++;    char fileresprobcov[FILENAMELENGTH];
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    char fileresprobcor[FILENAMELENGTH];
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
          }    double ***varpij;
        }  
      }    strcpy(fileresprob,"prob"); 
    }    strcat(fileresprob,fileres);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       codtab[1][2]=1;codtab[2][2]=2; */      printf("Problem with resultfile: %s\n", fileresprob);
    /* for(i=1; i <=m ;i++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       for(k=1; k <=cptcovn; k++){    }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    strcpy(fileresprobcov,"probcov"); 
       }    strcat(fileresprobcov,fileres);
       printf("\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", fileresprobcov);
       scanf("%d",i);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        }
    /* Calculates basic frequencies. Computes observed prevalence at single age    strcpy(fileresprobcor,"probcor"); 
        and prints on file fileres'p'. */    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcor);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
          printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    pstamp(ficresprob);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     if(mle==1){    pstamp(ficresprobcov);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     }    fprintf(ficresprobcov,"# Age");
        pstamp(ficresprobcor);
     /*--------- results files --------------*/    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    fprintf(ficresprobcor,"# Age");
    
   
    jk=1;    for(i=1; i<=nlstate;i++)
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for(j=1; j<=(nlstate+ndeath);j++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
    for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
      for(k=1; k <=(nlstate+ndeath); k++){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
        if (k != i)      }  
          {   /* fprintf(ficresprob,"\n");
            printf("%d%d ",i,k);    fprintf(ficresprobcov,"\n");
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(ficresprobcor,"\n");
            for(j=1; j <=ncovmodel; j++){   */
              printf("%f ",p[jk]);    xp=vector(1,npar);
              fprintf(ficres,"%f ",p[jk]);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
              jk++;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
            }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
            printf("\n");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
            fprintf(ficres,"\n");    first=1;
          }    fprintf(ficgp,"\n# Routine varprob");
      }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
    }    fprintf(fichtm,"\n");
  if(mle==1){  
     /* Computing hessian and covariance matrix */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     ftolhess=ftol; /* Usually correct */    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     hesscov(matcov, p, npar, delti, ftolhess, func);    file %s<br>\n",optionfilehtmcov);
  }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  and drawn. It helps understanding how is the covariance between two incidences.\
     printf("# Scales (for hessian or gradient estimation)\n");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      for(i=1,jk=1; i <=nlstate; i++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       for(j=1; j <=nlstate+ndeath; j++){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         if (j!=i) {  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
           fprintf(ficres,"%1d%1d",i,j);  standard deviations wide on each axis. <br>\
           printf("%1d%1d",i,j);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           for(k=1; k<=ncovmodel;k++){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
             printf(" %.5e",delti[jk]);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;    cov[1]=1;
           }    tj=cptcoveff;
           printf("\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           fprintf(ficres,"\n");    j1=0;
         }    for(t=1; t<=tj;t++){
       }      for(i1=1; i1<=ncodemax[t];i1++){ 
      }        j1++;
            if  (cptcovn>0) {
     k=1;          fprintf(ficresprob, "\n#********** Variable "); 
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(ficresprob, "**********\n#\n");
     for(i=1;i<=npar;i++){          fprintf(ficresprobcov, "\n#********** Variable "); 
       /*  if (k>nlstate) k=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       i1=(i-1)/(ncovmodel*nlstate)+1;          fprintf(ficresprobcov, "**********\n#\n");
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          
       printf("%s%d%d",alph[k],i1,tab[i]);*/          fprintf(ficgp, "\n#********** Variable "); 
       fprintf(ficres,"%3d",i);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("%3d",i);          fprintf(ficgp, "**********\n#\n");
       for(j=1; j<=i;j++){          
         fprintf(ficres," %.5e",matcov[i][j]);          
         printf(" %.5e",matcov[i][j]);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficres,"\n");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       printf("\n");          
       k++;          fprintf(ficresprobcor, "\n#********** Variable ");    
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresprobcor, "**********\n#");    
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);        
       fgets(line, MAXLINE, ficpar);        for (age=bage; age<=fage; age ++){ 
       puts(line);          cov[2]=age;
       fputs(line,ficparo);          for (k=1; k<=cptcovn;k++) {
     }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     ungetc(c,ficpar);          }
     estepm=0;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          for (k=1; k<=cptcovprod;k++)
     if (estepm==0 || estepm < stepm) estepm=stepm;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     if (fage <= 2) {          
       bage = ageminpar;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       fage = agemaxpar;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     }          gp=vector(1,(nlstate)*(nlstate+ndeath));
              gm=vector(1,(nlstate)*(nlstate+ndeath));
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for(theta=1; theta <=npar; theta++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            for(i=1; i<=npar; i++)
                xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     while((c=getc(ficpar))=='#' && c!= EOF){            
     ungetc(c,ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fgets(line, MAXLINE, ficpar);            
     puts(line);            k=0;
     fputs(line,ficparo);            for(i=1; i<= (nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
   ungetc(c,ficpar);                k=k+1;
                  gp[k]=pmmij[i][j];
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);              }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            
                  for(i=1; i<=npar; i++)
   while((c=getc(ficpar))=='#' && c!= EOF){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     puts(line);            k=0;
     fputs(line,ficparo);            for(i=1; i<=(nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
   ungetc(c,ficpar);                k=k+1;
                  gm[k]=pmmij[i][j];
               }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   fscanf(ficpar,"pop_based=%d\n",&popbased);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   fprintf(ficparo,"pop_based=%d\n",popbased);            }
   fprintf(ficres,"pop_based=%d\n",popbased);    
            for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   while((c=getc(ficpar))=='#' && c!= EOF){            for(theta=1; theta <=npar; theta++)
     ungetc(c,ficpar);              trgradg[j][theta]=gradg[theta][j];
     fgets(line, MAXLINE, ficpar);          
     puts(line);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     fputs(line,ficparo);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   ungetc(c,ficpar);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
 while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1; i<=(nlstate); i++){
     ungetc(c,ficpar);            for(j=1; j<=(nlstate+ndeath);j++){
     fgets(line, MAXLINE, ficpar);              k=k+1;
     puts(line);              mu[k][(int) age]=pmmij[i][j];
     fputs(line,ficparo);            }
   }          }
   ungetc(c,ficpar);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);              varpij[i][j][(int)age] = doldm[i][j];
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 /*------------ gnuplot -------------*/            }*/
   strcpy(optionfilegnuplot,optionfilefiname);  
   strcat(optionfilegnuplot,".gp");          fprintf(ficresprob,"\n%d ",(int)age);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          fprintf(ficresprobcov,"\n%d ",(int)age);
     printf("Problem with file %s",optionfilegnuplot);          fprintf(ficresprobcor,"\n%d ",(int)age);
   }  
   fclose(ficgp);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 /*--------- index.htm --------*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   strcpy(optionfilehtm,optionfile);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   strcat(optionfilehtm,".htm");          }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          i=0;
     printf("Problem with %s \n",optionfilehtm), exit(0);          for (k=1; k<=(nlstate);k++){
   }            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 \n              for (j=1; j<=i;j++){
 Total number of observations=%d <br>\n                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 <hr  size=\"2\" color=\"#EC5E5E\">              }
  <ul><li><h4>Parameter files</h4>\n            }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          }/* end of loop for state */
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);        } /* end of loop for age */
   fclose(fichtm);  
         /* Confidence intervalle of pij  */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        /*
            fprintf(ficgp,"\nunset parametric;unset label");
 /*------------ free_vector  -------------*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
  chdir(path);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
            fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
  free_ivector(wav,1,imx);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
  free_ivector(num,1,n);        */
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
  fclose(ficparo);        first1=1;
  fclose(ficres);        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
   /*--------------- Prevalence limit --------------*/            j=(k2-1)*(nlstate+ndeath)+l2;
              for (k1=1; k1<=(nlstate);k1++){
   strcpy(filerespl,"pl");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   strcat(filerespl,fileres);                if(l1==k1) continue;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                i=(k1-1)*(nlstate+ndeath)+l1;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                if(i<=j) continue;
   }                for (age=bage; age<=fage; age ++){ 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                  if ((int)age %5==0){
   fprintf(ficrespl,"#Prevalence limit\n");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   fprintf(ficrespl,"#Age ");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   fprintf(ficrespl,"\n");                    mu1=mu[i][(int) age]/stepm*YEARM ;
                      mu2=mu[j][(int) age]/stepm*YEARM;
   prlim=matrix(1,nlstate,1,nlstate);                    c12=cv12/sqrt(v1*v2);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /* Computing eigen value of matrix of covariance */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /* Eigen vectors */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   k=0;                    /*v21=sqrt(1.-v11*v11); *//* error */
   agebase=ageminpar;                    v21=(lc1-v1)/cv12*v11;
   agelim=agemaxpar;                    v12=-v21;
   ftolpl=1.e-10;                    v22=v11;
   i1=cptcoveff;                    tnalp=v21/v11;
   if (cptcovn < 1){i1=1;}                    if(first1==1){
                       first1=0;
   for(cptcov=1;cptcov<=i1;cptcov++){                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    }
         k=k+1;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                    /*printf(fignu*/
         fprintf(ficrespl,"\n#******");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         for(j=1;j<=cptcoveff;j++)                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    if(first==1){
         fprintf(ficrespl,"******\n");                      first=0;
                              fprintf(ficgp,"\nset parametric;unset label");
         for (age=agebase; age<=agelim; age++){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(ficrespl,"%.0f",age );                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           for(i=1; i<=nlstate;i++)   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           fprintf(ficrespl," %.5f", prlim[i][i]);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           fprintf(ficrespl,"\n");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   fclose(ficrespl);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /*------------- h Pij x at various ages ------------*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                    }else{
   }                      first=0;
   printf("Computing pij: result on file '%s' \n", filerespij);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   stepsize=(int) (stepm+YEARM-1)/YEARM;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /*if (stepm<=24) stepsize=2;*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   agelim=AGESUP;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   hstepm=stepsize*YEARM; /* Every year of age */                    }/* if first */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                  } /* age mod 5 */
                 } /* end loop age */
   /* hstepm=1;   aff par mois*/                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
   k=0;              } /*l12 */
   for(cptcov=1;cptcov<=i1;cptcov++){            } /* k12 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          } /*l1 */
       k=k+1;        }/* k1 */
         fprintf(ficrespij,"\n#****** ");      } /* loop covariates */
         for(j=1;j<=cptcoveff;j++)    }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         fprintf(ficrespij,"******\n");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
            free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_vector(xp,1,npar);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fclose(ficresprob);
     fclose(ficresprobcov);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    fclose(ficresprobcor);
     fflush(ficgp);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fflush(fichtmcov);
           oldm=oldms;savm=savms;  }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)  /******************* Printing html file ***********/
             for(j=1; j<=nlstate+ndeath;j++)  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
               fprintf(ficrespij," %1d-%1d",i,j);                    int lastpass, int stepm, int weightopt, char model[],\
           fprintf(ficrespij,"\n");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
            for (h=0; h<=nhstepm; h++){                    int popforecast, int estepm ,\
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                    double jprev1, double mprev1,double anprev1, \
             for(i=1; i<=nlstate;i++)                    double jprev2, double mprev2,double anprev2){
               for(j=1; j<=nlstate+ndeath;j++)    int jj1, k1, i1, cpt;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
              }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  </ul>");
           fprintf(ficrespij,"\n");     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
         }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   }     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
   fclose(ficrespij);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
   /*---------- Forecasting ------------------*/   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   if((stepm == 1) && (strcmp(model,".")==0)){     <a href=\"%s\">%s</a> <br>\n",
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);     fprintf(fichtm,"\
   }   - Population projections by age and states: \
   else{     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
     erreur=108;  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   }  
     m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   /*---------- Health expectancies and variances ------------*/  
    jj1=0;
   strcpy(filerest,"t");   for(k1=1; k1<=m;k1++){
   strcat(filerest,fileres);     for(i1=1; i1<=ncodemax[k1];i1++){
   if((ficrest=fopen(filerest,"w"))==NULL) {       jj1++;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   strcpy(filerese,"e");       }
   strcat(filerese,fileres);       /* Pij */
   if((ficreseij=fopen(filerese,"w"))==NULL) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   }       /* Quasi-incidences */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
  strcpy(fileresv,"v");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   strcat(fileresv,fileres);         /* Period (stable) prevalence in each health state */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {         for(cpt=1; cpt<nlstate;cpt++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);         }
   calagedate=-1;       for(cpt=1; cpt<=nlstate;cpt++) {
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   k=0;       }
   for(cptcov=1;cptcov<=i1;cptcov++){     } /* end i1 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   }/* End k1 */
       k=k+1;   fprintf(fichtm,"</ul>");
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
       fprintf(ficrest,"******\n");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       fprintf(ficreseij,"******\n");   fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficresvij,"\n#****** ");           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
       fprintf(ficresvij,"******\n");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   fprintf(fichtm,"\
       oldm=oldms;savm=savms;   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);       <a href=\"%s\">%s</a> <br>\n</li>",
               estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   fprintf(fichtm,"\
       oldm=oldms;savm=savms;   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);     <a href=\"%s\">%s</a> <br>\n</li>",
                 estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
     - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   fprintf(fichtm,"\
       fprintf(ficrest,"\n");   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       epj=vector(1,nlstate+1);   fprintf(fichtm,"\
       for(age=bage; age <=fage ;age++){   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)  /*  if(popforecast==1) fprintf(fichtm,"\n */
             prlim[i][i]=probs[(int)age][i][k];  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
          /*      <br>",fileres,fileres,fileres,fileres); */
         fprintf(ficrest," %4.0f",age);  /*  else  */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   fflush(fichtm);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }   m=cptcoveff;
           epj[nlstate+1] +=epj[j];   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         }  
    jj1=0;
         for(i=1, vepp=0.;i <=nlstate;i++)   for(k1=1; k1<=m;k1++){
           for(j=1;j <=nlstate;j++)     for(i1=1; i1<=ncodemax[k1];i1++){
             vepp += vareij[i][j][(int)age];       jj1++;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));       if (cptcovn > 0) {
         for(j=1;j <=nlstate;j++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));         for (cpt=1; cpt<=cptcoveff;cpt++) 
         }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         fprintf(ficrest,"\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       }       }
     }       for(cpt=1; cpt<=nlstate;cpt++) {
   }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 free_matrix(mint,1,maxwav,1,n);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     free_vector(weight,1,n);       }
   fclose(ficreseij);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   fclose(ficresvij);  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   fclose(ficrest);  true period expectancies (those weighted with period prevalences are also\
   fclose(ficpar);   drawn in addition to the population based expectancies computed using\
   free_vector(epj,1,nlstate+1);   observed and cahotic prevalences: %s%d.png<br>\
    <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   /*------- Variance limit prevalence------*/       } /* end i1 */
    }/* End k1 */
   strcpy(fileresvpl,"vpl");   fprintf(fichtm,"</ul>");
   strcat(fileresvpl,fileres);   fflush(fichtm);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);  /******************* Gnuplot file **************/
   }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
     char dirfileres[132],optfileres[132];
   k=0;    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
   for(cptcov=1;cptcov<=i1;cptcov++){    int ng=0;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       k=k+1;  /*     printf("Problem with file %s",optionfilegnuplot); */
       fprintf(ficresvpl,"\n#****** ");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       for(j=1;j<=cptcoveff;j++)  /*   } */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");    /*#ifdef windows */
          fprintf(ficgp,"cd \"%s\" \n",pathc);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      /*#endif */
       oldm=oldms;savm=savms;    m=pow(2,cptcoveff);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }    strcpy(dirfileres,optionfilefiname);
  }    strcpy(optfileres,"vpl");
    /* 1eme*/
   fclose(ficresvpl);    for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
   /*---------- End : free ----------------*/       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \n\
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  set ylabel \"Probability\" \n\
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  set ter png small\n\
    set size 0.65,0.65\n\
    plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       for (i=1; i<= nlstate ; i ++) {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);         else        fprintf(ficgp," \%%*lf (\%%*lf)");
         }
   free_matrix(matcov,1,npar,1,npar);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   free_vector(delti,1,npar);       for (i=1; i<= nlstate ; i ++) {
   free_matrix(agev,1,maxwav,1,imx);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
   fprintf(fichtm,"\n</body>");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   fclose(fichtm);       for (i=1; i<= nlstate ; i ++) {
   fclose(ficgp);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
   if(erreur >0)       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     printf("End of Imach with error or warning %d\n",erreur);     }
   else   printf("End of Imach\n");    }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    /*2 eme*/
      
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    for (k1=1; k1<= m ; k1 ++) { 
   /*printf("Total time was %d uSec.\n", total_usecs);*/      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   /*------ End -----------*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
  end:        k=2*i;
 #ifdef windows        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   /* chdir(pathcd);*/        for (j=1; j<= nlstate+1 ; j ++) {
 #endif          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  /*system("wgnuplot graph.plt");*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
  /*system("../gp37mgw/wgnuplot graph.plt");*/        }   
  /*system("cd ../gp37mgw");*/        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
  strcpy(plotcmd,GNUPLOTPROGRAM);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  strcat(plotcmd," ");        for (j=1; j<= nlstate+1 ; j ++) {
  strcat(plotcmd,optionfilegnuplot);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  system(plotcmd);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
 #ifdef windows        fprintf(ficgp,"\" t\"\" w l 0,");
   while (z[0] != 'q') {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     /* chdir(path); */        for (j=1; j<= nlstate+1 ; j ++) {
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     scanf("%s",z);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     if (z[0] == 'c') system("./imach");        }   
     else if (z[0] == 'e') system(optionfilehtm);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     else if (z[0] == 'g') system(plotcmd);        else fprintf(ficgp,"\" t\"\" w l 0,");
     else if (z[0] == 'q') exit(0);      }
   }    }
 #endif    
 }    /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);fflush(ficlog);
           goto end;
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sum the number of covariates including ages as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=1;/* debug */
       /*    likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone);*/ /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.49  
changed lines
  Added in v.1.131


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>