Diff for /imach/src/imach.c between versions 1.49 and 1.208

version 1.49, 2002/06/20 14:03:39 version 1.208, 2015/11/17 14:31:57
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.208  2015/11/17 14:31:57  brouard
      Summary: temporary
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.207  2015/10/27 17:36:57  brouard
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.206  2015/10/24 07:14:11  brouard
   second wave of interviews ("longitudinal") which measure each change    *** empty log message ***
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.205  2015/10/23 15:50:53  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: 0.98r3 some clarification for graphs on likelihood contributions
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.204  2015/10/01 16:20:26  brouard
   probability to be observed in state j at the second wave    Summary: Some new graphs of contribution to likelihood
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.203  2015/09/30 17:45:14  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Summary: looking at better estimation of the hessian
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Also a better criteria for convergence to the period prevalence And
   you to do it.  More covariates you add, slower the    therefore adding the number of years needed to converge. (The
   convergence.    prevalence in any alive state shold sum to one
   
   The advantage of this computer programme, compared to a simple    Revision 1.202  2015/09/22 19:45:16  brouard
   multinomial logistic model, is clear when the delay between waves is not    Summary: Adding some overall graph on contribution to likelihood. Might change
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.201  2015/09/15 17:34:58  brouard
   account using an interpolation or extrapolation.      Summary: 0.98r0
   
   hPijx is the probability to be observed in state i at age x+h    - Some new graphs like suvival functions
   conditional to the observed state i at age x. The delay 'h' can be    - Some bugs fixed like model=1+age+V2.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.200  2015/09/09 16:53:55  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Summary: Big bug thanks to Flavia
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Even model=1+age+V2. did not work anymore
   hPijx.  
     Revision 1.199  2015/09/07 14:09:23  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.198  2015/09/03 07:14:39  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Summary: 0.98q5 Flavia
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.197  2015/09/01 18:24:39  brouard
   from the European Union.    *** empty log message ***
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.196  2015/08/18 23:17:52  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Summary: 0.98q5
   **********************************************************************/  
      Revision 1.195  2015/08/18 16:28:39  brouard
 #include <math.h>    Summary: Adding a hack for testing purpose
 #include <stdio.h>  
 #include <stdlib.h>    After reading the title, ftol and model lines, if the comment line has
 #include <unistd.h>    a q, starting with #q, the answer at the end of the run is quit. It
     permits to run test files in batch with ctest. The former workaround was
 #define MAXLINE 256    $ echo q | imach foo.imach
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.194  2015/08/18 13:32:00  brouard
 #define FILENAMELENGTH 80    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
 /*#define DEBUG*/  
 #define windows    Revision 1.193  2015/08/04 07:17:42  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Summary: 0.98q4
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.192  2015/07/16 16:49:02  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Summary: Fixing some outputs
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.191  2015/07/14 10:00:33  brouard
 #define NINTERVMAX 8    Summary: Some fixes
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.190  2015/05/05 08:51:13  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Summary: Adding digits in output parameters (7 digits instead of 6)
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Fix 1+age+.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.189  2015/04/30 14:45:16  brouard
 #ifdef windows    Summary: 0.98q2
 #define DIRSEPARATOR '\\'  
 #else    Revision 1.188  2015/04/30 08:27:53  brouard
 #define DIRSEPARATOR '/'    *** empty log message ***
 #endif  
     Revision 1.187  2015/04/29 09:11:15  brouard
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    *** empty log message ***
 int erreur; /* Error number */  
 int nvar;    Revision 1.186  2015/04/23 12:01:52  brouard
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Summary: V1*age is working now, version 0.98q1
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Some codes had been disabled in order to simplify and Vn*age was
 int ndeath=1; /* Number of dead states */    working in the optimization phase, ie, giving correct MLE parameters,
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    but, as usual, outputs were not correct and program core dumped.
 int popbased=0;  
     Revision 1.185  2015/03/11 13:26:42  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Summary: Inclusion of compile and links command line for Intel Compiler
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.184  2015/03/11 11:52:39  brouard
 int mle, weightopt;    Summary: Back from Windows 8. Intel Compiler
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.183  2015/03/10 20:34:32  brouard
 double jmean; /* Mean space between 2 waves */    Summary: 0.98q0, trying with directest, mnbrak fixed
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    We use directest instead of original Powell test; probably no
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    incidence on the results, but better justifications;
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    We fixed Numerical Recipes mnbrak routine which was wrong and gave
 FILE *fichtm; /* Html File */    wrong results.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.182  2015/02/12 08:19:57  brouard
 FILE  *ficresvij;    Summary: Trying to keep directest which seems simpler and more general
 char fileresv[FILENAMELENGTH];    Author: Nicolas Brouard
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.181  2015/02/11 23:22:24  brouard
 char title[MAXLINE];    Summary: Comments on Powell added
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Author:
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.180  2015/02/11 17:33:45  brouard
     Summary: Finishing move from main to function (hpijx and prevalence_limit)
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.179  2015/01/04 09:57:06  brouard
 char popfile[FILENAMELENGTH];    Summary: back to OS/X
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.178  2015/01/04 09:35:48  brouard
     *** empty log message ***
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.177  2015/01/03 18:40:56  brouard
 #define FTOL 1.0e-10    Summary: Still testing ilc32 on OSX
   
 #define NRANSI    Revision 1.176  2015/01/03 16:45:04  brouard
 #define ITMAX 200    *** empty log message ***
   
 #define TOL 2.0e-4    Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.174  2015/01/03 16:15:49  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Summary: Still in cross-compilation
   
 #define GOLD 1.618034    Revision 1.173  2015/01/03 12:06:26  brouard
 #define GLIMIT 100.0    Summary: trying to detect cross-compilation
 #define TINY 1.0e-20  
     Revision 1.172  2014/12/27 12:07:47  brouard
 static double maxarg1,maxarg2;    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.171  2014/12/23 13:26:59  brouard
      Summary: Back from Visual C
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Still problem with utsname.h on Windows
   
 static double sqrarg;    Revision 1.170  2014/12/23 11:17:12  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Summary: Cleaning some \%% back to %%
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
 int imx;  
 int stepm;    Revision 1.169  2014/12/22 23:08:31  brouard
 /* Stepm, step in month: minimum step interpolation*/    Summary: 0.98p
   
 int estepm;    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.168  2014/12/22 15:17:42  brouard
 int m,nb;    Summary: update
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.167  2014/12/22 13:50:56  brouard
 double **pmmij, ***probs, ***mobaverage;    Summary: Testing uname and compiler version and if compiled 32 or 64
 double dateintmean=0;  
     Testing on Linux 64
 double *weight;  
 int **s; /* Status */    Revision 1.166  2014/12/22 11:40:47  brouard
 double *agedc, **covar, idx;    *** empty log message ***
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.165  2014/12/16 11:20:36  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Summary: After compiling on Visual C
 double ftolhess; /* Tolerance for computing hessian */  
     * imach.c (Module): Merging 1.61 to 1.162
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.164  2014/12/16 10:52:11  brouard
 {    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    * imach.c (Module): Merging 1.61 to 1.162
   
    l1 = strlen( path );                 /* length of path */    Revision 1.163  2014/12/16 10:30:11  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    * imach.c (Module): Merging 1.61 to 1.162
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.162  2014/09/25 11:43:39  brouard
 #if     defined(__bsd__)                /* get current working directory */    Summary: temporary backup 0.99!
       extern char       *getwd( );  
     Revision 1.1  2014/09/16 11:06:58  brouard
       if ( getwd( dirc ) == NULL ) {    Summary: With some code (wrong) for nlopt
 #else  
       extern char       *getcwd( );    Author:
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.161  2014/09/15 20:41:41  brouard
 #endif    Summary: Problem with macro SQR on Intel compiler
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.160  2014/09/02 09:24:05  brouard
       strcpy( name, path );             /* we've got it */    *** empty log message ***
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.159  2014/09/01 10:34:10  brouard
       l2 = strlen( s );                 /* length of filename */    Summary: WIN32
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Author: Brouard
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.158  2014/08/27 17:11:51  brouard
       dirc[l1-l2] = 0;                  /* add zero */    *** empty log message ***
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.157  2014/08/27 16:26:55  brouard
 #ifdef windows    Summary: Preparing windows Visual studio version
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Author: Brouard
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    In order to compile on Visual studio, time.h is now correct and time_t
 #endif    and tm struct should be used. difftime should be used but sometimes I
    s = strrchr( name, '.' );            /* find last / */    just make the differences in raw time format (time(&now).
    s++;    Trying to suppress #ifdef LINUX
    strcpy(ext,s);                       /* save extension */    Add xdg-open for __linux in order to open default browser.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.156  2014/08/25 20:10:10  brouard
    strncpy( finame, name, l1-l2);    *** empty log message ***
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.155  2014/08/25 18:32:34  brouard
 }    Summary: New compile, minor changes
     Author: Brouard
   
 /******************************************/    Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
 void replace(char *s, char*t)  
 {    Revision 1.153  2014/06/20 16:45:46  brouard
   int i;    Summary: If 3 live state, convergence to period prevalence on same graph
   int lg=20;    Author: Brouard
   i=0;  
   lg=strlen(t);    Revision 1.152  2014/06/18 17:54:09  brouard
   for(i=0; i<= lg; i++) {    Summary: open browser, use gnuplot on same dir than imach if not found in the path
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.151  2014/06/18 16:43:30  brouard
   }    *** empty log message ***
 }  
     Revision 1.150  2014/06/18 16:42:35  brouard
 int nbocc(char *s, char occ)    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 {    Author: brouard
   int i,j=0;  
   int lg=20;    Revision 1.149  2014/06/18 15:51:14  brouard
   i=0;    Summary: Some fixes in parameter files errors
   lg=strlen(s);    Author: Nicolas Brouard
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.148  2014/06/17 17:38:48  brouard
   }    Summary: Nothing new
   return j;    Author: Brouard
 }  
     Just a new packaging for OS/X version 0.98nS
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.147  2014/06/16 10:33:11  brouard
   int i,lg,j,p=0;    *** empty log message ***
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.146  2014/06/16 10:20:28  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Summary: Merge
   }    Author: Brouard
   
   lg=strlen(t);    Merge, before building revised version.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.145  2014/06/10 21:23:15  brouard
   }    Summary: Debugging with valgrind
      u[p]='\0';    Author: Nicolas Brouard
   
    for(j=0; j<= lg; j++) {    Lot of changes in order to output the results with some covariates
     if (j>=(p+1))(v[j-p-1] = t[j]);    After the Edimburgh REVES conference 2014, it seems mandatory to
   }    improve the code.
 }    No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
 /********************** nrerror ********************/    Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
 void nrerror(char error_text[])    the source code.
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.143  2014/01/26 09:45:38  brouard
   fprintf(stderr,"%s\n",error_text);    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   exit(1);  
 }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 /*********************** vector *******************/    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 double *vector(int nl, int nh)  
 {    Revision 1.142  2014/01/26 03:57:36  brouard
   double *v;    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   return v-nl+NR_END;  
 }    Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.140  2011/09/02 10:37:54  brouard
 {    Summary: times.h is ok with mingw32 now.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 /************************ivector *******************************/    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 int *ivector(long nl,long nh)  
 {    Revision 1.138  2010/04/30 18:19:40  brouard
   int *v;    *** empty log message ***
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.137  2010/04/29 18:11:38  brouard
   return v-nl+NR_END;    (Module): Checking covariates for more complex models
 }    than V1+V2. A lot of change to be done. Unstable.
   
 /******************free ivector **************************/    Revision 1.136  2010/04/26 20:30:53  brouard
 void free_ivector(int *v, long nl, long nh)    (Module): merging some libgsl code. Fixing computation
 {    of likelione (using inter/intrapolation if mle = 0) in order to
   free((FREE_ARG)(v+nl-NR_END));    get same likelihood as if mle=1.
 }    Some cleaning of code and comments added.
   
 /******************* imatrix *******************************/    Revision 1.135  2009/10/29 15:33:14  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.134  2009/10/29 13:18:53  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   int **m;  
      Revision 1.133  2009/07/06 10:21:25  brouard
   /* allocate pointers to rows */    just nforces
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.132  2009/07/06 08:22:05  brouard
   m += NR_END;    Many tings
   m -= nrl;  
      Revision 1.131  2009/06/20 16:22:47  brouard
      Some dimensions resccaled
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.130  2009/05/26 06:44:34  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): Max Covariate is now set to 20 instead of 8. A
   m[nrl] += NR_END;    lot of cleaning with variables initialized to 0. Trying to make
   m[nrl] -= ncl;    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.129  2007/08/31 13:49:27  lievre
      Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.128  2006/06/30 13:02:05  brouard
 }    (Module): Clarifications on computing e.j
   
 /****************** free_imatrix *************************/    Revision 1.127  2006/04/28 18:11:50  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    (Module): Yes the sum of survivors was wrong since
       int **m;    imach-114 because nhstepm was no more computed in the age
       long nch,ncl,nrh,nrl;    loop. Now we define nhstepma in the age loop.
      /* free an int matrix allocated by imatrix() */    (Module): In order to speed up (in case of numerous covariates) we
 {    compute health expectancies (without variances) in a first step
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    and then all the health expectancies with variances or standard
   free((FREE_ARG) (m+nrl-NR_END));    deviation (needs data from the Hessian matrices) which slows the
 }    computation.
     In the future we should be able to stop the program is only health
 /******************* matrix *******************************/    expectancies and graph are needed without standard deviations.
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.126  2006/04/28 17:23:28  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    (Module): Yes the sum of survivors was wrong since
   double **m;    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Version 0.98h
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.125  2006/04/04 15:20:31  lievre
   m -= nrl;    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.124  2006/03/22 17:13:53  lievre
   m[nrl] += NR_END;    Parameters are printed with %lf instead of %f (more numbers after the comma).
   m[nrl] -= ncl;    The log-likelihood is printed in the log file
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.123  2006/03/20 10:52:43  brouard
   return m;    * imach.c (Module): <title> changed, corresponds to .htm file
 }    name. <head> headers where missing.
   
 /*************************free matrix ************************/    * imach.c (Module): Weights can have a decimal point as for
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    English (a comma might work with a correct LC_NUMERIC environment,
 {    otherwise the weight is truncated).
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Modification of warning when the covariates values are not 0 or
   free((FREE_ARG)(m+nrl-NR_END));    1.
 }    Version 0.98g
   
 /******************* ma3x *******************************/    Revision 1.122  2006/03/20 09:45:41  brouard
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    (Module): Weights can have a decimal point as for
 {    English (a comma might work with a correct LC_NUMERIC environment,
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    otherwise the weight is truncated).
   double ***m;    Modification of warning when the covariates values are not 0 or
     1.
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Version 0.98g
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.121  2006/03/16 17:45:01  lievre
   m -= nrl;    * imach.c (Module): Comments concerning covariates added
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    * imach.c (Module): refinements in the computation of lli if
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    status=-2 in order to have more reliable computation if stepm is
   m[nrl] += NR_END;    not 1 month. Version 0.98f
   m[nrl] -= ncl;  
     Revision 1.120  2006/03/16 15:10:38  lievre
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    not 1 month. Version 0.98f
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    Revision 1.119  2006/03/15 17:42:26  brouard
   m[nrl][ncl] -= nll;    (Module): Bug if status = -2, the loglikelihood was
   for (j=ncl+1; j<=nch; j++)    computed as likelihood omitting the logarithm. Version O.98e
     m[nrl][j]=m[nrl][j-1]+nlay;  
      Revision 1.118  2006/03/14 18:20:07  brouard
   for (i=nrl+1; i<=nrh; i++) {    (Module): varevsij Comments added explaining the second
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    table of variances if popbased=1 .
     for (j=ncl+1; j<=nch; j++)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       m[i][j]=m[i][j-1]+nlay;    (Module): Function pstamp added
   }    (Module): Version 0.98d
   return m;  
 }    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 /*************************free ma3x ************************/    table of variances if popbased=1 .
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 {    (Module): Function pstamp added
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    (Module): Version 0.98d
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.116  2006/03/06 10:29:27  brouard
 }    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.115  2006/02/27 12:17:45  brouard
 extern double *pcom,*xicom;    (Module): One freematrix added in mlikeli! 0.98c
 extern double (*nrfunc)(double []);  
      Revision 1.114  2006/02/26 12:57:58  brouard
 double f1dim(double x)    (Module): Some improvements in processing parameter
 {    filename with strsep.
   int j;  
   double f;    Revision 1.113  2006/02/24 14:20:24  brouard
   double *xt;    (Module): Memory leaks checks with valgrind and:
      datafile was not closed, some imatrix were not freed and on matrix
   xt=vector(1,ncom);    allocation too.
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Revision 1.112  2006/01/30 09:55:26  brouard
   free_vector(xt,1,ncom);    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   return f;  
 }    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 /*****************brent *************************/    (Module): Comments can be added in data file. Missing date values
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    can be a simple dot '.'.
 {  
   int iter;    Revision 1.110  2006/01/25 00:51:50  brouard
   double a,b,d,etemp;    (Module): Lots of cleaning and bugs added (Gompertz)
   double fu,fv,fw,fx;  
   double ftemp;    Revision 1.109  2006/01/24 19:37:15  brouard
   double p,q,r,tol1,tol2,u,v,w,x,xm;    (Module): Comments (lines starting with a #) are allowed in data.
   double e=0.0;  
      Revision 1.108  2006/01/19 18:05:42  lievre
   a=(ax < cx ? ax : cx);    Gnuplot problem appeared...
   b=(ax > cx ? ax : cx);    To be fixed
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);    Revision 1.107  2006/01/19 16:20:37  brouard
   for (iter=1;iter<=ITMAX;iter++) {    Test existence of gnuplot in imach path
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Revision 1.106  2006/01/19 13:24:36  brouard
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    Some cleaning and links added in html output
     printf(".");fflush(stdout);  
 #ifdef DEBUG    Revision 1.105  2006/01/05 20:23:19  lievre
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    *** empty log message ***
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    Revision 1.104  2005/09/30 16:11:43  lievre
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    (Module): sump fixed, loop imx fixed, and simplifications.
       *xmin=x;    (Module): If the status is missing at the last wave but we know
       return fx;    that the person is alive, then we can code his/her status as -2
     }    (instead of missing=-1 in earlier versions) and his/her
     ftemp=fu;    contributions to the likelihood is 1 - Prob of dying from last
     if (fabs(e) > tol1) {    health status (= 1-p13= p11+p12 in the easiest case of somebody in
       r=(x-w)*(fx-fv);    the healthy state at last known wave). Version is 0.98
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Revision 1.103  2005/09/30 15:54:49  lievre
       q=2.0*(q-r);    (Module): sump fixed, loop imx fixed, and simplifications.
       if (q > 0.0) p = -p;  
       q=fabs(q);    Revision 1.102  2004/09/15 17:31:30  brouard
       etemp=e;    Add the possibility to read data file including tab characters.
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    Revision 1.101  2004/09/15 10:38:38  brouard
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    Fix on curr_time
       else {  
         d=p/q;    Revision 1.100  2004/07/12 18:29:06  brouard
         u=x+d;    Add version for Mac OS X. Just define UNIX in Makefile
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    Revision 1.99  2004/06/05 08:57:40  brouard
       }    *** empty log message ***
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    Revision 1.98  2004/05/16 15:05:56  brouard
     }    New version 0.97 . First attempt to estimate force of mortality
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    directly from the data i.e. without the need of knowing the health
     fu=(*f)(u);    state at each age, but using a Gompertz model: log u =a + b*age .
     if (fu <= fx) {    This is the basic analysis of mortality and should be done before any
       if (u >= x) a=x; else b=x;    other analysis, in order to test if the mortality estimated from the
       SHFT(v,w,x,u)    cross-longitudinal survey is different from the mortality estimated
         SHFT(fv,fw,fx,fu)    from other sources like vital statistic data.
         } else {  
           if (u < x) a=u; else b=u;    The same imach parameter file can be used but the option for mle should be -3.
           if (fu <= fw || w == x) {  
             v=w;    Agnès, who wrote this part of the code, tried to keep most of the
             w=u;    former routines in order to include the new code within the former code.
             fv=fw;  
             fw=fu;    The output is very simple: only an estimate of the intercept and of
           } else if (fu <= fv || v == x || v == w) {    the slope with 95% confident intervals.
             v=u;  
             fv=fu;    Current limitations:
           }    A) Even if you enter covariates, i.e. with the
         }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   }    B) There is no computation of Life Expectancy nor Life Table.
   nrerror("Too many iterations in brent");  
   *xmin=x;    Revision 1.97  2004/02/20 13:25:42  lievre
   return fx;    Version 0.96d. Population forecasting command line is (temporarily)
 }    suppressed.
   
 /****************** mnbrak ***********************/    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    rewritten within the same printf. Workaround: many printfs.
             double (*func)(double))  
 {    Revision 1.95  2003/07/08 07:54:34  brouard
   double ulim,u,r,q, dum;    * imach.c (Repository):
   double fu;    (Repository): Using imachwizard code to output a more meaningful covariance
      matrix (cov(a12,c31) instead of numbers.
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);    Revision 1.94  2003/06/27 13:00:02  brouard
   if (*fb > *fa) {    Just cleaning
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    Revision 1.93  2003/06/25 16:33:55  brouard
       }    (Module): On windows (cygwin) function asctime_r doesn't
   *cx=(*bx)+GOLD*(*bx-*ax);    exist so I changed back to asctime which exists.
   *fc=(*func)(*cx);    (Module): Version 0.96b
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);    Revision 1.92  2003/06/25 16:30:45  brouard
     q=(*bx-*cx)*(*fb-*fa);    (Module): On windows (cygwin) function asctime_r doesn't
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    exist so I changed back to asctime which exists.
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    Revision 1.91  2003/06/25 15:30:29  brouard
     if ((*bx-u)*(u-*cx) > 0.0) {    * imach.c (Repository): Duplicated warning errors corrected.
       fu=(*func)(u);    (Repository): Elapsed time after each iteration is now output. It
     } else if ((*cx-u)*(u-ulim) > 0.0) {    helps to forecast when convergence will be reached. Elapsed time
       fu=(*func)(u);    is stamped in powell.  We created a new html file for the graphs
       if (fu < *fc) {    concerning matrix of covariance. It has extension -cov.htm.
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))    Revision 1.90  2003/06/24 12:34:15  brouard
           }    (Module): Some bugs corrected for windows. Also, when
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    mle=-1 a template is output in file "or"mypar.txt with the design
       u=ulim;    of the covariance matrix to be input.
       fu=(*func)(u);  
     } else {    Revision 1.89  2003/06/24 12:30:52  brouard
       u=(*cx)+GOLD*(*cx-*bx);    (Module): Some bugs corrected for windows. Also, when
       fu=(*func)(u);    mle=-1 a template is output in file "or"mypar.txt with the design
     }    of the covariance matrix to be input.
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)    Revision 1.88  2003/06/23 17:54:56  brouard
       }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 }  
     Revision 1.87  2003/06/18 12:26:01  brouard
 /*************** linmin ************************/    Version 0.96
   
 int ncom;    Revision 1.86  2003/06/17 20:04:08  brouard
 double *pcom,*xicom;    (Module): Change position of html and gnuplot routines and added
 double (*nrfunc)(double []);    routine fileappend.
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    Revision 1.85  2003/06/17 13:12:43  brouard
 {    * imach.c (Repository): Check when date of death was earlier that
   double brent(double ax, double bx, double cx,    current date of interview. It may happen when the death was just
                double (*f)(double), double tol, double *xmin);    prior to the death. In this case, dh was negative and likelihood
   double f1dim(double x);    was wrong (infinity). We still send an "Error" but patch by
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    assuming that the date of death was just one stepm after the
               double *fc, double (*func)(double));    interview.
   int j;    (Repository): Because some people have very long ID (first column)
   double xx,xmin,bx,ax;    we changed int to long in num[] and we added a new lvector for
   double fx,fb,fa;    memory allocation. But we also truncated to 8 characters (left
      truncation)
   ncom=n;    (Repository): No more line truncation errors.
   pcom=vector(1,n);  
   xicom=vector(1,n);    Revision 1.84  2003/06/13 21:44:43  brouard
   nrfunc=func;    * imach.c (Repository): Replace "freqsummary" at a correct
   for (j=1;j<=n;j++) {    place. It differs from routine "prevalence" which may be called
     pcom[j]=p[j];    many times. Probs is memory consuming and must be used with
     xicom[j]=xi[j];    parcimony.
   }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   ax=0.0;  
   xx=1.0;    Revision 1.83  2003/06/10 13:39:11  lievre
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    *** empty log message ***
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    Revision 1.82  2003/06/05 15:57:20  brouard
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    Add log in  imach.c and  fullversion number is now printed.
 #endif  
   for (j=1;j<=n;j++) {  */
     xi[j] *= xmin;  /*
     p[j] += xi[j];     Interpolated Markov Chain
   }  
   free_vector(xicom,1,n);    Short summary of the programme:
   free_vector(pcom,1,n);    
 }    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 /*************** powell ************************/    first survey ("cross") where individuals from different ages are
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    interviewed on their health status or degree of disability (in the
             double (*func)(double []))    case of a health survey which is our main interest) -2- at least a
 {    second wave of interviews ("longitudinal") which measure each change
   void linmin(double p[], double xi[], int n, double *fret,    (if any) in individual health status.  Health expectancies are
               double (*func)(double []));    computed from the time spent in each health state according to a
   int i,ibig,j;    model. More health states you consider, more time is necessary to reach the
   double del,t,*pt,*ptt,*xit;    Maximum Likelihood of the parameters involved in the model.  The
   double fp,fptt;    simplest model is the multinomial logistic model where pij is the
   double *xits;    probability to be observed in state j at the second wave
   pt=vector(1,n);    conditional to be observed in state i at the first wave. Therefore
   ptt=vector(1,n);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   xit=vector(1,n);    'age' is age and 'sex' is a covariate. If you want to have a more
   xits=vector(1,n);    complex model than "constant and age", you should modify the program
   *fret=(*func)(p);    where the markup *Covariates have to be included here again* invites
   for (j=1;j<=n;j++) pt[j]=p[j];    you to do it.  More covariates you add, slower the
   for (*iter=1;;++(*iter)) {    convergence.
     fp=(*fret);  
     ibig=0;    The advantage of this computer programme, compared to a simple
     del=0.0;    multinomial logistic model, is clear when the delay between waves is not
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    identical for each individual. Also, if a individual missed an
     for (i=1;i<=n;i++)    intermediate interview, the information is lost, but taken into
       printf(" %d %.12f",i, p[i]);    account using an interpolation or extrapolation.  
     printf("\n");  
     for (i=1;i<=n;i++) {    hPijx is the probability to be observed in state i at age x+h
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    conditional to the observed state i at age x. The delay 'h' can be
       fptt=(*fret);    split into an exact number (nh*stepm) of unobserved intermediate
 #ifdef DEBUG    states. This elementary transition (by month, quarter,
       printf("fret=%lf \n",*fret);    semester or year) is modelled as a multinomial logistic.  The hPx
 #endif    matrix is simply the matrix product of nh*stepm elementary matrices
       printf("%d",i);fflush(stdout);    and the contribution of each individual to the likelihood is simply
       linmin(p,xit,n,fret,func);    hPijx.
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));    Also this programme outputs the covariance matrix of the parameters but also
         ibig=i;    of the life expectancies. It also computes the period (stable) prevalence. 
       }    
 #ifdef DEBUG    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       printf("%d %.12e",i,(*fret));             Institut national d'études démographiques, Paris.
       for (j=1;j<=n;j++) {    This software have been partly granted by Euro-REVES, a concerted action
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    from the European Union.
         printf(" x(%d)=%.12e",j,xit[j]);    It is copyrighted identically to a GNU software product, ie programme and
       }    software can be distributed freely for non commercial use. Latest version
       for(j=1;j<=n;j++)    can be accessed at http://euroreves.ined.fr/imach .
         printf(" p=%.12e",p[j]);  
       printf("\n");    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #endif    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     }    
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    **********************************************************************/
 #ifdef DEBUG  /*
       int k[2],l;    main
       k[0]=1;    read parameterfile
       k[1]=-1;    read datafile
       printf("Max: %.12e",(*func)(p));    concatwav
       for (j=1;j<=n;j++)    freqsummary
         printf(" %.12e",p[j]);    if (mle >= 1)
       printf("\n");      mlikeli
       for(l=0;l<=1;l++) {    print results files
         for (j=1;j<=n;j++) {    if mle==1 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];       computes hessian
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    read end of parameter file: agemin, agemax, bage, fage, estepm
         }        begin-prev-date,...
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    open gnuplot file
       }    open html file
 #endif    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
      for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
                                     | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       free_vector(xit,1,n);      freexexit2 possible for memory heap.
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);    h Pij x                         | pij_nom  ficrestpij
       free_vector(pt,1,n);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       return;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
     }         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       ptt[j]=2.0*p[j]-pt[j];         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       xit[j]=p[j]-pt[j];    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       pt[j]=p[j];     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     }     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     fptt=(*func)(ptt);  
     if (fptt < fp) {    forecasting if prevfcast==1 prevforecast call prevalence()
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    health expectancies
       if (t < 0.0) {    Variance-covariance of DFLE
         linmin(p,xit,n,fret,func);    prevalence()
         for (j=1;j<=n;j++) {     movingaverage()
           xi[j][ibig]=xi[j][n];    varevsij() 
           xi[j][n]=xit[j];    if popbased==1 varevsij(,popbased)
         }    total life expectancies
 #ifdef DEBUG    Variance of period (stable) prevalence
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);   end
         for(j=1;j<=n;j++)  */
           printf(" %.12e",xit[j]);  
         printf("\n");  /* #define DEBUG */
 #endif  /* #define DEBUGBRENT */
       }  /* #define DEBUGLINMIN */
     }  /* #define DEBUGHESS */
   }  #define DEBUGHESSIJ
 }  /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan)*\/ */
   #define POWELL /* Instead of NLOPT */
 /**** Prevalence limit ****************/  #define POWELLF1F3 /* Skip test */
   /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #include <math.h>
      matrix by transitions matrix until convergence is reached */  #include <stdio.h>
   #include <stdlib.h>
   int i, ii,j,k;  #include <string.h>
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  #ifdef _WIN32
   double **out, cov[NCOVMAX], **pmij();  #include <io.h>
   double **newm;  #include <windows.h>
   double agefin, delaymax=50 ; /* Max number of years to converge */  #include <tchar.h>
   #else
   for (ii=1;ii<=nlstate+ndeath;ii++)  #include <unistd.h>
     for (j=1;j<=nlstate+ndeath;j++){  #endif
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  #include <limits.h>
   #include <sys/types.h>
    cov[1]=1.;  
    #if defined(__GNUC__)
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #include <sys/utsname.h> /* Doesn't work on Windows */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #endif
     newm=savm;  
     /* Covariates have to be included here again */  #include <sys/stat.h>
      cov[2]=agefin;  #include <errno.h>
    /* extern int errno; */
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /* #ifdef LINUX */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  /* #include <time.h> */
       }  /* #include "timeval.h" */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /* #else */
       for (k=1; k<=cptcovprod;k++)  /* #include <sys/time.h> */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /* #endif */
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #include <time.h>
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  #ifdef GSL
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #include <gsl/gsl_errno.h>
   #include <gsl/gsl_multimin.h>
     savm=oldm;  #endif
     oldm=newm;  
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  #ifdef NLOPT
       min=1.;  #include <nlopt.h>
       max=0.;  typedef struct {
       for(i=1; i<=nlstate; i++) {    double (* function)(double [] );
         sumnew=0;  } myfunc_data ;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #endif
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  /* #include <libintl.h> */
         min=FMIN(min,prlim[i][j]);  /* #define _(String) gettext (String) */
       }  
       maxmin=max-min;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       maxmax=FMAX(maxmax,maxmin);  
     }  #define GNUPLOTPROGRAM "gnuplot"
     if(maxmax < ftolpl){  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       return prlim;  #define FILENAMELENGTH 132
     }  
   }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /*************** transition probabilities ***************/  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  #define NINTERVMAX 8
   double s1, s2;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   /*double t34;*/  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   int i,j,j1, nc, ii, jj;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
     for(i=1; i<= nlstate; i++){  #define MAXN 20000
     for(j=1; j<i;j++){  #define YEARM 12. /**< Number of months per year */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define AGESUP 130
         /*s2 += param[i][j][nc]*cov[nc];*/  #define AGEBASE 40
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define AGEOVERFLOW 1.e20
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
       }  #ifdef _WIN32
       ps[i][j]=s2;  #define DIRSEPARATOR '\\'
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  #define CHARSEPARATOR "\\"
     }  #define ODIRSEPARATOR '/'
     for(j=i+1; j<=nlstate+ndeath;j++){  #else
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define DIRSEPARATOR '/'
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define CHARSEPARATOR "/"
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #define ODIRSEPARATOR '\\'
       }  #endif
       ps[i][j]=s2;  
     }  /* $Id$ */
   }  /* $State$ */
     /*ps[3][2]=1;*/  #include "version.h"
   char version[]=__IMACH_VERSION__;
   for(i=1; i<= nlstate; i++){  char copyright[]="October 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
      s1=0;  char fullversion[]="$Revision$ $Date$"; 
     for(j=1; j<i; j++)  char strstart[80];
       s1+=exp(ps[i][j]);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     for(j=i+1; j<=nlstate+ndeath; j++)  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       s1+=exp(ps[i][j]);  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
     ps[i][i]=1./(s1+1.);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
     for(j=1; j<i; j++)  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
     for(j=i+1; j<=nlstate+ndeath; j++)  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   } /* end i */  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   int cptcov=0; /* Working variable */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  int npar=NPARMAX;
     for(jj=1; jj<= nlstate+ndeath; jj++){  int nlstate=2; /* Number of live states */
       ps[ii][jj]=0;  int ndeath=1; /* Number of dead states */
       ps[ii][ii]=1;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     }  int popbased=0;
   }  
   int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav=0; /* Maxim number of waves */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     for(jj=1; jj<= nlstate+ndeath; jj++){  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
      printf("%lf ",ps[ii][jj]);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
    }                     to the likelihood and the sum of weights (done by funcone)*/
     printf("\n ");  int mle=1, weightopt=0;
     }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     printf("\n ");printf("%lf ",cov[2]);*/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /*  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   for(i=1; i<= npar; i++) printf("%f ",x[i]);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   goto end;*/  int countcallfunc=0;  /* Count the number of calls to func */
     return ps;  double jmean=1; /* Mean space between 2 waves */
 }  double **matprod2(); /* test */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 /**************** Product of 2 matrices ******************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   /*FILE *fic ; */ /* Used in readdata only */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  int globpr=0; /* Global variable for printing or not */
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  double fretone; /* Only one call to likelihood */
   /* in, b, out are matrice of pointers which should have been initialized  long ipmx=0; /* Number of contributions */
      before: only the contents of out is modified. The function returns  double sw; /* Sum of weights */
      a pointer to pointers identical to out */  char filerespow[FILENAMELENGTH];
   long i, j, k;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   for(i=nrl; i<= nrh; i++)  FILE *ficresilk;
     for(k=ncolol; k<=ncoloh; k++)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  FILE *ficresprobmorprev;
         out[i][k] +=in[i][j]*b[j][k];  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
   return out;  char filerese[FILENAMELENGTH];
 }  FILE *ficresstdeij;
   char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
 /************* Higher Matrix Product ***************/  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  char fileresvpl[FILENAMELENGTH];
      duration (i.e. until  char title[MAXLINE];
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
      (typically every 2 years instead of every month which is too big).  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
      Model is determined by parameters x and covariates have to be  char command[FILENAMELENGTH];
      included manually here.  int  outcmd=0;
   
      */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char fileresu[FILENAMELENGTH]; /* fileres without r in front */
   int i, j, d, h, k;  char filelog[FILENAMELENGTH]; /* Log file */
   double **out, cov[NCOVMAX];  char filerest[FILENAMELENGTH];
   double **newm;  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /* struct timezone tzp; */
     }  /* extern int gettimeofday(); */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  struct tm tml, *gmtime(), *localtime();
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  extern time_t time();
       newm=savm;  
       /* Covariates have to be included here again */  struct tm start_time, end_time, curr_time, last_time, forecast_time;
       cov[1]=1.;  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  struct tm tm;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  char strcurr[80], strfor[80];
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  char *endptr;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  long lval;
   double dval;
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  #define NR_END 1
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  #define FREE_ARG char*
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  #define FTOL 1.0e-10
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  #define NRANSI 
       oldm=newm;  #define ITMAX 200 
     }  
     for(i=1; i<=nlstate+ndeath; i++)  #define TOL 2.0e-4 
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  #define CGOLD 0.3819660 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  #define ZEPS 1.0e-10 
          */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       }  
   } /* end h */  #define GOLD 1.618034 
   return po;  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
   static double maxarg1,maxarg2;
 /*************** log-likelihood *************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 double func( double *x)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   int i, ii, j, k, mi, d, kk;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  #define rint(a) floor(a+0.5)
   double **out;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   double sw; /* Sum of weights */  #define mytinydouble 1.0e-16
   double lli; /* Individual log likelihood */  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   long ipmx;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   /*extern weight */  /* static double dsqrarg; */
   /* We are differentiating ll according to initial status */  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  static double sqrarg;
   /*for(i=1;i<imx;i++)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     printf(" %d\n",s[4][i]);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   */  int agegomp= AGEGOMP;
   cov[1]=1.;  
   int imx; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  int stepm=1;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /* Stepm, step in month: minimum step interpolation*/
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  int estepm;
       for (ii=1;ii<=nlstate+ndeath;ii++)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){  int m,nb;
         newm=savm;  long *num;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  int firstpass=0, lastpass=4,*cod, *cens;
         for (kk=1; kk<=cptcovage;kk++) {  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];                     covariate for which somebody answered excluding 
         }                     undefined. Usually 2: 0 and 1. */
          int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                               covariate for which somebody answered including 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                               undefined. Usually 3: -1, 0 and 1. */
         savm=oldm;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
         oldm=newm;  double **pmmij, ***probs;
          double *ageexmed,*agecens;
          double dateintmean=0;
       } /* end mult */  
        double *weight;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  int **s; /* Status */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  double *agedc;
       ipmx +=1;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       sw += weight[i];                    * covar=matrix(0,NCOVMAX,1,n); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
     } /* end of wave */  double  idx; 
   } /* end of individual */  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   int *Tage;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  int *Ndum; /** Freq of modality (tricode */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   return -l;  double *lsurv, *lpop, *tpop;
 }  
   double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   double ftolhess; /**< Tolerance for computing hessian */
 /*********** Maximum Likelihood Estimation ***************/  
   /**************** split *************************/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   int i,j, iter;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   double **xi,*delti;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double fret;    */ 
   xi=matrix(1,npar,1,npar);    char  *ss;                            /* pointer */
   for (i=1;i<=npar;i++)    int   l1=0, l2=0;                             /* length counters */
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);    l1 = strlen(path );                   /* length of path */
   printf("Powell\n");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   powell(p,xi,npar,ftol,&iter,&fret,func);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      strcpy( name, path );               /* we got the fullname name because no directory */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /**** Computes Hessian and covariance matrix ***/  #ifdef WIN32
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
 {  #else
   double  **a,**y,*x,pd;          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   double **hess;  #endif
   int i, j,jk;        return( GLOCK_ERROR_GETCWD );
   int *indx;      }
       /* got dirc from getcwd*/
   double hessii(double p[], double delta, int theta, double delti[]);      printf(" DIRC = %s \n",dirc);
   double hessij(double p[], double delti[], int i, int j);    } else {                              /* strip directory from path */
   void lubksb(double **a, int npar, int *indx, double b[]) ;      ss++;                               /* after this, the filename */
   void ludcmp(double **a, int npar, int *indx, double *d) ;      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   hess=matrix(1,npar,1,npar);      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
   printf("\nCalculation of the hessian matrix. Wait...\n");      dirc[l1-l2] = '\0';                 /* add zero */
   for (i=1;i<=npar;i++){      printf(" DIRC2 = %s \n",dirc);
     printf("%d",i);fflush(stdout);    }
     hess[i][i]=hessii(p,ftolhess,i,delti);    /* We add a separator at the end of dirc if not exists */
     /*printf(" %f ",p[i]);*/    l1 = strlen( dirc );                  /* length of directory */
     /*printf(" %lf ",hess[i][i]);*/    if( dirc[l1-1] != DIRSEPARATOR ){
   }      dirc[l1] =  DIRSEPARATOR;
        dirc[l1+1] = 0; 
   for (i=1;i<=npar;i++) {      printf(" DIRC3 = %s \n",dirc);
     for (j=1;j<=npar;j++)  {    }
       if (j>i) {    ss = strrchr( name, '.' );            /* find last / */
         printf(".%d%d",i,j);fflush(stdout);    if (ss >0){
         hess[i][j]=hessij(p,delti,i,j);      ss++;
         hess[j][i]=hess[i][j];          strcpy(ext,ss);                     /* save extension */
         /*printf(" %lf ",hess[i][j]);*/      l1= strlen( name);
       }      l2= strlen(ss)+1;
     }      strncpy( finame, name, l1-l2);
   }      finame[l1-l2]= 0;
   printf("\n");    }
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    return( 0 );                          /* we're done */
    }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /******************************************/
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  void replace_back_to_slash(char *s, char*t)
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  {
   ludcmp(a,npar,indx,&pd);    int i;
     int lg=0;
   for (j=1;j<=npar;j++) {    i=0;
     for (i=1;i<=npar;i++) x[i]=0;    lg=strlen(t);
     x[j]=1;    for(i=0; i<= lg; i++) {
     lubksb(a,npar,indx,x);      (s[i] = t[i]);
     for (i=1;i<=npar;i++){      if (t[i]== '\\') s[i]='/';
       matcov[i][j]=x[i];    }
     }  }
   }  
   char *trimbb(char *out, char *in)
   printf("\n#Hessian matrix#\n");  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   for (i=1;i<=npar;i++) {    char *s;
     for (j=1;j<=npar;j++) {    s=out;
       printf("%.3e ",hess[i][j]);    while (*in != '\0'){
     }      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     printf("\n");        in++;
   }      }
       *out++ = *in++;
   /* Recompute Inverse */    }
   for (i=1;i<=npar;i++)    *out='\0';
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    return s;
   ludcmp(a,npar,indx,&pd);  }
   
   /*  printf("\n#Hessian matrix recomputed#\n");  /* char *substrchaine(char *out, char *in, char *chain) */
   /* { */
   for (j=1;j<=npar;j++) {  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
     for (i=1;i<=npar;i++) x[i]=0;  /*   char *s, *t; */
     x[j]=1;  /*   t=in;s=out; */
     lubksb(a,npar,indx,x);  /*   while ((*in != *chain) && (*in != '\0')){ */
     for (i=1;i<=npar;i++){  /*     *out++ = *in++; */
       y[i][j]=x[i];  /*   } */
       printf("%.3e ",y[i][j]);  
     }  /*   /\* *in matches *chain *\/ */
     printf("\n");  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
   }  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   */  /*   } */
   /*   in--; chain--; */
   free_matrix(a,1,npar,1,npar);  /*   while ( (*in != '\0')){ */
   free_matrix(y,1,npar,1,npar);  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   free_vector(x,1,npar);  /*     *out++ = *in++; */
   free_ivector(indx,1,npar);  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   free_matrix(hess,1,npar,1,npar);  /*   } */
   /*   *out='\0'; */
   /*   out=s; */
 }  /*   return out; */
   /* } */
 /*************** hessian matrix ****************/  char *substrchaine(char *out, char *in, char *chain)
 double hessii( double x[], double delta, int theta, double delti[])  {
 {    /* Substract chain 'chain' from 'in', return and output 'out' */
   int i;    /* in="V1+V1*age+age*age+V2", chain="age*age" */
   int l=1, lmax=20;  
   double k1,k2;    char *strloc;
   double p2[NPARMAX+1];  
   double res;    strcpy (out, in); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
   double fx;    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
   int k=0,kmax=10;    if(strloc != NULL){ 
   double l1;      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
       memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
   fx=func(x);      /* strcpy (strloc, strloc +strlen(chain));*/
   for (i=1;i<=npar;i++) p2[i]=x[i];    }
   for(l=0 ; l <=lmax; l++){    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
     l1=pow(10,l);    return out;
     delts=delt;  }
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  char *cutl(char *blocc, char *alocc, char *in, char occ)
       k1=func(p2)-fx;  {
       p2[theta]=x[theta]-delt;    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
       k2=func(p2)-fx;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       /*res= (k1-2.0*fx+k2)/delt/delt; */       gives blocc="abcdef" and alocc="ghi2j".
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */       If occ is not found blocc is null and alocc is equal to in. Returns blocc
          */
 #ifdef DEBUG    char *s, *t;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    t=in;s=in;
 #endif    while ((*in != occ) && (*in != '\0')){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      *alocc++ = *in++;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    }
         k=kmax;    if( *in == occ){
       }      *(alocc)='\0';
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      s=++in;
         k=kmax; l=lmax*10.;    }
       }   
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    if (s == t) {/* occ not found */
         delts=delt;      *(alocc-(in-s))='\0';
       }      in=s;
     }    }
   }    while ( *in != '\0'){
   delti[theta]=delts;      *blocc++ = *in++;
   return res;    }
    
 }    *blocc='\0';
     return t;
 double hessij( double x[], double delti[], int thetai,int thetaj)  }
 {  char *cutv(char *blocc, char *alocc, char *in, char occ)
   int i;  {
   int l=1, l1, lmax=20;    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
   double k1,k2,k3,k4,res,fx;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   double p2[NPARMAX+1];       gives blocc="abcdef2ghi" and alocc="j".
   int k;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     */
   fx=func(x);    char *s, *t;
   for (k=1; k<=2; k++) {    t=in;s=in;
     for (i=1;i<=npar;i++) p2[i]=x[i];    while (*in != '\0'){
     p2[thetai]=x[thetai]+delti[thetai]/k;      while( *in == occ){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        *blocc++ = *in++;
     k1=func(p2)-fx;        s=in;
        }
     p2[thetai]=x[thetai]+delti[thetai]/k;      *blocc++ = *in++;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    }
     k2=func(p2)-fx;    if (s == t) /* occ not found */
        *(blocc-(in-s))='\0';
     p2[thetai]=x[thetai]-delti[thetai]/k;    else
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      *(blocc-(in-s)-1)='\0';
     k3=func(p2)-fx;    in=s;
      while ( *in != '\0'){
     p2[thetai]=x[thetai]-delti[thetai]/k;      *alocc++ = *in++;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    }
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    *alocc='\0';
 #ifdef DEBUG    return s;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  }
 #endif  
   }  int nbocc(char *s, char occ)
   return res;  {
 }    int i,j=0;
     int lg=20;
 /************** Inverse of matrix **************/    i=0;
 void ludcmp(double **a, int n, int *indx, double *d)    lg=strlen(s);
 {    for(i=0; i<= lg; i++) {
   int i,imax,j,k;    if  (s[i] == occ ) j++;
   double big,dum,sum,temp;    }
   double *vv;    return j;
    }
   vv=vector(1,n);  
   *d=1.0;  /* void cutv(char *u,char *v, char*t, char occ) */
   for (i=1;i<=n;i++) {  /* { */
     big=0.0;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     for (j=1;j<=n;j++)  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*      gives u="abcdef2ghi" and v="j" *\/ */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /*   int i,lg,j,p=0; */
     vv[i]=1.0/big;  /*   i=0; */
   }  /*   lg=strlen(t); */
   for (j=1;j<=n;j++) {  /*   for(j=0; j<=lg-1; j++) { */
     for (i=1;i<j;i++) {  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       sum=a[i][j];  /*   } */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /*   for(j=0; j<p; j++) { */
     }  /*     (u[j] = t[j]); */
     big=0.0;  /*   } */
     for (i=j;i<=n;i++) {  /*      u[p]='\0'; */
       sum=a[i][j];  
       for (k=1;k<j;k++)  /*    for(j=0; j<= lg; j++) { */
         sum -= a[i][k]*a[k][j];  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
       a[i][j]=sum;  /*   } */
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /* } */
         big=dum;  
         imax=i;  #ifdef _WIN32
       }  char * strsep(char **pp, const char *delim)
     }  {
     if (j != imax) {    char *p, *q;
       for (k=1;k<=n;k++) {           
         dum=a[imax][k];    if ((p = *pp) == NULL)
         a[imax][k]=a[j][k];      return 0;
         a[j][k]=dum;    if ((q = strpbrk (p, delim)) != NULL)
       }    {
       *d = -(*d);      *pp = q + 1;
       vv[imax]=vv[j];      *q = '\0';
     }    }
     indx[j]=imax;    else
     if (a[j][j] == 0.0) a[j][j]=TINY;      *pp = 0;
     if (j != n) {    return p;
       dum=1.0/(a[j][j]);  }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  #endif
     }  
   }  /********************** nrerror ********************/
   free_vector(vv,1,n);  /* Doesn't work */  
 ;  void nrerror(char error_text[])
 }  {
     fprintf(stderr,"ERREUR ...\n");
 void lubksb(double **a, int n, int *indx, double b[])    fprintf(stderr,"%s\n",error_text);
 {    exit(EXIT_FAILURE);
   int i,ii=0,ip,j;  }
   double sum;  /*********************** vector *******************/
    double *vector(int nl, int nh)
   for (i=1;i<=n;i++) {  {
     ip=indx[i];    double *v;
     sum=b[ip];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     b[ip]=b[i];    if (!v) nrerror("allocation failure in vector");
     if (ii)    return v-nl+NR_END;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  }
     else if (sum) ii=i;  
     b[i]=sum;  /************************ free vector ******************/
   }  void free_vector(double*v, int nl, int nh)
   for (i=n;i>=1;i--) {  {
     sum=b[i];    free((FREE_ARG)(v+nl-NR_END));
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  }
     b[i]=sum/a[i][i];  
   }  /************************ivector *******************************/
 }  int *ivector(long nl,long nh)
   {
 /************ Frequencies ********************/    int *v;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 {  /* Some frequencies */    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  }
   double ***freq; /* Frequencies */  
   double *pp;  /******************free ivector **************************/
   double pos, k2, dateintsum=0,k2cpt=0;  void free_ivector(int *v, long nl, long nh)
   FILE *ficresp;  {
   char fileresp[FILENAMELENGTH];    free((FREE_ARG)(v+nl-NR_END));
    }
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /************************lvector *******************************/
   strcpy(fileresp,"p");  long *lvector(long nl,long nh)
   strcat(fileresp,fileres);  {
   if((ficresp=fopen(fileresp,"w"))==NULL) {    long *v;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     exit(0);    if (!v) nrerror("allocation failure in ivector");
   }    return v-nl+NR_END;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  }
   j1=0;  
    /******************free lvector **************************/
   j=cptcoveff;  void free_lvector(long *v, long nl, long nh)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  {
      free((FREE_ARG)(v+nl-NR_END));
   for(k1=1; k1<=j;k1++){  }
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  /******************* imatrix *******************************/
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         scanf("%d", i);*/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       for (i=-1; i<=nlstate+ndeath; i++)    { 
         for (jk=-1; jk<=nlstate+ndeath; jk++)      long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           for(m=agemin; m <= agemax+3; m++)    int **m; 
             freq[i][jk][m]=0;    
          /* allocate pointers to rows */ 
       dateintsum=0;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       k2cpt=0;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       for (i=1; i<=imx; i++) {    m += NR_END; 
         bool=1;    m -= nrl; 
         if  (cptcovn>0) {    
           for (z1=1; z1<=cptcoveff; z1++)    
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /* allocate rows and set pointers to them */ 
               bool=0;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         if (bool==1) {    m[nrl] += NR_END; 
           for(m=firstpass; m<=lastpass; m++){    m[nrl] -= ncl; 
             k2=anint[m][i]+(mint[m][i]/12.);    
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;    
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /* return pointer to array of pointers to rows */ 
               if (m<lastpass) {    return m; 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  } 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
               }  /****************** free_imatrix *************************/
                void free_imatrix(m,nrl,nrh,ncl,nch)
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        int **m;
                 dateintsum=dateintsum+k2;        long nch,ncl,nrh,nrl; 
                 k2cpt++;       /* free an int matrix allocated by imatrix() */ 
               }  { 
             }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
           }    free((FREE_ARG) (m+nrl-NR_END)); 
         }  } 
       }  
          /******************* matrix *******************************/
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
       if  (cptcovn>0) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         fprintf(ficresp, "\n#********** Variable ");    double **m;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresp, "**********\n#");    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
       for(i=1; i<=nlstate;i++)    m += NR_END;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    m -= nrl;
       fprintf(ficresp, "\n");  
          m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for(i=(int)agemin; i <= (int)agemax+3; i++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         if(i==(int)agemax+3)    m[nrl] += NR_END;
           printf("Total");    m[nrl] -= ncl;
         else  
           printf("Age %d", i);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         for(jk=1; jk <=nlstate ; jk++){    return m;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
             pp[jk] += freq[jk][m][i];  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
         }  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
         for(jk=1; jk <=nlstate ; jk++){     */
           for(m=-1, pos=0; m <=0 ; m++)  }
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)  /*************************free matrix ************************/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
           else  {
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         }    free((FREE_ARG)(m+nrl-NR_END));
   }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /******************* ma3x *******************************/
             pp[jk] += freq[jk][m][i];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         }  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         for(jk=1,pos=0; jk <=nlstate ; jk++)    double ***m;
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           if(pos>=1.e-5)    if (!m) nrerror("allocation failure 1 in matrix()");
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    m += NR_END;
           else    m -= nrl;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           if( i <= (int) agemax){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             if(pos>=1.e-5){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    m[nrl] += NR_END;
               probs[i][jk][j1]= pp[jk]/pos;    m[nrl] -= ncl;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
             else  
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
           }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         }    m[nrl][ncl] += NR_END;
            m[nrl][ncl] -= nll;
         for(jk=-1; jk <=nlstate+ndeath; jk++)    for (j=ncl+1; j<=nch; j++) 
           for(m=-1; m <=nlstate+ndeath; m++)      m[nrl][j]=m[nrl][j-1]+nlay;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    
         if(i <= (int) agemax)    for (i=nrl+1; i<=nrh; i++) {
           fprintf(ficresp,"\n");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         printf("\n");      for (j=ncl+1; j<=nch; j++) 
       }        m[i][j]=m[i][j-1]+nlay;
     }    }
   }    return m; 
   dateintmean=dateintsum/k2cpt;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
               &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   fclose(ficresp);    */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  }
   free_vector(pp,1,nlstate);  
    /*************************free ma3x ************************/
   /* End of Freq */  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 }  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 /************ Prevalence ********************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    free((FREE_ARG)(m+nrl-NR_END));
 {  /* Some frequencies */  }
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /*************** function subdirf ***********/
   double ***freq; /* Frequencies */  char *subdirf(char fileres[])
   double *pp;  {
   double pos, k2;    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   pp=vector(1,nlstate);    strcat(tmpout,"/"); /* Add to the right */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(tmpout,fileres);
      return tmpout;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  }
   j1=0;  
    /*************** function subdirf2 ***********/
   j=cptcoveff;  char *subdirf2(char fileres[], char *preop)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  {
      
   for(k1=1; k1<=j;k1++){    /* Caution optionfilefiname is hidden */
     for(i1=1; i1<=ncodemax[k1];i1++){    strcpy(tmpout,optionfilefiname);
       j1++;    strcat(tmpout,"/");
          strcat(tmpout,preop);
       for (i=-1; i<=nlstate+ndeath; i++)      strcat(tmpout,fileres);
         for (jk=-1; jk<=nlstate+ndeath; jk++)      return tmpout;
           for(m=agemin; m <= agemax+3; m++)  }
             freq[i][jk][m]=0;  
        /*************** function subdirf3 ***********/
       for (i=1; i<=imx; i++) {  char *subdirf3(char fileres[], char *preop, char *preop2)
         bool=1;  {
         if  (cptcovn>0) {    
           for (z1=1; z1<=cptcoveff; z1++)    /* Caution optionfilefiname is hidden */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    strcpy(tmpout,optionfilefiname);
               bool=0;    strcat(tmpout,"/");
         }    strcat(tmpout,preop);
         if (bool==1) {    strcat(tmpout,preop2);
           for(m=firstpass; m<=lastpass; m++){    strcat(tmpout,fileres);
             k2=anint[m][i]+(mint[m][i]/12.);    return tmpout;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  }
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;  char *asc_diff_time(long time_sec, char ascdiff[])
               if (m<lastpass) {  {
                 if (calagedate>0)    long sec_left, days, hours, minutes;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    days = (time_sec) / (60*60*24);
                 else    sec_left = (time_sec) % (60*60*24);
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    hours = (sec_left) / (60*60) ;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    sec_left = (sec_left) %(60*60);
               }    minutes = (sec_left) /60;
             }    sec_left = (sec_left) % (60);
           }    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         }    return ascdiff;
       }  }
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         for(jk=1; jk <=nlstate ; jk++){  /***************** f1dim *************************/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  extern int ncom; 
             pp[jk] += freq[jk][m][i];  extern double *pcom,*xicom;
         }  extern double (*nrfunc)(double []); 
         for(jk=1; jk <=nlstate ; jk++){   
           for(m=-1, pos=0; m <=0 ; m++)  double f1dim(double x) 
             pos += freq[jk][m][i];  { 
         }    int j; 
            double f;
         for(jk=1; jk <=nlstate ; jk++){    double *xt; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)   
             pp[jk] += freq[jk][m][i];    xt=vector(1,ncom); 
         }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
            f=(*nrfunc)(xt); 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    free_vector(xt,1,ncom); 
            return f; 
         for(jk=1; jk <=nlstate ; jk++){      } 
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  /*****************brent *************************/
               probs[i][jk][j1]= pp[jk]/pos;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
             }  {
           }    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
         }     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
             * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
       }     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
     }     * returned function value. 
   }    */
     int iter; 
      double a,b,d,etemp;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    double fu=0,fv,fw,fx;
   free_vector(pp,1,nlstate);    double ftemp=0.;
      double p,q,r,tol1,tol2,u,v,w,x,xm; 
 }  /* End of Freq */    double e=0.0; 
    
 /************* Waves Concatenation ***************/    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    x=w=v=bx; 
 {    fw=fv=fx=(*f)(x); 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    for (iter=1;iter<=ITMAX;iter++) { 
      Death is a valid wave (if date is known).      xm=0.5*(a+b); 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
      and mw[mi+1][i]. dh depends on stepm.      printf(".");fflush(stdout);
      */      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUGBRENT
   int i, mi, m;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      double sum=0., jmean=0.;*/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
   int j, k=0,jk, ju, jl;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double sum=0.;        *xmin=x; 
   jmin=1e+5;        return fx; 
   jmax=-1;      } 
   jmean=0.;      ftemp=fu;
   for(i=1; i<=imx; i++){      if (fabs(e) > tol1) { 
     mi=0;        r=(x-w)*(fx-fv); 
     m=firstpass;        q=(x-v)*(fx-fw); 
     while(s[m][i] <= nlstate){        p=(x-v)*q-(x-w)*r; 
       if(s[m][i]>=1)        q=2.0*(q-r); 
         mw[++mi][i]=m;        if (q > 0.0) p = -p; 
       if(m >=lastpass)        q=fabs(q); 
         break;        etemp=e; 
       else        e=d; 
         m++;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     }/* end while */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     if (s[m][i] > nlstate){        else { 
       mi++;     /* Death is another wave */          d=p/q; 
       /* if(mi==0)  never been interviewed correctly before death */          u=x+d; 
          /* Only death is a correct wave */          if (u-a < tol2 || b-u < tol2) 
       mw[mi][i]=m;            d=SIGN(tol1,xm-x); 
     }        } 
       } else { 
     wav[i]=mi;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     if(mi==0)      } 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   }      fu=(*f)(u); 
       if (fu <= fx) { 
   for(i=1; i<=imx; i++){        if (u >= x) a=x; else b=x; 
     for(mi=1; mi<wav[i];mi++){        SHFT(v,w,x,u) 
       if (stepm <=0)        SHFT(fv,fw,fx,fu) 
         dh[mi][i]=1;      } else { 
       else{        if (u < x) a=u; else b=u; 
         if (s[mw[mi+1][i]][i] > nlstate) {        if (fu <= fw || w == x) { 
           if (agedc[i] < 2*AGESUP) {          v=w; 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          w=u; 
           if(j==0) j=1;  /* Survives at least one month after exam */          fv=fw; 
           k=k+1;          fw=fu; 
           if (j >= jmax) jmax=j;        } else if (fu <= fv || v == x || v == w) { 
           if (j <= jmin) jmin=j;          v=u; 
           sum=sum+j;          fv=fu; 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        } 
           }      } 
         }    } 
         else{    nrerror("Too many iterations in brent"); 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    *xmin=x; 
           k=k+1;    return fx; 
           if (j >= jmax) jmax=j;  } 
           else if (j <= jmin)jmin=j;  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  /****************** mnbrak ***********************/
           sum=sum+j;  
         }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         jk= j/stepm;              double (*func)(double)) 
         jl= j -jk*stepm;  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
         ju= j -(jk+1)*stepm;  the downhill direction (defined by the function as evaluated at the initial points) and returns
         if(jl <= -ju)  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
           dh[mi][i]=jk;  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
         else     */
           dh[mi][i]=jk+1;    double ulim,u,r,q, dum;
         if(dh[mi][i]==0)    double fu; 
           dh[mi][i]=1; /* At least one step */  
       }    double scale=10.;
     }    int iterscale=0;
   }  
   jmean=sum/k;    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
  }  
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
 {    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
   int Ndum[20],ij=1, k, j, i;    /*   *bx = *ax - (*ax - *bx)/scale; */
   int cptcode=0;    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
   cptcoveff=0;    /* } */
    
   for (k=0; k<19; k++) Ndum[k]=0;    if (*fb > *fa) { 
   for (k=1; k<=7; k++) ncodemax[k]=0;      SHFT(dum,*ax,*bx,dum) 
       SHFT(dum,*fb,*fa,dum) 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    } 
     for (i=1; i<=imx; i++) {    *cx=(*bx)+GOLD*(*bx-*ax); 
       ij=(int)(covar[Tvar[j]][i]);    *fc=(*func)(*cx); 
       Ndum[ij]++;  #ifdef DEBUG
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
       if (ij > cptcode) cptcode=ij;    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
     }  #endif
     while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
     for (i=0; i<=cptcode; i++) {      r=(*bx-*ax)*(*fb-*fc); 
       if(Ndum[i]!=0) ncodemax[j]++;      q=(*bx-*cx)*(*fb-*fa); 
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     ij=1;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
       ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
       if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
     for (i=1; i<=ncodemax[j]; i++) {        fu=(*func)(u); 
       for (k=0; k<=19; k++) {  #ifdef DEBUG
         if (Ndum[k] != 0) {        /* f(x)=A(x-u)**2+f(u) */
           nbcode[Tvar[j]][ij]=k;        double A, fparabu; 
                  A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
           ij++;        fparabu= *fa - A*(*ax-u)*(*ax-u);
         }        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         if (ij > ncodemax[j]) break;        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       }          /* And thus,it can be that fu > *fc even if fparabu < *fc */
     }        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
   }            (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
         /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
  for (k=0; k<19; k++) Ndum[k]=0;  #endif 
   #ifdef MNBRAKORIGINAL
  for (i=1; i<=ncovmodel-2; i++) {  #else
       ij=Tvar[i];  /*       if (fu > *fc) { */
       Ndum[ij]++;  /* #ifdef DEBUG */
     }  /*       printf("mnbrak4  fu > fc \n"); */
   /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
  ij=1;  /* #endif */
  for (i=1; i<=10; i++) {  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
    if((Ndum[i]!=0) && (i<=ncovcol)){  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
      Tvaraff[ij]=i;  /*      dum=u; /\* Shifting c and u *\/ */
      ij++;  /*      u = *cx; */
    }  /*      *cx = dum; */
  }  /*      dum = fu; */
    /*      fu = *fc; */
     cptcoveff=ij-1;  /*      *fc =dum; */
 }  /*       } else { /\* end *\/ */
   /* #ifdef DEBUG */
 /*********** Health Expectancies ****************/  /*       printf("mnbrak3  fu < fc \n"); */
   /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  /* #endif */
   /*      dum=u; /\* Shifting c and u *\/ */
 {  /*      u = *cx; */
   /* Health expectancies */  /*      *cx = dum; */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  /*      dum = fu; */
   double age, agelim, hf;  /*      fu = *fc; */
   double ***p3mat,***varhe;  /*      *fc =dum; */
   double **dnewm,**doldm;  /*       } */
   double *xp;  #ifdef DEBUG
   double **gp, **gm;        printf("mnbrak34  fu < or >= fc \n");
   double ***gradg, ***trgradg;        fprintf(ficlog, "mnbrak34 fu < fc\n");
   int theta;  #endif
         dum=u; /* Shifting c and u */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        u = *cx;
   xp=vector(1,npar);        *cx = dum;
   dnewm=matrix(1,nlstate*2,1,npar);        dum = fu;
   doldm=matrix(1,nlstate*2,1,nlstate*2);        fu = *fc;
          *fc =dum;
   fprintf(ficreseij,"# Health expectancies\n");  #endif
   fprintf(ficreseij,"# Age");      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
   for(i=1; i<=nlstate;i++)  #ifdef DEBUG
     for(j=1; j<=nlstate;j++)        printf("mnbrak2  u after c but before ulim\n");
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
   fprintf(ficreseij,"\n");  #endif
         fu=(*func)(u); 
   if(estepm < stepm){        if (fu < *fc) { 
     printf ("Problem %d lower than %d\n",estepm, stepm);  #ifdef DEBUG
   }        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
   else  hstepm=estepm;          fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
   /* We compute the life expectancy from trapezoids spaced every estepm months  #endif
    * This is mainly to measure the difference between two models: for example          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
    * if stepm=24 months pijx are given only every 2 years and by summing them          SHFT(*fb,*fc,fu,(*func)(u)) 
    * we are calculating an estimate of the Life Expectancy assuming a linear        } 
    * progression inbetween and thus overestimating or underestimating according      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
    * to the curvature of the survival function. If, for the same date, we  #ifdef DEBUG
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
    * to compare the new estimate of Life expectancy with the same linear        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
    * hypothesis. A more precise result, taking into account a more precise  #endif
    * curvature will be obtained if estepm is as small as stepm. */        u=ulim; 
         fu=(*func)(u); 
   /* For example we decided to compute the life expectancy with the smallest unit */      } else { /* u could be left to b (if r > q parabola has a maximum) */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  #ifdef DEBUG
      nhstepm is the number of hstepm from age to agelim        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
      nstepm is the number of stepm from age to agelin.        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
      Look at hpijx to understand the reason of that which relies in memory size  #endif
      and note for a fixed period like estepm months */        u=(*cx)+GOLD*(*cx-*bx); 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        fu=(*func)(u); 
      survival function given by stepm (the optimization length). Unfortunately it      } /* end tests */
      means that if the survival funtion is printed only each two years of age and if      SHFT(*ax,*bx,*cx,u) 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      SHFT(*fa,*fb,*fc,fu) 
      results. So we changed our mind and took the option of the best precision.  #ifdef DEBUG
   */        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
   #endif
   agelim=AGESUP;    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  } 
     /* nhstepm age range expressed in number of stepm */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  /*************** linmin ************************/
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
     /* if (stepm >= YEARM) hstepm=1;*/  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  the value of func at the returned location p . This is actually all accomplished by calling the
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  routines mnbrak and brent .*/
     gp=matrix(0,nhstepm,1,nlstate*2);  int ncom; 
     gm=matrix(0,nhstepm,1,nlstate*2);  double *pcom,*xicom;
   double (*nrfunc)(double []); 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored   
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    { 
      double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     /* Computing Variances of health expectancies */                double *fc, double (*func)(double)); 
     int j; 
      for(theta=1; theta <=npar; theta++){    double xx,xmin,bx,ax; 
       for(i=1; i<=npar; i++){    double fx,fb,fa;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  #ifdef LINMINORIGINAL
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #else
      double scale=10., axs, xxs; /* Scale added for infinity */
       cptj=0;  #endif
       for(j=1; j<= nlstate; j++){    
         for(i=1; i<=nlstate; i++){    ncom=n; 
           cptj=cptj+1;    pcom=vector(1,n); 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    xicom=vector(1,n); 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    nrfunc=func; 
           }    for (j=1;j<=n;j++) { 
         }      pcom[j]=p[j]; 
       }      xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
          } 
        
       for(i=1; i<=npar; i++)  #ifdef LINMINORIGINAL
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    xx=1.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #else
          axs=0.0;
       cptj=0;    xxs=1.;
       for(j=1; j<= nlstate; j++){    do{
         for(i=1;i<=nlstate;i++){      xx= xxs;
           cptj=cptj+1;  #endif
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      ax=0.;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
           }      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
         }      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
       }      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
       for(j=1; j<= nlstate*2; j++)      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
         for(h=0; h<=nhstepm-1; h++){      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
         }  #ifdef LINMINORIGINAL
      }  #else
          if (fx != fx){
 /* End theta */          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
           printf("|");
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          fprintf(ficlog,"|");
   #ifdef DEBUGLINMIN
      for(h=0; h<=nhstepm-1; h++)          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
       for(j=1; j<=nlstate*2;j++)  #endif
         for(theta=1; theta <=npar; theta++)      }
           trgradg[h][j][theta]=gradg[h][theta][j];    }while(fx != fx);
        #endif
     
      for(i=1;i<=nlstate*2;i++)  #ifdef DEBUGLINMIN
       for(j=1;j<=nlstate*2;j++)    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
         varhe[i][j][(int)age] =0.;    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   #endif
      printf("%d|",(int)age);fflush(stdout);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
      for(h=0;h<=nhstepm-1;h++){    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
       for(k=0;k<=nhstepm-1;k++){    /* fmin = f(p[j] + xmin * xi[j]) */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
         for(i=1;i<=nlstate*2;i++)  #ifdef DEBUG
           for(j=1;j<=nlstate*2;j++)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       }  #endif
     }  #ifdef DEBUGLINMIN
     /* Computing expectancies */    printf("linmin end ");
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"linmin end ");
       for(j=1; j<=nlstate;j++)  #endif
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    for (j=1;j<=n;j++) { 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  #ifdef LINMINORIGINAL
                xi[j] *= xmin; 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  #else
   #ifdef DEBUGLINMIN
         }      if(xxs <1.0)
         printf(" before xi[%d]=%12.8f", j,xi[j]);
     fprintf(ficreseij,"%3.0f",age );  #endif
     cptj=0;      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
     for(i=1; i<=nlstate;i++)  #ifdef DEBUGLINMIN
       for(j=1; j<=nlstate;j++){      if(xxs <1.0)
         cptj++;        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  #endif
       }  #endif
     fprintf(ficreseij,"\n");      p[j] += xi[j]; /* Parameters values are updated accordingly */
        } 
     free_matrix(gm,0,nhstepm,1,nlstate*2);  #ifdef DEBUGLINMIN
     free_matrix(gp,0,nhstepm,1,nlstate*2);    printf("\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (j=1;j<=n;j++) { 
   }      printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
   printf("\n");      fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
       if(j % ncovmodel == 0){
   free_vector(xp,1,npar);        printf("\n");
   free_matrix(dnewm,1,nlstate*2,1,npar);        fprintf(ficlog,"\n");
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    }
 }  #else
   #endif
 /************ Variance ******************/    free_vector(xicom,1,n); 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    free_vector(pcom,1,n); 
 {  } 
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;  /*************** powell ************************/
   double **dnewm,**doldm;  /*
   int i, j, nhstepm, hstepm, h, nstepm ;  Minimization of a function func of n variables. Input consists of an initial starting point
   int k, cptcode;  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   double *xp;  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   double **gp, **gm;  such that failure to decrease by more than this amount on one iteration signals doneness. On
   double ***gradg, ***trgradg;  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   double ***p3mat;  function value at p , and iter is the number of iterations taken. The routine linmin is used.
   double age,agelim, hf;   */
   int theta;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  { 
   fprintf(ficresvij,"# Age");    void linmin(double p[], double xi[], int n, double *fret, 
   for(i=1; i<=nlstate;i++)                double (*func)(double [])); 
     for(j=1; j<=nlstate;j++)    int i,ibig,j; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double del,t,*pt,*ptt,*xit;
   fprintf(ficresvij,"\n");    double directest;
     double fp,fptt;
   xp=vector(1,npar);    double *xits;
   dnewm=matrix(1,nlstate,1,npar);    int niterf, itmp;
   doldm=matrix(1,nlstate,1,nlstate);  
      pt=vector(1,n); 
   if(estepm < stepm){    ptt=vector(1,n); 
     printf ("Problem %d lower than %d\n",estepm, stepm);    xit=vector(1,n); 
   }    xits=vector(1,n); 
   else  hstepm=estepm;      *fret=(*func)(p); 
   /* For example we decided to compute the life expectancy with the smallest unit */    for (j=1;j<=n;j++) pt[j]=p[j]; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    rcurr_time = time(NULL);  
      nhstepm is the number of hstepm from age to agelim    for (*iter=1;;++(*iter)) { 
      nstepm is the number of stepm from age to agelin.      fp=(*fret); /* From former iteration or initial value */
      Look at hpijx to understand the reason of that which relies in memory size      ibig=0; 
      and note for a fixed period like k years */      del=0.0; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      rlast_time=rcurr_time;
      survival function given by stepm (the optimization length). Unfortunately it      /* (void) gettimeofday(&curr_time,&tzp); */
      means that if the survival funtion is printed only each two years of age and if      rcurr_time = time(NULL);  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      curr_time = *localtime(&rcurr_time);
      results. So we changed our mind and took the option of the best precision.      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
   */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
   agelim = AGESUP;      for (i=1;i<=n;i++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        printf(" %d %.12f",i, p[i]);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficlog," %d %.12lf",i, p[i]);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        fprintf(ficrespow," %.12lf", p[i]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      printf("\n");
     gp=matrix(0,nhstepm,1,nlstate);      fprintf(ficlog,"\n");
     gm=matrix(0,nhstepm,1,nlstate);      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
     for(theta=1; theta <=npar; theta++){        tml = *localtime(&rcurr_time);
       for(i=1; i<=npar; i++){ /* Computes gradient */        strcpy(strcurr,asctime(&tml));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        rforecast_time=rcurr_time; 
       }        itmp = strlen(strcurr);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       if (popbased==1) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         for(i=1; i<=nlstate;i++)        for(niterf=10;niterf<=30;niterf+=10){
           prlim[i][i]=probs[(int)age][i][ij];          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
       }          forecast_time = *localtime(&rforecast_time);
            strcpy(strfor,asctime(&forecast_time));
       for(j=1; j<= nlstate; j++){          itmp = strlen(strfor);
         for(h=0; h<=nhstepm; h++){          if(strfor[itmp-1]=='\n')
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          strfor[itmp-1]='\0';
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       }        }
          }
       for(i=1; i<=npar; i++) /* Computes gradient */      for (i=1;i<=n;i++) { /* For each direction i */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          fptt=(*fret); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  #ifdef DEBUG
          printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
       if (popbased==1) {        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         for(i=1; i<=nlstate;i++)  #endif
           prlim[i][i]=probs[(int)age][i][ij];        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
       }        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
       for(j=1; j<= nlstate; j++){                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
         for(h=0; h<=nhstepm; h++){        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          /* because that direction will be replaced unless the gain del is small */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
         }          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
       }          /* with the new direction. */
           del=fabs(fptt-(*fret)); 
       for(j=1; j<= nlstate; j++)          ibig=i; 
         for(h=0; h<=nhstepm; h++){        } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  #ifdef DEBUG
         }        printf("%d %.12e",i,(*fret));
     } /* End theta */        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
     for(h=0; h<=nhstepm; h++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       for(j=1; j<=nlstate;j++)        }
         for(theta=1; theta <=npar; theta++)        for(j=1;j<=n;j++) {
           trgradg[h][j][theta]=gradg[h][theta][j];          printf(" p(%d)=%.12e",j,p[j]);
           fprintf(ficlog," p(%d)=%.12e",j,p[j]);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        }
     for(i=1;i<=nlstate;i++)        printf("\n");
       for(j=1;j<=nlstate;j++)        fprintf(ficlog,"\n");
         vareij[i][j][(int)age] =0.;  #endif
       } /* end loop on each direction i */
     for(h=0;h<=nhstepm;h++){      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
       for(k=0;k<=nhstepm;k++){      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      /* New value of last point Pn is not computed, P(n-1) */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
         for(i=1;i<=nlstate;i++)        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
           for(j=1;j<=nlstate;j++)        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
       }        /* decreased of more than 3.84  */
     }        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
         /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
     fprintf(ficresvij,"%.0f ",age );        /* By adding 10 parameters more the gain should be 18.31 */
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){        /* Starting the program with initial values given by a former maximization will simply change */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        /* the scales of the directions and the directions, because the are reset to canonical directions */
       }        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
     fprintf(ficresvij,"\n");        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
     free_matrix(gp,0,nhstepm,1,nlstate);  #ifdef DEBUG
     free_matrix(gm,0,nhstepm,1,nlstate);        int k[2],l;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        k[0]=1;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        k[1]=-1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("Max: %.12e",(*func)(p));
   } /* End age */        fprintf(ficlog,"Max: %.12e",(*func)(p));
          for (j=1;j<=n;j++) {
   free_vector(xp,1,npar);          printf(" %.12e",p[j]);
   free_matrix(doldm,1,nlstate,1,npar);          fprintf(ficlog," %.12e",p[j]);
   free_matrix(dnewm,1,nlstate,1,nlstate);        }
         printf("\n");
 }        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 /************ Variance of prevlim ******************/          for (j=1;j<=n;j++) {
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /* Variance of prevalence limit */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          }
   double **newm;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double **dnewm,**doldm;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int i, j, nhstepm, hstepm;        }
   int k, cptcode;  #endif
   double *xp;  
   double *gp, *gm;  
   double **gradg, **trgradg;        free_vector(xit,1,n); 
   double age,agelim;        free_vector(xits,1,n); 
   int theta;        free_vector(ptt,1,n); 
            free_vector(pt,1,n); 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        return; 
   fprintf(ficresvpl,"# Age");      } /* enough precision */ 
   for(i=1; i<=nlstate;i++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       fprintf(ficresvpl," %1d-%1d",i,i);      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
   fprintf(ficresvpl,"\n");        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
   xp=vector(1,npar);        pt[j]=p[j]; 
   dnewm=matrix(1,nlstate,1,npar);      } 
   doldm=matrix(1,nlstate,1,nlstate);      fptt=(*func)(ptt); /* f_3 */
    #ifdef POWELLF1F3
   hstepm=1*YEARM; /* Every year of age */  #else
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   agelim = AGESUP;  #endif
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
     if (stepm >= YEARM) hstepm=1;        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
     gradg=matrix(1,npar,1,nlstate);        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
     gp=vector(1,nlstate);        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
     gm=vector(1,nlstate);        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   #ifdef NRCORIGINAL
     for(theta=1; theta <=npar; theta++){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
       for(i=1; i<=npar; i++){ /* Computes gradient */  #else
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
       }        t= t- del*SQR(fp-fptt);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  #endif
       for(i=1;i<=nlstate;i++)        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
         gp[i] = prlim[i][i];  #ifdef DEBUG
            printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
       for(i=1; i<=npar; i++) /* Computes gradient */        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       for(i=1;i<=nlstate;i++)        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         gm[i] = prlim[i][i];               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
       for(i=1;i<=nlstate;i++)        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  #endif
     } /* End theta */  #ifdef POWELLORIGINAL
         if (t < 0.0) { /* Then we use it for new direction */
     trgradg =matrix(1,nlstate,1,npar);  #else
         if (directest*t < 0.0) { /* Contradiction between both tests */
     for(j=1; j<=nlstate;j++)          printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
       for(theta=1; theta <=npar; theta++)          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
         trgradg[j][theta]=gradg[theta][j];          fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
           fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
     for(i=1;i<=nlstate;i++)        } 
       varpl[i][(int)age] =0.;        if (directest < 0.0) { /* Then we use it for new direction */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  #endif
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  #ifdef DEBUGLINMIN
     for(i=1;i<=nlstate;i++)          printf("Before linmin in direction P%d-P0\n",n);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          for (j=1;j<=n;j++) { 
             printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     fprintf(ficresvpl,"%.0f ",age );            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     for(i=1; i<=nlstate;i++)            if(j % ncovmodel == 0){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              printf("\n");
     fprintf(ficresvpl,"\n");              fprintf(ficlog,"\n");
     free_vector(gp,1,nlstate);            }
     free_vector(gm,1,nlstate);          }
     free_matrix(gradg,1,npar,1,nlstate);  #endif
     free_matrix(trgradg,1,nlstate,1,npar);          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
   } /* End age */  #ifdef DEBUGLINMIN
           for (j=1;j<=n;j++) { 
   free_vector(xp,1,npar);            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   free_matrix(doldm,1,nlstate,1,npar);            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   free_matrix(dnewm,1,nlstate,1,nlstate);            if(j % ncovmodel == 0){
               printf("\n");
 }              fprintf(ficlog,"\n");
             }
 /************ Variance of one-step probabilities  ******************/          }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  #endif
 {          for (j=1;j<=n;j++) { 
   int i, j=0,  i1, k1, l1, t, tj;            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
   int k2, l2, j1,  z1;            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
   int k=0,l, cptcode;          }
   int first=1;          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   double **dnewm,**doldm;  
   double *xp;  #ifdef DEBUG
   double *gp, *gm;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double **gradg, **trgradg;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double **mu;          for(j=1;j<=n;j++){
   double age,agelim, cov[NCOVMAX];            printf(" %.12e",xit[j]);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */            fprintf(ficlog," %.12e",xit[j]);
   int theta;          }
   char fileresprob[FILENAMELENGTH];          printf("\n");
   char fileresprobcov[FILENAMELENGTH];          fprintf(ficlog,"\n");
   char fileresprobcor[FILENAMELENGTH];  #endif
         } /* end of t or directest negative */
   double ***varpij;  #ifdef POWELLF1F3
   #else
   strcpy(fileresprob,"prob");      } /* end if (fptt < fp)  */
   strcat(fileresprob,fileres);  #endif
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    } /* loop iteration */ 
     printf("Problem with resultfile: %s\n", fileresprob);  } 
   }  
   strcpy(fileresprobcov,"probcov");  /**** Prevalence limit (stable or period prevalence)  ****************/
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)
     printf("Problem with resultfile: %s\n", fileresprobcov);  {
   }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   strcpy(fileresprobcor,"probcor");       matrix by transitions matrix until convergence is reached with precision ftolpl */
   strcat(fileresprobcor,fileres);    /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    /* Wx is row vector: population in state 1, population in state 2, population dead */
     printf("Problem with resultfile: %s\n", fileresprobcor);    /* or prevalence in state 1, prevalence in state 2, 0 */
   }    /* newm is the matrix after multiplications, its rows are identical at a factor */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /* Initial matrix pimij */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
      /*  0,                   0                  , 1} */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    /*
   fprintf(ficresprob,"# Age");     * and after some iteration: */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
   fprintf(ficresprobcov,"# Age");    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    /*  0,                   0                  , 1} */
   fprintf(ficresprobcov,"# Age");    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
     /* {0.51571254859325999, 0.4842874514067399, */
     /*  0.51326036147820708, 0.48673963852179264} */
   for(i=1; i<=nlstate;i++)    /* If we start from prlim again, prlim tends to a constant matrix */
     for(j=1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    int i, ii,j,k;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    double min, max, maxmin, maxmax,sumnew=0.;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    /* double **matprod2(); */ /* test */
     }      double **out, cov[NCOVMAX+1], **pmij();
   fprintf(ficresprob,"\n");    double **newm;
   fprintf(ficresprobcov,"\n");    double agefin, delaymax=100. ; /* 100 Max number of years to converge */
   fprintf(ficresprobcor,"\n");    int ncvloop=0;
   xp=vector(1,npar);    
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    for (ii=1;ii<=nlstate+ndeath;ii++)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      for (j=1;j<=nlstate+ndeath;j++){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      }
   first=1;    
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    cov[1]=1.;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    
     exit(0);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
   else{    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     fprintf(ficgp,"\n# Routine varprob");      ncvloop++;
   }      newm=savm;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      /* Covariates have to be included here again */
     printf("Problem with html file: %s\n", optionfilehtm);      cov[2]=agefin;
     exit(0);      if(nagesqr==1)
   }        cov[3]= agefin*agefin;;
   else{      for (k=1; k<=cptcovn;k++) {
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
       }
   }      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
        for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
   cov[1]=1;      for (k=1; k<=cptcovprod;k++) /* Useless */
   tj=cptcoveff;        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
   j1=0;      
   for(t=1; t<=tj;t++){      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for(i1=1; i1<=ncodemax[t];i1++){      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       j1++;      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
            /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       if  (cptcovn>0) {      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
         fprintf(ficresprob, "\n#********** Variable ");      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      
         fprintf(ficresprob, "**********\n#");      savm=oldm;
         fprintf(ficresprobcov, "\n#********** Variable ");      oldm=newm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      maxmax=0.;
         fprintf(ficresprobcov, "**********\n#");      for(j=1;j<=nlstate;j++){
                min=1.;
         fprintf(ficgp, "\n#********** Variable ");        max=0.;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(i=1; i<=nlstate; i++) {
         fprintf(ficgp, "**********\n#");          sumnew=0;
                  for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                  prlim[i][j]= newm[i][j]/(1-sumnew);
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");          max=FMAX(max,prlim[i][j]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          min=FMIN(min,prlim[i][j]);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");          /* printf(" age= %d prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d max=%f min=%f\n", (int)age, i, j, i, j, prlim[i][j],(int)agefin, max, min); */
                }
         fprintf(ficresprobcor, "\n#********** Variable ");            maxmin=(max-min)/(max+min)*2;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        maxmax=FMAX(maxmax,maxmin);
         fprintf(ficgp, "**********\n#");            /* for(i=1; i<=nlstate; i++) { */
       }        /*        sumnew=0.; */
              /*        sumnew+=prlim[i][j]; */
       for (age=bage; age<=fage; age ++){        /* } */
         cov[2]=age;        /* prmimj = sumnew/(float)nlstate; /\* Means of various prevalence limits. */
         for (k=1; k<=cptcovn;k++) {      } /* j loop */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      *ncvyear= (int)age- (int)agefin;
         }      /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if(maxmax < ftolpl){
         for (k=1; k<=cptcovprod;k++)        /* printf("maxmax=%lf maxmin=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        return prlim;
              }
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    } /* age loop */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      /* After some age loop it doesn't converge */
         gp=vector(1,(nlstate)*(nlstate+ndeath));    printf("Warning: the stable prevalence at age %d did not converge with the required precision %g > ftolpl=%g within %.0f years. \n\
         gm=vector(1,(nlstate)*(nlstate+ndeath));  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
        /* printf(" age= %d newm\n",(int)age); */
         for(theta=1; theta <=npar; theta++){    /* for(i=1; i<=nlstate+ndeath; i++) { */
           for(i=1; i<=npar; i++)    /*   for(j=1;j<=nlstate+ndeath;j++){ */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    /*     printf(" %lf", newm[i][j]); */
              /*   } */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /*   printf("\n"); */
              /* } */
           k=0;    /* printf("\n"); */
           for(i=1; i<= (nlstate); i++){    /* printf("prlim\n"); */
             for(j=1; j<=(nlstate+ndeath);j++){    /* for(i=1; i<=nlstate; i++) { */
               k=k+1;    /*   sumnew=0; */
               gp[k]=pmmij[i][j];    /*   for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k]; */
             }    /*   for(j=1;j<=nlstate;j++){ */
           }    /*     prlim[i][j]= newm[i][j]/(1-sumnew); */
              /*     printf(" %lf", prlim[i][j]); */
           for(i=1; i<=npar; i++)    /*   } */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    /*   printf("\n"); */
        /* } */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /* printf("\n"); */
           k=0;    
           for(i=1; i<=(nlstate); i++){    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
             for(j=1; j<=(nlstate+ndeath);j++){    return prlim; /* should not reach here */
               k=k+1;  }
               gm[k]=pmmij[i][j];  
             }  /*************** transition probabilities ***************/ 
           }  
        double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)  {
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      /* According to parameters values stored in x and the covariate's values stored in cov,
         }       computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
           for(theta=1; theta <=npar; theta++)       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
             trgradg[j][theta]=gradg[theta][j];       ncth covariate in the global vector x is given by the formula:
               j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
               sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         pmij(pmmij,cov,ncovmodel,x,nlstate);       Outputs ps[i][j] the probability to be observed in j being in j according to
               the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         k=0;    */
         for(i=1; i<=(nlstate); i++){    double s1, lnpijopii;
           for(j=1; j<=(nlstate+ndeath);j++){    /*double t34;*/
             k=k+1;    int i,j, nc, ii, jj;
             mu[k][(int) age]=pmmij[i][j];  
           }      for(i=1; i<= nlstate; i++){
         }        for(j=1; j<i;j++){
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            /*lnpijopii += param[i][j][nc]*cov[nc];*/
             varpij[i][j][(int)age] = doldm[i][j];            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         /*printf("\n%d ",(int)age);          }
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
      }*/        }
         for(j=i+1; j<=nlstate+ndeath;j++){
         fprintf(ficresprob,"\n%d ",(int)age);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         fprintf(ficresprobcov,"\n%d ",(int)age);            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
         fprintf(ficresprobcor,"\n%d ",(int)age);            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      
         }      for(i=1; i<= nlstate; i++){
         i=0;        s1=0;
         for (k=1; k<=(nlstate);k++){        for(j=1; j<i; j++){
           for (l=1; l<=(nlstate+ndeath);l++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             i=i++;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        for(j=i+1; j<=nlstate+ndeath; j++){
             for (j=1; j<=i;j++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        }
             }        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
           }        ps[i][i]=1./(s1+1.);
         }/* end of loop for state */        /* Computing other pijs */
       } /* end of loop for age */        for(j=1; j<i; j++)
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k1=1; k1<=(nlstate);k1++){        for(j=i+1; j<=nlstate+ndeath; j++)
         for (l1=1; l1<=(nlstate+ndeath);l1++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
           if(l1==k1) continue;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           i=(k1-1)*(nlstate+ndeath)+l1;      } /* end i */
           for (k2=1; k2<=(nlstate);k2++){      
             for (l2=1; l2<=(nlstate+ndeath);l2++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
               if(l2==k2) continue;        for(jj=1; jj<= nlstate+ndeath; jj++){
               j=(k2-1)*(nlstate+ndeath)+l2;          ps[ii][jj]=0;
               if(j<=i) continue;          ps[ii][ii]=1;
               for (age=bage; age<=fage; age ++){        }
                 if ((int)age %5==0){      }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
                   mu1=mu[i][(int) age]/stepm*YEARM ;      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
                   mu2=mu[j][(int) age]/stepm*YEARM;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                   /* Computing eigen value of matrix of covariance */      /*   } */
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      /*   printf("\n "); */
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      /* } */
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);      /* printf("\n ");printf("%lf ",cov[2]);*/
                   /* Eigen vectors */      /*
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        for(i=1; i<= npar; i++) printf("%f ",x[i]);
                   v21=sqrt(1.-v11*v11);        goto end;*/
                   v12=-v21;      return ps;
                   v22=v11;  }
                   /*printf(fignu*/  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  /**************** Product of 2 matrices ******************/
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */  
                   if(first==1){  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
                     first=0;  {
                     fprintf(ficgp,"\nset parametric;set nolabel");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    /* in, b, out are matrice of pointers which should have been initialized 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);       before: only the contents of out is modified. The function returns
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);       a pointer to pointers identical to out */
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);    int i, j, k;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    for(i=nrl; i<= nrh; i++)
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      for(k=ncolol; k<=ncoloh; k++){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        out[i][k]=0.;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        for(j=ncl; j<=nch; j++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          out[i][k] +=in[i][j]*b[j][k];
                   }else{      }
                     first=0;    return out;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  /************* Higher Matrix Product ***************/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  
                   }/* if first */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
                 } /* age mod 5 */  {
               } /* end loop age */    /* Computes the transition matrix starting at age 'age' over 
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);       'nhstepm*hstepm*stepm' months (i.e. until
               first=1;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             } /*l12 */       nhstepm*hstepm matrices. 
           } /* k12 */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         } /*l1 */       (typically every 2 years instead of every month which is too big 
       }/* k1 */       for the memory).
     } /* loop covariates */       Model is determined by parameters x and covariates have to be 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);       included manually here. 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));       */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int i, j, d, h, k;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double **out, cov[NCOVMAX+1];
   }    double **newm;
   free_vector(xp,1,npar);    double agexact;
   fclose(ficresprob);  
   fclose(ficresprobcov);    /* Hstepm could be zero and should return the unit matrix */
   fclose(ficresprobcor);    for (i=1;i<=nlstate+ndeath;i++)
   fclose(ficgp);      for (j=1;j<=nlstate+ndeath;j++){
   fclose(fichtm);        oldm[i][j]=(i==j ? 1.0 : 0.0);
 }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 /******************* Printing html file ***********/    for(h=1; h <=nhstepm; h++){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      for(d=1; d <=hstepm; d++){
                   int lastpass, int stepm, int weightopt, char model[],\        newm=savm;
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        /* Covariates have to be included here again */
                   int popforecast, int estepm ,\        cov[1]=1.;
                   double jprev1, double mprev1,double anprev1, \        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
                   double jprev2, double mprev2,double anprev2){        cov[2]=agexact;
   int jj1, k1, i1, cpt;        if(nagesqr==1)
   /*char optionfilehtm[FILENAMELENGTH];*/          cov[3]= agexact*agexact;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {        for (k=1; k<=cptcovn;k++) 
     printf("Problem with %s \n",optionfilehtm), exit(0);          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
   }          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
  - Life expectancies by age and initial health status (estepm=%2d months):          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
   
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n                     pmij(pmmij,cov,ncovmodel,x,nlstate));
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        savm=oldm;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        oldm=newm;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n      }
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
  if(popforecast==1) fprintf(fichtm,"\n          po[i][j][h]=newm[i][j];
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        }
         <br>",fileres,fileres,fileres,fileres);      /*printf("h=%d ",h);*/
  else    } /* end h */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  /*     printf("\n H=%d \n",h); */
 fprintf(fichtm," <li><b>Graphs</b></li><p>");    return po;
   }
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  #ifdef NLOPT
     double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
  jj1=0;    double fret;
  for(k1=1; k1<=m;k1++){    double *xt;
    for(i1=1; i1<=ncodemax[k1];i1++){    int j;
      jj1++;    myfunc_data *d2 = (myfunc_data *) pd;
      if (cptcovn > 0) {  /* xt = (p1-1); */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    xt=vector(1,n); 
        for (cpt=1; cpt<=cptcoveff;cpt++)    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
      }    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
      /* Pij */    printf("Function = %.12lf ",fret);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        printf("\n");
      /* Quasi-incidences */   free_vector(xt,1,n);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    return fret;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  }
        /* Stable prevalence in each health state */  #endif
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  /*************** log-likelihood *************/
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  double func( double *x)
        }  {
     for(cpt=1; cpt<=nlstate;cpt++) {    int i, ii, j, k, mi, d, kk;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 interval) in state (%d): v%s%d%d.png <br>    double **out;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      double sw; /* Sum of weights */
      }    double lli; /* Individual log likelihood */
      for(cpt=1; cpt<=nlstate;cpt++) {    int s1, s2;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    double bbh, survp;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    long ipmx;
      }    double agexact;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    /*extern weight */
 health expectancies in states (1) and (2): e%s%d.png<br>    /* We are differentiating ll according to initial status */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
    }    /*for(i=1;i<imx;i++) 
  }      printf(" %d\n",s[4][i]);
 fclose(fichtm);    */
 }  
     ++countcallfunc;
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    cov[1]=1.;
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int ng;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    if(mle==1){
     printf("Problem with file %s",optionfilegnuplot);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        /* Computes the values of the ncovmodel covariates of the model
            depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 #ifdef windows           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
     fprintf(ficgp,"cd \"%s\" \n",pathc);           to be observed in j being in i according to the model.
 #endif         */
 m=pow(2,cptcoveff);        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
              cov[2+nagesqr+k]=covar[Tvar[k]][i];
  /* 1eme*/        }
   for (cpt=1; cpt<= nlstate ; cpt ++) {        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
    for (k1=1; k1<= m ; k1 ++) {           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
 #ifdef windows        for(mi=1; mi<= wav[i]-1; mi++){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          for (ii=1;ii<=nlstate+ndeath;ii++)
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            for (j=1;j<=nlstate+ndeath;j++){
 #endif              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 #ifdef unix              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          for(d=0; d<dh[mi][i]; d++){
 #endif            newm=savm;
             agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 for (i=1; i<= nlstate ; i ++) {            cov[2]=agexact;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if(nagesqr==1)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              cov[3]= agexact*agexact;
 }            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
     for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   else fprintf(ficgp," \%%*lf (\%%*lf)");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            oldm=newm;
      for (i=1; i<= nlstate ; i ++) {          } /* end mult */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        
   else fprintf(ficgp," \%%*lf (\%%*lf)");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 }            /* But now since version 0.9 we anticipate for bias at large stepm.
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 #ifdef unix           * (in months) between two waves is not a multiple of stepm, we rounded to 
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
 #endif           * we keep into memory the bias bh[mi][i] and also the previous matrix product
    }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   }           * probability in order to take into account the bias as a fraction of the way
   /*2 eme*/           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
   for (k1=1; k1<= m ; k1 ++) {           * For stepm=1 the results are the same as for previous versions of Imach.
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);           * For stepm > 1 the results are less biased than in previous versions. 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);           */
              s1=s[mw[mi][i]][i];
     for (i=1; i<= nlstate+1 ; i ++) {          s2=s[mw[mi+1][i]][i];
       k=2*i;          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          /* bias bh is positive if real duration
       for (j=1; j<= nlstate+1 ; j ++) {           * is higher than the multiple of stepm and negative otherwise.
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");           */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 }            if( s2 > nlstate){ 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            /* i.e. if s2 is a death state and if the date of death is known 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);               then the contribution to the likelihood is the probability to 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);               die between last step unit time and current  step unit time, 
       for (j=1; j<= nlstate+1 ; j ++) {               which is also equal to probability to die before dh 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");               minus probability to die before dh-stepm . 
         else fprintf(ficgp," \%%*lf (\%%*lf)");               In version up to 0.92 likelihood was computed
 }            as if date of death was unknown. Death was treated as any other
       fprintf(ficgp,"\" t\"\" w l 0,");          health state: the date of the interview describes the actual state
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          and not the date of a change in health state. The former idea was
       for (j=1; j<= nlstate+1 ; j ++) {          to consider that at each interview the state was recorded
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          (healthy, disable or death) and IMaCh was corrected; but when we
   else fprintf(ficgp," \%%*lf (\%%*lf)");          introduced the exact date of death then we should have modified
 }            the contribution of an exact death to the likelihood. This new
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          contribution is smaller and very dependent of the step unit
       else fprintf(ficgp,"\" t\"\" w l 0,");          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
   }          interview up to one month before death multiplied by the
            probability to die within a month. Thanks to Chris
   /*3eme*/          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
   for (k1=1; k1<= m ; k1 ++) {          which slows down the processing. The difference can be up to 10%
     for (cpt=1; cpt<= nlstate ; cpt ++) {          lower mortality.
       k=2+nlstate*(2*cpt-2);            */
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          /* If, at the beginning of the maximization mostly, the
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);             cumulative probability or probability to be dead is
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);             constant (ie = 1) over time d, the difference is equal to
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");             0.  out[s1][3] = savm[s1][3]: probability, being at state
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);             s1 at precedent wave, to be dead a month before current
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);             wave is equal to probability, being at state s1 at
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");             precedent wave, to be dead at mont of the current
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);             wave. Then the observed probability (that this person died)
              is null according to current estimated parameter. In fact,
 */             it should be very low but not zero otherwise the log go to
       for (i=1; i< nlstate ; i ++) {             infinity.
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          */
   /* #ifdef INFINITYORIGINAL */
       }  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
     }  /* #else */
   }  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
    /*          lli=log(mytinydouble); */
   /* CV preval stat */  /*        else */
     for (k1=1; k1<= m ; k1 ++) {  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
     for (cpt=1; cpt<nlstate ; cpt ++) {  /* #endif */
       k=3;              lli=log(out[s1][s2] - savm[s1][s2]);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
       for (i=1; i< nlstate ; i ++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         fprintf(ficgp,"+$%d",k+i+1);            /*survp += out[s1][j]; */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            lli= log(survp);
                }
       l=3+(nlstate+ndeath)*cpt;          
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          else if  (s2==-4) { 
       for (i=1; i< nlstate ; i ++) {            for (j=3,survp=0. ; j<=nlstate; j++)  
         l=3+(nlstate+ndeath)*cpt;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         fprintf(ficgp,"+$%d",l+i+1);            lli= log(survp); 
       }          } 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
     }          else if  (s2==-5) { 
   }              for (j=1,survp=0. ; j<=2; j++)  
                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /* proba elementaires */            lli= log(survp); 
    for(i=1,jk=1; i <=nlstate; i++){          } 
     for(k=1; k <=(nlstate+ndeath); k++){          
       if (k != i) {          else{
         for(j=1; j <=ncovmodel; j++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                    /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          } 
           jk++;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           fprintf(ficgp,"\n");          /*if(lli ==000.0)*/
         }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       }          ipmx +=1;
     }          sw += weight[i];
    }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /* if (lli < log(mytinydouble)){ */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
      for(jk=1; jk <=m; jk++) {          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          /* } */
        if (ng==2)        } /* end of wave */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      } /* end of individual */
        else    }  else if(mle==2){
          fprintf(ficgp,"\nset title \"Probability\"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
        i=1;        for(mi=1; mi<= wav[i]-1; mi++){
        for(k2=1; k2<=nlstate; k2++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
          k3=i;            for (j=1;j<=nlstate+ndeath;j++){
          for(k=1; k<=(nlstate+ndeath); k++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            if (k != k2){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              if(ng==2)            }
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          for(d=0; d<=dh[mi][i]; d++){
              else            newm=savm;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
              ij=1;            cov[2]=agexact;
              for(j=3; j <=ncovmodel; j++) {            if(nagesqr==1)
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              cov[3]= agexact*agexact;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            for (kk=1; kk<=cptcovage;kk++) {
                  ij++;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                }            }
                else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              }            savm=oldm;
              fprintf(ficgp,")/(1");            oldm=newm;
                        } /* end mult */
              for(k1=1; k1 <=nlstate; k1++){          
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          s1=s[mw[mi][i]][i];
                ij=1;          s2=s[mw[mi+1][i]][i];
                for(j=3; j <=ncovmodel; j++){          bbh=(double)bh[mi][i]/(double)stepm; 
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          ipmx +=1;
                    ij++;          sw += weight[i];
                  }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                  else        } /* end of wave */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      } /* end of individual */
                }    }  else if(mle==3){  /* exponential inter-extrapolation */
                fprintf(ficgp,")");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        for(mi=1; mi<= wav[i]-1; mi++){
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          for (ii=1;ii<=nlstate+ndeath;ii++)
              i=i+ncovmodel;            for (j=1;j<=nlstate+ndeath;j++){
            }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
        }            }
      }          for(d=0; d<dh[mi][i]; d++){
    }            newm=savm;
    fclose(ficgp);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }  /* end gnuplot */            cov[2]=agexact;
             if(nagesqr==1)
               cov[3]= agexact*agexact;
 /*************** Moving average **************/            for (kk=1; kk<=cptcovage;kk++) {
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             }
   int i, cpt, cptcod;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (i=1; i<=nlstate;i++)            savm=oldm;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            oldm=newm;
           mobaverage[(int)agedeb][i][cptcod]=0.;          } /* end mult */
            
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          s1=s[mw[mi][i]][i];
       for (i=1; i<=nlstate;i++){          s2=s[mw[mi+1][i]][i];
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          bbh=(double)bh[mi][i]/(double)stepm; 
           for (cpt=0;cpt<=4;cpt++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          ipmx +=1;
           }          sw += weight[i];
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
       }      } /* end of individual */
     }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
          for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /************** Forecasting ******************/            for (j=1;j<=nlstate+ndeath;j++){
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            }
   int *popage;          for(d=0; d<dh[mi][i]; d++){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            newm=savm;
   double *popeffectif,*popcount;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double ***p3mat;            cov[2]=agexact;
   char fileresf[FILENAMELENGTH];            if(nagesqr==1)
               cov[3]= agexact*agexact;
  agelim=AGESUP;            for (kk=1; kk<=cptcovage;kk++) {
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcpy(fileresf,"f");            savm=oldm;
   strcat(fileresf,fileres);            oldm=newm;
   if((ficresf=fopen(fileresf,"w"))==NULL) {          } /* end mult */
     printf("Problem with forecast resultfile: %s\n", fileresf);        
   }          s1=s[mw[mi][i]][i];
   printf("Computing forecasting: result on file '%s' \n", fileresf);          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
   if (mobilav==1) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
     movingaverage(agedeb, fage, ageminpar, mobaverage);          ipmx +=1;
   }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   if (stepm<=12) stepsize=1;        } /* end of wave */
        } /* end of individual */
   agelim=AGESUP;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   hstepm=1;        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   hstepm=hstepm/stepm;        for(mi=1; mi<= wav[i]-1; mi++){
   yp1=modf(dateintmean,&yp);          for (ii=1;ii<=nlstate+ndeath;ii++)
   anprojmean=yp;            for (j=1;j<=nlstate+ndeath;j++){
   yp2=modf((yp1*12),&yp);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   mprojmean=yp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   yp1=modf((yp2*30.5),&yp);            }
   jprojmean=yp;          for(d=0; d<dh[mi][i]; d++){
   if(jprojmean==0) jprojmean=1;            newm=savm;
   if(mprojmean==0) jprojmean=1;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
              cov[2]=agexact;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            if(nagesqr==1)
                cov[3]= agexact*agexact;
   for(cptcov=1;cptcov<=i2;cptcov++){            for (kk=1; kk<=cptcovage;kk++) {
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
       k=k+1;            }
       fprintf(ficresf,"\n#******");          
       for(j=1;j<=cptcoveff;j++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
       fprintf(ficresf,"******\n");            oldm=newm;
       fprintf(ficresf,"# StartingAge FinalAge");          } /* end mult */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        
                s1=s[mw[mi][i]][i];
                s2=s[mw[mi+1][i]][i];
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         fprintf(ficresf,"\n");          ipmx +=1;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        } /* end of wave */
           nhstepm = nhstepm/hstepm;      } /* end of individual */
              } /* End of if */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           oldm=oldms;savm=savms;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
            return -l;
           for (h=0; h<=nhstepm; h++){  }
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  /*************** log-likelihood *************/
             }  double funcone( double *x)
             for(j=1; j<=nlstate+ndeath;j++) {  {
               kk1=0.;kk2=0;    /* Same as likeli but slower because of a lot of printf and if */
               for(i=1; i<=nlstate;i++) {                  int i, ii, j, k, mi, d, kk;
                 if (mobilav==1)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double **out;
                 else {    double lli; /* Individual log likelihood */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double llt;
                 }    int s1, s2;
                    double bbh, survp;
               }    double agexact;
               if (h==(int)(calagedate+12*cpt)){    /*extern weight */
                 fprintf(ficresf," %.3f", kk1);    /* We are differentiating ll according to initial status */
                            /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               }    /*for(i=1;i<imx;i++) 
             }      printf(" %d\n",s[4][i]);
           }    */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    cov[1]=1.;
         }  
       }    for(k=1; k<=nlstate; k++) ll[k]=0.;
     }  
   }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
   fclose(ficresf);          for (j=1;j<=nlstate+ndeath;j++){
 }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************** Forecasting ******************/            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          }
          for(d=0; d<dh[mi][i]; d++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          newm=savm;
   int *popage;          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          cov[2]=agexact;
   double *popeffectif,*popcount;          if(nagesqr==1)
   double ***p3mat,***tabpop,***tabpopprev;            cov[3]= agexact*agexact;
   char filerespop[FILENAMELENGTH];          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
            /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
            savm=oldm;
   strcpy(filerespop,"pop");          oldm=newm;
   strcat(filerespop,fileres);        } /* end mult */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        
     printf("Problem with forecast resultfile: %s\n", filerespop);        s1=s[mw[mi][i]][i];
   }        s2=s[mw[mi+1][i]][i];
   printf("Computing forecasting: result on file '%s' \n", filerespop);        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
   if (cptcoveff==0) ncodemax[cptcoveff]=1;         * is higher than the multiple of stepm and negative otherwise.
          */
   if (mobilav==1) {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          lli=log(out[s1][s2] - savm[s1][s2]);
     movingaverage(agedeb, fage, ageminpar, mobaverage);        } else if  (s2==-2) {
   }          for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   stepsize=(int) (stepm+YEARM-1)/YEARM;          lli= log(survp);
   if (stepm<=12) stepsize=1;        }else if (mle==1){
            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   agelim=AGESUP;        } else if(mle==2){
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   hstepm=1;        } else if(mle==3){  /* exponential inter-extrapolation */
   hstepm=hstepm/stepm;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
          } else if (mle==4){  /* mle=4 no inter-extrapolation */
   if (popforecast==1) {          lli=log(out[s1][s2]); /* Original formula */
     if((ficpop=fopen(popfile,"r"))==NULL) {        } else{  /* mle=0 back to 1 */
       printf("Problem with population file : %s\n",popfile);exit(0);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }          /*lli=log(out[s1][s2]); */ /* Original formula */
     popage=ivector(0,AGESUP);        } /* End of if */
     popeffectif=vector(0,AGESUP);        ipmx +=1;
     popcount=vector(0,AGESUP);        sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     i=1;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        if(globpr){
              fprintf(ficresilk,"%9ld %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f %8.3f\
     imx=i;   %11.6f %11.6f %11.6f ", \
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                  num[i], agexact, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
   }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   for(cptcov=1;cptcov<=i2;cptcov++){            llt +=ll[k]*gipmx/gsw;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       k=k+1;          }
       fprintf(ficrespop,"\n#******");          fprintf(ficresilk," %10.6f\n", -llt);
       for(j=1;j<=cptcoveff;j++) {        }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      } /* end of wave */
       }    } /* end of individual */
       fprintf(ficrespop,"******\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       fprintf(ficrespop,"# Age");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       if (popforecast==1)  fprintf(ficrespop," [Population]");    if(globpr==0){ /* First time we count the contributions and weights */
            gipmx=ipmx;
       for (cpt=0; cpt<=0;cpt++) {      gsw=sw;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      }
            return -l;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  
            /*************** function likelione ***********/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           oldm=oldms;savm=savms;  {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* This routine should help understanding what is done with 
               the selection of individuals/waves and
           for (h=0; h<=nhstepm; h++){       to check the exact contribution to the likelihood.
             if (h==(int) (calagedate+YEARM*cpt)) {       Plotting could be done.
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     */
             }    int k;
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    if(*globpri !=0){ /* Just counts and sums, no printings */
               for(i=1; i<=nlstate;i++) {                    strcpy(fileresilk,"ILK_"); 
                 if (mobilav==1)      strcat(fileresilk,fileresu);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                 else {        printf("Problem with resultfile: %s\n", fileresilk);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                 }      }
               }      fprintf(ficresilk, "#individual(line's_record) count age s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficresilk, "#num_i age i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                   /*fprintf(ficrespop," %.3f", kk1);      for(k=1; k<=nlstate; k++) 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
               }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
             }    }
             for(i=1; i<=nlstate;i++){  
               kk1=0.;    *fretone=(*funcone)(p);
                 for(j=1; j<=nlstate;j++){    if(*globpri !=0){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      fclose(ficresilk);
                 }      if (mle ==0)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
             }      else if(mle >=1)
         fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      
           }        
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (k=1; k<= nlstate ; k++) {
         }        fprintf(fichtm,"<br>- Probability p%dj by origin %d and destination j <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
       }  <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
        }
   /******/      fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
   <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      fflush(fichtm);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;    return;
            }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /*********** Maximum Likelihood Estimation ***************/
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  {
             }    int i,j, iter=0;
             for(j=1; j<=nlstate+ndeath;j++) {    double **xi;
               kk1=0.;kk2=0;    double fret;
               for(i=1; i<=nlstate;i++) {                  double fretone; /* Only one call to likelihood */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        /*  char filerespow[FILENAMELENGTH];*/
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  #ifdef NLOPT
             }    int creturn;
           }    nlopt_opt opt;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
         }    double *lb;
       }    double minf; /* the minimum objective value, upon return */
    }    double * p1; /* Shifted parameters from 0 instead of 1 */
   }    myfunc_data dinst, *d = &dinst;
    #endif
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   
   if (popforecast==1) {    xi=matrix(1,npar,1,npar);
     free_ivector(popage,0,AGESUP);    for (i=1;i<=npar;i++)
     free_vector(popeffectif,0,AGESUP);      for (j=1;j<=npar;j++)
     free_vector(popcount,0,AGESUP);        xi[i][j]=(i==j ? 1.0 : 0.0);
   }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcpy(filerespow,"POW_"); 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(filerespow,fileres);
   fclose(ficrespop);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
 }      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 /***********************************************/    }
 /**************** Main Program *****************/    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 /***********************************************/    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
 int main(int argc, char *argv[])        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 {    fprintf(ficrespow,"\n");
   #ifdef POWELL
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    powell(p,xi,npar,ftol,&iter,&fret,func);
   double agedeb, agefin,hf;  #endif
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
   #ifdef NLOPT
   double fret;  #ifdef NEWUOA
   double **xi,tmp,delta;    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   #else
   double dum; /* Dummy variable */    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   double ***p3mat;  #endif
   int *indx;    lb=vector(0,npar-1);
   char line[MAXLINE], linepar[MAXLINE];    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    nlopt_set_lower_bounds(opt, lb);
   int firstobs=1, lastobs=10;    nlopt_set_initial_step1(opt, 0.1);
   int sdeb, sfin; /* Status at beginning and end */    
   int c,  h , cpt,l;    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   int ju,jl, mi;    d->function = func;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    nlopt_set_min_objective(opt, myfunc, d);
   int mobilav=0,popforecast=0;    nlopt_set_xtol_rel(opt, ftol);
   int hstepm, nhstepm;    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      printf("nlopt failed! %d\n",creturn); 
     }
   double bage, fage, age, agelim, agebase;    else {
   double ftolpl=FTOL;      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
   double **prlim;      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
   double *severity;      iter=1; /* not equal */
   double ***param; /* Matrix of parameters */    }
   double  *p;    nlopt_destroy(opt);
   double **matcov; /* Matrix of covariance */  #endif
   double ***delti3; /* Scale */    free_matrix(xi,1,npar,1,npar);
   double *delti; /* Scale */    fclose(ficrespow);
   double ***eij, ***vareij;    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   double **varpl; /* Variances of prevalence limits by age */    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   double *epj, vepp;    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  }
    
   /**** Computes Hessian and covariance matrix ***/
   char *alph[]={"a","a","b","c","d","e"}, str[4];  void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
     double  **a,**y,*x,pd;
   char z[1]="c", occ;    /* double **hess; */
 #include <sys/time.h>    int i, j;
 #include <time.h>    int *indx;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
      double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   /* long total_usecs;    double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
   struct timeval start_time, end_time;    void lubksb(double **a, int npar, int *indx, double b[]) ;
      void ludcmp(double **a, int npar, int *indx, double *d) ;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double gompertz(double p[]);
   getcwd(pathcd, size);    /* hess=matrix(1,npar,1,npar); */
   
   printf("\n%s",version);    printf("\nCalculation of the hessian matrix. Wait...\n");
   if(argc <=1){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     printf("\nEnter the parameter file name: ");    for (i=1;i<=npar;i++){
     scanf("%s",pathtot);      printf("%d-",i);fflush(stdout);
   }      fprintf(ficlog,"%d-",i);fflush(ficlog);
   else{     
     strcpy(pathtot,argv[1]);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   }      
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      /*  printf(" %f ",p[i]);
   /*cygwin_split_path(pathtot,path,optionfile);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    }
   /* cutv(path,optionfile,pathtot,'\\');*/    
     for (i=1;i<=npar;i++) {
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      for (j=1;j<=npar;j++)  {
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        if (j>i) { 
   chdir(path);          printf(".%d-%d",i,j);fflush(stdout);
   replace(pathc,path);          fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
 /*-------- arguments in the command line --------*/          
           hess[j][i]=hess[i][j];    
   strcpy(fileres,"r");          /*printf(" %lf ",hess[i][j]);*/
   strcat(fileres, optionfilefiname);        }
   strcat(fileres,".txt");    /* Other files have txt extension */      }
     }
   /*---------arguments file --------*/    printf("\n");
     fprintf(ficlog,"\n");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     goto end;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   }    
     a=matrix(1,npar,1,npar);
   strcpy(filereso,"o");    y=matrix(1,npar,1,npar);
   strcat(filereso,fileres);    x=vector(1,npar);
   if((ficparo=fopen(filereso,"w"))==NULL) {    indx=ivector(1,npar);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    for (j=1;j<=npar;j++) {
     ungetc(c,ficpar);      for (i=1;i<=npar;i++) x[i]=0;
     fgets(line, MAXLINE, ficpar);      x[j]=1;
     puts(line);      lubksb(a,npar,indx,x);
     fputs(line,ficparo);      for (i=1;i<=npar;i++){ 
   }        matcov[i][j]=x[i];
   ungetc(c,ficpar);      }
     }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    printf("\n#Hessian matrix#\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficlog,"\n#Hessian matrix#\n");
 while((c=getc(ficpar))=='#' && c!= EOF){    for (i=1;i<=npar;i++) { 
     ungetc(c,ficpar);      for (j=1;j<=npar;j++) { 
     fgets(line, MAXLINE, ficpar);        printf("%.6e ",hess[i][j]);
     puts(line);        fprintf(ficlog,"%.6e ",hess[i][j]);
     fputs(line,ficparo);      }
   }      printf("\n");
   ungetc(c,ficpar);      fprintf(ficlog,"\n");
      }
      
   covar=matrix(0,NCOVMAX,1,n);    /* printf("\n#Covariance matrix#\n"); */
   cptcovn=0;    /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    /* for (i=1;i<=npar;i++) {  */
     /*   for (j=1;j<=npar;j++) {  */
   ncovmodel=2+cptcovn;    /*     printf("%.6e ",matcov[i][j]); */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
      /*   } */
   /* Read guess parameters */    /*   printf("\n"); */
   /* Reads comments: lines beginning with '#' */    /*   fprintf(ficlog,"\n"); */
   while((c=getc(ficpar))=='#' && c!= EOF){    /* } */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    /* Recompute Inverse */
     puts(line);    /* for (i=1;i<=npar;i++) */
     fputs(line,ficparo);    /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
   }    /* ludcmp(a,npar,indx,&pd); */
   ungetc(c,ficpar);  
      /*  printf("\n#Hessian matrix recomputed#\n"); */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    /* for (j=1;j<=npar;j++) { */
     for(j=1; j <=nlstate+ndeath-1; j++){    /*   for (i=1;i<=npar;i++) x[i]=0; */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /*   x[j]=1; */
       fprintf(ficparo,"%1d%1d",i1,j1);    /*   lubksb(a,npar,indx,x); */
       printf("%1d%1d",i,j);    /*   for (i=1;i<=npar;i++){  */
       for(k=1; k<=ncovmodel;k++){    /*     y[i][j]=x[i]; */
         fscanf(ficpar," %lf",&param[i][j][k]);    /*     printf("%.3e ",y[i][j]); */
         printf(" %lf",param[i][j][k]);    /*     fprintf(ficlog,"%.3e ",y[i][j]); */
         fprintf(ficparo," %lf",param[i][j][k]);    /*   } */
       }    /*   printf("\n"); */
       fscanf(ficpar,"\n");    /*   fprintf(ficlog,"\n"); */
       printf("\n");    /* } */
       fprintf(ficparo,"\n");  
     }    /* Verifying the inverse matrix */
    #ifdef DEBUGHESS
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
   
   p=param[1][1];     printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
       fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    for (j=1;j<=npar;j++) {
     ungetc(c,ficpar);      for (i=1;i<=npar;i++){ 
     fgets(line, MAXLINE, ficpar);        printf("%.2f ",y[i][j]);
     puts(line);        fprintf(ficlog,"%.2f ",y[i][j]);
     fputs(line,ficparo);      }
   }      printf("\n");
   ungetc(c,ficpar);      fprintf(ficlog,"\n");
     }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  #endif
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){    free_matrix(a,1,npar,1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(y,1,npar,1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_vector(x,1,npar);
       printf("%1d%1d",i,j);    free_ivector(indx,1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    /* free_matrix(hess,1,npar,1,npar); */
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);  }
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }  /*************** hessian matrix ****************/
       fscanf(ficpar,"\n");  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       printf("\n");  { /* Around values of x, computes the function func and returns the scales delti and hessian */
       fprintf(ficparo,"\n");    int i;
     }    int l=1, lmax=20;
   }    double k1,k2, res, fx;
   delti=delti3[1][1];    double p2[MAXPARM+1]; /* identical to x */
      double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   /* Reads comments: lines beginning with '#' */    int k=0,kmax=10;
   while((c=getc(ficpar))=='#' && c!= EOF){    double l1;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    fx=func(x);
     puts(line);    for (i=1;i<=npar;i++) p2[i]=x[i];
     fputs(line,ficparo);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   }      l1=pow(10,l);
   ungetc(c,ficpar);      delts=delt;
        for(k=1 ; k <kmax; k=k+1){
   matcov=matrix(1,npar,1,npar);        delt = delta*(l1*k);
   for(i=1; i <=npar; i++){        p2[theta]=x[theta] +delt;
     fscanf(ficpar,"%s",&str);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
     printf("%s",str);        p2[theta]=x[theta]-delt;
     fprintf(ficparo,"%s",str);        k2=func(p2)-fx;
     for(j=1; j <=i; j++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
       fscanf(ficpar," %le",&matcov[i][j]);        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
       printf(" %.5le",matcov[i][j]);        
       fprintf(ficparo," %.5le",matcov[i][j]);  #ifdef DEBUGHESSII
     }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fscanf(ficpar,"\n");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     printf("\n");  #endif
     fprintf(ficparo,"\n");        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   for(i=1; i <=npar; i++)          k=kmax;
     for(j=i+1;j<=npar;j++)        }
       matcov[i][j]=matcov[j][i];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
              k=kmax; l=lmax*10;
   printf("\n");        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
     /*-------- Rewriting paramater file ----------*/        }
      strcpy(rfileres,"r");    /* "Rparameterfile */      } /* End loop k */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    }
      strcat(rfileres,".");    /* */    delti[theta]=delts;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    return res; 
     if((ficres =fopen(rfileres,"w"))==NULL) {    
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  }
     }  
     fprintf(ficres,"#%s\n",version);  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
      {
     /*-------- data file ----------*/    int i;
     if((fic=fopen(datafile,"r"))==NULL)    {    int l=1, lmax=20;
       printf("Problem with datafile: %s\n", datafile);goto end;    double k1,k2,k3,k4,res,fx;
     }    double p2[MAXPARM+1];
     int k, kmax=1;
     n= lastobs;    double v1, v2, cv12, lc1, lc2;
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);    int firstime=0;
     num=ivector(1,n);    
     moisnais=vector(1,n);    fx=func(x);
     annais=vector(1,n);    for (k=1; k<=kmax; k=k+10) {
     moisdc=vector(1,n);      for (i=1;i<=npar;i++) p2[i]=x[i];
     andc=vector(1,n);      p2[thetai]=x[thetai]+delti[thetai]*k;
     agedc=vector(1,n);      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
     cod=ivector(1,n);      k1=func(p2)-fx;
     weight=vector(1,n);    
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      p2[thetai]=x[thetai]+delti[thetai]*k;
     mint=matrix(1,maxwav,1,n);      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
     anint=matrix(1,maxwav,1,n);      k2=func(p2)-fx;
     s=imatrix(1,maxwav+1,1,n);    
     adl=imatrix(1,maxwav+1,1,n);          p2[thetai]=x[thetai]-delti[thetai]*k;
     tab=ivector(1,NCOVMAX);      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
     ncodemax=ivector(1,8);      k3=func(p2)-fx;
     
     i=1;      p2[thetai]=x[thetai]-delti[thetai]*k;
     while (fgets(line, MAXLINE, fic) != NULL)    {      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
       if ((i >= firstobs) && (i <=lastobs)) {      k4=func(p2)-fx;
              res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
         for (j=maxwav;j>=1;j--){      if(k1*k2*k3*k4 <0.){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        firstime=1;
           strcpy(line,stra);        kmax=kmax+10;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      if(kmax >=10 || firstime ==1){
         }        printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
                fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  #ifdef DEBUGHESSIJ
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      v1=hess[thetai][thetai];
       v2=hess[thetaj][thetaj];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      cv12=res;
         for (j=ncovcol;j>=1;j--){      /* Computing eigen value of Hessian matrix */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         }      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         num[i]=atol(stra);      if ((lc2 <0) || (lc1 <0) ){
                printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         i=i+1;      }
       }  #endif
     }    }
     /* printf("ii=%d", ij);    return res;
        scanf("%d",i);*/  }
   imx=i-1; /* Number of individuals */  
       /* Not done yet: Was supposed to fix if not exactly at the maximum */
   /* for (i=1; i<=imx; i++){  /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  /* { */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  /*   int i; */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  /*   int l=1, lmax=20; */
     }*/  /*   double k1,k2,k3,k4,res,fx; */
    /*  for (i=1; i<=imx; i++){  /*   double p2[MAXPARM+1]; */
      if (s[4][i]==9)  s[4][i]=-1;  /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  /*   int k=0,kmax=10; */
    /*   double l1; */
      
   /* Calculation of the number of parameter from char model*/  /*   fx=func(x); */
   Tvar=ivector(1,15);  /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
   Tprod=ivector(1,15);  /*     l1=pow(10,l); */
   Tvaraff=ivector(1,15);  /*     delts=delt; */
   Tvard=imatrix(1,15,1,2);  /*     for(k=1 ; k <kmax; k=k+1){ */
   Tage=ivector(1,15);        /*       delt = delti*(l1*k); */
      /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
   if (strlen(model) >1){  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
     j=0, j1=0, k1=1, k2=1;  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
     j=nbocc(model,'+');  /*       k1=func(p2)-fx; */
     j1=nbocc(model,'*');        
     cptcovn=j+1;  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
     cptcovprod=j1;  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
      /*       k2=func(p2)-fx; */
     strcpy(modelsav,model);        
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
       printf("Error. Non available option model=%s ",model);  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
       goto end;  /*       k3=func(p2)-fx; */
     }        
      /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
     for(i=(j+1); i>=1;i--){  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
       cutv(stra,strb,modelsav,'+');  /*       k4=func(p2)-fx; */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  /* #ifdef DEBUGHESSIJ */
       /*scanf("%d",i);*/  /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
       if (strchr(strb,'*')) {  /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
         cutv(strd,strc,strb,'*');  /* #endif */
         if (strcmp(strc,"age")==0) {  /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
           cptcovprod--;  /*      k=kmax; */
           cutv(strb,stre,strd,'V');  /*       } */
           Tvar[i]=atoi(stre);  /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
           cptcovage++;  /*      k=kmax; l=lmax*10; */
             Tage[cptcovage]=i;  /*       } */
             /*printf("stre=%s ", stre);*/  /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
         }  /*      delts=delt; */
         else if (strcmp(strd,"age")==0) {  /*       } */
           cptcovprod--;  /*     } /\* End loop k *\/ */
           cutv(strb,stre,strc,'V');  /*   } */
           Tvar[i]=atoi(stre);  /*   delti[theta]=delts; */
           cptcovage++;  /*   return res;  */
           Tage[cptcovage]=i;  /* } */
         }  
         else {  
           cutv(strb,stre,strc,'V');  /************** Inverse of matrix **************/
           Tvar[i]=ncovcol+k1;  void ludcmp(double **a, int n, int *indx, double *d) 
           cutv(strb,strc,strd,'V');  { 
           Tprod[k1]=i;    int i,imax,j,k; 
           Tvard[k1][1]=atoi(strc);    double big,dum,sum,temp; 
           Tvard[k1][2]=atoi(stre);    double *vv; 
           Tvar[cptcovn+k2]=Tvard[k1][1];   
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    vv=vector(1,n); 
           for (k=1; k<=lastobs;k++)    *d=1.0; 
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    for (i=1;i<=n;i++) { 
           k1++;      big=0.0; 
           k2=k2+2;      for (j=1;j<=n;j++) 
         }        if ((temp=fabs(a[i][j])) > big) big=temp; 
       }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       else {      vv[i]=1.0/big; 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    } 
        /*  scanf("%d",i);*/    for (j=1;j<=n;j++) { 
       cutv(strd,strc,strb,'V');      for (i=1;i<j;i++) { 
       Tvar[i]=atoi(strc);        sum=a[i][j]; 
       }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       strcpy(modelsav,stra);          a[i][j]=sum; 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      } 
         scanf("%d",i);*/      big=0.0; 
     }      for (i=j;i<=n;i++) { 
 }        sum=a[i][j]; 
          for (k=1;k<j;k++) 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          sum -= a[i][k]*a[k][j]; 
   printf("cptcovprod=%d ", cptcovprod);        a[i][j]=sum; 
   scanf("%d ",i);*/        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     fclose(fic);          big=dum; 
           imax=i; 
     /*  if(mle==1){*/        } 
     if (weightopt != 1) { /* Maximisation without weights*/      } 
       for(i=1;i<=n;i++) weight[i]=1.0;      if (j != imax) { 
     }        for (k=1;k<=n;k++) { 
     /*-calculation of age at interview from date of interview and age at death -*/          dum=a[imax][k]; 
     agev=matrix(1,maxwav,1,imx);          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
     for (i=1; i<=imx; i++) {        } 
       for(m=2; (m<= maxwav); m++) {        *d = -(*d); 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        vv[imax]=vv[j]; 
          anint[m][i]=9999;      } 
          s[m][i]=-1;      indx[j]=imax; 
        }      if (a[j][j] == 0.0) a[j][j]=TINY; 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      if (j != n) { 
       }        dum=1.0/(a[j][j]); 
     }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     for (i=1; i<=imx; i++)  {    } 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    free_vector(vv,1,n);  /* Doesn't work */
       for(m=1; (m<= maxwav); m++){  ;
         if(s[m][i] >0){  } 
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)  void lubksb(double **a, int n, int *indx, double b[]) 
               if(moisdc[i]!=99 && andc[i]!=9999)  { 
                 agev[m][i]=agedc[i];    int i,ii=0,ip,j; 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    double sum; 
            else {   
               if (andc[i]!=9999){    for (i=1;i<=n;i++) { 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      ip=indx[i]; 
               agev[m][i]=-1;      sum=b[ip]; 
               }      b[ip]=b[i]; 
             }      if (ii) 
           }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           else if(s[m][i] !=9){ /* Should no more exist */      else if (sum) ii=i; 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      b[i]=sum; 
             if(mint[m][i]==99 || anint[m][i]==9999)    } 
               agev[m][i]=1;    for (i=n;i>=1;i--) { 
             else if(agev[m][i] <agemin){      sum=b[i]; 
               agemin=agev[m][i];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      b[i]=sum/a[i][i]; 
             }    } 
             else if(agev[m][i] >agemax){  } 
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  void pstamp(FILE *fichier)
             }  {
             /*agev[m][i]=anint[m][i]-annais[i];*/    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
             /*   agev[m][i] = age[i]+2*m;*/  }
           }  
           else { /* =9 */  /************ Frequencies ********************/
             agev[m][i]=1;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
             s[m][i]=-1;  {  /* Some frequencies */
           }    
         }    int i, m, jk, j1, bool, z1,j;
         else /*= 0 Unknown */    int first;
           agev[m][i]=1;    double ***freq; /* Frequencies */
       }    double *pp, **prop;
        double pos,posprop, k2, dateintsum=0,k2cpt=0;
     }    char fileresp[FILENAMELENGTH];
     for (i=1; i<=imx; i++)  {    
       for(m=1; (m<= maxwav); m++){    pp=vector(1,nlstate);
         if (s[m][i] > (nlstate+ndeath)) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
           printf("Error: Wrong value in nlstate or ndeath\n");      strcpy(fileresp,"P_");
           goto end;    strcat(fileresp,fileresu);
         }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       }      printf("Problem with prevalence resultfile: %s\n", fileresp);
     }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     free_vector(severity,1,maxwav);    j1=0;
     free_imatrix(outcome,1,maxwav+1,1,n);    
     free_vector(moisnais,1,n);    j=cptcoveff;
     free_vector(annais,1,n);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/    first=1;
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
     /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
        /*    j1++; */
     wav=ivector(1,imx);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          scanf("%d", i);*/
            for (i=-5; i<=nlstate+ndeath; i++)  
     /* Concatenates waves */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
         
       Tcode=ivector(1,100);        for (i=1; i<=nlstate; i++)  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          for(m=iagemin; m <= iagemax+3; m++)
       ncodemax[1]=1;            prop[i][m]=0;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        
              dateintsum=0;
    codtab=imatrix(1,100,1,10);        k2cpt=0;
    h=0;        for (i=1; i<=imx; i++) {
    m=pow(2,cptcoveff);          bool=1;
            if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
    for(k=1;k<=cptcoveff; k++){            for (z1=1; z1<=cptcoveff; z1++)       
      for(i=1; i <=(m/pow(2,k));i++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
        for(j=1; j <= ncodemax[k]; j++){                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                bool=0;
            h++;                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                  j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
          }                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
        }              } 
      }          }
    }   
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          if (bool==1){
       codtab[1][2]=1;codtab[2][2]=2; */            for(m=firstpass; m<=lastpass; m++){
    /* for(i=1; i <=m ;i++){              k2=anint[m][i]+(mint[m][i]/12.);
       for(k=1; k <=cptcovn; k++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       printf("\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }                if (m<lastpass) {
       scanf("%d",i);*/                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                      freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
    /* Calculates basic frequencies. Computes observed prevalence at single age                }
        and prints on file fileres'p'. */                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                      dateintsum=dateintsum+k2;
                      k2cpt++;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                /*}*/
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        } /* end i */
               
     /* For Powell, parameters are in a vector p[] starting at p[1]        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        pstamp(ficresp);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
     if(mle==1){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          fprintf(ficresp, "**********\n#");
     }          fprintf(ficlog, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     /*--------- results files --------------*/          fprintf(ficlog, "**********\n#");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        }
          for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
    jk=1;        fprintf(ficresp, "\n");
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for(i=iagemin; i <= iagemax+3; i++){
    for(i=1,jk=1; i <=nlstate; i++){          if(i==iagemax+3){
      for(k=1; k <=(nlstate+ndeath); k++){            fprintf(ficlog,"Total");
        if (k != i)          }else{
          {            if(first==1){
            printf("%d%d ",i,k);              first=0;
            fprintf(ficres,"%1d%1d ",i,k);              printf("See log file for details...\n");
            for(j=1; j <=ncovmodel; j++){            }
              printf("%f ",p[jk]);            fprintf(ficlog,"Age %d", i);
              fprintf(ficres,"%f ",p[jk]);          }
              jk++;          for(jk=1; jk <=nlstate ; jk++){
            }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
            printf("\n");              pp[jk] += freq[jk][m][i]; 
            fprintf(ficres,"\n");          }
          }          for(jk=1; jk <=nlstate ; jk++){
      }            for(m=-1, pos=0; m <=0 ; m++)
    }              pos += freq[jk][m][i];
  if(mle==1){            if(pp[jk]>=1.e-10){
     /* Computing hessian and covariance matrix */              if(first==1){
     ftolhess=ftol; /* Usually correct */                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     hesscov(matcov, p, npar, delti, ftolhess, func);              }
  }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            }else{
     printf("# Scales (for hessian or gradient estimation)\n");              if(first==1)
      for(i=1,jk=1; i <=nlstate; i++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(j=1; j <=nlstate+ndeath; j++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         if (j!=i) {            }
           fprintf(ficres,"%1d%1d",i,j);          }
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){          for(jk=1; jk <=nlstate ; jk++){
             printf(" %.5e",delti[jk]);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             fprintf(ficres," %.5e",delti[jk]);              pp[jk] += freq[jk][m][i];
             jk++;          }       
           }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           printf("\n");            pos += pp[jk];
           fprintf(ficres,"\n");            posprop += prop[jk][i];
         }          }
       }          for(jk=1; jk <=nlstate ; jk++){
      }            if(pos>=1.e-5){
                  if(first==1)
     k=1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            }else{
     for(i=1;i<=npar;i++){              if(first==1)
       /*  if (k>nlstate) k=1;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       i1=(i-1)/(ncovmodel*nlstate)+1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            }
       printf("%s%d%d",alph[k],i1,tab[i]);*/            if( i <= iagemax){
       fprintf(ficres,"%3d",i);              if(pos>=1.e-5){
       printf("%3d",i);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(j=1; j<=i;j++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
         fprintf(ficres," %.5e",matcov[i][j]);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         printf(" %.5e",matcov[i][j]);              }
       }              else
       fprintf(ficres,"\n");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       printf("\n");            }
       k++;          }
     }          
              for(jk=-1; jk <=nlstate+ndeath; jk++)
     while((c=getc(ficpar))=='#' && c!= EOF){            for(m=-1; m <=nlstate+ndeath; m++)
       ungetc(c,ficpar);              if(freq[jk][m][i] !=0 ) {
       fgets(line, MAXLINE, ficpar);              if(first==1)
       puts(line);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       fputs(line,ficparo);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     }              }
     ungetc(c,ficpar);          if(i <= iagemax)
     estepm=0;            fprintf(ficresp,"\n");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          if(first==1)
     if (estepm==0 || estepm < stepm) estepm=stepm;            printf("Others in log...\n");
     if (fage <= 2) {          fprintf(ficlog,"\n");
       bage = ageminpar;        }
       fage = agemaxpar;        /*}*/
     }    }
        dateintmean=dateintsum/k2cpt; 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fclose(ficresp);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
      free_vector(pp,1,nlstate);
     while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     ungetc(c,ficpar);    /* End of Freq */
     fgets(line, MAXLINE, ficpar);  }
     puts(line);  
     fputs(line,ficparo);  /************ Prevalence ********************/
   }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   ungetc(c,ficpar);  {  
      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       We still use firstpass and lastpass as another selection.
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    */
         
   while((c=getc(ficpar))=='#' && c!= EOF){    int i, m, jk, j1, bool, z1,j;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    double **prop;
     puts(line);    double posprop; 
     fputs(line,ficparo);    double  y2; /* in fractional years */
   }    int iagemin, iagemax;
   ungetc(c,ficpar);    int first; /** to stop verbosity which is redirected to log file */
    
     iagemin= (int) agemin;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    iagemax= (int) agemax;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
   fscanf(ficpar,"pop_based=%d\n",&popbased);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   fprintf(ficparo,"pop_based=%d\n",popbased);      j1=0;
   fprintf(ficres,"pop_based=%d\n",popbased);      
      /*j=cptcoveff;*/
   while((c=getc(ficpar))=='#' && c!= EOF){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    first=1;
     puts(line);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
     fputs(line,ficparo);      /*for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;*/
   ungetc(c,ficpar);        
         for (i=1; i<=nlstate; i++)  
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          for(m=iagemin; m <= iagemax+3; m++)
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            prop[i][m]=0.0;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       
         for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
 while((c=getc(ficpar))=='#' && c!= EOF){          if  (cptcovn>0) {
     ungetc(c,ficpar);            for (z1=1; z1<=cptcoveff; z1++) 
     fgets(line, MAXLINE, ficpar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
     puts(line);                bool=0;
     fputs(line,ficparo);          } 
   }          if (bool==1) { 
   ungetc(c,ficpar);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 /*------------ gnuplot -------------*/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   strcpy(optionfilegnuplot,optionfilefiname);                  prop[s[m][i]][iagemax+3] += weight[i]; 
   strcat(optionfilegnuplot,".gp");                } 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              }
     printf("Problem with file %s",optionfilegnuplot);            } /* end selection of waves */
   }          }
   fclose(ficgp);        }
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        for(i=iagemin; i <= iagemax+3; i++){  
 /*--------- index.htm --------*/          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
   strcpy(optionfilehtm,optionfile);          } 
   strcat(optionfilehtm,".htm");          
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          for(jk=1; jk <=nlstate ; jk++){     
     printf("Problem with %s \n",optionfilehtm), exit(0);            if( i <=  iagemax){ 
   }              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              } else{
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                if(first==1){
 \n                  first=0;
 Total number of observations=%d <br>\n                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                }
 <hr  size=\"2\" color=\"#EC5E5E\">              }
  <ul><li><h4>Parameter files</h4>\n            } 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          }/* end jk */ 
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);        }/* end i */ 
   fclose(fichtm);      /*} *//* end i1 */
     } /* end j1 */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    
      /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 /*------------ free_vector  -------------*/    /*free_vector(pp,1,nlstate);*/
  chdir(path);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
    }  /* End of prevalence */
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  /************* Waves Concatenation ***************/
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  free_vector(agedc,1,n);  {
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  fclose(ficparo);       Death is a valid wave (if date is known).
  fclose(ficres);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
   /*--------------- Prevalence limit --------------*/       */
    
   strcpy(filerespl,"pl");    int i, mi, m;
   strcat(filerespl,fileres);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       double sum=0., jmean=0.;*/
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    int first;
   }    int j, k=0,jk, ju, jl;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    double sum=0.;
   fprintf(ficrespl,"#Prevalence limit\n");    first=0;
   fprintf(ficrespl,"#Age ");    jmin=100000;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    jmax=-1;
   fprintf(ficrespl,"\n");    jmean=0.;
      for(i=1; i<=imx; i++){
   prlim=matrix(1,nlstate,1,nlstate);      mi=0;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      m=firstpass;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      while(s[m][i] <= nlstate){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          mw[++mi][i]=m;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        if(m >=lastpass)
   k=0;          break;
   agebase=ageminpar;        else
   agelim=agemaxpar;          m++;
   ftolpl=1.e-10;      }/* end while */
   i1=cptcoveff;      if (s[m][i] > nlstate){
   if (cptcovn < 1){i1=1;}        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
   for(cptcov=1;cptcov<=i1;cptcov++){           /* Only death is a correct wave */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        mw[mi][i]=m;
         k=k+1;      }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");      wav[i]=mi;
         for(j=1;j<=cptcoveff;j++)      if(mi==0){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        nbwarn++;
         fprintf(ficrespl,"******\n");        if(first==0){
                  printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         for (age=agebase; age<=agelim; age++){          first=1;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }
           fprintf(ficrespl,"%.0f",age );        if(first==1){
           for(i=1; i<=nlstate;i++)          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           fprintf(ficrespl," %.5f", prlim[i][i]);        }
           fprintf(ficrespl,"\n");      } /* end mi==0 */
         }    } /* End individuals */
       }  
     }    for(i=1; i<=imx; i++){
   fclose(ficrespl);      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
   /*------------- h Pij x at various ages ------------*/          dh[mi][i]=1;
          else{
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            if (agedc[i] < 2*AGESUP) {
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   }              if(j==0) j=1;  /* Survives at least one month after exam */
   printf("Computing pij: result on file '%s' \n", filerespij);              else if(j<0){
                  nberr++;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /*if (stepm<=24) stepsize=2;*/                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   agelim=AGESUP;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   hstepm=stepsize*YEARM; /* Every year of age */                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              }
               k=k+1;
   /* hstepm=1;   aff par mois*/              if (j >= jmax){
                 jmax=j;
   k=0;                ijmax=i;
   for(cptcov=1;cptcov<=i1;cptcov++){              }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              if (j <= jmin){
       k=k+1;                jmin=j;
         fprintf(ficrespij,"\n#****** ");                ijmin=i;
         for(j=1;j<=cptcoveff;j++)              }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              sum=sum+j;
         fprintf(ficrespij,"******\n");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                      /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            k=k+1;
           oldm=oldms;savm=savms;            if (j >= jmax) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                jmax=j;
           fprintf(ficrespij,"# Age");              ijmax=i;
           for(i=1; i<=nlstate;i++)            }
             for(j=1; j<=nlstate+ndeath;j++)            else if (j <= jmin){
               fprintf(ficrespij," %1d-%1d",i,j);              jmin=j;
           fprintf(ficrespij,"\n");              ijmin=i;
            for (h=0; h<=nhstepm; h++){            }
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             for(i=1; i<=nlstate;i++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
               for(j=1; j<=nlstate+ndeath;j++)            if(j<0){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              nberr++;
             fprintf(ficrespij,"\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           fprintf(ficrespij,"\n");            sum=sum+j;
         }          }
     }          jk= j/stepm;
   }          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
   fclose(ficrespij);              dh[mi][i]=jk;
               bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
   /*---------- Forecasting ------------------*/                    * to avoid the price of an extra matrix product in likelihood */
   if((stepm == 1) && (strcmp(model,".")==0)){              dh[mi][i]=jk+1;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);              bh[mi][i]=ju;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            }
   }          }else{
   else{            if(jl <= -ju){
     erreur=108;              dh[mi][i]=jk;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);              bh[mi][i]=jl;       /* bias is positive if real duration
   }                                   * is higher than the multiple of stepm and negative otherwise.
                                     */
             }
   /*---------- Health expectancies and variances ------------*/            else{
               dh[mi][i]=jk+1;
   strcpy(filerest,"t");              bh[mi][i]=ju;
   strcat(filerest,fileres);            }
   if((ficrest=fopen(filerest,"w"))==NULL) {            if(dh[mi][i]==0){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;              dh[mi][i]=1; /* At least one step */
   }              bh[mi][i]=ju; /* At least one step */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
           } /* end if mle */
   strcpy(filerese,"e");        }
   strcat(filerese,fileres);      } /* end wave */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    jmean=sum/k;
   }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);  /*********** Tricode ****************************/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  {
   }    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   calagedate=-1;     * Boring subroutine which should only output nbcode[Tvar[j]][k]
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
      * nbcode[Tvar[j]][1]= 
   k=0;    */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       k=k+1;    int modmaxcovj=0; /* Modality max of covariates j */
       fprintf(ficrest,"\n#****** ");    int cptcode=0; /* Modality max of covariates j */
       for(j=1;j<=cptcoveff;j++)    int modmincovj=0; /* Modality min of covariates j */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");  
     cptcoveff=0; 
       fprintf(ficreseij,"\n#****** ");   
       for(j=1;j<=cptcoveff;j++)    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");    /* Loop on covariates without age and products */
     for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
       fprintf(ficresvij,"\n#****** ");      for (k=-1; k < maxncov; k++) Ndum[k]=0;
       for(j=1;j<=cptcoveff;j++)      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                                 modality of this covariate Vj*/ 
       fprintf(ficresvij,"******\n");        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                       * If product of Vn*Vm, still boolean *:
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
       oldm=oldms;savm=savms;                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                          modality of the nth covariate of individual i. */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        if (ij > modmaxcovj)
       oldm=oldms;savm=savms;          modmaxcovj=ij; 
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        else if (ij < modmincovj) 
              modmincovj=ij; 
         if ((ij < -1) && (ij > NCOVMAX)){
            printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          exit(1);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        }else
       fprintf(ficrest,"\n");        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
       epj=vector(1,nlstate+1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       for(age=bage; age <=fage ;age++){        /* getting the maximum value of the modality of the covariate
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
         if (popbased==1) {           female is 1, then modmaxcovj=1.*/
           for(i=1; i<=nlstate;i++)      } /* end for loop on individuals i */
             prlim[i][i]=probs[(int)age][i][k];      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
         }      fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
              cptcode=modmaxcovj;
         fprintf(ficrest," %4.0f",age);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){     /*for (i=0; i<=cptcode; i++) {*/
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
           }        if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
           epj[nlstate+1] +=epj[j];          if( k != -1){
         }            ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered excluding 
         for(i=1, vepp=0.;i <=nlstate;i++)                               undefined. Usually 2: 0 and 1. */
           for(j=1;j <=nlstate;j++)          }
             vepp += vareij[i][j][(int)age];          ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                               covariate for which somebody answered including 
         for(j=1;j <=nlstate;j++){                               undefined. Usually 3: -1, 0 and 1. */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        }
         }        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
         fprintf(ficrest,"\n");           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       }      } /* Ndum[-1] number of undefined modalities */
     }  
   }      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 free_matrix(mint,1,maxwav,1,n);      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
     free_vector(weight,1,n);         modmincovj=3; modmaxcovj = 7;
   fclose(ficreseij);         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
   fclose(ficresvij);         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
   fclose(ficrest);         defining two dummy variables: variables V1_1 and V1_2.
   fclose(ficpar);         nbcode[Tvar[j]][ij]=k;
   free_vector(epj,1,nlstate+1);         nbcode[Tvar[j]][1]=0;
           nbcode[Tvar[j]][2]=1;
   /*------- Variance limit prevalence------*/           nbcode[Tvar[j]][3]=2;
          To be continued (not working yet).
   strcpy(fileresvpl,"vpl");      */
   strcat(fileresvpl,fileres);      ij=0; /* ij is similar to i but can jump over null modalities */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          if (Ndum[i] == 0) { /* If nobody responded to this modality k */
     exit(0);            break;
   }          }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          ij++;
           nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
   k=0;          cptcode = ij; /* New max modality for covar j */
   for(cptcov=1;cptcov<=i1;cptcov++){      } /* end of loop on modality i=-1 to 1 or more */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        
       k=k+1;      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
       fprintf(ficresvpl,"\n#****** ");      /*  /\*recode from 0 *\/ */
       for(j=1;j<=cptcoveff;j++)      /*                               k is a modality. If we have model=V1+V1*sex  */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       fprintf(ficresvpl,"******\n");      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
            /*  } */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
       oldm=oldms;savm=savms;      /*  if (ij > ncodemax[j]) { */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
     }      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
  }      /*    break; */
       /*  } */
   fclose(ficresvpl);      /*   }  /\* end of loop on modality k *\/ */
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   /*---------- End : free ----------------*/    
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
      
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       Ndum[ij]++; /* Might be supersed V1 + V1*age */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);   } 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   ij=0;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   free_matrix(matcov,1,npar,1,npar);     if((Ndum[i]!=0) && (i<=ncovcol)){
   free_vector(delti,1,npar);       ij++;
   free_matrix(agev,1,maxwav,1,imx);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       Tvaraff[ij]=i; /*For printing (unclear) */
      }else{
   fprintf(fichtm,"\n</body>");         /* Tvaraff[ij]=0; */
   fclose(fichtm);     }
   fclose(ficgp);   }
     /* ij--; */
    cptcoveff=ij; /*Number of total covariates*/
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);  }
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
    /*********** Health Expectancies ****************/
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   /*------ End -----------*/  
   {
     /* Health expectancies, no variances */
  end:    int i, j, nhstepm, hstepm, h, nstepm;
 #ifdef windows    int nhstepma, nstepma; /* Decreasing with age */
   /* chdir(pathcd);*/    double age, agelim, hf;
 #endif    double ***p3mat;
  /*system("wgnuplot graph.plt");*/    double eip;
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/    pstamp(ficreseij);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
  strcpy(plotcmd,GNUPLOTPROGRAM);    fprintf(ficreseij,"# Age");
  strcat(plotcmd," ");    for(i=1; i<=nlstate;i++){
  strcat(plotcmd,optionfilegnuplot);      for(j=1; j<=nlstate;j++){
  system(plotcmd);        fprintf(ficreseij," e%1d%1d ",i,j);
       }
 #ifdef windows      fprintf(ficreseij," e%1d. ",i);
   while (z[0] != 'q') {    }
     /* chdir(path); */    fprintf(ficreseij,"\n");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);    
     if (z[0] == 'c') system("./imach");    if(estepm < stepm){
     else if (z[0] == 'e') system(optionfilehtm);      printf ("Problem %d lower than %d\n",estepm, stepm);
     else if (z[0] == 'g') system(plotcmd);    }
     else if (z[0] == 'q') exit(0);    else  hstepm=estepm;   
   }    /* We compute the life expectancy from trapezoids spaced every estepm months
 #endif     * This is mainly to measure the difference between two models: for example
 }     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyear, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-POPULBASED-MOBILAV_");
       else strcpy(digitp,"-POPULBASED-NOMOBIL_");
     }
     else 
       strcpy(digitp,"-STABLBASED_");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"PRMORPREV-"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileresu);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     
     fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficgp,"\nunset title \n");
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelim. 
        Look at function hpijx to understand why (it is linked to memory size questions) 
        we decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear, ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyear,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
     fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyear, int ij, char strstart[])
   {
     /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mgm, **mgp;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=matrix(1,npar,1,nlstate);
       mgp=matrix(1,npar,1,nlstate);
       mgm=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); /* Missing or not useful because 1 year */ 
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);
         for(i=1;i<=nlstate;i++){
           gp[i] = prlim[i][i];
           mgp[theta][i] = prlim[i][i];
         }
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);
         for(i=1;i<=nlstate;i++){
           gm[i] = prlim[i][i];
           mgm[theta][i] = prlim[i][i];
         }
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
       if((int)age==68 ||(int)age== 69 ){
         printf("\nmgm mgp %d ",(int)age);
         for(j=1; j<=nlstate;j++){
           printf("%d ",j);
           for(theta=1; theta <=npar; theta++)
             printf("%d %lf %lf",theta,mgm[theta][j],mgp[theta][j]);
           printf("\n ");
         }
       }
       if((int)age==68 ||(int)age== 69 ){
         printf("\n gradg %d ",(int)age);
         for(j=1; j<=nlstate;j++){
           printf("%d ",j);
           for(theta=1; theta <=npar; theta++)
             printf("%d %lf ",theta,gradg[theta][j]);
           printf("\n ");
         }
       }
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       if((int)age==68 ||(int)age== 69 ){
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }else{
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(mgm,1,npar,1,nlstate);
       free_matrix(mgp,1,npar,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"PROB_"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"PROBCOV_"); 
     strcat(fileresprobcov,fileresu);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"PROBCOR_"); 
     strcat(fileresprobcor,fileresu);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
             /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter svg size 640, 480");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model, for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
   <img src=\"%s_%d-1.svg\">",subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
        /* Pij */
        fprintf(fichtm,"<br>\n- Pij or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
   <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>\n- Iij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\
    incidence (rates) are the limit when h tends to zero of the ratio of the probability hPij \
   divided by h: hPij/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
    Or probability to survive in various states (1 to %d) being in state %d at different ages.\
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
        }
        /* Period (stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \
   <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d%d.svg\"> %s_%d-%d.svg <br>\
   <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences:  <a href=\"%s_%d.svg\">%s_%d.svg<br>\
   <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
     int vpopbased;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     /* Contribution to likelihood */
     /* Plot the probability implied in the likelihood */
       fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
       fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
       /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
       fprintf(ficgp,"\nset ter pngcairo size 640, 480");
   /* nice for mle=4 plot by number of matrix products.
      replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
       /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
       fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$12):5 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
       fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$12):4 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
         fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
         fprintf(ficgp,"  u  2:($4 == %d && $5==%d ? $9 : 1/0):($11/4.):5 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
         for (j=2; j<= nlstate+ndeath ; j ++) {
           fprintf(ficgp,",\\\n \"\" u  2:($4 == %d && $5==%d ? $9 : 1/0):($11/4.):5 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
         }
         fprintf(ficgp,";\nset out; unset ylabel;\n"); 
       }
       /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */              
       /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
       /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
       fprintf(ficgp,"\nset out;unset log\n");
       /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
        fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
        fprintf(ficgp,"\nset out \n");
       } /* k1 */
     } /* cpt */
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
         if(vpopbased==0)
           fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
         else
           fprintf(ficgp,"\nreplot ");
         for (i=1; i<= nlstate+1 ; i ++) {
           k=2*i;
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
           else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           fprintf(ficgp,"\" t\"\" w l lt 0,");
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
           else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
         } /* state */
       } /* vpopbased */
       fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
     } /* k1 */
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
         fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'lij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate+ndeath ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
         k=3;
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           if(j==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(cpt-1) +j;
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
           /* for (i=2; i<= nlstate+ndeath ; i ++) */
           /*   fprintf(ficgp,"+$%d",k+l+i-1); */
           fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
         } /* nlstate */
         fprintf(ficgp,", '' ");
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           l=(nlstate+ndeath)*(cpt-1) +j;
           if(j < nlstate)
             fprintf(ficgp,"$%d +",k+l);
           else
             fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
         }
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
          fprintf(ficgp,"\nset ter svg size 640, 480 ");
          if (ng==1){
            fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
            fprintf(ficgp,"\nunset log y");
          }else if (ng==2){
            fprintf(ficgp,"\nset ylabel \"Probability\"\n");
            fprintf(ficgp,"\nset log y");
          }else if (ng==3){
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
            fprintf(ficgp,"\nset log y");
          }else
            fprintf(ficgp,"\nunset title ");
          fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                switch( ng) {
                case 1:
                  if(nagesqr==0)
                    fprintf(ficgp," p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 2: /* ng=2 */
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                      fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 3:
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                  break;
                }
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                  if(ij <=cptcovage) { /* Bug valgrind */
                    if((j-2)==Tage[ij]) { /* Bug valgrind */
                      fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                      /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                      ij++;
                    }
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                }
                if(ng != 1){
                  fprintf(ficgp,")/(1");
                
                  for(k1=1; k1 <=nlstate; k1++){ 
                    if(nagesqr==0)
                      fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                    else /* nagesqr =1 */
                      fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                    
                    ij=1;
                    for(j=3; j <=ncovmodel-nagesqr; j++){
                      if(ij <=cptcovage) { /* Bug valgrind */
                        if((j-2)==Tage[ij]) { /* Bug valgrind */
                          fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                          /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                          ij++;
                        }
                      }
                      else
                        fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                    }
                    fprintf(ficgp,")");
                  }
                  fprintf(ficgp,")");
                  if(ng ==2)
                    fprintf(ficgp," t \"p%d%d\" ", k2,k);
                  else /* ng= 3 */
                    fprintf(ficgp," t \"i%d%d\" ", k2,k);
                }else{ /* end ng <> 1 */
                  fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
                }
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
          fprintf(ficgp,"\n set out\n");
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"POP_"); 
     strcat(filerespop,fileresu);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
    int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyear){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"#******");
           printf("#******");
           fprintf(ficlog,"#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
           fprintf(ficrespl,"Total Years_to_converge\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyear, k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             tot=0.;
             for(i=1; i<=nlstate;i++){
               tot +=  prlim[i][i];
               fprintf(ficrespl," %.5f", prlim[i][i]);
             }
             fprintf(ficrespl," %.3f %d\n", tot, *ncvyear);
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyearnp=0;
     int *ncvyear=&ncvyearnp; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
       }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8\n");
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     ftolpl=6.e-3; /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* /\* for(h=1; h <=100 ;h++){  *\/ */
     /*   /\* printf("h=%2d ", h); *\/ */
     /*    /\* for(k=1; k <=10; k++){ *\/ */
     /*      /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */
     /*    /\*   codtab[h][k]=codtabm(h,k); *\/ */
     /*    /\* } *\/ */
     /*    /\* printf("\n"); *\/ */
     /* } */
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
           fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard  */
     else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
   
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, ncvyear);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(stdout);
       fprintf(ficlog,"      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrest,"******\n");
         
         fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         printf(" cvevsij %d, ",k);
         fprintf(ficlog, " cvevsij %d, ",k);
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);
         printf(" end cvevsij \n ");
         fprintf(ficlog, " end cvevsij \n ");
         
         /*
          */
         /* goto endfree; */
         
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         pstamp(ficrest);
         
         
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           oldm=oldms;savm=savms; /* ZZ Segmentation fault */
           cptcod= 0; /* To be deleted */
           printf("varevsij %d \n",vpopbased);
           fprintf(ficlog, "varevsij %d \n",vpopbased);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           if(vpopbased==1)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
           else
             fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
           fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
           /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
           epj=vector(1,nlstate+1);
           printf("Computing age specific period (stable) prevalences in each health state \n");
           fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyear, k); /*ZZ Is it the correct prevalim */
             if (vpopbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
             
             fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
             /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
             /* printf(" age %4.0f ",age); */
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
               }
               epj[nlstate+1] +=epj[j];
             }
             /* printf(" age %4.0f \n",age); */
             
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
         } /* End vpopbased */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
         printf("done \n");fflush(stdout);
         fprintf(ficlog,"done\n");fflush(ficlog);
         
         /*}*/
       } /* End k */
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       printf("done Health expectancies\n");fflush(stdout);
       fprintf(ficlog,"done Health expectancies\n");fflush(ficlog);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyear, k, strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
       printf("done variance-covariance of period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       free_matrix(hess,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.49  
changed lines
  Added in v.1.208


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>