Diff for /imach/src/imach.c between versions 1.49 and 1.91

version 1.49, 2002/06/20 14:03:39 version 1.91, 2003/06/25 15:30:29
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.91  2003/06/25 15:30:29  brouard
      * imach.c (Repository): Duplicated warning errors corrected.
   This program computes Healthy Life Expectancies from    (Repository): Elapsed time after each iteration is now output. It
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    helps to forecast when convergence will be reached. Elapsed time
   first survey ("cross") where individuals from different ages are    is stamped in powell.  We created a new html file for the graphs
   interviewed on their health status or degree of disability (in the    concerning matrix of covariance. It has extension -cov.htm.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.90  2003/06/24 12:34:15  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Some bugs corrected for windows. Also, when
   computed from the time spent in each health state according to a    mle=-1 a template is output in file "or"mypar.txt with the design
   model. More health states you consider, more time is necessary to reach the    of the covariance matrix to be input.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.89  2003/06/24 12:30:52  brouard
   probability to be observed in state j at the second wave    (Module): Some bugs corrected for windows. Also, when
   conditional to be observed in state i at the first wave. Therefore    mle=-1 a template is output in file "or"mypar.txt with the design
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    of the covariance matrix to be input.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.88  2003/06/23 17:54:56  brouard
   where the markup *Covariates have to be included here again* invites    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.86  2003/06/17 20:04:08  brouard
   identical for each individual. Also, if a individual missed an    (Module): Change position of html and gnuplot routines and added
   intermediate interview, the information is lost, but taken into    routine fileappend.
   account using an interpolation or extrapolation.    
     Revision 1.85  2003/06/17 13:12:43  brouard
   hPijx is the probability to be observed in state i at age x+h    * imach.c (Repository): Check when date of death was earlier that
   conditional to the observed state i at age x. The delay 'h' can be    current date of interview. It may happen when the death was just
   split into an exact number (nh*stepm) of unobserved intermediate    prior to the death. In this case, dh was negative and likelihood
   states. This elementary transition (by month or quarter trimester,    was wrong (infinity). We still send an "Error" but patch by
   semester or year) is model as a multinomial logistic.  The hPx    assuming that the date of death was just one stepm after the
   matrix is simply the matrix product of nh*stepm elementary matrices    interview.
   and the contribution of each individual to the likelihood is simply    (Repository): Because some people have very long ID (first column)
   hPijx.    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
   Also this programme outputs the covariance matrix of the parameters but also    truncation)
   of the life expectancies. It also computes the prevalence limits.    (Repository): No more line truncation errors.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.84  2003/06/13 21:44:43  brouard
            Institut national d'études démographiques, Paris.    * imach.c (Repository): Replace "freqsummary" at a correct
   This software have been partly granted by Euro-REVES, a concerted action    place. It differs from routine "prevalence" which may be called
   from the European Union.    many times. Probs is memory consuming and must be used with
   It is copyrighted identically to a GNU software product, ie programme and    parcimony.
   software can be distributed freely for non commercial use. Latest version    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.83  2003/06/10 13:39:11  lievre
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.82  2003/06/05 15:57:20  brouard
 #include <stdlib.h>    Add log in  imach.c and  fullversion number is now printed.
 #include <unistd.h>  
   */
 #define MAXLINE 256  /*
 #define GNUPLOTPROGRAM "gnuplot"     Interpolated Markov Chain
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Short summary of the programme:
 /*#define DEBUG*/    
 #define windows    This program computes Healthy Life Expectancies from
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    case of a health survey which is our main interest) -2- at least a
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define NINTERVMAX 8    computed from the time spent in each health state according to a
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    model. More health states you consider, more time is necessary to reach the
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Maximum Likelihood of the parameters involved in the model.  The
 #define NCOVMAX 8 /* Maximum number of covariates */    simplest model is the multinomial logistic model where pij is the
 #define MAXN 20000    probability to be observed in state j at the second wave
 #define YEARM 12. /* Number of months per year */    conditional to be observed in state i at the first wave. Therefore
 #define AGESUP 130    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define AGEBASE 40    'age' is age and 'sex' is a covariate. If you want to have a more
 #ifdef windows    complex model than "constant and age", you should modify the program
 #define DIRSEPARATOR '\\'    where the markup *Covariates have to be included here again* invites
 #else    you to do it.  More covariates you add, slower the
 #define DIRSEPARATOR '/'    convergence.
 #endif  
     The advantage of this computer programme, compared to a simple
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    multinomial logistic model, is clear when the delay between waves is not
 int erreur; /* Error number */    identical for each individual. Also, if a individual missed an
 int nvar;    intermediate interview, the information is lost, but taken into
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    account using an interpolation or extrapolation.  
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    hPijx is the probability to be observed in state i at age x+h
 int ndeath=1; /* Number of dead states */    conditional to the observed state i at age x. The delay 'h' can be
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    split into an exact number (nh*stepm) of unobserved intermediate
 int popbased=0;    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 int *wav; /* Number of waves for this individuual 0 is possible */    matrix is simply the matrix product of nh*stepm elementary matrices
 int maxwav; /* Maxim number of waves */    and the contribution of each individual to the likelihood is simply
 int jmin, jmax; /* min, max spacing between 2 waves */    hPijx.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Also this programme outputs the covariance matrix of the parameters but also
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    of the life expectancies. It also computes the stable prevalence. 
 double jmean; /* Mean space between 2 waves */    
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */             Institut national d'études démographiques, Paris.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    This software have been partly granted by Euro-REVES, a concerted action
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    from the European Union.
 FILE *fichtm; /* Html File */    It is copyrighted identically to a GNU software product, ie programme and
 FILE *ficreseij;    software can be distributed freely for non commercial use. Latest version
 char filerese[FILENAMELENGTH];    can be accessed at http://euroreves.ined.fr/imach .
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 FILE  *ficresvpl;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 char fileresvpl[FILENAMELENGTH];    
 char title[MAXLINE];    **********************************************************************/
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  /*
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    main
     read parameterfile
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    read datafile
     concatwav
 char filerest[FILENAMELENGTH];    freqsummary
 char fileregp[FILENAMELENGTH];    if (mle >= 1)
 char popfile[FILENAMELENGTH];      mlikeli
     print results files
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    if mle==1 
        computes hessian
 #define NR_END 1    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define FREE_ARG char*        begin-prev-date,...
 #define FTOL 1.0e-10    open gnuplot file
     open html file
 #define NRANSI    stable prevalence
 #define ITMAX 200     for age prevalim()
     h Pij x
 #define TOL 2.0e-4    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 #define CGOLD 0.3819660    health expectancies
 #define ZEPS 1.0e-10    Variance-covariance of DFLE
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    prevalence()
      movingaverage()
 #define GOLD 1.618034    varevsij() 
 #define GLIMIT 100.0    if popbased==1 varevsij(,popbased)
 #define TINY 1.0e-20    total life expectancies
     Variance of stable prevalence
 static double maxarg1,maxarg2;   end
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)   
   #include <math.h>
 static double sqrarg;  #include <stdio.h>
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #include <stdlib.h>
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #include <unistd.h>
   
 int imx;  #include <sys/time.h>
 int stepm;  #include <time.h>
 /* Stepm, step in month: minimum step interpolation*/  #include "timeval.h"
   
 int estepm;  #define MAXLINE 256
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int m,nb;  #define FILENAMELENGTH 132
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  /*#define DEBUG*/
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  /*#define windows*/
 double **pmmij, ***probs, ***mobaverage;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double dateintmean=0;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 double *weight;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int **s; /* Status */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 double ftolhess; /* Tolerance for computing hessian */  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 /**************** split *************************/  #define YEARM 12. /* Number of months per year */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define AGESUP 130
 {  #define AGEBASE 40
    char *s;                             /* pointer */  #ifdef unix
    int  l1, l2;                         /* length counters */  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
    l1 = strlen( path );                 /* length of path */  #else
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define DIRSEPARATOR '\\'
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  #define ODIRSEPARATOR '/'
    if ( s == NULL ) {                   /* no directory, so use current */  #endif
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );  /* $Id$ */
   /* $State$ */
       if ( getwd( dirc ) == NULL ) {  
 #else  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
       extern char       *getcwd( );  char fullversion[]="$Revision$ $Date$"; 
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int nvar;
 #endif  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
          return( GLOCK_ERROR_GETCWD );  int npar=NPARMAX;
       }  int nlstate=2; /* Number of live states */
       strcpy( name, path );             /* we've got it */  int ndeath=1; /* Number of dead states */
    } else {                             /* strip direcotry from path */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       s++;                              /* after this, the filename */  int popbased=0;
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int *wav; /* Number of waves for this individuual 0 is possible */
       strcpy( name, s );                /* save file name */  int maxwav; /* Maxim number of waves */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int jmin, jmax; /* min, max spacing between 2 waves */
       dirc[l1-l2] = 0;                  /* add zero */  int gipmx, gsw; /* Global variables on the number of contributions 
    }                     to the likelihood and the sum of weights (done by funcone)*/
    l1 = strlen( dirc );                 /* length of directory */  int mle, weightopt;
 #ifdef windows  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #else  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #endif  double jmean; /* Mean space between 2 waves */
    s = strrchr( name, '.' );            /* find last / */  double **oldm, **newm, **savm; /* Working pointers to matrices */
    s++;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    strcpy(ext,s);                       /* save extension */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    l1= strlen( name);  FILE *ficlog, *ficrespow;
    l2= strlen( s)+1;  int globpr; /* Global variable for printing or not */
    strncpy( finame, name, l1-l2);  double fretone; /* Only one call to likelihood */
    finame[l1-l2]= 0;  long ipmx; /* Number of contributions */
    return( 0 );                         /* we're done */  double sw; /* Sum of weights */
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /******************************************/  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 void replace(char *s, char*t)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   int i;  FILE  *ficresvij;
   int lg=20;  char fileresv[FILENAMELENGTH];
   i=0;  FILE  *ficresvpl;
   lg=strlen(t);  char fileresvpl[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char title[MAXLINE];
     (s[i] = t[i]);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     if (t[i]== '\\') s[i]='/';  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   }  char tmpout[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 int nbocc(char *s, char occ)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int i,j=0;  char lfileres[FILENAMELENGTH];
   int lg=20;  char filelog[FILENAMELENGTH]; /* Log file */
   i=0;  char filerest[FILENAMELENGTH];
   lg=strlen(s);  char fileregp[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char popfile[FILENAMELENGTH];
   if  (s[i] == occ ) j++;  
   }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   return j;  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 void cutv(char *u,char *v, char*t, char occ)  extern int gettimeofday();
 {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   int i,lg,j,p=0;  long time_value;
   i=0;  extern long time();
   for(j=0; j<=strlen(t)-1; j++) {  char strcurr[80], strfor[80];
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  #define NR_END 1
   #define FREE_ARG char*
   lg=strlen(t);  #define FTOL 1.0e-10
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define NRANSI 
   }  #define ITMAX 200 
      u[p]='\0';  
   #define TOL 2.0e-4 
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define CGOLD 0.3819660 
   }  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /********************** nrerror ********************/  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 void nrerror(char error_text[])  #define TINY 1.0e-20 
 {  
   fprintf(stderr,"ERREUR ...\n");  static double maxarg1,maxarg2;
   fprintf(stderr,"%s\n",error_text);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   exit(1);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
 /*********************** vector *******************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 double *vector(int nl, int nh)  #define rint(a) floor(a+0.5)
 {  
   double *v;  static double sqrarg;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if (!v) nrerror("allocation failure in vector");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   return v-nl+NR_END;  
 }  int imx; 
   int stepm;
 /************************ free vector ******************/  /* Stepm, step in month: minimum step interpolation*/
 void free_vector(double*v, int nl, int nh)  
 {  int estepm;
   free((FREE_ARG)(v+nl-NR_END));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /************************ivector *******************************/  long *num;
 int *ivector(long nl,long nh)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   int *v;  double **pmmij, ***probs;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double dateintmean=0;
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 /******************free ivector **************************/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 void free_ivector(int *v, long nl, long nh)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   free((FREE_ARG)(v+nl-NR_END));  double ftolhess; /* Tolerance for computing hessian */
 }  
   /**************** split *************************/
 /******************* imatrix *******************************/  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 int **imatrix(long nrl, long nrh, long ncl, long nch)  {
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    char  *ss;                            /* pointer */
 {    int   l1, l2;                         /* length counters */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   /* allocate pointers to rows */    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    if ( ss == NULL ) {                   /* no directory, so use current */
   if (!m) nrerror("allocation failure 1 in matrix()");      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m += NR_END;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m -= nrl;      /* get current working directory */
        /*    extern  char* getcwd ( char *buf , int len);*/
        if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   /* allocate rows and set pointers to them */        return( GLOCK_ERROR_GETCWD );
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      strcpy( name, path );               /* we've got it */
   m[nrl] += NR_END;    } else {                              /* strip direcotry from path */
   m[nrl] -= ncl;      ss++;                               /* after this, the filename */
        l2 = strlen( ss );                  /* length of filename */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
        strcpy( name, ss );         /* save file name */
   /* return pointer to array of pointers to rows */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   return m;      dirc[l1-l2] = 0;                    /* add zero */
 }    }
     l1 = strlen( dirc );                  /* length of directory */
 /****************** free_imatrix *************************/    /*#ifdef windows
 void free_imatrix(m,nrl,nrh,ncl,nch)    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
       int **m;  #else
       long nch,ncl,nrh,nrl;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
      /* free an int matrix allocated by imatrix() */  #endif
 {    */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    ss = strrchr( name, '.' );            /* find last / */
   free((FREE_ARG) (m+nrl-NR_END));    ss++;
 }    strcpy(ext,ss);                       /* save extension */
     l1= strlen( name);
 /******************* matrix *******************************/    l2= strlen(ss)+1;
 double **matrix(long nrl, long nrh, long ncl, long nch)    strncpy( finame, name, l1-l2);
 {    finame[l1-l2]= 0;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    return( 0 );                          /* we're done */
   double **m;  }
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /******************************************/
   m += NR_END;  
   m -= nrl;  void replace_back_to_slash(char *s, char*t)
   {
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int i;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int lg=0;
   m[nrl] += NR_END;    i=0;
   m[nrl] -= ncl;    lg=strlen(t);
     for(i=0; i<= lg; i++) {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      (s[i] = t[i]);
   return m;      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int nbocc(char *s, char occ)
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    int i,j=0;
   free((FREE_ARG)(m+nrl-NR_END));    int lg=20;
 }    i=0;
     lg=strlen(s);
 /******************* ma3x *******************************/    for(i=0; i<= lg; i++) {
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    if  (s[i] == occ ) j++;
 {    }
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    return j;
   double ***m;  }
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  void cutv(char *u,char *v, char*t, char occ)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    /* cuts string t into u and v where u is ended by char occ excluding it
   m -= nrl;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
        gives u="abcedf" and v="ghi2j" */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    int i,lg,j,p=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    i=0;
   m[nrl] += NR_END;    for(j=0; j<=strlen(t)-1; j++) {
   m[nrl] -= ncl;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     lg=strlen(t);
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    for(j=0; j<p; j++) {
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      (u[j] = t[j]);
   m[nrl][ncl] += NR_END;    }
   m[nrl][ncl] -= nll;       u[p]='\0';
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;     for(j=0; j<= lg; j++) {
        if (j>=(p+1))(v[j-p-1] = t[j]);
   for (i=nrl+1; i<=nrh; i++) {    }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  }
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  /********************** nrerror ********************/
   }  
   return m;  void nrerror(char error_text[])
 }  {
     fprintf(stderr,"ERREUR ...\n");
 /*************************free ma3x ************************/    fprintf(stderr,"%s\n",error_text);
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    exit(EXIT_FAILURE);
 {  }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /*********************** vector *******************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double *vector(int nl, int nh)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 /***************** f1dim *************************/    if (!v) nrerror("allocation failure in vector");
 extern int ncom;    return v-nl+NR_END;
 extern double *pcom,*xicom;  }
 extern double (*nrfunc)(double []);  
    /************************ free vector ******************/
 double f1dim(double x)  void free_vector(double*v, int nl, int nh)
 {  {
   int j;    free((FREE_ARG)(v+nl-NR_END));
   double f;  }
   double *xt;  
    /************************ivector *******************************/
   xt=vector(1,ncom);  int *ivector(long nl,long nh)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  {
   f=(*nrfunc)(xt);    int *v;
   free_vector(xt,1,ncom);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   return f;    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /******************free ivector **************************/
 {  void free_ivector(int *v, long nl, long nh)
   int iter;  {
   double a,b,d,etemp;    free((FREE_ARG)(v+nl-NR_END));
   double fu,fv,fw,fx;  }
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /************************lvector *******************************/
   double e=0.0;  long *lvector(long nl,long nh)
    {
   a=(ax < cx ? ax : cx);    long *v;
   b=(ax > cx ? ax : cx);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   x=w=v=bx;    if (!v) nrerror("allocation failure in ivector");
   fw=fv=fx=(*f)(x);    return v-nl+NR_END;
   for (iter=1;iter<=ITMAX;iter++) {  }
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  /******************free lvector **************************/
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  void free_lvector(long *v, long nl, long nh)
     printf(".");fflush(stdout);  {
 #ifdef DEBUG    free((FREE_ARG)(v+nl-NR_END));
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  /******************* imatrix *******************************/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       *xmin=x;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       return fx;  { 
     }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     ftemp=fu;    int **m; 
     if (fabs(e) > tol1) {    
       r=(x-w)*(fx-fv);    /* allocate pointers to rows */ 
       q=(x-v)*(fx-fw);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       p=(x-v)*q-(x-w)*r;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       q=2.0*(q-r);    m += NR_END; 
       if (q > 0.0) p = -p;    m -= nrl; 
       q=fabs(q);    
       etemp=e;    
       e=d;    /* allocate rows and set pointers to them */ 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       else {    m[nrl] += NR_END; 
         d=p/q;    m[nrl] -= ncl; 
         u=x+d;    
         if (u-a < tol2 || b-u < tol2)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
           d=SIGN(tol1,xm-x);    
       }    /* return pointer to array of pointers to rows */ 
     } else {    return m; 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  } 
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  /****************** free_imatrix *************************/
     fu=(*f)(u);  void free_imatrix(m,nrl,nrh,ncl,nch)
     if (fu <= fx) {        int **m;
       if (u >= x) a=x; else b=x;        long nch,ncl,nrh,nrl; 
       SHFT(v,w,x,u)       /* free an int matrix allocated by imatrix() */ 
         SHFT(fv,fw,fx,fu)  { 
         } else {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
           if (u < x) a=u; else b=u;    free((FREE_ARG) (m+nrl-NR_END)); 
           if (fu <= fw || w == x) {  } 
             v=w;  
             w=u;  /******************* matrix *******************************/
             fv=fw;  double **matrix(long nrl, long nrh, long ncl, long nch)
             fw=fu;  {
           } else if (fu <= fv || v == x || v == w) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
             v=u;    double **m;
             fv=fu;  
           }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         }    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
   nrerror("Too many iterations in brent");    m -= nrl;
   *xmin=x;  
   return fx;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /****************** mnbrak ***********************/    m[nrl] -= ncl;
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
             double (*func)(double))    return m;
 {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   double ulim,u,r,q, dum;     */
   double fu;  }
    
   *fa=(*func)(*ax);  /*************************free matrix ************************/
   *fb=(*func)(*bx);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       SHFT(dum,*fb,*fa,dum)    free((FREE_ARG)(m+nrl-NR_END));
       }  }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /******************* ma3x *******************************/
   while (*fb > *fc) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     r=(*bx-*ax)*(*fb-*fc);  {
     q=(*bx-*cx)*(*fb-*fa);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    double ***m;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if ((*bx-u)*(u-*cx) > 0.0) {    if (!m) nrerror("allocation failure 1 in matrix()");
       fu=(*func)(u);    m += NR_END;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    m -= nrl;
       fu=(*func)(u);  
       if (fu < *fc) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           SHFT(*fb,*fc,fu,(*func)(u))    m[nrl] += NR_END;
           }    m[nrl] -= ncl;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fu=(*func)(u);  
     } else {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       u=(*cx)+GOLD*(*cx-*bx);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       fu=(*func)(u);    m[nrl][ncl] += NR_END;
     }    m[nrl][ncl] -= nll;
     SHFT(*ax,*bx,*cx,u)    for (j=ncl+1; j<=nch; j++) 
       SHFT(*fa,*fb,*fc,fu)      m[nrl][j]=m[nrl][j-1]+nlay;
       }    
 }    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 /*************** linmin ************************/      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
 int ncom;    }
 double *pcom,*xicom;    return m; 
 double (*nrfunc)(double []);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
               &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    */
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /*************************free ma3x ************************/
   double f1dim(double x);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   int j;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double xx,xmin,bx,ax;    free((FREE_ARG)(m+nrl-NR_END));
   double fx,fb,fa;  }
    
   ncom=n;  /***************** f1dim *************************/
   pcom=vector(1,n);  extern int ncom; 
   xicom=vector(1,n);  extern double *pcom,*xicom;
   nrfunc=func;  extern double (*nrfunc)(double []); 
   for (j=1;j<=n;j++) {   
     pcom[j]=p[j];  double f1dim(double x) 
     xicom[j]=xi[j];  { 
   }    int j; 
   ax=0.0;    double f;
   xx=1.0;    double *xt; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);   
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    xt=vector(1,ncom); 
 #ifdef DEBUG    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    f=(*nrfunc)(xt); 
 #endif    free_vector(xt,1,ncom); 
   for (j=1;j<=n;j++) {    return f; 
     xi[j] *= xmin;  } 
     p[j] += xi[j];  
   }  /*****************brent *************************/
   free_vector(xicom,1,n);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   free_vector(pcom,1,n);  { 
 }    int iter; 
     double a,b,d,etemp;
 /*************** powell ************************/    double fu,fv,fw,fx;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    double ftemp;
             double (*func)(double []))    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 {    double e=0.0; 
   void linmin(double p[], double xi[], int n, double *fret,   
               double (*func)(double []));    a=(ax < cx ? ax : cx); 
   int i,ibig,j;    b=(ax > cx ? ax : cx); 
   double del,t,*pt,*ptt,*xit;    x=w=v=bx; 
   double fp,fptt;    fw=fv=fx=(*f)(x); 
   double *xits;    for (iter=1;iter<=ITMAX;iter++) { 
   pt=vector(1,n);      xm=0.5*(a+b); 
   ptt=vector(1,n);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   xit=vector(1,n);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   xits=vector(1,n);      printf(".");fflush(stdout);
   *fret=(*func)(p);      fprintf(ficlog,".");fflush(ficlog);
   for (j=1;j<=n;j++) pt[j]=p[j];  #ifdef DEBUG
   for (*iter=1;;++(*iter)) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     fp=(*fret);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     ibig=0;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     del=0.0;  #endif
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for (i=1;i<=n;i++)        *xmin=x; 
       printf(" %d %.12f",i, p[i]);        return fx; 
     printf("\n");      } 
     for (i=1;i<=n;i++) {      ftemp=fu;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      if (fabs(e) > tol1) { 
       fptt=(*fret);        r=(x-w)*(fx-fv); 
 #ifdef DEBUG        q=(x-v)*(fx-fw); 
       printf("fret=%lf \n",*fret);        p=(x-v)*q-(x-w)*r; 
 #endif        q=2.0*(q-r); 
       printf("%d",i);fflush(stdout);        if (q > 0.0) p = -p; 
       linmin(p,xit,n,fret,func);        q=fabs(q); 
       if (fabs(fptt-(*fret)) > del) {        etemp=e; 
         del=fabs(fptt-(*fret));        e=d; 
         ibig=i;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #ifdef DEBUG        else { 
       printf("%d %.12e",i,(*fret));          d=p/q; 
       for (j=1;j<=n;j++) {          u=x+d; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);          if (u-a < tol2 || b-u < tol2) 
         printf(" x(%d)=%.12e",j,xit[j]);            d=SIGN(tol1,xm-x); 
       }        } 
       for(j=1;j<=n;j++)      } else { 
         printf(" p=%.12e",p[j]);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       printf("\n");      } 
 #endif      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      if (fu <= fx) { 
 #ifdef DEBUG        if (u >= x) a=x; else b=x; 
       int k[2],l;        SHFT(v,w,x,u) 
       k[0]=1;          SHFT(fv,fw,fx,fu) 
       k[1]=-1;          } else { 
       printf("Max: %.12e",(*func)(p));            if (u < x) a=u; else b=u; 
       for (j=1;j<=n;j++)            if (fu <= fw || w == x) { 
         printf(" %.12e",p[j]);              v=w; 
       printf("\n");              w=u; 
       for(l=0;l<=1;l++) {              fv=fw; 
         for (j=1;j<=n;j++) {              fw=fu; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];            } else if (fu <= fv || v == x || v == w) { 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);              v=u; 
         }              fv=fu; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));            } 
       }          } 
 #endif    } 
     nrerror("Too many iterations in brent"); 
     *xmin=x; 
       free_vector(xit,1,n);    return fx; 
       free_vector(xits,1,n);  } 
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /****************** mnbrak ***********************/
       return;  
     }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");              double (*func)(double)) 
     for (j=1;j<=n;j++) {  { 
       ptt[j]=2.0*p[j]-pt[j];    double ulim,u,r,q, dum;
       xit[j]=p[j]-pt[j];    double fu; 
       pt[j]=p[j];   
     }    *fa=(*func)(*ax); 
     fptt=(*func)(ptt);    *fb=(*func)(*bx); 
     if (fptt < fp) {    if (*fb > *fa) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      SHFT(dum,*ax,*bx,dum) 
       if (t < 0.0) {        SHFT(dum,*fb,*fa,dum) 
         linmin(p,xit,n,fret,func);        } 
         for (j=1;j<=n;j++) {    *cx=(*bx)+GOLD*(*bx-*ax); 
           xi[j][ibig]=xi[j][n];    *fc=(*func)(*cx); 
           xi[j][n]=xit[j];    while (*fb > *fc) { 
         }      r=(*bx-*ax)*(*fb-*fc); 
 #ifdef DEBUG      q=(*bx-*cx)*(*fb-*fa); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         for(j=1;j<=n;j++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
           printf(" %.12e",xit[j]);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         printf("\n");      if ((*bx-u)*(u-*cx) > 0.0) { 
 #endif        fu=(*func)(u); 
       }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     }        fu=(*func)(u); 
   }        if (fu < *fc) { 
 }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
 /**** Prevalence limit ****************/            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        u=ulim; 
 {        fu=(*func)(u); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      } else { 
      matrix by transitions matrix until convergence is reached */        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   int i, ii,j,k;      } 
   double min, max, maxmin, maxmax,sumnew=0.;      SHFT(*ax,*bx,*cx,u) 
   double **matprod2();        SHFT(*fa,*fb,*fc,fu) 
   double **out, cov[NCOVMAX], **pmij();        } 
   double **newm;  } 
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /*************** linmin ************************/
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  int ncom; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double *pcom,*xicom;
     }  double (*nrfunc)(double []); 
    
    cov[1]=1.;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
    { 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double brent(double ax, double bx, double cx, 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){                 double (*f)(double), double tol, double *xmin); 
     newm=savm;    double f1dim(double x); 
     /* Covariates have to be included here again */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
      cov[2]=agefin;                double *fc, double (*func)(double)); 
      int j; 
       for (k=1; k<=cptcovn;k++) {    double xx,xmin,bx,ax; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double fx,fb,fa;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/   
       }    ncom=n; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    pcom=vector(1,n); 
       for (k=1; k<=cptcovprod;k++)    xicom=vector(1,n); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    nrfunc=func; 
     for (j=1;j<=n;j++) { 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      pcom[j]=p[j]; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      xicom[j]=xi[j]; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    } 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    ax=0.0; 
     xx=1.0; 
     savm=oldm;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     oldm=newm;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     maxmax=0.;  #ifdef DEBUG
     for(j=1;j<=nlstate;j++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       min=1.;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       max=0.;  #endif
       for(i=1; i<=nlstate; i++) {    for (j=1;j<=n;j++) { 
         sumnew=0;      xi[j] *= xmin; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      p[j] += xi[j]; 
         prlim[i][j]= newm[i][j]/(1-sumnew);    } 
         max=FMAX(max,prlim[i][j]);    free_vector(xicom,1,n); 
         min=FMIN(min,prlim[i][j]);    free_vector(pcom,1,n); 
       }  } 
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  char *asc_diff_time(long time_sec, char ascdiff[])
     }  {
     if(maxmax < ftolpl){    long sec_left, days, hours, minutes;
       return prlim;    days = (time_sec) / (60*60*24);
     }    sec_left = (time_sec) % (60*60*24);
   }    hours = (sec_left) / (60*60) ;
 }    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 /*************** transition probabilities ***************/    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    return ascdiff;
 {  }
   double s1, s2;  
   /*double t34;*/  /*************** powell ************************/
   int i,j,j1, nc, ii, jj;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
     for(i=1; i<= nlstate; i++){  { 
     for(j=1; j<i;j++){    void linmin(double p[], double xi[], int n, double *fret, 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){                double (*func)(double [])); 
         /*s2 += param[i][j][nc]*cov[nc];*/    int i,ibig,j; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double del,t,*pt,*ptt,*xit;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double fp,fptt;
       }    double *xits;
       ps[i][j]=s2;    int niterf, itmp;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }    pt=vector(1,n); 
     for(j=i+1; j<=nlstate+ndeath;j++){    ptt=vector(1,n); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    xit=vector(1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    xits=vector(1,n); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    *fret=(*func)(p); 
       }    for (j=1;j<=n;j++) pt[j]=p[j]; 
       ps[i][j]=s2;    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
   }      ibig=0; 
     /*ps[3][2]=1;*/      del=0.0; 
       last_time=curr_time;
   for(i=1; i<= nlstate; i++){      (void) gettimeofday(&curr_time,&tzp);
      s1=0;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for(j=1; j<i; j++)      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       s1+=exp(ps[i][j]);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     for(j=i+1; j<=nlstate+ndeath; j++)      for (i=1;i<=n;i++) {
       s1+=exp(ps[i][j]);        printf(" %d %.12f",i, p[i]);
     ps[i][i]=1./(s1+1.);        fprintf(ficlog," %d %.12lf",i, p[i]);
     for(j=1; j<i; j++)        fprintf(ficrespow," %.12lf", p[i]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      }
     for(j=i+1; j<=nlstate+ndeath; j++)      printf("\n");
       ps[i][j]= exp(ps[i][j])*ps[i][i];      fprintf(ficlog,"\n");
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      fprintf(ficrespow,"\n");fflush(ficrespow);
   } /* end i */      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        asctime_r(&tm,strcurr);
     for(jj=1; jj<= nlstate+ndeath; jj++){        forecast_time=curr_time;
       ps[ii][jj]=0;        itmp = strlen(strcurr);
       ps[ii][ii]=1;        if(strcurr[itmp-1]=='\n')
     }          strcurr[itmp-1]='\0';
   }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     for(jj=1; jj<= nlstate+ndeath; jj++){          tmf = *localtime(&forecast_time.tv_sec);
      printf("%lf ",ps[ii][jj]);          asctime_r(&tmf,strfor);
    }  /*      strcpy(strfor,asctime(&tmf)); */
     printf("\n ");          itmp = strlen(strfor);
     }          if(strfor[itmp-1]=='\n')
     printf("\n ");printf("%lf ",cov[2]);*/          strfor[itmp-1]='\0';
 /*          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   goto end;*/        }
     return ps;      }
 }      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 /**************** Product of 2 matrices ******************/        fptt=(*fret); 
   #ifdef DEBUG
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        printf("fret=%lf \n",*fret);
 {        fprintf(ficlog,"fret=%lf \n",*fret);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #endif
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        printf("%d",i);fflush(stdout);
   /* in, b, out are matrice of pointers which should have been initialized        fprintf(ficlog,"%d",i);fflush(ficlog);
      before: only the contents of out is modified. The function returns        linmin(p,xit,n,fret,func); 
      a pointer to pointers identical to out */        if (fabs(fptt-(*fret)) > del) { 
   long i, j, k;          del=fabs(fptt-(*fret)); 
   for(i=nrl; i<= nrh; i++)          ibig=i; 
     for(k=ncolol; k<=ncoloh; k++)        } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  #ifdef DEBUG
         out[i][k] +=in[i][j]*b[j][k];        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   return out;        for (j=1;j<=n;j++) {
 }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 /************* Higher Matrix Product ***************/        }
         for(j=1;j<=n;j++) {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          printf(" p=%.12e",p[j]);
 {          fprintf(ficlog," p=%.12e",p[j]);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        }
      duration (i.e. until        printf("\n");
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        fprintf(ficlog,"\n");
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #endif
      (typically every 2 years instead of every month which is too big).      } 
      Model is determined by parameters x and covariates have to be      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
      included manually here.  #ifdef DEBUG
         int k[2],l;
      */        k[0]=1;
         k[1]=-1;
   int i, j, d, h, k;        printf("Max: %.12e",(*func)(p));
   double **out, cov[NCOVMAX];        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double **newm;        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
   /* Hstepm could be zero and should return the unit matrix */          fprintf(ficlog," %.12e",p[j]);
   for (i=1;i<=nlstate+ndeath;i++)        }
     for (j=1;j<=nlstate+ndeath;j++){        printf("\n");
       oldm[i][j]=(i==j ? 1.0 : 0.0);        fprintf(ficlog,"\n");
       po[i][j][0]=(i==j ? 1.0 : 0.0);        for(l=0;l<=1;l++) {
     }          for (j=1;j<=n;j++) {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   for(h=1; h <=nhstepm; h++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(d=1; d <=hstepm; d++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       newm=savm;          }
       /* Covariates have to be included here again */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       cov[1]=1.;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #endif
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)        free_vector(xit,1,n); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        return; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      for (j=1;j<=n;j++) { 
       savm=oldm;        ptt[j]=2.0*p[j]-pt[j]; 
       oldm=newm;        xit[j]=p[j]-pt[j]; 
     }        pt[j]=p[j]; 
     for(i=1; i<=nlstate+ndeath; i++)      } 
       for(j=1;j<=nlstate+ndeath;j++) {      fptt=(*func)(ptt); 
         po[i][j][h]=newm[i][j];      if (fptt < fp) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
          */        if (t < 0.0) { 
       }          linmin(p,xit,n,fret,func); 
   } /* end h */          for (j=1;j<=n;j++) { 
   return po;            xi[j][ibig]=xi[j][n]; 
 }            xi[j][n]=xit[j]; 
           }
   #ifdef DEBUG
 /*************** log-likelihood *************/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 double func( double *x)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 {          for(j=1;j<=n;j++){
   int i, ii, j, k, mi, d, kk;            printf(" %.12e",xit[j]);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];            fprintf(ficlog," %.12e",xit[j]);
   double **out;          }
   double sw; /* Sum of weights */          printf("\n");
   double lli; /* Individual log likelihood */          fprintf(ficlog,"\n");
   long ipmx;  #endif
   /*extern weight */        }
   /* We are differentiating ll according to initial status */      } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    } 
   /*for(i=1;i<imx;i++)  } 
     printf(" %d\n",s[4][i]);  
   */  /**** Prevalence limit (stable prevalence)  ****************/
   cov[1]=1.;  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for(k=1; k<=nlstate; k++) ll[k]=0.;  {
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       matrix by transitions matrix until convergence is reached */
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)    int i, ii,j,k;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double min, max, maxmin, maxmax,sumnew=0.;
       for(d=0; d<dh[mi][i]; d++){    double **matprod2();
         newm=savm;    double **out, cov[NCOVMAX], **pmij();
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double **newm;
         for (kk=1; kk<=cptcovage;kk++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }    for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      }
         savm=oldm;  
         oldm=newm;     cov[1]=1.;
           
           /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       } /* end mult */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
            newm=savm;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      /* Covariates have to be included here again */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/       cov[2]=agefin;
       ipmx +=1;    
       sw += weight[i];        for (k=1; k<=cptcovn;k++) {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     } /* end of wave */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   } /* end of individual */        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        for (k=1; k<=cptcovprod;k++)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 /*********** Maximum Likelihood Estimation ***************/  
       savm=oldm;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      oldm=newm;
 {      maxmax=0.;
   int i,j, iter;      for(j=1;j<=nlstate;j++){
   double **xi,*delti;        min=1.;
   double fret;        max=0.;
   xi=matrix(1,npar,1,npar);        for(i=1; i<=nlstate; i++) {
   for (i=1;i<=npar;i++)          sumnew=0;
     for (j=1;j<=npar;j++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       xi[i][j]=(i==j ? 1.0 : 0.0);          prlim[i][j]= newm[i][j]/(1-sumnew);
   printf("Powell\n");          max=FMAX(max,prlim[i][j]);
   powell(p,xi,npar,ftol,&iter,&fret,func);          min=FMIN(min,prlim[i][j]);
         }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        maxmin=max-min;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        maxmax=FMAX(maxmax,maxmin);
       }
 }      if(maxmax < ftolpl){
         return prlim;
 /**** Computes Hessian and covariance matrix ***/      }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    }
 {  }
   double  **a,**y,*x,pd;  
   double **hess;  /*************** transition probabilities ***************/ 
   int i, j,jk;  
   int *indx;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
   double hessii(double p[], double delta, int theta, double delti[]);    double s1, s2;
   double hessij(double p[], double delti[], int i, int j);    /*double t34;*/
   void lubksb(double **a, int npar, int *indx, double b[]) ;    int i,j,j1, nc, ii, jj;
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
       for(i=1; i<= nlstate; i++){
   hess=matrix(1,npar,1,npar);      for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   printf("\nCalculation of the hessian matrix. Wait...\n");          /*s2 += param[i][j][nc]*cov[nc];*/
   for (i=1;i<=npar;i++){          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     printf("%d",i);fflush(stdout);          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
     hess[i][i]=hessii(p,ftolhess,i,delti);        }
     /*printf(" %f ",p[i]);*/        ps[i][j]=s2;
     /*printf(" %lf ",hess[i][i]);*/        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   }      }
        for(j=i+1; j<=nlstate+ndeath;j++){
   for (i=1;i<=npar;i++) {        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (j=1;j<=npar;j++)  {          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       if (j>i) {          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         printf(".%d%d",i,j);fflush(stdout);        }
         hess[i][j]=hessij(p,delti,i,j);        ps[i][j]=s2;
         hess[j][i]=hess[i][j];          }
         /*printf(" %lf ",hess[i][j]);*/    }
       }      /*ps[3][2]=1;*/
     }  
   }    for(i=1; i<= nlstate; i++){
   printf("\n");       s1=0;
       for(j=1; j<i; j++)
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        s1+=exp(ps[i][j]);
        for(j=i+1; j<=nlstate+ndeath; j++)
   a=matrix(1,npar,1,npar);        s1+=exp(ps[i][j]);
   y=matrix(1,npar,1,npar);      ps[i][i]=1./(s1+1.);
   x=vector(1,npar);      for(j=1; j<i; j++)
   indx=ivector(1,npar);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=1;i<=npar;i++)      for(j=i+1; j<=nlstate+ndeath; j++)
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        ps[i][j]= exp(ps[i][j])*ps[i][i];
   ludcmp(a,npar,indx,&pd);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     x[j]=1;      for(jj=1; jj<= nlstate+ndeath; jj++){
     lubksb(a,npar,indx,x);        ps[ii][jj]=0;
     for (i=1;i<=npar;i++){        ps[ii][ii]=1;
       matcov[i][j]=x[i];      }
     }    }
   }  
   
   printf("\n#Hessian matrix#\n");    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   for (i=1;i<=npar;i++) {      for(jj=1; jj<= nlstate+ndeath; jj++){
     for (j=1;j<=npar;j++) {       printf("%lf ",ps[ii][jj]);
       printf("%.3e ",hess[i][j]);     }
     }      printf("\n ");
     printf("\n");      }
   }      printf("\n ");printf("%lf ",cov[2]);*/
   /*
   /* Recompute Inverse */    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   for (i=1;i<=npar;i++)    goto end;*/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      return ps;
   ludcmp(a,npar,indx,&pd);  }
   
   /*  printf("\n#Hessian matrix recomputed#\n");  /**************** Product of 2 matrices ******************/
   
   for (j=1;j<=npar;j++) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     lubksb(a,npar,indx,x);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     for (i=1;i<=npar;i++){    /* in, b, out are matrice of pointers which should have been initialized 
       y[i][j]=x[i];       before: only the contents of out is modified. The function returns
       printf("%.3e ",y[i][j]);       a pointer to pointers identical to out */
     }    long i, j, k;
     printf("\n");    for(i=nrl; i<= nrh; i++)
   }      for(k=ncolol; k<=ncoloh; k++)
   */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);    return out;
   free_vector(x,1,npar);  }
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);  
   /************* Higher Matrix Product ***************/
   
 }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
 /*************** hessian matrix ****************/    /* Computes the transition matrix starting at age 'age' over 
 double hessii( double x[], double delta, int theta, double delti[])       'nhstepm*hstepm*stepm' months (i.e. until
 {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   int i;       nhstepm*hstepm matrices. 
   int l=1, lmax=20;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double k1,k2;       (typically every 2 years instead of every month which is too big 
   double p2[NPARMAX+1];       for the memory).
   double res;       Model is determined by parameters x and covariates have to be 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;       included manually here. 
   double fx;  
   int k=0,kmax=10;       */
   double l1;  
     int i, j, d, h, k;
   fx=func(x);    double **out, cov[NCOVMAX];
   for (i=1;i<=npar;i++) p2[i]=x[i];    double **newm;
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);    /* Hstepm could be zero and should return the unit matrix */
     delts=delt;    for (i=1;i<=nlstate+ndeath;i++)
     for(k=1 ; k <kmax; k=k+1){      for (j=1;j<=nlstate+ndeath;j++){
       delt = delta*(l1*k);        oldm[i][j]=(i==j ? 1.0 : 0.0);
       p2[theta]=x[theta] +delt;        po[i][j][0]=(i==j ? 1.0 : 0.0);
       k1=func(p2)-fx;      }
       p2[theta]=x[theta]-delt;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       k2=func(p2)-fx;    for(h=1; h <=nhstepm; h++){
       /*res= (k1-2.0*fx+k2)/delt/delt; */      for(d=1; d <=hstepm; d++){
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        newm=savm;
              /* Covariates have to be included here again */
 #ifdef DEBUG        cov[1]=1.;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 #endif        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for (k=1; k<=cptcovage;k++)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         k=kmax;        for (k=1; k<=cptcovprod;k++)
       }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  
       }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         delts=delt;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     }        savm=oldm;
   }        oldm=newm;
   delti[theta]=delts;      }
   return res;      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
 }          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 double hessij( double x[], double delti[], int thetai,int thetaj)           */
 {        }
   int i;    } /* end h */
   int l=1, l1, lmax=20;    return po;
   double k1,k2,k3,k4,res,fx;  }
   double p2[NPARMAX+1];  
   int k;  
   /*************** log-likelihood *************/
   fx=func(x);  double func( double *x)
   for (k=1; k<=2; k++) {  {
     for (i=1;i<=npar;i++) p2[i]=x[i];    int i, ii, j, k, mi, d, kk;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double **out;
     k1=func(p2)-fx;    double sw; /* Sum of weights */
      double lli; /* Individual log likelihood */
     p2[thetai]=x[thetai]+delti[thetai]/k;    int s1, s2;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double bbh, survp;
     k2=func(p2)-fx;    long ipmx;
      /*extern weight */
     p2[thetai]=x[thetai]-delti[thetai]/k;    /* We are differentiating ll according to initial status */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     k3=func(p2)-fx;    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
     p2[thetai]=x[thetai]-delti[thetai]/k;    */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    cov[1]=1.;
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for(k=1; k<=nlstate; k++) ll[k]=0.;
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    if(mle==1){
 #endif      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   return res;        for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /************** Inverse of matrix **************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void ludcmp(double **a, int n, int *indx, double *d)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   int i,imax,j,k;          for(d=0; d<dh[mi][i]; d++){
   double big,dum,sum,temp;            newm=savm;
   double *vv;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   vv=vector(1,n);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   *d=1.0;            }
   for (i=1;i<=n;i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     big=0.0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (j=1;j<=n;j++)            savm=oldm;
       if ((temp=fabs(a[i][j])) > big) big=temp;            oldm=newm;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          } /* end mult */
     vv[i]=1.0/big;        
   }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   for (j=1;j<=n;j++) {          /* But now since version 0.9 we anticipate for bias and large stepm.
     for (i=1;i<j;i++) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       sum=a[i][j];           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           * the nearest (and in case of equal distance, to the lowest) interval but now
       a[i][j]=sum;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     big=0.0;           * probability in order to take into account the bias as a fraction of the way
     for (i=j;i<=n;i++) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       sum=a[i][j];           * -stepm/2 to stepm/2 .
       for (k=1;k<j;k++)           * For stepm=1 the results are the same as for previous versions of Imach.
         sum -= a[i][k]*a[k][j];           * For stepm > 1 the results are less biased than in previous versions. 
       a[i][j]=sum;           */
       if ( (dum=vv[i]*fabs(sum)) >= big) {          s1=s[mw[mi][i]][i];
         big=dum;          s2=s[mw[mi+1][i]][i];
         imax=i;          bbh=(double)bh[mi][i]/(double)stepm; 
       }          /* bias is positive if real duration
     }           * is higher than the multiple of stepm and negative otherwise.
     if (j != imax) {           */
       for (k=1;k<=n;k++) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         dum=a[imax][k];          if( s2 > nlstate){ 
         a[imax][k]=a[j][k];            /* i.e. if s2 is a death state and if the date of death is known then the contribution
         a[j][k]=dum;               to the likelihood is the probability to die between last step unit time and current 
       }               step unit time, which is also the differences between probability to die before dh 
       *d = -(*d);               and probability to die before dh-stepm . 
       vv[imax]=vv[j];               In version up to 0.92 likelihood was computed
     }          as if date of death was unknown. Death was treated as any other
     indx[j]=imax;          health state: the date of the interview describes the actual state
     if (a[j][j] == 0.0) a[j][j]=TINY;          and not the date of a change in health state. The former idea was
     if (j != n) {          to consider that at each interview the state was recorded
       dum=1.0/(a[j][j]);          (healthy, disable or death) and IMaCh was corrected; but when we
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          introduced the exact date of death then we should have modified
     }          the contribution of an exact death to the likelihood. This new
   }          contribution is smaller and very dependent of the step unit
   free_vector(vv,1,n);  /* Doesn't work */          stepm. It is no more the probability to die between last interview
 ;          and month of death but the probability to survive from last
 }          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
 void lubksb(double **a, int n, int *indx, double b[])          Jackson for correcting this bug.  Former versions increased
 {          mortality artificially. The bad side is that we add another loop
   int i,ii=0,ip,j;          which slows down the processing. The difference can be up to 10%
   double sum;          lower mortality.
              */
   for (i=1;i<=n;i++) {            lli=log(out[s1][s2] - savm[s1][s2]);
     ip=indx[i];          }else{
     sum=b[ip];            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     b[ip]=b[i];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     if (ii)          } 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     else if (sum) ii=i;          /*if(lli ==000.0)*/
     b[i]=sum;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   }          ipmx +=1;
   for (i=n;i>=1;i--) {          sw += weight[i];
     sum=b[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        } /* end of wave */
     b[i]=sum/a[i][i];      } /* end of individual */
   }    }  else if(mle==2){
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************ Frequencies ********************/        for(mi=1; mi<= wav[i]-1; mi++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {  /* Some frequencies */            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***freq; /* Frequencies */            }
   double *pp;          for(d=0; d<=dh[mi][i]; d++){
   double pos, k2, dateintsum=0,k2cpt=0;            newm=savm;
   FILE *ficresp;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   char fileresp[FILENAMELENGTH];            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   pp=vector(1,nlstate);            }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   strcpy(fileresp,"p");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcat(fileresp,fileres);            savm=oldm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {            oldm=newm;
     printf("Problem with prevalence resultfile: %s\n", fileresp);          } /* end mult */
     exit(0);        
   }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /* But now since version 0.9 we anticipate for bias and large stepm.
   j1=0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
   j=cptcoveff;           * the nearest (and in case of equal distance, to the lowest) interval but now
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   for(k1=1; k1<=j;k1++){           * probability in order to take into account the bias as a fraction of the way
     for(i1=1; i1<=ncodemax[k1];i1++){           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       j1++;           * -stepm/2 to stepm/2 .
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           * For stepm=1 the results are the same as for previous versions of Imach.
         scanf("%d", i);*/           * For stepm > 1 the results are less biased than in previous versions. 
       for (i=-1; i<=nlstate+ndeath; i++)             */
         for (jk=-1; jk<=nlstate+ndeath; jk++)            s1=s[mw[mi][i]][i];
           for(m=agemin; m <= agemax+3; m++)          s2=s[mw[mi+1][i]][i];
             freq[i][jk][m]=0;          bbh=(double)bh[mi][i]/(double)stepm; 
                /* bias is positive if real duration
       dateintsum=0;           * is higher than the multiple of stepm and negative otherwise.
       k2cpt=0;           */
       for (i=1; i<=imx; i++) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         bool=1;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         if  (cptcovn>0) {          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
           for (z1=1; z1<=cptcoveff; z1++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /*if(lli ==000.0)*/
               bool=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         }          ipmx +=1;
         if (bool==1) {          sw += weight[i];
           for(m=firstpass; m<=lastpass; m++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             k2=anint[m][i]+(mint[m][i]/12.);        } /* end of wave */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      } /* end of individual */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    }  else if(mle==3){  /* exponential inter-extrapolation */
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if (m<lastpass) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
               }            for (j=1;j<=nlstate+ndeath;j++){
                            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                 dateintsum=dateintsum+k2;            }
                 k2cpt++;          for(d=0; d<dh[mi][i]; d++){
               }            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
       if  (cptcovn>0) {            oldm=newm;
         fprintf(ficresp, "\n#********** Variable ");          } /* end mult */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        
         fprintf(ficresp, "**********\n#");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }          /* But now since version 0.9 we anticipate for bias and large stepm.
       for(i=1; i<=nlstate;i++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * (in months) between two waves is not a multiple of stepm, we rounded to 
       fprintf(ficresp, "\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
                 * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for(i=(int)agemin; i <= (int)agemax+3; i++){           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         if(i==(int)agemax+3)           * probability in order to take into account the bias as a fraction of the way
           printf("Total");           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         else           * -stepm/2 to stepm/2 .
           printf("Age %d", i);           * For stepm=1 the results are the same as for previous versions of Imach.
         for(jk=1; jk <=nlstate ; jk++){           * For stepm > 1 the results are less biased than in previous versions. 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           */
             pp[jk] += freq[jk][m][i];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          bbh=(double)bh[mi][i]/(double)stepm; 
           for(m=-1, pos=0; m <=0 ; m++)          /* bias is positive if real duration
             pos += freq[jk][m][i];           * is higher than the multiple of stepm and negative otherwise.
           if(pp[jk]>=1.e-10)           */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
           else          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          sw += weight[i];
             pp[jk] += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
       } /* end of individual */
         for(jk=1,pos=0; jk <=nlstate ; jk++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           pos += pp[jk];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if(pos>=1.e-5)        for(mi=1; mi<= wav[i]-1; mi++){
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
           else            for (j=1;j<=nlstate+ndeath;j++){
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if( i <= (int) agemax){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(pos>=1.e-5){            }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          for(d=0; d<dh[mi][i]; d++){
               probs[i][jk][j1]= pp[jk]/pos;            newm=savm;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             }            for (kk=1; kk<=cptcovage;kk++) {
             else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            }
           }          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=-1; jk <=nlstate+ndeath; jk++)            savm=oldm;
           for(m=-1; m <=nlstate+ndeath; m++)            oldm=newm;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          } /* end mult */
         if(i <= (int) agemax)        
           fprintf(ficresp,"\n");          s1=s[mw[mi][i]][i];
         printf("\n");          s2=s[mw[mi+1][i]][i];
       }          if( s2 > nlstate){ 
     }            lli=log(out[s1][s2] - savm[s1][s2]);
   }          }else{
   dateintmean=dateintsum/k2cpt;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            }
   fclose(ficresp);          ipmx +=1;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          sw += weight[i];
   free_vector(pp,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   /* End of Freq */        } /* end of wave */
 }      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 /************ Prevalence ********************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {  /* Some frequencies */        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            for (j=1;j<=nlstate+ndeath;j++){
   double ***freq; /* Frequencies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *pp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double pos, k2;            }
           for(d=0; d<dh[mi][i]; d++){
   pp=vector(1,nlstate);            newm=savm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   j1=0;            }
            
   j=cptcoveff;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   for(k1=1; k1<=j;k1++){            oldm=newm;
     for(i1=1; i1<=ncodemax[k1];i1++){          } /* end mult */
       j1++;        
                s1=s[mw[mi][i]][i];
       for (i=-1; i<=nlstate+ndeath; i++)            s2=s[mw[mi+1][i]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for(m=agemin; m <= agemax+3; m++)          ipmx +=1;
             freq[i][jk][m]=0;          sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (i=1; i<=imx; i++) {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         bool=1;        } /* end of wave */
         if  (cptcovn>0) {      } /* end of individual */
           for (z1=1; z1<=cptcoveff; z1++)    } /* End of if */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
               bool=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         if (bool==1) {    return -l;
           for(m=firstpass; m<=lastpass; m++){  }
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*************** log-likelihood *************/
               if(agev[m][i]==0) agev[m][i]=agemax+1;  double funcone( double *x)
               if(agev[m][i]==1) agev[m][i]=agemax+2;  {
               if (m<lastpass) {    /* Same as likeli but slower because of a lot of printf and if */
                 if (calagedate>0)    int i, ii, j, k, mi, d, kk;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
                 else    double **out;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double lli; /* Individual log likelihood */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    double llt;
               }    int s1, s2;
             }    double bbh, survp;
           }    /*extern weight */
         }    /* We are differentiating ll according to initial status */
       }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(i=(int)agemin; i <= (int)agemax+3; i++){    /*for(i=1;i<imx;i++) 
         for(jk=1; jk <=nlstate ; jk++){      printf(" %d\n",s[4][i]);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    */
             pp[jk] += freq[jk][m][i];    cov[1]=1.;
         }  
         for(jk=1; jk <=nlstate ; jk++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){        for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          for (j=1;j<=nlstate+ndeath;j++){
             pp[jk] += freq[jk][m][i];            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
         for(jk=1; jk <=nlstate ; jk++){              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if( i <= (int) agemax){          for (kk=1; kk<=cptcovage;kk++) {
             if(pos>=1.e-5){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               probs[i][jk][j1]= pp[jk]/pos;          }
             }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }          savm=oldm;
                  oldm=newm;
       }        } /* end mult */
     }        
   }        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
          bbh=(double)bh[mi][i]/(double)stepm; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        /* bias is positive if real duration
   free_vector(pp,1,nlstate);         * is higher than the multiple of stepm and negative otherwise.
           */
 }  /* End of Freq */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
 /************* Waves Concatenation ***************/        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        } else if(mle==2){
 {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        } else if(mle==3){  /* exponential inter-extrapolation */
      Death is a valid wave (if date is known).          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        } else if (mle==4){  /* mle=4 no inter-extrapolation */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          lli=log(out[s1][s2]); /* Original formula */
      and mw[mi+1][i]. dh depends on stepm.        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
      */          lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
   int i, mi, m;        ipmx +=1;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        sw += weight[i];
      double sum=0., jmean=0.;*/        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   int j, k=0,jk, ju, jl;        if(globpr){
   double sum=0.;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   jmin=1e+5;   %10.6f %10.6f %10.6f ", \
   jmax=-1;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   jmean=0.;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   for(i=1; i<=imx; i++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     mi=0;            llt +=ll[k]*gipmx/gsw;
     m=firstpass;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     while(s[m][i] <= nlstate){          }
       if(s[m][i]>=1)          fprintf(ficresilk," %10.6f\n", -llt);
         mw[++mi][i]=m;        }
       if(m >=lastpass)      } /* end of wave */
         break;    } /* end of individual */
       else    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         m++;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     }/* end while */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if (s[m][i] > nlstate){    if(globpr==0){ /* First time we count the contributions and weights */
       mi++;     /* Death is another wave */      gipmx=ipmx;
       /* if(mi==0)  never been interviewed correctly before death */      gsw=sw;
          /* Only death is a correct wave */    }
       mw[mi][i]=m;    return -l;
     }  }
   
     wav[i]=mi;  char *subdirf(char fileres[])
     if(mi==0)  {
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
   for(i=1; i<=imx; i++){    strcat(tmpout,fileres);
     for(mi=1; mi<wav[i];mi++){    return tmpout;
       if (stepm <=0)  }
         dh[mi][i]=1;  
       else{  char *subdirf2(char fileres[], char *preop)
         if (s[mw[mi+1][i]][i] > nlstate) {  {
           if (agedc[i] < 2*AGESUP) {    
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    strcpy(tmpout,optionfilefiname);
           if(j==0) j=1;  /* Survives at least one month after exam */    strcat(tmpout,"/");
           k=k+1;    strcat(tmpout,preop);
           if (j >= jmax) jmax=j;    strcat(tmpout,fileres);
           if (j <= jmin) jmin=j;    return tmpout;
           sum=sum+j;  }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  char *subdirf3(char fileres[], char *preop, char *preop2)
           }  {
         }    
         else{    strcpy(tmpout,optionfilefiname);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    strcat(tmpout,"/");
           k=k+1;    strcat(tmpout,preop);
           if (j >= jmax) jmax=j;    strcat(tmpout,preop2);
           else if (j <= jmin)jmin=j;    strcat(tmpout,fileres);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    return tmpout;
           sum=sum+j;  }
         }  
         jk= j/stepm;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         jl= j -jk*stepm;  {
         ju= j -(jk+1)*stepm;    /* This routine should help understanding what is done with 
         if(jl <= -ju)       the selection of individuals/waves and
           dh[mi][i]=jk;       to check the exact contribution to the likelihood.
         else       Plotting could be done.
           dh[mi][i]=jk+1;     */
         if(dh[mi][i]==0)    int k;
           dh[mi][i]=1; /* At least one step */  
       }    if(*globpri !=0){ /* Just counts and sums, no printings */
     }      strcpy(fileresilk,"ilk"); 
   }      strcat(fileresilk,fileres);
   jmean=sum/k;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        printf("Problem with resultfile: %s\n", fileresilk);
  }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 /*********** Tricode ****************************/      }
 void tricode(int *Tvar, int **nbcode, int imx)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 {      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int Ndum[20],ij=1, k, j, i;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   int cptcode=0;      for(k=1; k<=nlstate; k++) 
   cptcoveff=0;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
        fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   for (k=0; k<19; k++) Ndum[k]=0;    }
   for (k=1; k<=7; k++) ncodemax[k]=0;  
     *fretone=(*funcone)(p);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    if(*globpri !=0){
     for (i=1; i<=imx; i++) {      fclose(ficresilk);
       ij=(int)(covar[Tvar[j]][i]);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       Ndum[ij]++;      fflush(fichtm); 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    } 
       if (ij > cptcode) cptcode=ij;    return;
     }  }
   
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;  /*********** Maximum Likelihood Estimation ***************/
     }  
     ij=1;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
     int i,j, iter;
     for (i=1; i<=ncodemax[j]; i++) {    double **xi;
       for (k=0; k<=19; k++) {    double fret;
         if (Ndum[k] != 0) {    double fretone; /* Only one call to likelihood */
           nbcode[Tvar[j]][ij]=k;    char filerespow[FILENAMELENGTH];
              xi=matrix(1,npar,1,npar);
           ij++;    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++)
         if (ij > ncodemax[j]) break;        xi[i][j]=(i==j ? 1.0 : 0.0);
       }      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     }    strcpy(filerespow,"pow"); 
   }      strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
  for (k=0; k<19; k++) Ndum[k]=0;      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
  for (i=1; i<=ncovmodel-2; i++) {    }
       ij=Tvar[i];    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       Ndum[ij]++;    for (i=1;i<=nlstate;i++)
     }      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
  ij=1;    fprintf(ficrespow,"\n");
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){    powell(p,xi,npar,ftol,&iter,&fret,func);
      Tvaraff[ij]=i;  
      ij++;    fclose(ficrespow);
    }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
  }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     cptcoveff=ij-1;  
 }  }
   
 /*********** Health Expectancies ****************/  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  {
     double  **a,**y,*x,pd;
 {    double **hess;
   /* Health expectancies */    int i, j,jk;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    int *indx;
   double age, agelim, hf;  
   double ***p3mat,***varhe;    double hessii(double p[], double delta, int theta, double delti[]);
   double **dnewm,**doldm;    double hessij(double p[], double delti[], int i, int j);
   double *xp;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   double **gp, **gm;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double ***gradg, ***trgradg;  
   int theta;    hess=matrix(1,npar,1,npar);
   
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    printf("\nCalculation of the hessian matrix. Wait...\n");
   xp=vector(1,npar);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   dnewm=matrix(1,nlstate*2,1,npar);    for (i=1;i<=npar;i++){
   doldm=matrix(1,nlstate*2,1,nlstate*2);      printf("%d",i);fflush(stdout);
        fprintf(ficlog,"%d",i);fflush(ficlog);
   fprintf(ficreseij,"# Health expectancies\n");      hess[i][i]=hessii(p,ftolhess,i,delti);
   fprintf(ficreseij,"# Age");      /*printf(" %f ",p[i]);*/
   for(i=1; i<=nlstate;i++)      /*printf(" %lf ",hess[i][i]);*/
     for(j=1; j<=nlstate;j++)    }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    
   fprintf(ficreseij,"\n");    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
   if(estepm < stepm){        if (j>i) { 
     printf ("Problem %d lower than %d\n",estepm, stepm);          printf(".%d%d",i,j);fflush(stdout);
   }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   else  hstepm=estepm;            hess[i][j]=hessij(p,delti,i,j);
   /* We compute the life expectancy from trapezoids spaced every estepm months          hess[j][i]=hess[i][j];    
    * This is mainly to measure the difference between two models: for example          /*printf(" %lf ",hess[i][j]);*/
    * if stepm=24 months pijx are given only every 2 years and by summing them        }
    * we are calculating an estimate of the Life Expectancy assuming a linear      }
    * progression inbetween and thus overestimating or underestimating according    }
    * to the curvature of the survival function. If, for the same date, we    printf("\n");
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    fprintf(ficlog,"\n");
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
    * curvature will be obtained if estepm is as small as stepm. */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
   /* For example we decided to compute the life expectancy with the smallest unit */    a=matrix(1,npar,1,npar);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    y=matrix(1,npar,1,npar);
      nhstepm is the number of hstepm from age to agelim    x=vector(1,npar);
      nstepm is the number of stepm from age to agelin.    indx=ivector(1,npar);
      Look at hpijx to understand the reason of that which relies in memory size    for (i=1;i<=npar;i++)
      and note for a fixed period like estepm months */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    ludcmp(a,npar,indx,&pd);
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if    for (j=1;j<=npar;j++) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (i=1;i<=npar;i++) x[i]=0;
      results. So we changed our mind and took the option of the best precision.      x[j]=1;
   */      lubksb(a,npar,indx,x);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
   agelim=AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     /* nhstepm age range expressed in number of stepm */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    printf("\n#Hessian matrix#\n");
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    fprintf(ficlog,"\n#Hessian matrix#\n");
     /* if (stepm >= YEARM) hstepm=1;*/    for (i=1;i<=npar;i++) { 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      for (j=1;j<=npar;j++) { 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("%.3e ",hess[i][j]);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        fprintf(ficlog,"%.3e ",hess[i][j]);
     gp=matrix(0,nhstepm,1,nlstate*2);      }
     gm=matrix(0,nhstepm,1,nlstate*2);      printf("\n");
       fprintf(ficlog,"\n");
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /* Recompute Inverse */
      for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    ludcmp(a,npar,indx,&pd);
   
     /* Computing Variances of health expectancies */    /*  printf("\n#Hessian matrix recomputed#\n");
   
      for(theta=1; theta <=npar; theta++){    for (j=1;j<=npar;j++) {
       for(i=1; i<=npar; i++){      for (i=1;i<=npar;i++) x[i]=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      x[j]=1;
       }      lubksb(a,npar,indx,x);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
       cptj=0;        printf("%.3e ",y[i][j]);
       for(j=1; j<= nlstate; j++){        fprintf(ficlog,"%.3e ",y[i][j]);
         for(i=1; i<=nlstate; i++){      }
           cptj=cptj+1;      printf("\n");
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      fprintf(ficlog,"\n");
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    }
           }    */
         }  
       }    free_matrix(a,1,npar,1,npar);
          free_matrix(y,1,npar,1,npar);
          free_vector(x,1,npar);
       for(i=1; i<=npar; i++)    free_ivector(indx,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_matrix(hess,1,npar,1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
        
       cptj=0;  }
       for(j=1; j<= nlstate; j++){  
         for(i=1;i<=nlstate;i++){  /*************** hessian matrix ****************/
           cptj=cptj+1;  double hessii( double x[], double delta, int theta, double delti[])
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  {
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    int i;
           }    int l=1, lmax=20;
         }    double k1,k2;
       }    double p2[NPARMAX+1];
       for(j=1; j<= nlstate*2; j++)    double res;
         for(h=0; h<=nhstepm-1; h++){    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double fx;
         }    int k=0,kmax=10;
      }    double l1;
      
 /* End theta */    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
      for(h=0; h<=nhstepm-1; h++)      delts=delt;
       for(j=1; j<=nlstate*2;j++)      for(k=1 ; k <kmax; k=k+1){
         for(theta=1; theta <=npar; theta++)        delt = delta*(l1*k);
           trgradg[h][j][theta]=gradg[h][theta][j];        p2[theta]=x[theta] +delt;
              k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
      for(i=1;i<=nlstate*2;i++)        k2=func(p2)-fx;
       for(j=1;j<=nlstate*2;j++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
         varhe[i][j][(int)age] =0.;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
      printf("%d|",(int)age);fflush(stdout);  #ifdef DEBUG
      for(h=0;h<=nhstepm-1;h++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(k=0;k<=nhstepm-1;k++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  #endif
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         for(i=1;i<=nlstate*2;i++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           for(j=1;j<=nlstate*2;j++)          k=kmax;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        }
       }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     }          k=kmax; l=lmax*10.;
     /* Computing expectancies */        }
     for(i=1; i<=nlstate;i++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(j=1; j<=nlstate;j++)          delts=delt;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      }
              }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    delti[theta]=delts;
     return res; 
         }    
   }
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;  double hessij( double x[], double delti[], int thetai,int thetaj)
     for(i=1; i<=nlstate;i++)  {
       for(j=1; j<=nlstate;j++){    int i;
         cptj++;    int l=1, l1, lmax=20;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    double k1,k2,k3,k4,res,fx;
       }    double p2[NPARMAX+1];
     fprintf(ficreseij,"\n");    int k;
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);    fx=func(x);
     free_matrix(gp,0,nhstepm,1,nlstate*2);    for (k=1; k<=2; k++) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      for (i=1;i<=npar;i++) p2[i]=x[i];
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   }      k1=func(p2)-fx;
   printf("\n");    
       p2[thetai]=x[thetai]+delti[thetai]/k;
   free_vector(xp,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   free_matrix(dnewm,1,nlstate*2,1,npar);      k2=func(p2)-fx;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      p2[thetai]=x[thetai]-delti[thetai]/k;
 }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
 /************ Variance ******************/    
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      p2[thetai]=x[thetai]-delti[thetai]/k;
 {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /* Variance of health expectancies */      k4=func(p2)-fx;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   double **newm;  #ifdef DEBUG
   double **dnewm,**doldm;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int i, j, nhstepm, hstepm, h, nstepm ;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int k, cptcode;  #endif
   double *xp;    }
   double **gp, **gm;    return res;
   double ***gradg, ***trgradg;  }
   double ***p3mat;  
   double age,agelim, hf;  /************** Inverse of matrix **************/
   int theta;  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    int i,imax,j,k; 
   fprintf(ficresvij,"# Age");    double big,dum,sum,temp; 
   for(i=1; i<=nlstate;i++)    double *vv; 
     for(j=1; j<=nlstate;j++)   
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    vv=vector(1,n); 
   fprintf(ficresvij,"\n");    *d=1.0; 
     for (i=1;i<=n;i++) { 
   xp=vector(1,npar);      big=0.0; 
   dnewm=matrix(1,nlstate,1,npar);      for (j=1;j<=n;j++) 
   doldm=matrix(1,nlstate,1,nlstate);        if ((temp=fabs(a[i][j])) > big) big=temp; 
        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   if(estepm < stepm){      vv[i]=1.0/big; 
     printf ("Problem %d lower than %d\n",estepm, stepm);    } 
   }    for (j=1;j<=n;j++) { 
   else  hstepm=estepm;        for (i=1;i<j;i++) { 
   /* For example we decided to compute the life expectancy with the smallest unit */        sum=a[i][j]; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      nhstepm is the number of hstepm from age to agelim        a[i][j]=sum; 
      nstepm is the number of stepm from age to agelin.      } 
      Look at hpijx to understand the reason of that which relies in memory size      big=0.0; 
      and note for a fixed period like k years */      for (i=j;i<=n;i++) { 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        sum=a[i][j]; 
      survival function given by stepm (the optimization length). Unfortunately it        for (k=1;k<j;k++) 
      means that if the survival funtion is printed only each two years of age and if          sum -= a[i][k]*a[k][j]; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        a[i][j]=sum; 
      results. So we changed our mind and took the option of the best precision.        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   */          big=dum; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          imax=i; 
   agelim = AGESUP;        } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if (j != imax) { 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        for (k=1;k<=n;k++) { 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          dum=a[imax][k]; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          a[imax][k]=a[j][k]; 
     gp=matrix(0,nhstepm,1,nlstate);          a[j][k]=dum; 
     gm=matrix(0,nhstepm,1,nlstate);        } 
         *d = -(*d); 
     for(theta=1; theta <=npar; theta++){        vv[imax]=vv[j]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      indx[j]=imax; 
       }      if (a[j][j] == 0.0) a[j][j]=TINY; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        if (j != n) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       if (popbased==1) {      } 
         for(i=1; i<=nlstate;i++)    } 
           prlim[i][i]=probs[(int)age][i][ij];    free_vector(vv,1,n);  /* Doesn't work */
       }  ;
    } 
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){  void lubksb(double **a, int n, int *indx, double b[]) 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    int i,ii=0,ip,j; 
         }    double sum; 
       }   
        for (i=1;i<=n;i++) { 
       for(i=1; i<=npar; i++) /* Computes gradient */      ip=indx[i]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      sum=b[ip]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        b[ip]=b[i]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      if (ii) 
          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       if (popbased==1) {      else if (sum) ii=i; 
         for(i=1; i<=nlstate;i++)      b[i]=sum; 
           prlim[i][i]=probs[(int)age][i][ij];    } 
       }    for (i=n;i>=1;i--) { 
       sum=b[i]; 
       for(j=1; j<= nlstate; j++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         for(h=0; h<=nhstepm; h++){      b[i]=sum/a[i][i]; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    } 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  } 
         }  
       }  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
       for(j=1; j<= nlstate; j++)  {  /* Some frequencies */
         for(h=0; h<=nhstepm; h++){    
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         }    int first;
     } /* End theta */    double ***freq; /* Frequencies */
     double *pp, **prop;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
     for(h=0; h<=nhstepm; h++)    char fileresp[FILENAMELENGTH];
       for(j=1; j<=nlstate;j++)    
         for(theta=1; theta <=npar; theta++)    pp=vector(1,nlstate);
           trgradg[h][j][theta]=gradg[h][theta][j];    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    strcat(fileresp,fileres);
     for(i=1;i<=nlstate;i++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
       for(j=1;j<=nlstate;j++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
         vareij[i][j][(int)age] =0.;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
     for(h=0;h<=nhstepm;h++){    }
       for(k=0;k<=nhstepm;k++){    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    j1=0;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    
         for(i=1;i<=nlstate;i++)    j=cptcoveff;
           for(j=1;j<=nlstate;j++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }    first=1;
     }  
     for(k1=1; k1<=j;k1++){
     fprintf(ficresvij,"%.0f ",age );      for(i1=1; i1<=ncodemax[k1];i1++){
     for(i=1; i<=nlstate;i++)        j1++;
       for(j=1; j<=nlstate;j++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          scanf("%d", i);*/
       }        for (i=-1; i<=nlstate+ndeath; i++)  
     fprintf(ficresvij,"\n");          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     free_matrix(gp,0,nhstepm,1,nlstate);            for(m=iagemin; m <= iagemax+3; m++)
     free_matrix(gm,0,nhstepm,1,nlstate);              freq[i][jk][m]=0;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      for (i=1; i<=nlstate; i++)  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(m=iagemin; m <= iagemax+3; m++)
   } /* End age */          prop[i][m]=0;
          
   free_vector(xp,1,npar);        dateintsum=0;
   free_matrix(doldm,1,nlstate,1,npar);        k2cpt=0;
   free_matrix(dnewm,1,nlstate,1,nlstate);        for (i=1; i<=imx; i++) {
           bool=1;
 }          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
 /************ Variance of prevlim ******************/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                bool=0;
 {          }
   /* Variance of prevalence limit */          if (bool==1){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            for(m=firstpass; m<=lastpass; m++){
   double **newm;              k2=anint[m][i]+(mint[m][i]/12.);
   double **dnewm,**doldm;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   int i, j, nhstepm, hstepm;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int k, cptcode;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double *xp;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double *gp, *gm;                if (m<lastpass) {
   double **gradg, **trgradg;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   double age,agelim;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   int theta;                }
                    
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   fprintf(ficresvpl,"# Age");                  dateintsum=dateintsum+k2;
   for(i=1; i<=nlstate;i++)                  k2cpt++;
       fprintf(ficresvpl," %1d-%1d",i,i);                }
   fprintf(ficresvpl,"\n");                /*}*/
             }
   xp=vector(1,npar);          }
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);         
          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        if  (cptcovn>0) {
   agelim = AGESUP;          fprintf(ficresp, "\n#********** Variable "); 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficresp, "**********\n#");
     if (stepm >= YEARM) hstepm=1;        }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(i=1; i<=nlstate;i++) 
     gradg=matrix(1,npar,1,nlstate);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     gp=vector(1,nlstate);        fprintf(ficresp, "\n");
     gm=vector(1,nlstate);        
         for(i=iagemin; i <= iagemax+3; i++){
     for(theta=1; theta <=npar; theta++){          if(i==iagemax+3){
       for(i=1; i<=npar; i++){ /* Computes gradient */            fprintf(ficlog,"Total");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          }else{
       }            if(first==1){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              first=0;
       for(i=1;i<=nlstate;i++)              printf("See log file for details...\n");
         gp[i] = prlim[i][i];            }
                fprintf(ficlog,"Age %d", i);
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(jk=1; jk <=nlstate ; jk++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       for(i=1;i<=nlstate;i++)              pp[jk] += freq[jk][m][i]; 
         gm[i] = prlim[i][i];          }
           for(jk=1; jk <=nlstate ; jk++){
       for(i=1;i<=nlstate;i++)            for(m=-1, pos=0; m <=0 ; m++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              pos += freq[jk][m][i];
     } /* End theta */            if(pp[jk]>=1.e-10){
               if(first==1){
     trgradg =matrix(1,nlstate,1,npar);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
     for(j=1; j<=nlstate;j++)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(theta=1; theta <=npar; theta++)            }else{
         trgradg[j][theta]=gradg[theta][j];              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for(i=1;i<=nlstate;i++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       varpl[i][(int)age] =0.;            }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
     fprintf(ficresvpl,"%.0f ",age );          }       
     for(i=1; i<=nlstate;i++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            pos += pp[jk];
     fprintf(ficresvpl,"\n");            posprop += prop[jk][i];
     free_vector(gp,1,nlstate);          }
     free_vector(gm,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     free_matrix(gradg,1,npar,1,nlstate);            if(pos>=1.e-5){
     free_matrix(trgradg,1,nlstate,1,npar);              if(first==1)
   } /* End age */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_vector(xp,1,npar);            }else{
   free_matrix(doldm,1,nlstate,1,npar);              if(first==1)
   free_matrix(dnewm,1,nlstate,1,nlstate);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 }            }
             if( i <= iagemax){
 /************ Variance of one-step probabilities  ******************/              if(pos>=1.e-5){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 {                /*probs[i][jk][j1]= pp[jk]/pos;*/
   int i, j=0,  i1, k1, l1, t, tj;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   int k2, l2, j1,  z1;              }
   int k=0,l, cptcode;              else
   int first=1;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;            }
   double **dnewm,**doldm;          }
   double *xp;          
   double *gp, *gm;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   double **gradg, **trgradg;            for(m=-1; m <=nlstate+ndeath; m++)
   double **mu;              if(freq[jk][m][i] !=0 ) {
   double age,agelim, cov[NCOVMAX];              if(first==1)
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   int theta;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   char fileresprob[FILENAMELENGTH];              }
   char fileresprobcov[FILENAMELENGTH];          if(i <= iagemax)
   char fileresprobcor[FILENAMELENGTH];            fprintf(ficresp,"\n");
           if(first==1)
   double ***varpij;            printf("Others in log...\n");
           fprintf(ficlog,"\n");
   strcpy(fileresprob,"prob");        }
   strcat(fileresprob,fileres);      }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprob);    dateintmean=dateintsum/k2cpt; 
   }   
   strcpy(fileresprobcov,"probcov");    fclose(ficresp);
   strcat(fileresprobcov,fileres);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    free_vector(pp,1,nlstate);
     printf("Problem with resultfile: %s\n", fileresprobcov);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   }    /* End of Freq */
   strcpy(fileresprobcor,"probcor");  }
   strcat(fileresprobcor,fileres);  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  /************ Prevalence ********************/
     printf("Problem with resultfile: %s\n", fileresprobcor);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   }  {  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);       We still use firstpass and lastpass as another selection.
      */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");   
   fprintf(ficresprob,"# Age");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    double ***freq; /* Frequencies */
   fprintf(ficresprobcov,"# Age");    double *pp, **prop;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    double pos,posprop; 
   fprintf(ficresprobcov,"# Age");    double  y2; /* in fractional years */
     int iagemin, iagemax;
   
   for(i=1; i<=nlstate;i++)    iagemin= (int) agemin;
     for(j=1; j<=(nlstate+ndeath);j++){    iagemax= (int) agemax;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    /*pp=vector(1,nlstate);*/
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     }      j1=0;
   fprintf(ficresprob,"\n");    
   fprintf(ficresprobcov,"\n");    j=cptcoveff;
   fprintf(ficresprobcor,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   xp=vector(1,npar);    
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    for(k1=1; k1<=j;k1++){
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      for(i1=1; i1<=ncodemax[k1];i1++){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        j1++;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        
   first=1;        for (i=1; i<=nlstate; i++)  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          for(m=iagemin; m <= iagemax+3; m++)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            prop[i][m]=0.0;
     exit(0);       
   }        for (i=1; i<=imx; i++) { /* Each individual */
   else{          bool=1;
     fprintf(ficgp,"\n# Routine varprob");          if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++) 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     printf("Problem with html file: %s\n", optionfilehtm);                bool=0;
     exit(0);          } 
   }          if (bool==1) { 
   else{            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   cov[1]=1;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   tj=cptcoveff;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}                } 
   j1=0;              }
   for(t=1; t<=tj;t++){            } /* end selection of waves */
     for(i1=1; i1<=ncodemax[t];i1++){          }
       j1++;        }
              for(i=iagemin; i <= iagemax+3; i++){  
       if  (cptcovn>0) {          
         fprintf(ficresprob, "\n#********** Variable ");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            posprop += prop[jk][i]; 
         fprintf(ficresprob, "**********\n#");          } 
         fprintf(ficresprobcov, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(jk=1; jk <=nlstate ; jk++){     
         fprintf(ficresprobcov, "**********\n#");            if( i <=  iagemax){ 
                      if(posprop>=1.e-5){ 
         fprintf(ficgp, "\n#********** Variable ");                probs[i][jk][j1]= prop[jk][i]/posprop;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              } 
         fprintf(ficgp, "**********\n#");            } 
                  }/* end jk */ 
                }/* end i */ 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      } /* end i1 */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    } /* end k1 */
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    
            /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         fprintf(ficresprobcor, "\n#********** Variable ");        /*free_vector(pp,1,nlstate);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         fprintf(ficgp, "**********\n#");      }  /* End of prevalence */
       }  
        /************* Waves Concatenation ***************/
       for (age=bage; age<=fage; age ++){  
         cov[2]=age;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         for (k=1; k<=cptcovn;k++) {  {
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         }       Death is a valid wave (if date is known).
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         for (k=1; k<=cptcovprod;k++)       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];       and mw[mi+1][i]. dh depends on stepm.
               */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    int i, mi, m;
         gp=vector(1,(nlstate)*(nlstate+ndeath));    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         gm=vector(1,(nlstate)*(nlstate+ndeath));       double sum=0., jmean=0.;*/
        int first;
         for(theta=1; theta <=npar; theta++){    int j, k=0,jk, ju, jl;
           for(i=1; i<=npar; i++)    double sum=0.;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    first=0;
              jmin=1e+5;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    jmax=-1;
              jmean=0.;
           k=0;    for(i=1; i<=imx; i++){
           for(i=1; i<= (nlstate); i++){      mi=0;
             for(j=1; j<=(nlstate+ndeath);j++){      m=firstpass;
               k=k+1;      while(s[m][i] <= nlstate){
               gp[k]=pmmij[i][j];        if(s[m][i]>=1)
             }          mw[++mi][i]=m;
           }        if(m >=lastpass)
                    break;
           for(i=1; i<=npar; i++)        else
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          m++;
          }/* end while */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      if (s[m][i] > nlstate){
           k=0;        mi++;     /* Death is another wave */
           for(i=1; i<=(nlstate); i++){        /* if(mi==0)  never been interviewed correctly before death */
             for(j=1; j<=(nlstate+ndeath);j++){           /* Only death is a correct wave */
               k=k+1;        mw[mi][i]=m;
               gm[k]=pmmij[i][j];      }
             }  
           }      wav[i]=mi;
            if(mi==0){
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        nbwarn++;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          if(first==0){
         }          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        }
           for(theta=1; theta <=npar; theta++)        if(first==1){
             trgradg[j][theta]=gradg[theta][j];          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
                }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      } /* end mi==0 */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    } /* End individuals */
          
         pmij(pmmij,cov,ncovmodel,x,nlstate);    for(i=1; i<=imx; i++){
              for(mi=1; mi<wav[i];mi++){
         k=0;        if (stepm <=0)
         for(i=1; i<=(nlstate); i++){          dh[mi][i]=1;
           for(j=1; j<=(nlstate+ndeath);j++){        else{
             k=k+1;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             mu[k][(int) age]=pmmij[i][j];            if (agedc[i] < 2*AGESUP) {
           }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         }              if(j==0) j=1;  /* Survives at least one month after exam */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              else if(j<0){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)                nberr++;
             varpij[i][j][(int)age] = doldm[i][j];                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
         /*printf("\n%d ",(int)age);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
      }*/              }
               k=k+1;
         fprintf(ficresprob,"\n%d ",(int)age);              if (j >= jmax) jmax=j;
         fprintf(ficresprobcov,"\n%d ",(int)age);              if (j <= jmin) jmin=j;
         fprintf(ficresprobcor,"\n%d ",(int)age);              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          else{
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         i=0;            k=k+1;
         for (k=1; k<=(nlstate);k++){            if (j >= jmax) jmax=j;
           for (l=1; l<=(nlstate+ndeath);l++){            else if (j <= jmin)jmin=j;
             i=i++;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            if(j<0){
             for (j=1; j<=i;j++){              nberr++;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }            }
           }            sum=sum+j;
         }/* end of loop for state */          }
       } /* end of loop for age */          jk= j/stepm;
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          jl= j -jk*stepm;
       for (k1=1; k1<=(nlstate);k1++){          ju= j -(jk+1)*stepm;
         for (l1=1; l1<=(nlstate+ndeath);l1++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           if(l1==k1) continue;            if(jl==0){
           i=(k1-1)*(nlstate+ndeath)+l1;              dh[mi][i]=jk;
           for (k2=1; k2<=(nlstate);k2++){              bh[mi][i]=0;
             for (l2=1; l2<=(nlstate+ndeath);l2++){            }else{ /* We want a negative bias in order to only have interpolation ie
               if(l2==k2) continue;                    * at the price of an extra matrix product in likelihood */
               j=(k2-1)*(nlstate+ndeath)+l2;              dh[mi][i]=jk+1;
               if(j<=i) continue;              bh[mi][i]=ju;
               for (age=bage; age<=fage; age ++){            }
                 if ((int)age %5==0){          }else{
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            if(jl <= -ju){
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              dh[mi][i]=jk;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              bh[mi][i]=jl;       /* bias is positive if real duration
                   mu1=mu[i][(int) age]/stepm*YEARM ;                                   * is higher than the multiple of stepm and negative otherwise.
                   mu2=mu[j][(int) age]/stepm*YEARM;                                   */
                   /* Computing eigen value of matrix of covariance */            }
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            else{
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              dh[mi][i]=jk+1;
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);              bh[mi][i]=ju;
                   /* Eigen vectors */            }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            if(dh[mi][i]==0){
                   v21=sqrt(1.-v11*v11);              dh[mi][i]=1; /* At least one step */
                   v12=-v21;              bh[mi][i]=ju; /* At least one step */
                   v22=v11;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                   /*printf(fignu*/            }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          } /* end if mle */
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */        }
                   if(first==1){      } /* end wave */
                     first=0;    }
                     fprintf(ficgp,"\nset parametric;set nolabel");    jmean=sum/k;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);   }
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);  /*********** Tricode ****************************/
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  void tricode(int *Tvar, int **nbcode, int imx)
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  {
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    int Ndum[20],ij=1, k, j, i, maxncov=19;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    int cptcode=0;
                   }else{    cptcoveff=0; 
                     first=0;   
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    for (k=0; k<maxncov; k++) Ndum[k]=0;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    for (k=1; k<=7; k++) ncodemax[k]=0;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                   }/* if first */                                 modality*/ 
                 } /* age mod 5 */        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
               } /* end loop age */        Ndum[ij]++; /*store the modality */
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
               first=1;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
             } /*l12 */                                         Tvar[j]. If V=sex and male is 0 and 
           } /* k12 */                                         female is 1, then  cptcode=1.*/
         } /*l1 */      }
       }/* k1 */  
     } /* loop covariates */      for (i=0; i<=cptcode; i++) {
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      ij=1; 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (i=1; i<=ncodemax[j]; i++) {
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for (k=0; k<= maxncov; k++) {
   }          if (Ndum[k] != 0) {
   free_vector(xp,1,npar);            nbcode[Tvar[j]][ij]=k; 
   fclose(ficresprob);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   fclose(ficresprobcov);            
   fclose(ficresprobcor);            ij++;
   fclose(ficgp);          }
   fclose(fichtm);          if (ij > ncodemax[j]) break; 
 }        }  
       } 
     }  
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \   for (k=0; k< maxncov; k++) Ndum[k]=0;
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\   for (i=1; i<=ncovmodel-2; i++) { 
                   int popforecast, int estepm ,\     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
                   double jprev1, double mprev1,double anprev1, \     ij=Tvar[i];
                   double jprev2, double mprev2,double anprev2){     Ndum[ij]++;
   int jj1, k1, i1, cpt;   }
   /*char optionfilehtm[FILENAMELENGTH];*/  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {   ij=1;
     printf("Problem with %s \n",optionfilehtm), exit(0);   for (i=1; i<= maxncov; i++) {
   }     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n       ij++;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n     }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n   }
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n   
  - Life expectancies by age and initial health status (estepm=%2d months):   cptcoveff=ij-1; /*Number of simple covariates*/
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
   /*********** Health Expectancies ****************/
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n  
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  {
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    /* Health expectancies */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    double age, agelim, hf;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    double ***p3mat,***varhe;
     double **dnewm,**doldm;
  if(popforecast==1) fprintf(fichtm,"\n    double *xp;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    double **gp, **gm;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    double ***gradg, ***trgradg;
         <br>",fileres,fileres,fileres,fileres);    int theta;
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 fprintf(fichtm," <li><b>Graphs</b></li><p>");    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
  m=cptcoveff;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    
     fprintf(ficreseij,"# Health expectancies\n");
  jj1=0;    fprintf(ficreseij,"# Age");
  for(k1=1; k1<=m;k1++){    for(i=1; i<=nlstate;i++)
    for(i1=1; i1<=ncodemax[k1];i1++){      for(j=1; j<=nlstate;j++)
      jj1++;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
      if (cptcovn > 0) {    fprintf(ficreseij,"\n");
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)    if(estepm < stepm){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      printf ("Problem %d lower than %d\n",estepm, stepm);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    }
      }    else  hstepm=estepm;   
      /* Pij */    /* We compute the life expectancy from trapezoids spaced every estepm months
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>     * This is mainly to measure the difference between two models: for example
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);         * if stepm=24 months pijx are given only every 2 years and by summing them
      /* Quasi-incidences */     * we are calculating an estimate of the Life Expectancy assuming a linear 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>     * progression in between and thus overestimating or underestimating according
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     * to the curvature of the survival function. If, for the same date, we 
        /* Stable prevalence in each health state */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
        for(cpt=1; cpt<nlstate;cpt++){     * to compare the new estimate of Life expectancy with the same linear 
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>     * hypothesis. A more precise result, taking into account a more precise
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     * curvature will be obtained if estepm is as small as stepm. */
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {    /* For example we decided to compute the life expectancy with the smallest unit */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 interval) in state (%d): v%s%d%d.png <br>       nhstepm is the number of hstepm from age to agelim 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);         nstepm is the number of stepm from age to agelin. 
      }       Look at hpijx to understand the reason of that which relies in memory size
      for(cpt=1; cpt<=nlstate;cpt++) {       and note for a fixed period like estepm months */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       survival function given by stepm (the optimization length). Unfortunately it
      }       means that if the survival funtion is printed only each two years of age and if
      fprintf(fichtm,"\n<br>- Total life expectancy by age and       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 health expectancies in states (1) and (2): e%s%d.png<br>       results. So we changed our mind and took the option of the best precision.
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    */
    }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  }  
 fclose(fichtm);    agelim=AGESUP;
 }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* nhstepm age range expressed in number of stepm */
 /******************* Gnuplot file **************/      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   int ng;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     printf("Problem with file %s",optionfilegnuplot);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
 #ifdef windows      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     fprintf(ficgp,"cd \"%s\" \n",pathc);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 #endif      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 m=pow(2,cptcoveff);   
    
  /* 1eme*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {      /* Computing Variances of health expectancies */
   
 #ifdef windows       for(theta=1; theta <=npar; theta++){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(i=1; i<=npar; i++){ 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 #endif        }
 #ifdef unix        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        cptj=0;
 #endif        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
 for (i=1; i<= nlstate ; i ++) {            cptj=cptj+1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 }            }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          }
     for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       
   else fprintf(ficgp," \%%*lf (\%%*lf)");       
 }        for(i=1; i<=npar; i++) 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      for (i=1; i<= nlstate ; i ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        
   else fprintf(ficgp," \%%*lf (\%%*lf)");        cptj=0;
 }          for(j=1; j<= nlstate; j++){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          for(i=1;i<=nlstate;i++){
 #ifdef unix            cptj=cptj+1;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 #endif  
    }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   }            }
   /*2 eme*/          }
         }
   for (k1=1; k1<= m ; k1 ++) {        for(j=1; j<= nlstate*nlstate; j++)
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          for(h=0; h<=nhstepm-1; h++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
              }
     for (i=1; i<= nlstate+1 ; i ++) {       } 
       k=2*i;     
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  /* End theta */
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }         for(h=0; h<=nhstepm-1; h++)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        for(j=1; j<=nlstate*nlstate;j++)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          for(theta=1; theta <=npar; theta++)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            trgradg[h][j][theta]=gradg[h][theta][j];
       for (j=1; j<= nlstate+1 ; j ++) {       
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");       for(i=1;i<=nlstate*nlstate;i++)
 }          for(j=1;j<=nlstate*nlstate;j++)
       fprintf(ficgp,"\" t\"\" w l 0,");          varhe[i][j][(int)age] =0.;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {       printf("%d|",(int)age);fflush(stdout);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   else fprintf(ficgp," \%%*lf (\%%*lf)");       for(h=0;h<=nhstepm-1;h++){
 }          for(k=0;k<=nhstepm-1;k++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       else fprintf(ficgp,"\" t\"\" w l 0,");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     }          for(i=1;i<=nlstate*nlstate;i++)
   }            for(j=1;j<=nlstate*nlstate;j++)
                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   /*3eme*/        }
       }
   for (k1=1; k1<= m ; k1 ++) {      /* Computing expectancies */
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for(i=1; i<=nlstate;i++)
       k=2+nlstate*(2*cpt-2);        for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
 */      for(i=1; i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++) {        for(j=1; j<=nlstate;j++){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       }        }
     }      fprintf(ficreseij,"\n");
   }     
        free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   /* CV preval stat */      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     for (k1=1; k1<= m ; k1 ++) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     for (cpt=1; cpt<nlstate ; cpt ++) {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       k=3;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    printf("\n");
     fprintf(ficlog,"\n");
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);    free_vector(xp,1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
          free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       l=3+(nlstate+ndeath)*cpt;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  }
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;  /************ Variance ******************/
         fprintf(ficgp,"+$%d",l+i+1);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
       }  {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      /* Variance of health expectancies */
     }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   }      /* double **newm;*/
      double **dnewm,**doldm;
   /* proba elementaires */    double **dnewmp,**doldmp;
    for(i=1,jk=1; i <=nlstate; i++){    int i, j, nhstepm, hstepm, h, nstepm ;
     for(k=1; k <=(nlstate+ndeath); k++){    int k, cptcode;
       if (k != i) {    double *xp;
         for(j=1; j <=ncovmodel; j++){    double **gp, **gm;  /* for var eij */
            double ***gradg, ***trgradg; /*for var eij */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    double **gradgp, **trgradgp; /* for var p point j */
           jk++;    double *gpp, *gmp; /* for var p point j */
           fprintf(ficgp,"\n");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         }    double ***p3mat;
       }    double age,agelim, hf;
     }    double ***mobaverage;
    }    int theta;
     char digit[4];
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    char digitp[25];
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    char fileresprobmorprev[FILENAMELENGTH];
        if (ng==2)  
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    if(popbased==1){
        else      if(mobilav!=0)
          fprintf(ficgp,"\nset title \"Probability\"\n");        strcpy(digitp,"-populbased-mobilav-");
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      else strcpy(digitp,"-populbased-nomobil-");
        i=1;    }
        for(k2=1; k2<=nlstate; k2++) {    else 
          k3=i;      strcpy(digitp,"-stablbased-");
          for(k=1; k<=(nlstate+ndeath); k++) {  
            if (k != k2){    if (mobilav!=0) {
              if(ng==2)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
              else        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
              ij=1;      }
              for(j=3; j <=ncovmodel; j++) {    }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    strcpy(fileresprobmorprev,"prmorprev"); 
                  ij++;    sprintf(digit,"%-d",ij);
                }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                else    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
              }    strcat(fileresprobmorprev,fileres);
              fprintf(ficgp,")/(1");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                    printf("Problem with resultfile: %s\n", fileresprobmorprev);
              for(k1=1; k1 <=nlstate; k1++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    }
                ij=1;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                for(j=3; j <=ncovmodel; j++){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                    ij++;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                  }      fprintf(ficresprobmorprev," p.%-d SE",j);
                  else      for(i=1; i<=nlstate;i++)
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                }    }  
                fprintf(ficgp,")");    fprintf(ficresprobmorprev,"\n");
              }    fprintf(ficgp,"\n# Routine varevsij");
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
              i=i+ncovmodel;  /*   } */
            }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          }  
        }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
      }    fprintf(ficresvij,"# Age");
    }    for(i=1; i<=nlstate;i++)
    fclose(ficgp);      for(j=1; j<=nlstate;j++)
 }  /* end gnuplot */        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficresvij,"\n");
   
 /*************** Moving average **************/    xp=vector(1,npar);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   int i, cpt, cptcod;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           mobaverage[(int)agedeb][i][cptcod]=0.;    gpp=vector(nlstate+1,nlstate+ndeath);
        gmp=vector(nlstate+1,nlstate+ndeath);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for (i=1; i<=nlstate;i++){    
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    if(estepm < stepm){
           for (cpt=0;cpt<=4;cpt++){      printf ("Problem %d lower than %d\n",estepm, stepm);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    }
           }    else  hstepm=estepm;   
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    /* For example we decided to compute the life expectancy with the smallest unit */
         }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
           Look at hpijx to understand the reason of that which relies in memory size
 }       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
 /************** Forecasting ******************/       means that if the survival funtion is printed every two years of age and if
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    */
   int *popage;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    agelim = AGESUP;
   double *popeffectif,*popcount;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double ***p3mat;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   char fileresf[FILENAMELENGTH];      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  agelim=AGESUP;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
    
        for(theta=1; theta <=npar; theta++){
   strcpy(fileresf,"f");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   strcat(fileresf,fileres);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if((ficresf=fopen(fileresf,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", fileresf);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
         if (popbased==1) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   if (mobilav==1) {              prlim[i][i]=probs[(int)age][i][ij];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }else{ /* mobilav */ 
     movingaverage(agedeb, fage, ageminpar, mobaverage);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }
   if (stepm<=12) stepsize=1;    
          for(j=1; j<= nlstate; j++){
   agelim=AGESUP;          for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   hstepm=1;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   hstepm=hstepm/stepm;          }
   yp1=modf(dateintmean,&yp);        }
   anprojmean=yp;        /* This for computing probability of death (h=1 means
   yp2=modf((yp1*12),&yp);           computed over hstepm matrices product = hstepm*stepm months) 
   mprojmean=yp;           as a weighted average of prlim.
   yp1=modf((yp2*30.5),&yp);        */
   jprojmean=yp;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if(jprojmean==0) jprojmean=1;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   if(mprojmean==0) jprojmean=1;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        /* end probability of death */
    
   for(cptcov=1;cptcov<=i2;cptcov++){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       k=k+1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficresf,"\n#******");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(j=1;j<=cptcoveff;j++) {   
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (popbased==1) {
       }          if(mobilav ==0){
       fprintf(ficresf,"******\n");            for(i=1; i<=nlstate;i++)
       fprintf(ficresf,"# StartingAge FinalAge");              prlim[i][i]=probs[(int)age][i][ij];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          }else{ /* mobilav */ 
                  for(i=1; i<=nlstate;i++)
                    prlim[i][i]=mobaverage[(int)age][i][ij];
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          }
         fprintf(ficresf,"\n");        }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
         for(j=1; j<= nlstate; j++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for(h=0; h<=nhstepm; h++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        /* This for computing probability of death (h=1 means
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             computed over hstepm matrices product = hstepm*stepm months) 
                   as a weighted average of prlim.
           for (h=0; h<=nhstepm; h++){        */
             if (h==(int) (calagedate+YEARM*cpt)) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
             for(j=1; j<=nlstate+ndeath;j++) {        }    
               kk1=0.;kk2=0;        /* end probability of death */
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)        for(j=1; j<= nlstate; j++) /* vareij */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for(h=0; h<=nhstepm; h++){
                 else {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          }
                 }  
                        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
               }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
               if (h==(int)(calagedate+12*cpt)){        }
                 fprintf(ficresf," %.3f", kk1);  
                              } /* End theta */
               }  
             }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(h=0; h<=nhstepm; h++) /* veij */
         }        for(j=1; j<=nlstate;j++)
       }          for(theta=1; theta <=npar; theta++)
     }            trgradg[h][j][theta]=gradg[h][theta][j];
   }  
              for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
   fclose(ficresf);    
 }  
 /************** Forecasting ******************/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          vareij[i][j][(int)age] =0.;
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      for(h=0;h<=nhstepm;h++){
   double *popeffectif,*popcount;        for(k=0;k<=nhstepm;k++){
   double ***p3mat,***tabpop,***tabpopprev;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   char filerespop[FILENAMELENGTH];          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(j=1;j<=nlstate;j++)
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   agelim=AGESUP;        }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      }
      
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      /* pptj */
        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   strcpy(filerespop,"pop");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   strcat(filerespop,fileres);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          varppt[j][i]=doldmp[j][i];
     printf("Problem with forecast resultfile: %s\n", filerespop);      /* end ppptj */
   }      /*  x centered again */
   printf("Computing forecasting: result on file '%s' \n", filerespop);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   
       if (popbased==1) {
   if (mobilav==1) {        if(mobilav ==0){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1; i<=nlstate;i++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);            prlim[i][i]=probs[(int)age][i][ij];
   }        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;            prlim[i][i]=mobaverage[(int)age][i][ij];
   if (stepm<=12) stepsize=1;        }
        }
   agelim=AGESUP;               
        /* This for computing probability of death (h=1 means
   hstepm=1;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   hstepm=hstepm/stepm;         as a weighted average of prlim.
        */
   if (popforecast==1) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     if((ficpop=fopen(popfile,"r"))==NULL) {        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       printf("Problem with population file : %s\n",popfile);exit(0);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     }      }    
     popage=ivector(0,AGESUP);      /* end probability of death */
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
          for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     i=1;          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        for(i=1; i<=nlstate;i++){
              fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     imx=i;        }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      } 
   }      fprintf(ficresprobmorprev,"\n");
   
   for(cptcov=1;cptcov<=i2;cptcov++){      fprintf(ficresvij,"%.0f ",age );
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(i=1; i<=nlstate;i++)
       k=k+1;        for(j=1; j<=nlstate;j++){
       fprintf(ficrespop,"\n#******");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       for(j=1;j<=cptcoveff;j++) {        }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficresvij,"\n");
       }      free_matrix(gp,0,nhstepm,1,nlstate);
       fprintf(ficrespop,"******\n");      free_matrix(gm,0,nhstepm,1,nlstate);
       fprintf(ficrespop,"# Age");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       if (popforecast==1)  fprintf(ficrespop," [Population]");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          } /* End age */
       for (cpt=0; cpt<=0;cpt++) {    free_vector(gpp,nlstate+1,nlstate+ndeath);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      free_vector(gmp,nlstate+1,nlstate+ndeath);
            free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           nhstepm = nhstepm/hstepm;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
              fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           oldm=oldms;savm=savms;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
            fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           for (h=0; h<=nhstepm; h++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
             }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             for(j=1; j<=nlstate+ndeath;j++) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
               kk1=0.;kk2=0;  */
               for(i=1; i<=nlstate;i++) {                /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
                 if (mobilav==1)    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {    free_vector(xp,1,npar);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    free_matrix(doldm,1,nlstate,1,nlstate);
                 }    free_matrix(dnewm,1,nlstate,1,npar);
               }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               if (h==(int)(calagedate+12*cpt)){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   /*fprintf(ficrespop," %.3f", kk1);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fclose(ficresprobmorprev);
               }    fflush(ficgp);
             }    fflush(fichtm); 
             for(i=1; i<=nlstate;i++){  }  /* end varevsij */
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){  /************ Variance of prevlim ******************/
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
                 }  {
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    /* Variance of prevalence limit */
             }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    double **dnewm,**doldm;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    int i, j, nhstepm, hstepm;
           }    int k, cptcode;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *xp;
         }    double *gp, *gm;
       }    double **gradg, **trgradg;
      double age,agelim;
   /******/    int theta;
      
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficresvpl,"# Age");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    for(i=1; i<=nlstate;i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        fprintf(ficresvpl," %1d-%1d",i,i);
           nhstepm = nhstepm/hstepm;    fprintf(ficresvpl,"\n");
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    xp=vector(1,npar);
           oldm=oldms;savm=savms;    dnewm=matrix(1,nlstate,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      doldm=matrix(1,nlstate,1,nlstate);
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {    hstepm=1*YEARM; /* Every year of age */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
             }    agelim = AGESUP;
             for(j=1; j<=nlstate+ndeath;j++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               kk1=0.;kk2=0;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
               for(i=1; i<=nlstate;i++) {                    if (stepm >= YEARM) hstepm=1;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
               }      gradg=matrix(1,npar,1,nlstate);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      gp=vector(1,nlstate);
             }      gm=vector(1,nlstate);
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ /* Computes gradient */
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    }        }
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          gp[i] = prlim[i][i];
       
   if (popforecast==1) {        for(i=1; i<=npar; i++) /* Computes gradient */
     free_ivector(popage,0,AGESUP);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     free_vector(popeffectif,0,AGESUP);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     free_vector(popcount,0,AGESUP);        for(i=1;i<=nlstate;i++)
   }          gm[i] = prlim[i][i];
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1;i<=nlstate;i++)
   fclose(ficrespop);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 }      } /* End theta */
   
 /***********************************************/      trgradg =matrix(1,nlstate,1,npar);
 /**************** Main Program *****************/  
 /***********************************************/      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
 int main(int argc, char *argv[])          trgradg[j][theta]=gradg[theta][j];
 {  
       for(i=1;i<=nlstate;i++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        varpl[i][(int)age] =0.;
   double agedeb, agefin,hf;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   double fret;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   double **xi,tmp,delta;  
       fprintf(ficresvpl,"%.0f ",age );
   double dum; /* Dummy variable */      for(i=1; i<=nlstate;i++)
   double ***p3mat;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   int *indx;      fprintf(ficresvpl,"\n");
   char line[MAXLINE], linepar[MAXLINE];      free_vector(gp,1,nlstate);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      free_vector(gm,1,nlstate);
   int firstobs=1, lastobs=10;      free_matrix(gradg,1,npar,1,nlstate);
   int sdeb, sfin; /* Status at beginning and end */      free_matrix(trgradg,1,nlstate,1,npar);
   int c,  h , cpt,l;    } /* End age */
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    free_vector(xp,1,npar);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    free_matrix(doldm,1,nlstate,1,npar);
   int mobilav=0,popforecast=0;    free_matrix(dnewm,1,nlstate,1,nlstate);
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  }
   
   double bage, fage, age, agelim, agebase;  /************ Variance of one-step probabilities  ******************/
   double ftolpl=FTOL;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   double **prlim;  {
   double *severity;    int i, j=0,  i1, k1, l1, t, tj;
   double ***param; /* Matrix of parameters */    int k2, l2, j1,  z1;
   double  *p;    int k=0,l, cptcode;
   double **matcov; /* Matrix of covariance */    int first=1, first1;
   double ***delti3; /* Scale */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   double *delti; /* Scale */    double **dnewm,**doldm;
   double ***eij, ***vareij;    double *xp;
   double **varpl; /* Variances of prevalence limits by age */    double *gp, *gm;
   double *epj, vepp;    double **gradg, **trgradg;
   double kk1, kk2;    double **mu;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    double age,agelim, cov[NCOVMAX];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   char z[1]="c", occ;  
 #include <sys/time.h>    double ***varpij;
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    strcpy(fileresprob,"prob"); 
      strcat(fileresprob,fileres);
   /* long total_usecs;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   struct timeval start_time, end_time;      printf("Problem with resultfile: %s\n", fileresprob);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    }
   getcwd(pathcd, size);    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
   printf("\n%s",version);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   if(argc <=1){      printf("Problem with resultfile: %s\n", fileresprobcov);
     printf("\nEnter the parameter file name: ");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     scanf("%s",pathtot);    }
   }    strcpy(fileresprobcor,"probcor"); 
   else{    strcat(fileresprobcor,fileres);
     strcpy(pathtot,argv[1]);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcor);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   /*cygwin_split_path(pathtot,path,optionfile);    }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   /* cutv(path,optionfile,pathtot,'\\');*/    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   chdir(path);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   replace(pathc,path);    
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 /*-------- arguments in the command line --------*/    fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   strcpy(fileres,"r");    fprintf(ficresprobcov,"# Age");
   strcat(fileres, optionfilefiname);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   strcat(fileres,".txt");    /* Other files have txt extension */    fprintf(ficresprobcov,"# Age");
   
   /*---------arguments file --------*/  
     for(i=1; i<=nlstate;i++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      for(j=1; j<=(nlstate+ndeath);j++){
     printf("Problem with optionfile %s\n",optionfile);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     goto end;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
   strcpy(filereso,"o");   /* fprintf(ficresprob,"\n");
   strcat(filereso,fileres);    fprintf(ficresprobcov,"\n");
   if((ficparo=fopen(filereso,"w"))==NULL) {    fprintf(ficresprobcor,"\n");
     printf("Problem with Output resultfile: %s\n", filereso);goto end;   */
   }   xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   /* Reads comments: lines beginning with '#' */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   while((c=getc(ficpar))=='#' && c!= EOF){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     ungetc(c,ficpar);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     fgets(line, MAXLINE, ficpar);    first=1;
     puts(line);    fprintf(ficgp,"\n# Routine varprob");
     fputs(line,ficparo);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   }    fprintf(fichtm,"\n");
   ungetc(c,ficpar);  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    file %s<br>\n",optionfilehtmcov);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 while((c=getc(ficpar))=='#' && c!= EOF){  and drawn. It helps understanding how is the covariance between two incidences.\
     ungetc(c,ficpar);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fgets(line, MAXLINE, ficpar);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     puts(line);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     fputs(line,ficparo);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   }  standard deviations wide on each axis. <br>\
   ungetc(c,ficpar);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;    cov[1]=1;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   ncovmodel=2+cptcovn;    j1=0;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    for(t=1; t<=tj;t++){
        for(i1=1; i1<=ncodemax[t];i1++){ 
   /* Read guess parameters */        j1++;
   /* Reads comments: lines beginning with '#' */        if  (cptcovn>0) {
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprob, "\n#********** Variable "); 
     ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprob, "**********\n#\n");
     puts(line);          fprintf(ficresprobcov, "\n#********** Variable "); 
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcov, "**********\n#\n");
   ungetc(c,ficpar);          
            fprintf(ficgp, "\n#********** Variable "); 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(i=1; i <=nlstate; i++)          fprintf(ficgp, "**********\n#\n");
     for(j=1; j <=nlstate+ndeath-1; j++){          
       fscanf(ficpar,"%1d%1d",&i1,&j1);          
       fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       printf("%1d%1d",i,j);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(k=1; k<=ncovmodel;k++){          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         fscanf(ficpar," %lf",&param[i][j][k]);          
         printf(" %lf",param[i][j][k]);          fprintf(ficresprobcor, "\n#********** Variable ");    
         fprintf(ficparo," %lf",param[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresprobcor, "**********\n#");    
       fscanf(ficpar,"\n");        }
       printf("\n");        
       fprintf(ficparo,"\n");        for (age=bage; age<=fage; age ++){ 
     }          cov[2]=age;
            for (k=1; k<=cptcovn;k++) {
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
   p=param[1][1];          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            for (k=1; k<=cptcovprod;k++)
   /* Reads comments: lines beginning with '#' */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     puts(line);          gp=vector(1,(nlstate)*(nlstate+ndeath));
     fputs(line,ficparo);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   }      
   ungetc(c,ficpar);          for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            
   for(i=1; i <=nlstate; i++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     for(j=1; j <=nlstate+ndeath-1; j++){            
       fscanf(ficpar,"%1d%1d",&i1,&j1);            k=0;
       printf("%1d%1d",i,j);            for(i=1; i<= (nlstate); i++){
       fprintf(ficparo,"%1d%1d",i1,j1);              for(j=1; j<=(nlstate+ndeath);j++){
       for(k=1; k<=ncovmodel;k++){                k=k+1;
         fscanf(ficpar,"%le",&delti3[i][j][k]);                gp[k]=pmmij[i][j];
         printf(" %le",delti3[i][j][k]);              }
         fprintf(ficparo," %le",delti3[i][j][k]);            }
       }            
       fscanf(ficpar,"\n");            for(i=1; i<=npar; i++)
       printf("\n");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       fprintf(ficparo,"\n");      
     }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   }            k=0;
   delti=delti3[1][1];            for(i=1; i<=(nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
   /* Reads comments: lines beginning with '#' */                k=k+1;
   while((c=getc(ficpar))=='#' && c!= EOF){                gm[k]=pmmij[i][j];
     ungetc(c,ficpar);              }
     fgets(line, MAXLINE, ficpar);            }
     puts(line);       
     fputs(line,ficparo);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   ungetc(c,ficpar);          }
    
   matcov=matrix(1,npar,1,npar);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   for(i=1; i <=npar; i++){            for(theta=1; theta <=npar; theta++)
     fscanf(ficpar,"%s",&str);              trgradg[j][theta]=gradg[theta][j];
     printf("%s",str);          
     fprintf(ficparo,"%s",str);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     for(j=1; j <=i; j++){          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       fscanf(ficpar," %le",&matcov[i][j]);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       printf(" %.5le",matcov[i][j]);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       fprintf(ficparo," %.5le",matcov[i][j]);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     fscanf(ficpar,"\n");  
     printf("\n");          pmij(pmmij,cov,ncovmodel,x,nlstate);
     fprintf(ficparo,"\n");          
   }          k=0;
   for(i=1; i <=npar; i++)          for(i=1; i<=(nlstate); i++){
     for(j=i+1;j<=npar;j++)            for(j=1; j<=(nlstate+ndeath);j++){
       matcov[i][j]=matcov[j][i];              k=k+1;
                  mu[k][(int) age]=pmmij[i][j];
   printf("\n");            }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     /*-------- Rewriting paramater file ----------*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
      strcpy(rfileres,"r");    /* "Rparameterfile */              varpij[i][j][(int)age] = doldm[i][j];
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */          /*printf("\n%d ",(int)age);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     if((ficres =fopen(rfileres,"w"))==NULL) {            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }            }*/
     fprintf(ficres,"#%s\n",version);  
              fprintf(ficresprob,"\n%d ",(int)age);
     /*-------- data file ----------*/          fprintf(ficresprobcov,"\n%d ",(int)age);
     if((fic=fopen(datafile,"r"))==NULL)    {          fprintf(ficresprobcor,"\n%d ",(int)age);
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     n= lastobs;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     severity = vector(1,maxwav);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     outcome=imatrix(1,maxwav+1,1,n);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     num=ivector(1,n);          }
     moisnais=vector(1,n);          i=0;
     annais=vector(1,n);          for (k=1; k<=(nlstate);k++){
     moisdc=vector(1,n);            for (l=1; l<=(nlstate+ndeath);l++){ 
     andc=vector(1,n);              i=i++;
     agedc=vector(1,n);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     cod=ivector(1,n);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     weight=vector(1,n);              for (j=1; j<=i;j++){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     mint=matrix(1,maxwav,1,n);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     anint=matrix(1,maxwav,1,n);              }
     s=imatrix(1,maxwav+1,1,n);            }
     adl=imatrix(1,maxwav+1,1,n);              }/* end of loop for state */
     tab=ivector(1,NCOVMAX);        } /* end of loop for age */
     ncodemax=ivector(1,8);  
         /* Confidence intervalle of pij  */
     i=1;        /*
     while (fgets(line, MAXLINE, fic) != NULL)    {          fprintf(ficgp,"\nset noparametric;unset label");
       if ((i >= firstobs) && (i <=lastobs)) {          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                  fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         for (j=maxwav;j>=1;j--){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           strcpy(line,stra);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        */
         }  
                /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        first1=1;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            if(l2==k2) continue;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         for (j=ncovcol;j>=1;j--){                if(l1==k1) continue;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                i=(k1-1)*(nlstate+ndeath)+l1;
         }                if(i<=j) continue;
         num[i]=atol(stra);                for (age=bage; age<=fage; age ++){ 
                          if ((int)age %5==0){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         i=i+1;                    mu1=mu[i][(int) age]/stepm*YEARM ;
       }                    mu2=mu[j][(int) age]/stepm*YEARM;
     }                    c12=cv12/sqrt(v1*v2);
     /* printf("ii=%d", ij);                    /* Computing eigen value of matrix of covariance */
        scanf("%d",i);*/                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   imx=i-1; /* Number of individuals */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
   /* for (i=1; i<=imx; i++){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                    /*v21=sqrt(1.-v11*v11); *//* error */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                    v21=(lc1-v1)/cv12*v11;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                    v12=-v21;
     }*/                    v22=v11;
    /*  for (i=1; i<=imx; i++){                    tnalp=v21/v11;
      if (s[4][i]==9)  s[4][i]=-1;                    if(first1==1){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                      first1=0;
                        printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      }
   /* Calculation of the number of parameter from char model*/                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   Tvar=ivector(1,15);                    /*printf(fignu*/
   Tprod=ivector(1,15);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   Tvaraff=ivector(1,15);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   Tvard=imatrix(1,15,1,2);                    if(first==1){
   Tage=ivector(1,15);                            first=0;
                          fprintf(ficgp,"\nset parametric;unset label");
   if (strlen(model) >1){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     j=0, j1=0, k1=1, k2=1;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     j=nbocc(model,'+');                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     j1=nbocc(model,'*');   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     cptcovn=j+1;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     cptcovprod=j1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                  subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     strcpy(modelsav,model);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       printf("Error. Non available option model=%s ",model);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       goto end;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                          fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     for(i=(j+1); i>=1;i--){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       cutv(stra,strb,modelsav,'+');                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                    }else{
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                      first=0;
       /*scanf("%d",i);*/                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       if (strchr(strb,'*')) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         cutv(strd,strc,strb,'*');                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         if (strcmp(strc,"age")==0) {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           cptcovprod--;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           cutv(strb,stre,strd,'V');                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           Tvar[i]=atoi(stre);                    }/* if first */
           cptcovage++;                  } /* age mod 5 */
             Tage[cptcovage]=i;                } /* end loop age */
             /*printf("stre=%s ", stre);*/                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         }                first=1;
         else if (strcmp(strd,"age")==0) {              } /*l12 */
           cptcovprod--;            } /* k12 */
           cutv(strb,stre,strc,'V');          } /*l1 */
           Tvar[i]=atoi(stre);        }/* k1 */
           cptcovage++;      } /* loop covariates */
           Tage[cptcovage]=i;    }
         }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         else {    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           cutv(strb,stre,strc,'V');    free_vector(xp,1,npar);
           Tvar[i]=ncovcol+k1;    fclose(ficresprob);
           cutv(strb,strc,strd,'V');    fclose(ficresprobcov);
           Tprod[k1]=i;    fclose(ficresprobcor);
           Tvard[k1][1]=atoi(strc);    fflush(ficgp);
           Tvard[k1][2]=atoi(stre);    fflush(fichtmcov);
           Tvar[cptcovn+k2]=Tvard[k1][1];  }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  /******************* Printing html file ***********/
           k1++;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           k2=k2+2;                    int lastpass, int stepm, int weightopt, char model[],\
         }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       }                    int popforecast, int estepm ,\
       else {                    double jprev1, double mprev1,double anprev1, \
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                    double jprev2, double mprev2,double anprev2){
        /*  scanf("%d",i);*/    int jj1, k1, i1, cpt;
       cutv(strd,strc,strb,'V');    /*char optionfilehtm[FILENAMELENGTH];*/
       Tvar[i]=atoi(strc);  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
       }  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
       strcpy(modelsav,stra);    /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  /*   } */
         scanf("%d",i);*/  
     }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
 }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
     - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
   printf("cptcovprod=%d ", cptcovprod);   - Life expectancies by age and initial health status (estepm=%2d months): \
   scanf("%d ",i);*/     <a href=\"%s\">%s</a> <br>\n</li>", \
     fclose(fic);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
     /*  if(mle==1){*/             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
     if (weightopt != 1) { /* Maximisation without weights*/             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {   jj1=0;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){   for(k1=1; k1<=m;k1++){
          anint[m][i]=9999;     for(i1=1; i1<=ncodemax[k1];i1++){
          s[m][i]=-1;       jj1++;
        }       if (cptcovn > 0) {
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       }         for (cpt=1; cpt<=cptcoveff;cpt++) 
     }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     for (i=1; i<=imx; i++)  {       }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);       /* Pij */
       for(m=1; (m<= maxwav); m++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
         if(s[m][i] >0){  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           if (s[m][i] >= nlstate+1) {       /* Quasi-incidences */
             if(agedc[i]>0)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
               if(moisdc[i]!=99 && andc[i]!=9999)   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
                 agev[m][i]=agedc[i];  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/         /* Stable prevalence in each health state */
            else {         for(cpt=1; cpt<nlstate;cpt++){
               if (andc[i]!=9999){           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
               agev[m][i]=-1;         }
               }       for(cpt=1; cpt<=nlstate;cpt++) {
             }          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
           }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
           else if(s[m][i] !=9){ /* Should no more exist */       }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
             if(mint[m][i]==99 || anint[m][i]==9999)  health expectancies in states (1) and (2): %s%d.png<br>\
               agev[m][i]=1;  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
             else if(agev[m][i] <agemin){     } /* end i1 */
               agemin=agev[m][i];   }/* End k1 */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/   fprintf(fichtm,"</ul>");
             }  
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
             }   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
             /*agev[m][i]=anint[m][i]-annais[i];*/   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
             /*   agev[m][i] = age[i]+2*m;*/   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
           }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
           else { /* =9 */   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
             agev[m][i]=1;   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
             s[m][i]=-1;           rfileres,rfileres,\
           }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
         }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
         else /*= 0 Unknown */           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
           agev[m][i]=1;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
       }           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
               subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     }  
     for (i=1; i<=imx; i++)  {  /*  if(popforecast==1) fprintf(fichtm,"\n */
       for(m=1; (m<= maxwav); m++){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         if (s[m][i] > (nlstate+ndeath)) {  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           printf("Error: Wrong value in nlstate or ndeath\n");    /*      <br>",fileres,fileres,fileres,fileres); */
           goto end;  /*  else  */
         }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       }  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     }  
    m=cptcoveff;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
     free_vector(severity,1,maxwav);   jj1=0;
     free_imatrix(outcome,1,maxwav+1,1,n);   for(k1=1; k1<=m;k1++){
     free_vector(moisnais,1,n);     for(i1=1; i1<=ncodemax[k1];i1++){
     free_vector(annais,1,n);       jj1++;
     /* free_matrix(mint,1,maxwav,1,n);       if (cptcovn > 0) {
        free_matrix(anint,1,maxwav,1,n);*/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     free_vector(moisdc,1,n);         for (cpt=1; cpt<=cptcoveff;cpt++) 
     free_vector(andc,1,n);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           }
     wav=ivector(1,imx);       for(cpt=1; cpt<=nlstate;cpt++) {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  interval) in state (%d): %s%d%d.png <br>\
      <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     /* Concatenates waves */       }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);     } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
       Tcode=ivector(1,100);   fflush(fichtm);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  }
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  /******************* Gnuplot file **************/
        void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    codtab=imatrix(1,100,1,10);  
    h=0;    char dirfileres[132],optfileres[132];
    m=pow(2,cptcoveff);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
      int ng;
    for(k=1;k<=cptcoveff; k++){  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
      for(i=1; i <=(m/pow(2,k));i++){  /*     printf("Problem with file %s",optionfilegnuplot); */
        for(j=1; j <= ncodemax[k]; j++){  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /*   } */
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    /*#ifdef windows */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    fprintf(ficgp,"cd \"%s\" \n",pathc);
          }      /*#endif */
        }    m=pow(2,cptcoveff);
      }  
    }    strcpy(dirfileres,optionfilefiname);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    strcpy(optfileres,"vpl");
       codtab[1][2]=1;codtab[2][2]=2; */   /* 1eme*/
    /* for(i=1; i <=m ;i++){    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for(k=1; k <=cptcovn; k++){     for (k1=1; k1<= m ; k1 ++) {
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       printf("\n");       fprintf(ficgp,"set xlabel \"Age\" \n\
       }  set ylabel \"Probability\" \n\
       scanf("%d",i);*/  set ter png small\n\
      set size 0.65,0.65\n\
    /* Calculates basic frequencies. Computes observed prevalence at single age  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
        and prints on file fileres'p'. */  
        for (i=1; i<= nlstate ; i ++) {
             if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for (i=1; i<= nlstate ; i ++) {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */         else fprintf(ficgp," \%%*lf (\%%*lf)");
             } 
     /* For Powell, parameters are in a vector p[] starting at p[1]       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       for (i=1; i<= nlstate ; i ++) {
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
     if(mle==1){       }  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     }     }
        }
     /*--------- results files --------------*/    /*2 eme*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    
      for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
    jk=1;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for (i=1; i<= nlstate+1 ; i ++) {
    for(i=1,jk=1; i <=nlstate; i++){        k=2*i;
      for(k=1; k <=(nlstate+ndeath); k++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
        if (k != i)        for (j=1; j<= nlstate+1 ; j ++) {
          {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            printf("%d%d ",i,k);          else fprintf(ficgp," \%%*lf (\%%*lf)");
            fprintf(ficres,"%1d%1d ",i,k);        }   
            for(j=1; j <=ncovmodel; j++){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
              printf("%f ",p[jk]);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
              fprintf(ficres,"%f ",p[jk]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
              jk++;        for (j=1; j<= nlstate+1 ; j ++) {
            }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            printf("\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
            fprintf(ficres,"\n");        }   
          }        fprintf(ficgp,"\" t\"\" w l 0,");
      }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
    }        for (j=1; j<= nlstate+1 ; j ++) {
  if(mle==1){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     /* Computing hessian and covariance matrix */          else fprintf(ficgp," \%%*lf (\%%*lf)");
     ftolhess=ftol; /* Usually correct */        }   
     hesscov(matcov, p, npar, delti, ftolhess, func);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
  }        else fprintf(ficgp,"\" t\"\" w l 0,");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      }
     printf("# Scales (for hessian or gradient estimation)\n");    }
      for(i=1,jk=1; i <=nlstate; i++){    
       for(j=1; j <=nlstate+ndeath; j++){    /*3eme*/
         if (j!=i) {    
           fprintf(ficres,"%1d%1d",i,j);    for (k1=1; k1<= m ; k1 ++) { 
           printf("%1d%1d",i,j);      for (cpt=1; cpt<= nlstate ; cpt ++) {
           for(k=1; k<=ncovmodel;k++){        k=2+nlstate*(2*cpt-2);
             printf(" %.5e",delti[jk]);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
             fprintf(ficres," %.5e",delti[jk]);        fprintf(ficgp,"set ter png small\n\
             jk++;  set size 0.65,0.65\n\
           }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
           printf("\n");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           fprintf(ficres,"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
      }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
              fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     k=1;          
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        for (i=1; i< nlstate ; i ++) {
     for(i=1;i<=npar;i++){          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
       /*  if (k>nlstate) k=1;          
       i1=(i-1)/(ncovmodel*nlstate)+1;        } 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      }
       printf("%s%d%d",alph[k],i1,tab[i]);*/    }
       fprintf(ficres,"%3d",i);    
       printf("%3d",i);    /* CV preval stable (period) */
       for(j=1; j<=i;j++){    for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficres," %.5e",matcov[i][j]);      for (cpt=1; cpt<=nlstate ; cpt ++) {
         printf(" %.5e",matcov[i][j]);        k=3;
       }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       fprintf(ficres,"\n");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       printf("\n");  set ter png small\nset size 0.65,0.65\n\
       k++;  unset log y\n\
     }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
            
     while((c=getc(ficpar))=='#' && c!= EOF){        for (i=1; i< nlstate ; i ++)
       ungetc(c,ficpar);          fprintf(ficgp,"+$%d",k+i+1);
       fgets(line, MAXLINE, ficpar);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       puts(line);        
       fputs(line,ficparo);        l=3+(nlstate+ndeath)*cpt;
     }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++) {
     estepm=0;          l=3+(nlstate+ndeath)*cpt;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          fprintf(ficgp,"+$%d",l+i+1);
     if (estepm==0 || estepm < stepm) estepm=stepm;        }
     if (fage <= 2) {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       bage = ageminpar;      } 
       fage = agemaxpar;    }  
     }    
        /* proba elementaires */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    for(i=1,jk=1; i <=nlstate; i++){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      for(k=1; k <=(nlstate+ndeath); k++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        if (k != i) {
            for(j=1; j <=ncovmodel; j++){
     while((c=getc(ficpar))=='#' && c!= EOF){            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     ungetc(c,ficpar);            jk++; 
     fgets(line, MAXLINE, ficpar);            fprintf(ficgp,"\n");
     puts(line);          }
     fputs(line,ficparo);        }
   }      }
   ungetc(c,ficpar);     }
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       for(jk=1; jk <=m; jk++) {
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
               if (ng==2)
   while((c=getc(ficpar))=='#' && c!= EOF){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     ungetc(c,ficpar);         else
     fgets(line, MAXLINE, ficpar);           fprintf(ficgp,"\nset title \"Probability\"\n");
     puts(line);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     fputs(line,ficparo);         i=1;
   }         for(k2=1; k2<=nlstate; k2++) {
   ungetc(c,ficpar);           k3=i;
             for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;               if(ng==2)
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
   fscanf(ficpar,"pop_based=%d\n",&popbased);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   fprintf(ficparo,"pop_based=%d\n",popbased);                 ij=1;
   fprintf(ficres,"pop_based=%d\n",popbased);                 for(j=3; j <=ncovmodel; j++) {
                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   while((c=getc(ficpar))=='#' && c!= EOF){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     ungetc(c,ficpar);                   ij++;
     fgets(line, MAXLINE, ficpar);                 }
     puts(line);                 else
     fputs(line,ficparo);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   }               }
   ungetc(c,ficpar);               fprintf(ficgp,")/(1");
                
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);               for(k1=1; k1 <=nlstate; k1++){   
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                 ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 while((c=getc(ficpar))=='#' && c!= EOF){                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     ungetc(c,ficpar);                     ij++;
     fgets(line, MAXLINE, ficpar);                   }
     puts(line);                   else
     fputs(line,ficparo);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   }                 }
   ungetc(c,ficpar);                 fprintf(ficgp,")");
                }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);               i=i+ncovmodel;
              }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           } /* end k */
          } /* end k2 */
 /*------------ gnuplot -------------*/       } /* end jk */
   strcpy(optionfilegnuplot,optionfilefiname);     } /* end ng */
   strcat(optionfilegnuplot,".gp");     fflush(ficgp); 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  }  /* end gnuplot */
     printf("Problem with file %s",optionfilegnuplot);  
   }  
   fclose(ficgp);  /*************** Moving average **************/
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 /*--------- index.htm --------*/  
     int i, cpt, cptcod;
   strcpy(optionfilehtm,optionfile);    int modcovmax =1;
   strcat(optionfilehtm,".htm");    int mobilavrange, mob;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    double age;
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 Total number of observations=%d <br>\n      if(mobilav==1) mobilavrange=5; /* default */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      else mobilavrange=mobilav;
 <hr  size=\"2\" color=\"#EC5E5E\">      for (age=bage; age<=fage; age++)
  <ul><li><h4>Parameter files</h4>\n        for (i=1; i<=nlstate;i++)
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          for (cptcod=1;cptcod<=modcovmax;cptcod++)
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   fclose(fichtm);      /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);         we use a 5 terms etc. until the borders are no more concerned. 
        */ 
 /*------------ free_vector  -------------*/      for (mob=3;mob <=mobilavrange;mob=mob+2){
  chdir(path);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
            for (i=1; i<=nlstate;i++){
  free_ivector(wav,1,imx);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                  for (cpt=1;cpt<=(mob-1)/2;cpt++){
  free_ivector(num,1,n);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
  free_vector(agedc,1,n);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                }
  fclose(ficparo);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
  fclose(ficres);            }
           }
         }/* end age */
   /*--------------- Prevalence limit --------------*/      }/* end mob */
      }else return -1;
   strcpy(filerespl,"pl");    return 0;
   strcat(filerespl,fileres);  }/* End movingaverage */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }  /************** Forecasting ******************/
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   fprintf(ficrespl,"#Prevalence limit\n");    /* proj1, year, month, day of starting projection 
   fprintf(ficrespl,"#Age ");       agemin, agemax range of age
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);       dateprev1 dateprev2 range of dates during which prevalence is computed
   fprintf(ficrespl,"\n");       anproj2 year of en of projection (same day and month as proj1).
      */
   prlim=matrix(1,nlstate,1,nlstate);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int *popage;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double agec; /* generic age */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *popeffectif,*popcount;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double ***p3mat;
   k=0;    double ***mobaverage;
   agebase=ageminpar;    char fileresf[FILENAMELENGTH];
   agelim=agemaxpar;  
   ftolpl=1.e-10;    agelim=AGESUP;
   i1=cptcoveff;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   if (cptcovn < 1){i1=1;}   
     strcpy(fileresf,"f"); 
   for(cptcov=1;cptcov<=i1;cptcov++){    strcat(fileresf,fileres);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if((ficresf=fopen(fileresf,"w"))==NULL) {
         k=k+1;      printf("Problem with forecast resultfile: %s\n", fileresf);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         fprintf(ficrespl,"\n#******");    }
         for(j=1;j<=cptcoveff;j++)    printf("Computing forecasting: result on file '%s' \n", fileresf);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         fprintf(ficrespl,"******\n");  
            if (cptcoveff==0) ncodemax[cptcoveff]=1;
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if (mobilav!=0) {
           fprintf(ficrespl,"%.0f",age );      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for(i=1; i<=nlstate;i++)      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           fprintf(ficrespl," %.5f", prlim[i][i]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficrespl,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }      }
       }    }
     }  
   fclose(ficrespl);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
   /*------------- h Pij x at various ages ------------*/    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    else  hstepm=estepm;   
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }    hstepm=hstepm/stepm; 
   printf("Computing pij: result on file '%s' \n", filerespij);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                   fractional in yp1 */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    anprojmean=yp;
   /*if (stepm<=24) stepsize=2;*/    yp2=modf((yp1*12),&yp);
     mprojmean=yp;
   agelim=AGESUP;    yp1=modf((yp2*30.5),&yp);
   hstepm=stepsize*YEARM; /* Every year of age */    jprojmean=yp;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   /* hstepm=1;   aff par mois*/  
     i1=cptcoveff;
   k=0;    if (cptcovn < 1){i1=1;}
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       k=k+1;    
         fprintf(ficrespij,"\n#****** ");    fprintf(ficresf,"#****** Routine prevforecast **\n");
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*            if (h==(int)(YEARM*yearp)){ */
         fprintf(ficrespij,"******\n");    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
              for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        k=k+1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficresf,"\n#******");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/        }
         fprintf(ficresf,"******\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           oldm=oldms;savm=savms;        for(j=1; j<=nlstate+ndeath;j++){ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(i=1; i<=nlstate;i++)              
           fprintf(ficrespij,"# Age");            fprintf(ficresf," p%d%d",i,j);
           for(i=1; i<=nlstate;i++)          fprintf(ficresf," p.%d",j);
             for(j=1; j<=nlstate+ndeath;j++)        }
               fprintf(ficrespij," %1d-%1d",i,j);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficrespij,"\n");          fprintf(ficresf,"\n");
            for (h=0; h<=nhstepm; h++){          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)          for (agec=fage; agec>=(ageminpar-1); agec--){ 
               for(j=1; j<=nlstate+ndeath;j++)            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            nhstepm = nhstepm/hstepm; 
             fprintf(ficrespij,"\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              }            oldm=oldms;savm=savms;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"\n");          
         }            for (h=0; h<=nhstepm; h++){
     }              if (h*hstepm/YEARM*stepm ==yearp) {
   }                fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   fclose(ficrespij);              } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
   /*---------- Forecasting ------------------*/                for(i=1; i<=nlstate;i++) {
   if((stepm == 1) && (strcmp(model,".")==0)){                  if (mobilav==1) 
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                  else {
   }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   else{                  }
     erreur=108;                  if (h*hstepm/YEARM*stepm== yearp) {
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   }                  }
                  } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
   /*---------- Health expectancies and variances ------------*/                  fprintf(ficresf," %.3f", ppij);
                 }
   strcpy(filerest,"t");              }/* end j */
   strcat(filerest,fileres);            } /* end h */
   if((ficrest=fopen(filerest,"w"))==NULL) {            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          } /* end agec */
   }        } /* end yearp */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      } /* end cptcod */
     } /* end  cptcov */
          
   strcpy(filerese,"e");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fclose(ficresf);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  }
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
  strcpy(fileresv,"v");    
   strcat(fileresv,fileres);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    int *popage;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double calagedatem, agelim, kk1, kk2;
   }    double *popeffectif,*popcount;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double ***p3mat,***tabpop,***tabpopprev;
   calagedate=-1;    double ***mobaverage;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    char filerespop[FILENAMELENGTH];
   
   k=0;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(cptcov=1;cptcov<=i1;cptcov++){    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    agelim=AGESUP;
       k=k+1;    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       fprintf(ficrest,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       fprintf(ficrest,"******\n");    
     strcpy(filerespop,"pop"); 
       fprintf(ficreseij,"\n#****** ");    strcat(filerespop,fileres);
       for(j=1;j<=cptcoveff;j++)    if((ficrespop=fopen(filerespop,"w"))==NULL) {
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficreseij,"******\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
       fprintf(ficresvij,"\n#****** ");    printf("Computing forecasting: result on file '%s' \n", filerespop);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if (mobilav!=0) {
       oldm=oldms;savm=savms;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       oldm=oldms;savm=savms;      }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    }
      
     stepsize=(int) (stepm+YEARM-1)/YEARM;
      if (stepm<=12) stepsize=1;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    agelim=AGESUP;
       fprintf(ficrest,"\n");    
     hstepm=1;
       epj=vector(1,nlstate+1);    hstepm=hstepm/stepm; 
       for(age=bage; age <=fage ;age++){    
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if (popforecast==1) {
         if (popbased==1) {      if((ficpop=fopen(popfile,"r"))==NULL) {
           for(i=1; i<=nlstate;i++)        printf("Problem with population file : %s\n",popfile);exit(0);
             prlim[i][i]=probs[(int)age][i][k];        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
         }      } 
              popage=ivector(0,AGESUP);
         fprintf(ficrest," %4.0f",age);      popeffectif=vector(0,AGESUP);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      popcount=vector(0,AGESUP);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      i=1;   
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
           }     
           epj[nlstate+1] +=epj[j];      imx=i;
         }      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
             vepp += vareij[i][j][(int)age];     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        k=k+1;
         for(j=1;j <=nlstate;j++){        fprintf(ficrespop,"\n#******");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        for(j=1;j<=cptcoveff;j++) {
         }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"\n");        }
       }        fprintf(ficrespop,"******\n");
     }        fprintf(ficrespop,"# Age");
   }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 free_matrix(mint,1,maxwav,1,n);        if (popforecast==1)  fprintf(ficrespop," [Population]");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        
     free_vector(weight,1,n);        for (cpt=0; cpt<=0;cpt++) { 
   fclose(ficreseij);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   fclose(ficresvij);          
   fclose(ficrest);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   fclose(ficpar);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   free_vector(epj,1,nlstate+1);            nhstepm = nhstepm/hstepm; 
              
   /*------- Variance limit prevalence------*/              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
   strcpy(fileresvpl,"vpl");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   strcat(fileresvpl,fileres);          
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            for (h=0; h<=nhstepm; h++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              if (h==(int) (calagedatem+YEARM*cpt)) {
     exit(0);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   }              } 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
   k=0;                for(i=1; i<=nlstate;i++) {              
   for(cptcov=1;cptcov<=i1;cptcov++){                  if (mobilav==1) 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
       k=k+1;                  else {
       fprintf(ficresvpl,"\n#****** ");                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
       for(j=1;j<=cptcoveff;j++)                  }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                }
       fprintf(ficresvpl,"******\n");                if (h==(int)(calagedatem+12*cpt)){
                        tabpop[(int)(agedeb)][j][cptcod]=kk1;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                    /*fprintf(ficrespop," %.3f", kk1);
       oldm=oldms;savm=savms;                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                }
     }              }
  }              for(i=1; i<=nlstate;i++){
                 kk1=0.;
   fclose(ficresvpl);                  for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   /*---------- End : free ----------------*/                  }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
                }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                  fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
              }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);   
      /******/
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   free_matrix(agev,1,maxwav,1,imx);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   fprintf(fichtm,"\n</body>");            nhstepm = nhstepm/hstepm; 
   fclose(fichtm);            
   fclose(ficgp);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   if(erreur >0)            for (h=0; h<=nhstepm; h++){
     printf("End of Imach with error or warning %d\n",erreur);              if (h==(int) (calagedatem+YEARM*cpt)) {
   else   printf("End of Imach\n");                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              } 
                for(j=1; j<=nlstate+ndeath;j++) {
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                kk1=0.;kk2=0;
   /*printf("Total time was %d uSec.\n", total_usecs);*/                for(i=1; i<=nlstate;i++) {              
   /*------ End -----------*/                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
  end:              }
 #ifdef windows            }
   /* chdir(pathcd);*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #endif          }
  /*system("wgnuplot graph.plt");*/        }
  /*system("../gp37mgw/wgnuplot graph.plt");*/     } 
  /*system("cd ../gp37mgw");*/    }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/   
  strcpy(plotcmd,GNUPLOTPROGRAM);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);    if (popforecast==1) {
  system(plotcmd);      free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
 #ifdef windows      free_vector(popcount,0,AGESUP);
   while (z[0] != 'q') {    }
     /* chdir(path); */    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     scanf("%s",z);    fclose(ficrespop);
     if (z[0] == 'c') system("./imach");  } /* End of popforecast */
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);  int fileappend(FILE *fichier, char *optionfich)
     else if (z[0] == 'q') exit(0);  {
   }    if((fichier=fopen(optionfich,"a"))==NULL) {
 #endif      printf("Problem with file: %s\n", optionfich);
 }      fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.49  
changed lines
  Added in v.1.91


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>