Diff for /imach/src/imach.c between versions 1.4 and 1.85

version 1.4, 2001/05/02 17:34:41 version 1.85, 2003/06/17 13:12:43
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.85  2003/06/17 13:12:43  brouard
   individuals from different ages are interviewed on their health status    * imach.c (Repository): Check when date of death was earlier that
   or degree of  disability. At least a second wave of interviews    current date of interview. It may happen when the death was just
   ("longitudinal") should  measure each new individual health status.    prior to the death. In this case, dh was negative and likelihood
   Health expectancies are computed from the transistions observed between    was wrong (infinity). We still send an "Error" but patch by
   waves and are computed for each degree of severity of disability (number    assuming that the date of death was just one stepm after the
   of life states). More degrees you consider, more time is necessary to    interview.
   reach the Maximum Likelihood of the parameters involved in the model.    (Repository): Because some people have very long ID (first column)
   The simplest model is the multinomial logistic model where pij is    we changed int to long in num[] and we added a new lvector for
   the probabibility to be observed in state j at the second wave conditional    memory allocation. But we also truncated to 8 characters (left
   to be observed in state i at the first wave. Therefore the model is:    truncation)
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    (Repository): No more line truncation errors.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.84  2003/06/13 21:44:43  brouard
     *Covariates have to be included here again* invites you to do it.    * imach.c (Repository): Replace "freqsummary" at a correct
   More covariates you add, less is the speed of the convergence.    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
   The advantage that this computer programme claims, comes from that if the    parcimony.
   delay between waves is not identical for each individual, or if some    Version 0.95a2 (should output exactly the same maximization than 0.8a2)
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.83  2003/06/10 13:39:11  lievre
   hPijx is the probability to be    *** empty log message ***
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.82  2003/06/05 15:57:20  brouard
   unobserved intermediate  states. This elementary transition (by month or    Add log in  imach.c and  fullversion number is now printed.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  */
   and the contribution of each individual to the likelihood is simply hPijx.  /*
      Interpolated Markov Chain
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Short summary of the programme:
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    This program computes Healthy Life Expectancies from
            Institut national d'études démographiques, Paris.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   This software have been partly granted by Euro-REVES, a concerted action    first survey ("cross") where individuals from different ages are
   from the European Union.    interviewed on their health status or degree of disability (in the
   It is copyrighted identically to a GNU software product, ie programme and    case of a health survey which is our main interest) -2- at least a
   software can be distributed freely for non commercial use. Latest version    second wave of interviews ("longitudinal") which measure each change
   can be accessed at http://euroreves.ined.fr/imach .    (if any) in individual health status.  Health expectancies are
   **********************************************************************/    computed from the time spent in each health state according to a
      model. More health states you consider, more time is necessary to reach the
 #include <math.h>    Maximum Likelihood of the parameters involved in the model.  The
 #include <stdio.h>    simplest model is the multinomial logistic model where pij is the
 #include <stdlib.h>    probability to be observed in state j at the second wave
 #include <unistd.h>    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define MAXLINE 256    'age' is age and 'sex' is a covariate. If you want to have a more
 #define FILENAMELENGTH 80    complex model than "constant and age", you should modify the program
 /*#define DEBUG*/    where the markup *Covariates have to be included here again* invites
 #define windows    you to do it.  More covariates you add, slower the
     convergence.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 #define NINTERVMAX 8    identical for each individual. Also, if a individual missed an
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    intermediate interview, the information is lost, but taken into
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    account using an interpolation or extrapolation.  
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    hPijx is the probability to be observed in state i at age x+h
 #define YEARM 12. /* Number of months per year */    conditional to the observed state i at age x. The delay 'h' can be
 #define AGESUP 130    split into an exact number (nh*stepm) of unobserved intermediate
 #define AGEBASE 40    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 int nvar;    and the contribution of each individual to the likelihood is simply
 static int cptcov;    hPijx.
 int cptcovn;  
 int npar=NPARMAX;    Also this programme outputs the covariance matrix of the parameters but also
 int nlstate=2; /* Number of live states */    of the life expectancies. It also computes the stable prevalence. 
 int ndeath=1; /* Number of dead states */    
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 int *wav; /* Number of waves for this individuual 0 is possible */    This software have been partly granted by Euro-REVES, a concerted action
 int maxwav; /* Maxim number of waves */    from the European Union.
 int mle, weightopt;    It is copyrighted identically to a GNU software product, ie programme and
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    software can be distributed freely for non commercial use. Latest version
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    can be accessed at http://euroreves.ined.fr/imach .
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 FILE *ficgp, *fichtm;    
 FILE *ficreseij;    **********************************************************************/
   char filerese[FILENAMELENGTH];  /*
  FILE  *ficresvij;    main
   char fileresv[FILENAMELENGTH];    read parameterfile
  FILE  *ficresvpl;    read datafile
   char fileresvpl[FILENAMELENGTH];    concatwav
     freqsummary
     if (mle >= 1)
       mlikeli
     print results files
 #define NR_END 1    if mle==1 
 #define FREE_ARG char*       computes hessian
 #define FTOL 1.0e-10    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 #define NRANSI    open gnuplot file
 #define ITMAX 200    open html file
     stable prevalence
 #define TOL 2.0e-4     for age prevalim()
     h Pij x
 #define CGOLD 0.3819660    variance of p varprob
 #define ZEPS 1.0e-10    forecasting if prevfcast==1 prevforecast call prevalence()
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    health expectancies
     Variance-covariance of DFLE
 #define GOLD 1.618034    prevalence()
 #define GLIMIT 100.0     movingaverage()
 #define TINY 1.0e-20    varevsij() 
     if popbased==1 varevsij(,popbased)
 static double maxarg1,maxarg2;    total life expectancies
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Variance of stable prevalence
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))   end
    */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)  
   
 static double sqrarg;   
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #include <math.h>
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #include <stdio.h>
   #include <stdlib.h>
 int imx;  #include <unistd.h>
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 int m,nb;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;  #define FILENAMELENGTH 132
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  /*#define DEBUG*/
 double **pmmij;  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double *weight;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int **s; /* Status */  
 double *agedc, **covar, idx;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int **nbcode, *Tcode, *Tvar, **codtab;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define NINTERVMAX 8
 double ftolhess; /* Tolerance for computing hessian */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 /******************************************/  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 void replace(char *s, char*t)  #define AGESUP 130
 {  #define AGEBASE 40
   int i;  #ifdef unix
   int lg=20;  #define DIRSEPARATOR '/'
   i=0;  #define ODIRSEPARATOR '\\'
   lg=strlen(t);  #else
   for(i=0; i<= lg; i++) {  #define DIRSEPARATOR '\\'
     (s[i] = t[i]);  #define ODIRSEPARATOR '/'
     if (t[i]== '\\') s[i]='/';  #endif
   }  
 }  /* $Id$ */
   /* $State$ */
 int nbocc(char *s, char occ)  
 {  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
   int i,j=0;  char fullversion[]="$Revision$ $Date$"; 
   int lg=20;  int erreur; /* Error number */
   i=0;  int nvar;
   lg=strlen(s);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for(i=0; i<= lg; i++) {  int npar=NPARMAX;
   if  (s[i] == occ ) j++;  int nlstate=2; /* Number of live states */
   }  int ndeath=1; /* Number of dead states */
   return j;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 void cutv(char *u,char *v, char*t, char occ)  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   int i,lg,j,p;  int jmin, jmax; /* min, max spacing between 2 waves */
   i=0;  int mle, weightopt;
   for(j=0; j<=strlen(t)-1; j++) {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
   lg=strlen(t);  double jmean; /* Mean space between 2 waves */
   for(j=0; j<p; j++) {  double **oldm, **newm, **savm; /* Working pointers to matrices */
     (u[j] = t[j]);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     u[p]='\0';  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
    for(j=0; j<= lg; j++) {  double fretone; /* Only one call to likelihood */
     if (j>=(p+1))(v[j-p-1] = t[j]);  long ipmx; /* Number of contributions */
   }  double sw; /* Sum of weights */
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /********************** nrerror ********************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 void nrerror(char error_text[])  FILE *fichtm; /* Html File */
 {  FILE *ficreseij;
   fprintf(stderr,"ERREUR ...\n");  char filerese[FILENAMELENGTH];
   fprintf(stderr,"%s\n",error_text);  FILE  *ficresvij;
   exit(1);  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
 /*********************** vector *******************/  char fileresvpl[FILENAMELENGTH];
 double *vector(int nl, int nh)  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double *v;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   return v-nl+NR_END;  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 /************************ free vector ******************/  char popfile[FILENAMELENGTH];
 void free_vector(double*v, int nl, int nh)  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define NR_END 1
   #define FREE_ARG char*
 /************************ivector *******************************/  #define FTOL 1.0e-10
 int *ivector(long nl,long nh)  
 {  #define NRANSI 
   int *v;  #define ITMAX 200 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  #define TOL 2.0e-4 
   return v-nl+NR_END;  
 }  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 /******************free ivector **************************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 void free_ivector(int *v, long nl, long nh)  
 {  #define GOLD 1.618034 
   free((FREE_ARG)(v+nl-NR_END));  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
 /******************* imatrix *******************************/  static double maxarg1,maxarg2;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   int **m;  #define rint(a) floor(a+0.5)
    
   /* allocate pointers to rows */  static double sqrarg;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if (!m) nrerror("allocation failure 1 in matrix()");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   m += NR_END;  
   m -= nrl;  int imx; 
    int stepm;
    /* Stepm, step in month: minimum step interpolation*/
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int estepm;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int m,nb;
    long *num;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
    double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   /* return pointer to array of pointers to rows */  double **pmmij, ***probs;
   return m;  double dateintmean=0;
 }  
   double *weight;
 /****************** free_imatrix *************************/  int **s; /* Status */
 void free_imatrix(m,nrl,nrh,ncl,nch)  double *agedc, **covar, idx;
       int **m;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 {  double ftolhess; /* Tolerance for computing hessian */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /******************* matrix *******************************/    char  *ss;                            /* pointer */
 double **matrix(long nrl, long nrh, long ncl, long nch)    int   l1, l2;                         /* length counters */
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    l1 = strlen(path );                   /* length of path */
   double **m;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if ( ss == NULL ) {                   /* no directory, so use current */
   if (!m) nrerror("allocation failure 1 in matrix()");      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m += NR_END;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m -= nrl;      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");        return( GLOCK_ERROR_GETCWD );
   m[nrl] += NR_END;      }
   m[nrl] -= ncl;      strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      ss++;                               /* after this, the filename */
   return m;      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /*************************free matrix ************************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      dirc[l1-l2] = 0;                    /* add zero */
 {    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    l1 = strlen( dirc );                  /* length of directory */
   free((FREE_ARG)(m+nrl-NR_END));    /*#ifdef windows
 }    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
 /******************* ma3x *******************************/    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #endif
 {    */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    ss = strrchr( name, '.' );            /* find last / */
   double ***m;    ss++;
     strcpy(ext,ss);                       /* save extension */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    l1= strlen( name);
   if (!m) nrerror("allocation failure 1 in matrix()");    l2= strlen(ss)+1;
   m += NR_END;    strncpy( finame, name, l1-l2);
   m -= nrl;    finame[l1-l2]= 0;
     return( 0 );                          /* we're done */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /******************************************/
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  void replace(char *s, char*t)
   {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    int i;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    int lg=20;
   m[nrl][ncl] += NR_END;    i=0;
   m[nrl][ncl] -= nll;    lg=strlen(t);
   for (j=ncl+1; j<=nch; j++)    for(i=0; i<= lg; i++) {
     m[nrl][j]=m[nrl][j-1]+nlay;      (s[i] = t[i]);
        if (t[i]== '\\') s[i]='/';
   for (i=nrl+1; i<=nrh; i++) {    }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  }
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  int nbocc(char *s, char occ)
   }  {
   return m;    int i,j=0;
 }    int lg=20;
     i=0;
 /*************************free ma3x ************************/    lg=strlen(s);
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    return j;
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   void cutv(char *u,char *v, char*t, char occ)
 /***************** f1dim *************************/  {
 extern int ncom;    /* cuts string t into u and v where u is ended by char occ excluding it
 extern double *pcom,*xicom;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 extern double (*nrfunc)(double []);       gives u="abcedf" and v="ghi2j" */
      int i,lg,j,p=0;
 double f1dim(double x)    i=0;
 {    for(j=0; j<=strlen(t)-1; j++) {
   int j;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   double f;    }
   double *xt;  
      lg=strlen(t);
   xt=vector(1,ncom);    for(j=0; j<p; j++) {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      (u[j] = t[j]);
   f=(*nrfunc)(xt);    }
   free_vector(xt,1,ncom);       u[p]='\0';
   return f;  
 }     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
 /*****************brent *************************/    }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  }
 {  
   int iter;  /********************** nrerror ********************/
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  void nrerror(char error_text[])
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    fprintf(stderr,"ERREUR ...\n");
   double e=0.0;    fprintf(stderr,"%s\n",error_text);
      exit(EXIT_FAILURE);
   a=(ax < cx ? ax : cx);  }
   b=(ax > cx ? ax : cx);  /*********************** vector *******************/
   x=w=v=bx;  double *vector(int nl, int nh)
   fw=fv=fx=(*f)(x);  {
   for (iter=1;iter<=ITMAX;iter++) {    double *v;
     xm=0.5*(a+b);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if (!v) nrerror("allocation failure in vector");
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    return v-nl+NR_END;
     printf(".");fflush(stdout);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /************************ free vector ******************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  void free_vector(double*v, int nl, int nh)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    free((FREE_ARG)(v+nl-NR_END));
       *xmin=x;  }
       return fx;  
     }  /************************ivector *******************************/
     ftemp=fu;  int *ivector(long nl,long nh)
     if (fabs(e) > tol1) {  {
       r=(x-w)*(fx-fv);    int *v;
       q=(x-v)*(fx-fw);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       p=(x-v)*q-(x-w)*r;    if (!v) nrerror("allocation failure in ivector");
       q=2.0*(q-r);    return v-nl+NR_END;
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  /******************free ivector **************************/
       e=d;  void free_ivector(int *v, long nl, long nh)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    free((FREE_ARG)(v+nl-NR_END));
       else {  }
         d=p/q;  
         u=x+d;  /************************lvector *******************************/
         if (u-a < tol2 || b-u < tol2)  long *lvector(long nl,long nh)
           d=SIGN(tol1,xm-x);  {
       }    long *v;
     } else {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  }
     fu=(*f)(u);  
     if (fu <= fx) {  /******************free lvector **************************/
       if (u >= x) a=x; else b=x;  void free_lvector(long *v, long nl, long nh)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    free((FREE_ARG)(v+nl-NR_END));
         } else {  }
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  /******************* imatrix *******************************/
             v=w;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
             w=u;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
             fv=fw;  { 
             fw=fu;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           } else if (fu <= fv || v == x || v == w) {    int **m; 
             v=u;    
             fv=fu;    /* allocate pointers to rows */ 
           }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   }    m += NR_END; 
   nrerror("Too many iterations in brent");    m -= nrl; 
   *xmin=x;    
   return fx;    
 }    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 /****************** mnbrak ***********************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    m[nrl] -= ncl; 
             double (*func)(double))    
 {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double ulim,u,r,q, dum;    
   double fu;    /* return pointer to array of pointers to rows */ 
      return m; 
   *fa=(*func)(*ax);  } 
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /****************** free_imatrix *************************/
     SHFT(dum,*ax,*bx,dum)  void free_imatrix(m,nrl,nrh,ncl,nch)
       SHFT(dum,*fb,*fa,dum)        int **m;
       }        long nch,ncl,nrh,nrl; 
   *cx=(*bx)+GOLD*(*bx-*ax);       /* free an int matrix allocated by imatrix() */ 
   *fc=(*func)(*cx);  { 
   while (*fb > *fc) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     r=(*bx-*ax)*(*fb-*fc);    free((FREE_ARG) (m+nrl-NR_END)); 
     q=(*bx-*cx)*(*fb-*fa);  } 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  /******************* matrix *******************************/
     ulim=(*bx)+GLIMIT*(*cx-*bx);  double **matrix(long nrl, long nrh, long ncl, long nch)
     if ((*bx-u)*(u-*cx) > 0.0) {  {
       fu=(*func)(u);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    double **m;
       fu=(*func)(u);  
       if (fu < *fc) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    if (!m) nrerror("allocation failure 1 in matrix()");
           SHFT(*fb,*fc,fu,(*func)(u))    m += NR_END;
           }    m -= nrl;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       fu=(*func)(u);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     } else {    m[nrl] += NR_END;
       u=(*cx)+GOLD*(*cx-*bx);    m[nrl] -= ncl;
       fu=(*func)(u);  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     SHFT(*ax,*bx,*cx,u)    return m;
       SHFT(*fa,*fb,*fc,fu)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       }     */
 }  }
   
 /*************** linmin ************************/  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 int ncom;  {
 double *pcom,*xicom;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 double (*nrfunc)(double []);    free((FREE_ARG)(m+nrl-NR_END));
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /******************* ma3x *******************************/
   double brent(double ax, double bx, double cx,  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
                double (*f)(double), double tol, double *xmin);  {
   double f1dim(double x);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    double ***m;
               double *fc, double (*func)(double));  
   int j;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double xx,xmin,bx,ax;    if (!m) nrerror("allocation failure 1 in matrix()");
   double fx,fb,fa;    m += NR_END;
      m -= nrl;
   ncom=n;  
   pcom=vector(1,n);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   xicom=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   nrfunc=func;    m[nrl] += NR_END;
   for (j=1;j<=n;j++) {    m[nrl] -= ncl;
     pcom[j]=p[j];  
     xicom[j]=xi[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   }  
   ax=0.0;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   xx=1.0;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m[nrl][ncl] += NR_END;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    m[nrl][ncl] -= nll;
 #ifdef DEBUG    for (j=ncl+1; j<=nch; j++) 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      m[nrl][j]=m[nrl][j-1]+nlay;
 #endif    
   for (j=1;j<=n;j++) {    for (i=nrl+1; i<=nrh; i++) {
     xi[j] *= xmin;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     p[j] += xi[j];      for (j=ncl+1; j<=nch; j++) 
   }        m[i][j]=m[i][j-1]+nlay;
   free_vector(xicom,1,n);    }
   free_vector(pcom,1,n);    return m; 
 }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 /*************** powell ************************/    */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  }
             double (*func)(double []))  
 {  /*************************free ma3x ************************/
   void linmin(double p[], double xi[], int n, double *fret,  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
               double (*func)(double []));  {
   int i,ibig,j;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   double del,t,*pt,*ptt,*xit;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double fp,fptt;    free((FREE_ARG)(m+nrl-NR_END));
   double *xits;  }
   pt=vector(1,n);  
   ptt=vector(1,n);  /***************** f1dim *************************/
   xit=vector(1,n);  extern int ncom; 
   xits=vector(1,n);  extern double *pcom,*xicom;
   *fret=(*func)(p);  extern double (*nrfunc)(double []); 
   for (j=1;j<=n;j++) pt[j]=p[j];   
   for (*iter=1;;++(*iter)) {  double f1dim(double x) 
     fp=(*fret);  { 
     ibig=0;    int j; 
     del=0.0;    double f;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    double *xt; 
     for (i=1;i<=n;i++)   
       printf(" %d %.12f",i, p[i]);    xt=vector(1,ncom); 
     printf("\n");    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     for (i=1;i<=n;i++) {    f=(*nrfunc)(xt); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    free_vector(xt,1,ncom); 
       fptt=(*fret);    return f; 
 #ifdef DEBUG  } 
       printf("fret=%lf \n",*fret);  
 #endif  /*****************brent *************************/
       printf("%d",i);fflush(stdout);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       linmin(p,xit,n,fret,func);  { 
       if (fabs(fptt-(*fret)) > del) {    int iter; 
         del=fabs(fptt-(*fret));    double a,b,d,etemp;
         ibig=i;    double fu,fv,fw,fx;
       }    double ftemp;
 #ifdef DEBUG    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       printf("%d %.12e",i,(*fret));    double e=0.0; 
       for (j=1;j<=n;j++) {   
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    a=(ax < cx ? ax : cx); 
         printf(" x(%d)=%.12e",j,xit[j]);    b=(ax > cx ? ax : cx); 
       }    x=w=v=bx; 
       for(j=1;j<=n;j++)    fw=fv=fx=(*f)(x); 
         printf(" p=%.12e",p[j]);    for (iter=1;iter<=ITMAX;iter++) { 
       printf("\n");      xm=0.5*(a+b); 
 #endif      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      printf(".");fflush(stdout);
 #ifdef DEBUG      fprintf(ficlog,".");fflush(ficlog);
       int k[2],l;  #ifdef DEBUG
       k[0]=1;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       k[1]=-1;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       printf("Max: %.12e",(*func)(p));      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       for (j=1;j<=n;j++)  #endif
         printf(" %.12e",p[j]);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       printf("\n");        *xmin=x; 
       for(l=0;l<=1;l++) {        return fx; 
         for (j=1;j<=n;j++) {      } 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      ftemp=fu;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      if (fabs(e) > tol1) { 
         }        r=(x-w)*(fx-fv); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        q=(x-v)*(fx-fw); 
       }        p=(x-v)*q-(x-w)*r; 
 #endif        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
         q=fabs(q); 
       free_vector(xit,1,n);        etemp=e; 
       free_vector(xits,1,n);        e=d; 
       free_vector(ptt,1,n);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       free_vector(pt,1,n);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       return;        else { 
     }          d=p/q; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");          u=x+d; 
     for (j=1;j<=n;j++) {          if (u-a < tol2 || b-u < tol2) 
       ptt[j]=2.0*p[j]-pt[j];            d=SIGN(tol1,xm-x); 
       xit[j]=p[j]-pt[j];        } 
       pt[j]=p[j];      } else { 
     }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     fptt=(*func)(ptt);      } 
     if (fptt < fp) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      fu=(*f)(u); 
       if (t < 0.0) {      if (fu <= fx) { 
         linmin(p,xit,n,fret,func);        if (u >= x) a=x; else b=x; 
         for (j=1;j<=n;j++) {        SHFT(v,w,x,u) 
           xi[j][ibig]=xi[j][n];          SHFT(fv,fw,fx,fu) 
           xi[j][n]=xit[j];          } else { 
         }            if (u < x) a=u; else b=u; 
 #ifdef DEBUG            if (fu <= fw || w == x) { 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);              v=w; 
         for(j=1;j<=n;j++)              w=u; 
           printf(" %.12e",xit[j]);              fv=fw; 
         printf("\n");              fw=fu; 
 #endif            } else if (fu <= fv || v == x || v == w) { 
       }              v=u; 
     }              fv=fu; 
   }            } 
 }          } 
     } 
 /**** Prevalence limit ****************/    nrerror("Too many iterations in brent"); 
     *xmin=x; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    return fx; 
 {  } 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /****************** mnbrak ***********************/
   
   int i, ii,j,k;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   double min, max, maxmin, maxmax,sumnew=0.;              double (*func)(double)) 
   double **matprod2();  { 
   double **out, cov[NCOVMAX], **pmij();    double ulim,u,r,q, dum;
   double **newm;    double fu; 
   double agefin, delaymax=50 ; /* Max number of years to converge */   
     *fa=(*func)(*ax); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    *fb=(*func)(*bx); 
     for (j=1;j<=nlstate+ndeath;j++){    if (*fb > *fa) { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      SHFT(dum,*ax,*bx,dum) 
     }        SHFT(dum,*fb,*fa,dum) 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        } 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    *cx=(*bx)+GOLD*(*bx-*ax); 
     newm=savm;    *fc=(*func)(*cx); 
     /* Covariates have to be included here again */    while (*fb > *fc) { 
     cov[1]=1.;      r=(*bx-*ax)*(*fb-*fc); 
     cov[2]=agefin;      q=(*bx-*cx)*(*fb-*fa); 
     if (cptcovn>0){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
     savm=oldm;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     oldm=newm;        fu=(*func)(u); 
     maxmax=0.;        if (fu < *fc) { 
     for(j=1;j<=nlstate;j++){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       min=1.;            SHFT(*fb,*fc,fu,(*func)(u)) 
       max=0.;            } 
       for(i=1; i<=nlstate; i++) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         sumnew=0;        u=ulim; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        fu=(*func)(u); 
         prlim[i][j]= newm[i][j]/(1-sumnew);      } else { 
         max=FMAX(max,prlim[i][j]);        u=(*cx)+GOLD*(*cx-*bx); 
         min=FMIN(min,prlim[i][j]);        fu=(*func)(u); 
       }      } 
       maxmin=max-min;      SHFT(*ax,*bx,*cx,u) 
       maxmax=FMAX(maxmax,maxmin);        SHFT(*fa,*fb,*fc,fu) 
     }        } 
     if(maxmax < ftolpl){  } 
       return prlim;  
     }  /*************** linmin ************************/
   }  
 }  int ncom; 
   double *pcom,*xicom;
 /*************** transition probabilities **********/  double (*nrfunc)(double []); 
    
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 {  { 
   double s1, s2;    double brent(double ax, double bx, double cx, 
   /*double t34;*/                 double (*f)(double), double tol, double *xmin); 
   int i,j,j1, nc, ii, jj;    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     for(i=1; i<= nlstate; i++){                double *fc, double (*func)(double)); 
     for(j=1; j<i;j++){    int j; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double xx,xmin,bx,ax; 
         /*s2 += param[i][j][nc]*cov[nc];*/    double fx,fb,fa;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];   
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    ncom=n; 
       }    pcom=vector(1,n); 
       ps[i][j]=s2;    xicom=vector(1,n); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    nrfunc=func; 
     }    for (j=1;j<=n;j++) { 
     for(j=i+1; j<=nlstate+ndeath;j++){      pcom[j]=p[j]; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      xicom[j]=xi[j]; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    ax=0.0; 
       }    xx=1.0; 
       ps[i][j]=s2;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   }  #ifdef DEBUG
   for(i=1; i<= nlstate; i++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      s1=0;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(j=1; j<i; j++)  #endif
       s1+=exp(ps[i][j]);    for (j=1;j<=n;j++) { 
     for(j=i+1; j<=nlstate+ndeath; j++)      xi[j] *= xmin; 
       s1+=exp(ps[i][j]);      p[j] += xi[j]; 
     ps[i][i]=1./(s1+1.);    } 
     for(j=1; j<i; j++)    free_vector(xicom,1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    free_vector(pcom,1,n); 
     for(j=i+1; j<=nlstate+ndeath; j++)  } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /*************** powell ************************/
   } /* end i */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  { 
     for(jj=1; jj<= nlstate+ndeath; jj++){    void linmin(double p[], double xi[], int n, double *fret, 
       ps[ii][jj]=0;                double (*func)(double [])); 
       ps[ii][ii]=1;    int i,ibig,j; 
     }    double del,t,*pt,*ptt,*xit;
   }    double fp,fptt;
     double *xits;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    pt=vector(1,n); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    ptt=vector(1,n); 
      printf("%lf ",ps[ii][jj]);    xit=vector(1,n); 
    }    xits=vector(1,n); 
     printf("\n ");    *fret=(*func)(p); 
     }    for (j=1;j<=n;j++) pt[j]=p[j]; 
     printf("\n ");printf("%lf ",cov[2]);*/    for (*iter=1;;++(*iter)) { 
 /*      fp=(*fret); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      ibig=0; 
   goto end;*/      del=0.0; 
     return ps;      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
 }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       fprintf(ficrespow,"%d %.12f",*iter,*fret);
 /**************** Product of 2 matrices ******************/      for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        fprintf(ficlog," %d %.12lf",i, p[i]);
 {        fprintf(ficrespow," %.12lf", p[i]);
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      printf("\n");
   /* in, b, out are matrice of pointers which should have been initialized      fprintf(ficlog,"\n");
      before: only the contents of out is modified. The function returns      fprintf(ficrespow,"\n");
      a pointer to pointers identical to out */      for (i=1;i<=n;i++) { 
   long i, j, k;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for(i=nrl; i<= nrh; i++)        fptt=(*fret); 
     for(k=ncolol; k<=ncoloh; k++)  #ifdef DEBUG
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        printf("fret=%lf \n",*fret);
         out[i][k] +=in[i][j]*b[j][k];        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
   return out;        printf("%d",i);fflush(stdout);
 }        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 /************* Higher Matrix Product ***************/          del=fabs(fptt-(*fret)); 
           ibig=i; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        } 
 {  #ifdef DEBUG
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        printf("%d %.12e",i,(*fret));
      duration (i.e. until        fprintf(ficlog,"%d %.12e",i,(*fret));
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        for (j=1;j<=n;j++) {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
      (typically every 2 years instead of every month which is too big).          printf(" x(%d)=%.12e",j,xit[j]);
      Model is determined by parameters x and covariates have to be          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
      included manually here.        }
         for(j=1;j<=n;j++) {
      */          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
   int i, j, d, h, k;        }
   double **out, cov[NCOVMAX];        printf("\n");
   double **newm;        fprintf(ficlog,"\n");
   #endif
   /* Hstepm could be zero and should return the unit matrix */      } 
   for (i=1;i<=nlstate+ndeath;i++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (j=1;j<=nlstate+ndeath;j++){  #ifdef DEBUG
       oldm[i][j]=(i==j ? 1.0 : 0.0);        int k[2],l;
       po[i][j][0]=(i==j ? 1.0 : 0.0);        k[0]=1;
     }        k[1]=-1;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        printf("Max: %.12e",(*func)(p));
   for(h=1; h <=nhstepm; h++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for(d=1; d <=hstepm; d++){        for (j=1;j<=n;j++) {
       newm=savm;          printf(" %.12e",p[j]);
       /* Covariates have to be included here again */          fprintf(ficlog," %.12e",p[j]);
       cov[1]=1.;        }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        printf("\n");
       if (cptcovn>0){        fprintf(ficlog,"\n");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];        for(l=0;l<=1;l++) {
     }          for (j=1;j<=n;j++) {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          }
       savm=oldm;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       oldm=newm;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }        }
     for(i=1; i<=nlstate+ndeath; i++)  #endif
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        free_vector(xit,1,n); 
          */        free_vector(xits,1,n); 
       }        free_vector(ptt,1,n); 
   } /* end h */        free_vector(pt,1,n); 
   return po;        return; 
 }      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
 /*************** log-likelihood *************/        ptt[j]=2.0*p[j]-pt[j]; 
 double func( double *x)        xit[j]=p[j]-pt[j]; 
 {        pt[j]=p[j]; 
   int i, ii, j, k, mi, d;      } 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      fptt=(*func)(ptt); 
   double **out;      if (fptt < fp) { 
   double sw; /* Sum of weights */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   double lli; /* Individual log likelihood */        if (t < 0.0) { 
   long ipmx;          linmin(p,xit,n,fret,func); 
   /*extern weight */          for (j=1;j<=n;j++) { 
   /* We are differentiating ll according to initial status */            xi[j][ibig]=xi[j][n]; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            xi[j][n]=xit[j]; 
   /*for(i=1;i<imx;i++)          }
 printf(" %d\n",s[4][i]);  #ifdef DEBUG
   */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(k=1; k<=nlstate; k++) ll[k]=0.;          for(j=1;j<=n;j++){
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            printf(" %.12e",xit[j]);
        for(mi=1; mi<= wav[i]-1; mi++){            fprintf(ficlog," %.12e",xit[j]);
       for (ii=1;ii<=nlstate+ndeath;ii++)          }
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf("\n");
             for(d=0; d<dh[mi][i]; d++){          fprintf(ficlog,"\n");
         newm=savm;  #endif
           cov[1]=1.;        }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      } 
           if (cptcovn>0){    } 
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];  } 
             }  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /**** Prevalence limit (stable prevalence)  ****************/
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
           savm=oldm;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           oldm=newm;  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
       } /* end mult */  
        int i, ii,j,k;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    double min, max, maxmin, maxmax,sumnew=0.;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    double **matprod2();
       ipmx +=1;    double **out, cov[NCOVMAX], **pmij();
       sw += weight[i];    double **newm;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double agefin, delaymax=50 ; /* Max number of years to converge */
     } /* end of wave */  
   } /* end of individual */    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;     cov[1]=1.;
 }   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 /*********** Maximum Likelihood Estimation ***************/      newm=savm;
       /* Covariates have to be included here again */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))       cov[2]=agefin;
 {    
   int i,j, iter;        for (k=1; k<=cptcovn;k++) {
   double **xi,*delti;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double fret;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   xi=matrix(1,npar,1,npar);        }
   for (i=1;i<=npar;i++)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (j=1;j<=npar;j++)        for (k=1; k<=cptcovprod;k++)
       xi[i][j]=(i==j ? 1.0 : 0.0);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
 }      savm=oldm;
       oldm=newm;
 /**** Computes Hessian and covariance matrix ***/      maxmax=0.;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      for(j=1;j<=nlstate;j++){
 {        min=1.;
   double  **a,**y,*x,pd;        max=0.;
   double **hess;        for(i=1; i<=nlstate; i++) {
   int i, j,jk;          sumnew=0;
   int *indx;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   double hessii(double p[], double delta, int theta, double delti[]);          max=FMAX(max,prlim[i][j]);
   double hessij(double p[], double delti[], int i, int j);          min=FMIN(min,prlim[i][j]);
   void lubksb(double **a, int npar, int *indx, double b[]) ;        }
   void ludcmp(double **a, int npar, int *indx, double *d) ;        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
       }
   hess=matrix(1,npar,1,npar);      if(maxmax < ftolpl){
         return prlim;
   printf("\nCalculation of the hessian matrix. Wait...\n");      }
   for (i=1;i<=npar;i++){    }
     printf("%d",i);fflush(stdout);  }
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/  /*************** transition probabilities ***************/ 
   }  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++)  {    double s1, s2;
       if (j>i) {    /*double t34;*/
         printf(".%d%d",i,j);fflush(stdout);    int i,j,j1, nc, ii, jj;
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      for(i=1; i<= nlstate; i++){
       }      for(j=1; j<i;j++){
     }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   }          /*s2 += param[i][j][nc]*cov[nc];*/
   printf("\n");          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        }
          ps[i][j]=s2;
   a=matrix(1,npar,1,npar);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   y=matrix(1,npar,1,npar);      }
   x=vector(1,npar);      for(j=i+1; j<=nlstate+ndeath;j++){
   indx=ivector(1,npar);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (i=1;i<=npar;i++)          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   ludcmp(a,npar,indx,&pd);        }
         ps[i][j]=s2;
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;    }
     x[j]=1;      /*ps[3][2]=1;*/
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    for(i=1; i<= nlstate; i++){
       matcov[i][j]=x[i];       s1=0;
     }      for(j=1; j<i; j++)
   }        s1+=exp(ps[i][j]);
       for(j=i+1; j<=nlstate+ndeath; j++)
   printf("\n#Hessian matrix#\n");        s1+=exp(ps[i][j]);
   for (i=1;i<=npar;i++) {      ps[i][i]=1./(s1+1.);
     for (j=1;j<=npar;j++) {      for(j=1; j<i; j++)
       printf("%.3e ",hess[i][j]);        ps[i][j]= exp(ps[i][j])*ps[i][i];
     }      for(j=i+1; j<=nlstate+ndeath; j++)
     printf("\n");        ps[i][j]= exp(ps[i][j])*ps[i][i];
   }      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      for(jj=1; jj<= nlstate+ndeath; jj++){
   ludcmp(a,npar,indx,&pd);        ps[ii][jj]=0;
         ps[ii][ii]=1;
   /*  printf("\n#Hessian matrix recomputed#\n");      }
     }
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     lubksb(a,npar,indx,x);      for(jj=1; jj<= nlstate+ndeath; jj++){
     for (i=1;i<=npar;i++){       printf("%lf ",ps[ii][jj]);
       y[i][j]=x[i];     }
       printf("%.3e ",y[i][j]);      printf("\n ");
     }      }
     printf("\n");      printf("\n ");printf("%lf ",cov[2]);*/
   }  /*
   */    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     goto end;*/
   free_matrix(a,1,npar,1,npar);      return ps;
   free_matrix(y,1,npar,1,npar);  }
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  /**************** Product of 2 matrices ******************/
   free_matrix(hess,1,npar,1,npar);  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
 }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 /*************** hessian matrix ****************/    /* in, b, out are matrice of pointers which should have been initialized 
 double hessii( double x[], double delta, int theta, double delti[])       before: only the contents of out is modified. The function returns
 {       a pointer to pointers identical to out */
   int i;    long i, j, k;
   int l=1, lmax=20;    for(i=nrl; i<= nrh; i++)
   double k1,k2;      for(k=ncolol; k<=ncoloh; k++)
   double p2[NPARMAX+1];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   double res;          out[i][k] +=in[i][j]*b[j][k];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;    return out;
   int k=0,kmax=10;  }
   double l1;  
   
   fx=func(x);  /************* Higher Matrix Product ***************/
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     l1=pow(10,l);  {
     delts=delt;    /* Computes the transition matrix starting at age 'age' over 
     for(k=1 ; k <kmax; k=k+1){       'nhstepm*hstepm*stepm' months (i.e. until
       delt = delta*(l1*k);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       p2[theta]=x[theta] +delt;       nhstepm*hstepm matrices. 
       k1=func(p2)-fx;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       p2[theta]=x[theta]-delt;       (typically every 2 years instead of every month which is too big 
       k2=func(p2)-fx;       for the memory).
       /*res= (k1-2.0*fx+k2)/delt/delt; */       Model is determined by parameters x and covariates have to be 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */       included manually here. 
        
 #ifdef DEBUG       */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif    int i, j, d, h, k;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double **out, cov[NCOVMAX];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    double **newm;
         k=kmax;  
       }    /* Hstepm could be zero and should return the unit matrix */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    for (i=1;i<=nlstate+ndeath;i++)
         k=kmax; l=lmax*10.;      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[i][j]=(i==j ? 1.0 : 0.0);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        po[i][j][0]=(i==j ? 1.0 : 0.0);
         delts=delt;      }
       }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(h=1; h <=nhstepm; h++){
   }      for(d=1; d <=hstepm; d++){
   delti[theta]=delts;        newm=savm;
   return res;        /* Covariates have to be included here again */
          cov[1]=1.;
 }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 double hessij( double x[], double delti[], int thetai,int thetaj)        for (k=1; k<=cptcovage;k++)
 {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int i;        for (k=1; k<=cptcovprod;k++)
   int l=1, l1, lmax=20;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];  
   int k;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   fx=func(x);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   for (k=1; k<=2; k++) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1;i<=npar;i++) p2[i]=x[i];        savm=oldm;
     p2[thetai]=x[thetai]+delti[thetai]/k;        oldm=newm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k1=func(p2)-fx;      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;          po[i][j][h]=newm[i][j];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     k2=func(p2)-fx;           */
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;    } /* end h */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    return po;
     k3=func(p2)-fx;  }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*************** log-likelihood *************/
     k4=func(p2)-fx;  double func( double *x)
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  {
 #ifdef DEBUG    int i, ii, j, k, mi, d, kk;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 #endif    double **out;
   }    double sw; /* Sum of weights */
   return res;    double lli; /* Individual log likelihood */
 }    int s1, s2;
     double bbh, survp;
 /************** Inverse of matrix **************/    long ipmx;
 void ludcmp(double **a, int n, int *indx, double *d)    /*extern weight */
 {    /* We are differentiating ll according to initial status */
   int i,imax,j,k;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double big,dum,sum,temp;    /*for(i=1;i<imx;i++) 
   double *vv;      printf(" %d\n",s[4][i]);
      */
   vv=vector(1,n);    cov[1]=1.;
   *d=1.0;  
   for (i=1;i<=n;i++) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
     big=0.0;  
     for (j=1;j<=n;j++)    if(mle==1){
       if ((temp=fabs(a[i][j])) > big) big=temp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     vv[i]=1.0/big;        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (j=1;j<=n;j++) {            for (j=1;j<=nlstate+ndeath;j++){
     for (i=1;i<j;i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       sum=a[i][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            }
       a[i][j]=sum;          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
     big=0.0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=j;i<=n;i++) {            for (kk=1; kk<=cptcovage;kk++) {
       sum=a[i][j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for (k=1;k<j;k++)            }
         sum -= a[i][k]*a[k][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       a[i][j]=sum;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if ( (dum=vv[i]*fabs(sum)) >= big) {            savm=oldm;
         big=dum;            oldm=newm;
         imax=i;          } /* end mult */
       }        
     }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     if (j != imax) {          /* But now since version 0.9 we anticipate for bias and large stepm.
       for (k=1;k<=n;k++) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         dum=a[imax][k];           * (in months) between two waves is not a multiple of stepm, we rounded to 
         a[imax][k]=a[j][k];           * the nearest (and in case of equal distance, to the lowest) interval but now
         a[j][k]=dum;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       *d = -(*d);           * probability in order to take into account the bias as a fraction of the way
       vv[imax]=vv[j];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
     indx[j]=imax;           * For stepm=1 the results are the same as for previous versions of Imach.
     if (a[j][j] == 0.0) a[j][j]=TINY;           * For stepm > 1 the results are less biased than in previous versions. 
     if (j != n) {           */
       dum=1.0/(a[j][j]);          s1=s[mw[mi][i]][i];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
   }          /* bias is positive if real duration
   free_vector(vv,1,n);  /* Doesn't work */           * is higher than the multiple of stepm and negative otherwise.
 ;           */
 }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
 void lubksb(double **a, int n, int *indx, double b[])            /* i.e. if s2 is a death state and if the date of death is known then the contribution
 {               to the likelihood is the probability to die between last step unit time and current 
   int i,ii=0,ip,j;               step unit time, which is also the differences between probability to die before dh 
   double sum;               and probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
   for (i=1;i<=n;i++) {          as if date of death was unknown. Death was treated as any other
     ip=indx[i];          health state: the date of the interview describes the actual state
     sum=b[ip];          and not the date of a change in health state. The former idea was
     b[ip]=b[i];          to consider that at each interview the state was recorded
     if (ii)          (healthy, disable or death) and IMaCh was corrected; but when we
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          introduced the exact date of death then we should have modified
     else if (sum) ii=i;          the contribution of an exact death to the likelihood. This new
     b[i]=sum;          contribution is smaller and very dependent of the step unit
   }          stepm. It is no more the probability to die between last interview
   for (i=n;i>=1;i--) {          and month of death but the probability to survive from last
     sum=b[i];          interview up to one month before death multiplied by the
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          probability to die within a month. Thanks to Chris
     b[i]=sum/a[i][i];          Jackson for correcting this bug.  Former versions increased
   }          mortality artificially. The bad side is that we add another loop
 }          which slows down the processing. The difference can be up to 10%
           lower mortality.
 /************ Frequencies ********************/            */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)            lli=log(out[s1][s2] - savm[s1][s2]);
 {  /* Some frequencies */          }else{
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double ***freq; /* Frequencies */          } 
   double *pp;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   double pos;          /*if(lli ==000.0)*/
   FILE *ficresp;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   char fileresp[FILENAMELENGTH];          ipmx +=1;
           sw += weight[i];
   pp=vector(1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   strcpy(fileresp,"p");      } /* end of individual */
   strcat(fileresp,fileres);    }  else if(mle==2){
   if((ficresp=fopen(fileresp,"w"))==NULL) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     exit(0);        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            for (j=1;j<=nlstate+ndeath;j++){
   j1=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   j=cptcovn;            }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
   for(k1=1; k1<=j;k1++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    for(i1=1; i1<=ncodemax[k1];i1++){            for (kk=1; kk<=cptcovage;kk++) {
        j1++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
         for (i=-1; i<=nlstate+ndeath; i++)              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          for (jk=-1; jk<=nlstate+ndeath; jk++)                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            for(m=agemin; m <= agemax+3; m++)            savm=oldm;
              freq[i][jk][m]=0;            oldm=newm;
                  } /* end mult */
        for (i=1; i<=imx; i++) {        
          bool=1;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
          if  (cptcovn>0) {          /* But now since version 0.9 we anticipate for bias and large stepm.
            for (z1=1; z1<=cptcovn; z1++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;           * (in months) between two waves is not a multiple of stepm, we rounded to 
          }           * the nearest (and in case of equal distance, to the lowest) interval but now
           if (bool==1) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            for(m=firstpass; m<=lastpass-1; m++){           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
              if(agev[m][i]==0) agev[m][i]=agemax+1;           * probability in order to take into account the bias as a fraction of the way
              if(agev[m][i]==1) agev[m][i]=agemax+2;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * -stepm/2 to stepm/2 .
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];           * For stepm=1 the results are the same as for previous versions of Imach.
            }           * For stepm > 1 the results are less biased than in previous versions. 
          }           */
        }          s1=s[mw[mi][i]][i];
         if  (cptcovn>0) {          s2=s[mw[mi+1][i]][i];
          fprintf(ficresp, "\n#Variable");          bbh=(double)bh[mi][i]/(double)stepm; 
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);          /* bias is positive if real duration
        }           * is higher than the multiple of stepm and negative otherwise.
        fprintf(ficresp, "\n#");           */
        for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
        fprintf(ficresp, "\n");          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
                  /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   for(i=(int)agemin; i <= (int)agemax+3; i++){          /*if(lli ==000.0)*/
     if(i==(int)agemax+3)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       printf("Total");          ipmx +=1;
     else          sw += weight[i];
       printf("Age %d", i);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(jk=1; jk <=nlstate ; jk++){        } /* end of wave */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      } /* end of individual */
         pp[jk] += freq[jk][m][i];    }  else if(mle==3){  /* exponential inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(m=-1, pos=0; m <=0 ; m++)        for(mi=1; mi<= wav[i]-1; mi++){
         pos += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
       if(pp[jk]>=1.e-10)            for (j=1;j<=nlstate+ndeath;j++){
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            }
     }          for(d=0; d<dh[mi][i]; d++){
     for(jk=1; jk <=nlstate ; jk++){            newm=savm;
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         pp[jk] += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(jk=1,pos=0; jk <=nlstate ; jk++)            }
       pos += pp[jk];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if(pos>=1.e-5)            savm=oldm;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            oldm=newm;
       else          } /* end mult */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        
       if( i <= (int) agemax){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         if(pos>=1.e-5)          /* But now since version 0.9 we anticipate for bias and large stepm.
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       else           * (in months) between two waves is not a multiple of stepm, we rounded to 
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);           * the nearest (and in case of equal distance, to the lowest) interval but now
       }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     for(jk=-1; jk <=nlstate+ndeath; jk++)           * probability in order to take into account the bias as a fraction of the way
       for(m=-1; m <=nlstate+ndeath; m++)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           * -stepm/2 to stepm/2 .
     if(i <= (int) agemax)           * For stepm=1 the results are the same as for previous versions of Imach.
       fprintf(ficresp,"\n");           * For stepm > 1 the results are less biased than in previous versions. 
     printf("\n");           */
     }          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
  }          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
   fclose(ficresp);           * is higher than the multiple of stepm and negative otherwise.
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           */
   free_vector(pp,1,nlstate);          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 }  /* End of Freq */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
 /************* Waves Concatenation ***************/          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        } /* end of wave */
      Death is a valid wave (if date is known).      } /* end of individual */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    }else if (mle==4){  /* ml=4 no inter-extrapolation */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      and mw[mi+1][i]. dh depends on stepm.        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, mi, m;            for (j=1;j<=nlstate+ndeath;j++){
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 float sum=0.;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   for(i=1; i<=imx; i++){          for(d=0; d<dh[mi][i]; d++){
     mi=0;            newm=savm;
     m=firstpass;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     while(s[m][i] <= nlstate){            for (kk=1; kk<=cptcovage;kk++) {
       if(s[m][i]>=1)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         mw[++mi][i]=m;            }
       if(m >=lastpass)          
         break;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         m++;            savm=oldm;
     }/* end while */            oldm=newm;
     if (s[m][i] > nlstate){          } /* end mult */
       mi++;     /* Death is another wave */        
       /* if(mi==0)  never been interviewed correctly before death */          s1=s[mw[mi][i]][i];
          /* Only death is a correct wave */          s2=s[mw[mi+1][i]][i];
       mw[mi][i]=m;          if( s2 > nlstate){ 
     }            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
     wav[i]=mi;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     if(mi==0)          }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          ipmx +=1;
   }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(i=1; i<=imx; i++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(mi=1; mi<wav[i];mi++){        } /* end of wave */
       if (stepm <=0)      } /* end of individual */
         dh[mi][i]=1;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       else{      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if (s[mw[mi+1][i]][i] > nlstate) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for(mi=1; mi<= wav[i]-1; mi++){
           if(j=0) j=1;  /* Survives at least one month after exam */          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         else{              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           k=k+1;            }
           if (j >= jmax) jmax=j;          for(d=0; d<dh[mi][i]; d++){
           else if (j <= jmin)jmin=j;            newm=savm;
           sum=sum+j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         jk= j/stepm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         jl= j -jk*stepm;            }
         ju= j -(jk+1)*stepm;          
         if(jl <= -ju)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           dh[mi][i]=jk;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         else            savm=oldm;
           dh[mi][i]=jk+1;            oldm=newm;
         if(dh[mi][i]==0)          } /* end mult */
           dh[mi][i]=1; /* At least one step */        
       }          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
   }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);          ipmx +=1;
 }          sw += weight[i];
 /*********** Tricode ****************************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void tricode(int *Tvar, int **nbcode, int imx)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 {        } /* end of wave */
   int Ndum[80],ij, k, j, i;      } /* end of individual */
   int cptcode=0;    } /* End of if */
   for (k=0; k<79; k++) Ndum[k]=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for (k=1; k<=7; k++) ncodemax[k]=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for (j=1; j<=cptcovn; j++) {    return -l;
     for (i=1; i<=imx; i++) {  }
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;  /*************** log-likelihood *************/
       if (ij > cptcode) cptcode=ij;  double funcone( double *x)
     }  {
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/    int i, ii, j, k, mi, d, kk;
     for (i=0; i<=cptcode; i++) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       if(Ndum[i]!=0) ncodemax[j]++;    double **out;
     }    double lli; /* Individual log likelihood */
      int s1, s2;
     ij=1;    double bbh, survp;
     for (i=1; i<=ncodemax[j]; i++) {    /*extern weight */
       for (k=0; k<=79; k++) {    /* We are differentiating ll according to initial status */
         if (Ndum[k] != 0) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           nbcode[Tvar[j]][ij]=k;    /*for(i=1;i<imx;i++) 
           ij++;      printf(" %d\n",s[4][i]);
         }    */
         if (ij > ncodemax[j]) break;    cov[1]=1.;
       }    
     }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }    
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
 /*********** Health Expectancies ****************/        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Health expectancies */          }
   int i, j, nhstepm, hstepm, h;        for(d=0; d<dh[mi][i]; d++){
   double age, agelim,hf;          newm=savm;
   double ***p3mat;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficreseij,"# Health expectancies\n");            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficreseij,"# Age");          }
   for(i=1; i<=nlstate;i++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(j=1; j<=nlstate;j++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficreseij," %1d-%1d",i,j);          savm=oldm;
   fprintf(ficreseij,"\n");          oldm=newm;
         } /* end mult */
   hstepm=1*YEARM; /*  Every j years of age (in month) */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
   agelim=AGESUP;        bbh=(double)bh[mi][i]/(double)stepm; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        /* bias is positive if real duration
     /* nhstepm age range expressed in number of stepm */         * is higher than the multiple of stepm and negative otherwise.
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);         */
     /* Typically if 20 years = 20*12/6=40 stepm */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     if (stepm >= YEARM) hstepm=1;          lli=log(out[s1][s2] - savm[s1][s2]);
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        } else if (mle==1){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        } else if(mle==2){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for(i=1; i<=nlstate;i++)          lli=log(out[s1][s2]); /* Original formula */
       for(j=1; j<=nlstate;j++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          lli=log(out[s1][s2]); /* Original formula */
           eij[i][j][(int)age] +=p3mat[i][j][h];        } /* End of if */
         }        ipmx +=1;
            sw += weight[i];
     hf=1;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (stepm >= YEARM) hf=stepm/YEARM;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     fprintf(ficreseij,"%.0f",age );        if(globpr){
     for(i=1; i<=nlstate;i++)          fprintf(ficresilk,"%6d %1d %1d %1d %1d %3d %10.6f %6.4f %10.6f %10.6f %10.6f ", \
       for(j=1; j<=nlstate;j++){                  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          for(k=1,l=0.; k<=nlstate; k++) 
       }            fprintf(ficresilk," %10.6f",ll[k]);
     fprintf(ficreseij,"\n");          fprintf(ficresilk,"\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
   }      } /* end of wave */
 }    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 /************ Variance ******************/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 {    return -l;
   /* Variance of health expectancies */  }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;  
   double **dnewm,**doldm;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   int i, j, nhstepm, hstepm, h;  {
   int k, cptcode;    /* This routine should help understanding what is done with the selection of individuals/waves and
    double *xp;       to check the exact contribution to the likelihood.
   double **gp, **gm;       Plotting could be done.
   double ***gradg, ***trgradg;     */
   double ***p3mat;    int k;
   double age,agelim;    if(globpr !=0){ /* Just counts and sums no printings */
   int theta;      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
    fprintf(ficresvij,"# Covariances of life expectancies\n");      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   fprintf(ficresvij,"# Age");        printf("Problem with resultfile: %s\n", fileresilk);
   for(i=1; i<=nlstate;i++)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for(j=1; j<=nlstate;j++)      }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      fprintf(ficresilk, "# individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state");
   fprintf(ficresvij,"\n");      fprintf(ficresilk, "# i s1 s2 mi mw dh likeli weight out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   xp=vector(1,npar);      for(k=1; k<=nlstate; k++) 
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficresilk," ll[%d]",k);
   doldm=matrix(1,nlstate,1,nlstate);      fprintf(ficresilk,"\n");
      }
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    *fretone=(*funcone)(p);
   agelim = AGESUP;    if(globpr !=0)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fclose(ficresilk);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    return;
     if (stepm >= YEARM) hstepm=1;  }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*********** Maximum Likelihood Estimation ***************/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     gm=matrix(0,nhstepm,1,nlstate);  {
     int i,j, iter;
     for(theta=1; theta <=npar; theta++){    double **xi;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double fret;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double fretone; /* Only one call to likelihood */
       }    char filerespow[FILENAMELENGTH];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      xi=matrix(1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++)
       for(j=1; j<= nlstate; j++){      for (j=1;j<=npar;j++)
         for(h=0; h<=nhstepm; h++){        xi[i][j]=(i==j ? 1.0 : 0.0);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    strcpy(filerespow,"pow"); 
         }    strcat(filerespow,fileres);
       }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", filerespow);
       for(i=1; i<=npar; i++) /* Computes gradient */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=nlstate;i++)
       for(j=1; j<= nlstate; j++){      for(j=1;j<=nlstate+ndeath;j++)
         for(h=0; h<=nhstepm; h++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    fprintf(ficrespow,"\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    powell(p,xi,npar,ftol,&iter,&fret,func);
       }  
       for(j=1; j<= nlstate; j++)    fclose(ficrespow);
         for(h=0; h<=nhstepm; h++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     } /* End theta */  
   }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
   /**** Computes Hessian and covariance matrix ***/
     for(h=0; h<=nhstepm; h++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(j=1; j<=nlstate;j++)  {
         for(theta=1; theta <=npar; theta++)    double  **a,**y,*x,pd;
           trgradg[h][j][theta]=gradg[h][theta][j];    double **hess;
     int i, j,jk;
     for(i=1;i<=nlstate;i++)    int *indx;
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    double hessii(double p[], double delta, int theta, double delti[]);
     for(h=0;h<=nhstepm;h++){    double hessij(double p[], double delti[], int i, int j);
       for(k=0;k<=nhstepm;k++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    void ludcmp(double **a, int npar, int *indx, double *d) ;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)    hess=matrix(1,npar,1,npar);
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j];    printf("\nCalculation of the hessian matrix. Wait...\n");
       }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     }    for (i=1;i<=npar;i++){
     h=1;      printf("%d",i);fflush(stdout);
     if (stepm >= YEARM) h=stepm/YEARM;      fprintf(ficlog,"%d",i);fflush(ficlog);
     fprintf(ficresvij,"%.0f ",age );      hess[i][i]=hessii(p,ftolhess,i,delti);
     for(i=1; i<=nlstate;i++)      /*printf(" %f ",p[i]);*/
       for(j=1; j<=nlstate;j++){      /*printf(" %lf ",hess[i][i]);*/
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    }
       }    
     fprintf(ficresvij,"\n");    for (i=1;i<=npar;i++) {
     free_matrix(gp,0,nhstepm,1,nlstate);      for (j=1;j<=npar;j++)  {
     free_matrix(gm,0,nhstepm,1,nlstate);        if (j>i) { 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          printf(".%d%d",i,j);fflush(stdout);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          hess[i][j]=hessij(p,delti,i,j);
   } /* End age */          hess[j][i]=hess[i][j];    
            /*printf(" %lf ",hess[i][j]);*/
   free_vector(xp,1,npar);        }
   free_matrix(doldm,1,nlstate,1,npar);      }
   free_matrix(dnewm,1,nlstate,1,nlstate);    }
     printf("\n");
 }    fprintf(ficlog,"\n");
   
 /************ Variance of prevlim ******************/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 {    
   /* Variance of prevalence limit */    a=matrix(1,npar,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    y=matrix(1,npar,1,npar);
   double **newm;    x=vector(1,npar);
   double **dnewm,**doldm;    indx=ivector(1,npar);
   int i, j, nhstepm, hstepm;    for (i=1;i<=npar;i++)
   int k, cptcode;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double *xp;    ludcmp(a,npar,indx,&pd);
   double *gp, *gm;  
   double **gradg, **trgradg;    for (j=1;j<=npar;j++) {
   double age,agelim;      for (i=1;i<=npar;i++) x[i]=0;
   int theta;      x[j]=1;
          lubksb(a,npar,indx,x);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      for (i=1;i<=npar;i++){ 
   fprintf(ficresvpl,"# Age");        matcov[i][j]=x[i];
   for(i=1; i<=nlstate;i++)      }
       fprintf(ficresvpl," %1d-%1d",i,i);    }
   fprintf(ficresvpl,"\n");  
     printf("\n#Hessian matrix#\n");
   xp=vector(1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
   dnewm=matrix(1,nlstate,1,npar);    for (i=1;i<=npar;i++) { 
   doldm=matrix(1,nlstate,1,nlstate);      for (j=1;j<=npar;j++) { 
          printf("%.3e ",hess[i][j]);
   hstepm=1*YEARM; /* Every year of age */        fprintf(ficlog,"%.3e ",hess[i][j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      }
   agelim = AGESUP;      printf("\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficlog,"\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* Recompute Inverse */
     gradg=matrix(1,npar,1,nlstate);    for (i=1;i<=npar;i++)
     gp=vector(1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     gm=vector(1,nlstate);    ludcmp(a,npar,indx,&pd);
   
     for(theta=1; theta <=npar; theta++){    /*  printf("\n#Hessian matrix recomputed#\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      x[j]=1;
       for(i=1;i<=nlstate;i++)      lubksb(a,npar,indx,x);
         gp[i] = prlim[i][i];      for (i=1;i<=npar;i++){ 
            y[i][j]=x[i];
       for(i=1; i<=npar; i++) /* Computes gradient */        printf("%.3e ",y[i][j]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficlog,"%.3e ",y[i][j]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)      printf("\n");
         gm[i] = prlim[i][i];      fprintf(ficlog,"\n");
     }
       for(i=1;i<=nlstate;i++)    */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     trgradg =matrix(1,nlstate,1,npar);    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
     for(j=1; j<=nlstate;j++)    free_matrix(hess,1,npar,1,npar);
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];  
   }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;  /*************** hessian matrix ****************/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  double hessii( double x[], double delta, int theta, double delti[])
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  {
     for(i=1;i<=nlstate;i++)    int i;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int l=1, lmax=20;
     double k1,k2;
     fprintf(ficresvpl,"%.0f ",age );    double p2[NPARMAX+1];
     for(i=1; i<=nlstate;i++)    double res;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     fprintf(ficresvpl,"\n");    double fx;
     free_vector(gp,1,nlstate);    int k=0,kmax=10;
     free_vector(gm,1,nlstate);    double l1;
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    fx=func(x);
   } /* End age */    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
   free_vector(xp,1,npar);      l1=pow(10,l);
   free_matrix(doldm,1,nlstate,1,npar);      delts=delt;
   free_matrix(dnewm,1,nlstate,1,nlstate);      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
 }        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
 /***********************************************/        /*res= (k1-2.0*fx+k2)/delt/delt; */
 /**************** Main Program *****************/        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 /***********************************************/        
   #ifdef DEBUG
 /*int main(int argc, char *argv[])*/        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 int main()        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 {  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double agedeb, agefin,hf;          k=kmax;
   double agemin=1.e20, agemax=-1.e20;        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double fret;          k=kmax; l=lmax*10.;
   double **xi,tmp,delta;        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double dum; /* Dummy variable */          delts=delt;
   double ***p3mat;        }
   int *indx;      }
   char line[MAXLINE], linepar[MAXLINE];    }
   char title[MAXLINE];    delti[theta]=delts;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    return res; 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    
   char filerest[FILENAMELENGTH];  }
   char fileregp[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  double hessij( double x[], double delti[], int thetai,int thetaj)
   int firstobs=1, lastobs=10;  {
   int sdeb, sfin; /* Status at beginning and end */    int i;
   int c,  h , cpt,l;    int l=1, l1, lmax=20;
   int ju,jl, mi;    double k1,k2,k3,k4,res,fx;
   int i1,j1, k1,jk,aa,bb, stepsize;    double p2[NPARMAX+1];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    int k;
    
   int hstepm, nhstepm;    fx=func(x);
   double bage, fage, age, agelim, agebase;    for (k=1; k<=2; k++) {
   double ftolpl=FTOL;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double **prlim;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double *severity;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double ***param; /* Matrix of parameters */      k1=func(p2)-fx;
   double  *p;    
   double **matcov; /* Matrix of covariance */      p2[thetai]=x[thetai]+delti[thetai]/k;
   double ***delti3; /* Scale */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double *delti; /* Scale */      k2=func(p2)-fx;
   double ***eij, ***vareij;    
   double **varpl; /* Variances of prevalence limits by age */      p2[thetai]=x[thetai]-delti[thetai]/k;
   double *epj, vepp;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   char version[80]="Imach version 0.64, May 2000, INED-EUROREVES ";      k3=func(p2)-fx;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    
   char z[1]="c", occ;      p2[thetai]=x[thetai]-delti[thetai]/k;
 #include <sys/time.h>      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 #include <time.h>      k4=func(p2)-fx;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   /* long total_usecs;  #ifdef DEBUG
   struct timeval start_time, end_time;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  #endif
     }
     return res;
   printf("\nIMACH, Version 0.64a");  }
   printf("\nEnter the parameter file name: ");  
   /************** Inverse of matrix **************/
 #ifdef windows  void ludcmp(double **a, int n, int *indx, double *d) 
   scanf("%s",pathtot);  { 
   cygwin_split_path(pathtot,path,optionfile);    int i,imax,j,k; 
      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);    double big,dum,sum,temp; 
      chdir(path);    double *vv; 
     
   /*size=30;    vv=vector(1,n); 
   getcwd(pathcd, size);      *d=1.0; 
   printf("pathcd=%s, path=%s, optionfile=%s\n",pathcd,path,optionfile);    for (i=1;i<=n;i++) { 
   cutv(path,optionfile,pathtot,'\\');      big=0.0; 
   chdir(path);      for (j=1;j<=n;j++) 
   replace(pathc,path);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   */      vv[i]=1.0/big; 
 #endif    } 
 #ifdef unix    for (j=1;j<=n;j++) { 
   scanf("%s",optionfile);      for (i=1;i<j;i++) { 
 #endif        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 /*-------- arguments in the command line --------*/        a[i][j]=sum; 
       } 
   strcpy(fileres,"r");      big=0.0; 
   strcat(fileres, optionfile);      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
   /*---------arguments file --------*/        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        a[i][j]=sum; 
     printf("Problem with optionfile %s\n",optionfile);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     goto end;          big=dum; 
   }          imax=i; 
         } 
   strcpy(filereso,"o");      } 
   strcat(filereso,fileres);      if (j != imax) { 
   if((ficparo=fopen(filereso,"w"))==NULL) {        for (k=1;k<=n;k++) { 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          dum=a[imax][k]; 
   }          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
   /* Reads comments: lines beginning with '#' */        } 
   while((c=getc(ficpar))=='#' && c!= EOF){        *d = -(*d); 
     ungetc(c,ficpar);        vv[imax]=vv[j]; 
     fgets(line, MAXLINE, ficpar);      } 
     puts(line);      indx[j]=imax; 
     fputs(line,ficparo);      if (a[j][j] == 0.0) a[j][j]=TINY; 
   }      if (j != n) { 
   ungetc(c,ficpar);        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      } 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    } 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    free_vector(vv,1,n);  /* Doesn't work */
   ;
   covar=matrix(1,NCOVMAX,1,n);      } 
   if (strlen(model)<=1) cptcovn=0;  
   else {  void lubksb(double **a, int n, int *indx, double b[]) 
     j=0;  { 
     j=nbocc(model,'+');    int i,ii=0,ip,j; 
     cptcovn=j+1;    double sum; 
   }   
     for (i=1;i<=n;i++) { 
   ncovmodel=2+cptcovn;      ip=indx[i]; 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      sum=b[ip]; 
        b[ip]=b[i]; 
   /* Read guess parameters */      if (ii) 
   /* Reads comments: lines beginning with '#' */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   while((c=getc(ficpar))=='#' && c!= EOF){      else if (sum) ii=i; 
     ungetc(c,ficpar);      b[i]=sum; 
     fgets(line, MAXLINE, ficpar);    } 
     puts(line);    for (i=n;i>=1;i--) { 
     fputs(line,ficparo);      sum=b[i]; 
   }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   ungetc(c,ficpar);      b[i]=sum/a[i][i]; 
      } 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  } 
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){  /************ Frequencies ********************/
       fscanf(ficpar,"%1d%1d",&i1,&j1);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
       fprintf(ficparo,"%1d%1d",i1,j1);  {  /* Some frequencies */
       printf("%1d%1d",i,j);    
       for(k=1; k<=ncovmodel;k++){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         fscanf(ficpar," %lf",&param[i][j][k]);    int first;
         printf(" %lf",param[i][j][k]);    double ***freq; /* Frequencies */
         fprintf(ficparo," %lf",param[i][j][k]);    double *pp, **prop;
       }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       fscanf(ficpar,"\n");    FILE *ficresp;
       printf("\n");    char fileresp[FILENAMELENGTH];
       fprintf(ficparo,"\n");    
     }    pp=vector(1,nlstate);
      prop=matrix(1,nlstate,iagemin,iagemax+3);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    strcpy(fileresp,"p");
   p=param[1][1];    strcat(fileresp,fileres);
      if((ficresp=fopen(fileresp,"w"))==NULL) {
   /* Reads comments: lines beginning with '#' */      printf("Problem with prevalence resultfile: %s\n", fileresp);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     ungetc(c,ficpar);      exit(0);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     fputs(line,ficparo);    j1=0;
   }    
   ungetc(c,ficpar);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    first=1;
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){    for(k1=1; k1<=j;k1++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(i1=1; i1<=ncodemax[k1];i1++){
       printf("%1d%1d",i,j);        j1++;
       fprintf(ficparo,"%1d%1d",i1,j1);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for(k=1; k<=ncovmodel;k++){          scanf("%d", i);*/
         fscanf(ficpar,"%le",&delti3[i][j][k]);        for (i=-1; i<=nlstate+ndeath; i++)  
         printf(" %le",delti3[i][j][k]);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
         fprintf(ficparo," %le",delti3[i][j][k]);            for(m=iagemin; m <= iagemax+3; m++)
       }              freq[i][jk][m]=0;
       fscanf(ficpar,"\n");  
       printf("\n");      for (i=1; i<=nlstate; i++)  
       fprintf(ficparo,"\n");        for(m=iagemin; m <= iagemax+3; m++)
     }          prop[i][m]=0;
   }        
   delti=delti3[1][1];        dateintsum=0;
          k2cpt=0;
   /* Reads comments: lines beginning with '#' */        for (i=1; i<=imx; i++) {
   while((c=getc(ficpar))=='#' && c!= EOF){          bool=1;
     ungetc(c,ficpar);          if  (cptcovn>0) {
     fgets(line, MAXLINE, ficpar);            for (z1=1; z1<=cptcoveff; z1++) 
     puts(line);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     fputs(line,ficparo);                bool=0;
   }          }
   ungetc(c,ficpar);          if (bool==1){
              for(m=firstpass; m<=lastpass; m++){
   matcov=matrix(1,npar,1,npar);              k2=anint[m][i]+(mint[m][i]/12.);
   for(i=1; i <=npar; i++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     fscanf(ficpar,"%s",&str);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     printf("%s",str);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficparo,"%s",str);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(j=1; j <=i; j++){                if (m<lastpass) {
       fscanf(ficpar," %le",&matcov[i][j]);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       printf(" %.5le",matcov[i][j]);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       fprintf(ficparo," %.5le",matcov[i][j]);                }
     }                
     fscanf(ficpar,"\n");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     printf("\n");                  dateintsum=dateintsum+k2;
     fprintf(ficparo,"\n");                  k2cpt++;
   }                }
   for(i=1; i <=npar; i++)                /*}*/
     for(j=i+1;j<=npar;j++)            }
       matcov[i][j]=matcov[j][i];          }
            }
   printf("\n");         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
    if(mle==1){        if  (cptcovn>0) {
     /*-------- data file ----------*/          fprintf(ficresp, "\n#********** Variable "); 
     if((ficres =fopen(fileres,"w"))==NULL) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("Problem with resultfile: %s\n", fileres);goto end;          fprintf(ficresp, "**********\n#");
     }        }
     fprintf(ficres,"#%s\n",version);        for(i=1; i<=nlstate;i++) 
              fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     if((fic=fopen(datafile,"r"))==NULL)    {        fprintf(ficresp, "\n");
       printf("Problem with datafile: %s\n", datafile);goto end;        
     }        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
     n= lastobs;            fprintf(ficlog,"Total");
     severity = vector(1,maxwav);          }else{
     outcome=imatrix(1,maxwav+1,1,n);            if(first==1){
     num=ivector(1,n);              first=0;
     moisnais=vector(1,n);              printf("See log file for details...\n");
     annais=vector(1,n);            }
     moisdc=vector(1,n);            fprintf(ficlog,"Age %d", i);
     andc=vector(1,n);          }
     agedc=vector(1,n);          for(jk=1; jk <=nlstate ; jk++){
     cod=ivector(1,n);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     weight=vector(1,n);              pp[jk] += freq[jk][m][i]; 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          }
     mint=matrix(1,maxwav,1,n);          for(jk=1; jk <=nlstate ; jk++){
     anint=matrix(1,maxwav,1,n);            for(m=-1, pos=0; m <=0 ; m++)
     s=imatrix(1,maxwav+1,1,n);              pos += freq[jk][m][i];
     adl=imatrix(1,maxwav+1,1,n);                if(pp[jk]>=1.e-10){
     tab=ivector(1,NCOVMAX);              if(first==1){
     ncodemax=ivector(1,8);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
     i=1;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     while (fgets(line, MAXLINE, fic) != NULL)    {            }else{
       if ((i >= firstobs) && (i <=lastobs)) {              if(first==1)
                        printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for (j=maxwav;j>=1;j--){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            }
           strcpy(line,stra);          }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                      pp[jk] += freq[jk][m][i];
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          }       
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            posprop += prop[jk][i];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
           for(jk=1; jk <=nlstate ; jk++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            if(pos>=1.e-5){
         for (j=ncov;j>=1;j--){              if(first==1)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         num[i]=atol(stra);            }else{
               if(first==1)
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]),  (mint[5][i]), (anint[5][i]), (s[5][i]),  (mint[6][i]), (anint[6][i]), (s[6][i]));*/                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         i=i+1;            }
       }            if( i <= iagemax){
     }              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     /*scanf("%d",i);*/                /*probs[i][jk][j1]= pp[jk]/pos;*/
   imx=i-1; /* Number of individuals */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
   /* Calculation of the number of parameter from char model*/              else
   Tvar=ivector(1,8);                    fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                }
   if (strlen(model) >1){          }
     j=0;          
     j=nbocc(model,'+');          for(jk=-1; jk <=nlstate+ndeath; jk++)
     cptcovn=j+1;            for(m=-1; m <=nlstate+ndeath; m++)
                  if(freq[jk][m][i] !=0 ) {
     strcpy(modelsav,model);              if(first==1)
     if (j==0) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     }              }
     else {          if(i <= iagemax)
       for(i=j; i>=1;i--){            fprintf(ficresp,"\n");
         cutv(stra,strb,modelsav,'+');          if(first==1)
         if (strchr(strb,'*')) {            printf("Others in log...\n");
           cutv(strd,strc,strb,'*');          fprintf(ficlog,"\n");
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;        }
           cutv(strb,strc,strd,'V');      }
           for (k=1; k<=lastobs;k++)    }
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    dateintmean=dateintsum/k2cpt; 
         }   
         else {cutv(strd,strc,strb,'V');    fclose(ficresp);
         Tvar[i+1]=atoi(strc);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
         }    free_vector(pp,1,nlstate);
         strcpy(modelsav,stra);      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       }    /* End of Freq */
       cutv(strd,strc,stra,'V');  }
       Tvar[1]=atoi(strc);  
     }  /************ Prevalence ********************/
   }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   /*printf("tvar=%d ",Tvar[1]);  {  
   scanf("%d ",i);*/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     fclose(fic);       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     if (weightopt != 1) { /* Maximisation without weights*/    */
       for(i=1;i<=n;i++) weight[i]=1.0;   
     }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     /*-calculation of age at interview from date of interview and age at death -*/    double ***freq; /* Frequencies */
     agev=matrix(1,maxwav,1,imx);    double *pp, **prop;
        double pos,posprop; 
     for (i=1; i<=imx; i++)  {    double  y2; /* in fractional years */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    int iagemin, iagemax;
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){    iagemin= (int) agemin;
           if (s[m][i] == nlstate+1) {    iagemax= (int) agemax;
             if(agedc[i]>0)    /*pp=vector(1,nlstate);*/
               if(moisdc[i]!=99 && andc[i]!=9999)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
               agev[m][i]=agedc[i];    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
             else{    j1=0;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    
               agev[m][i]=-1;    j=cptcoveff;
             }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           }    
           else if(s[m][i] !=9){ /* Should no more exist */    for(k1=1; k1<=j;k1++){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      for(i1=1; i1<=ncodemax[k1];i1++){
             if(mint[m][i]==99 || anint[m][i]==9999)        j1++;
               agev[m][i]=1;        
             else if(agev[m][i] <agemin){        for (i=1; i<=nlstate; i++)  
               agemin=agev[m][i];          for(m=iagemin; m <= iagemax+3; m++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            prop[i][m]=0.0;
             }       
             else if(agev[m][i] >agemax){        for (i=1; i<=imx; i++) { /* Each individual */
               agemax=agev[m][i];          bool=1;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          if  (cptcovn>0) {
             }            for (z1=1; z1<=cptcoveff; z1++) 
             /*agev[m][i]=anint[m][i]-annais[i];*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             /*   agev[m][i] = age[i]+2*m;*/                bool=0;
           }          } 
           else { /* =9 */          if (bool==1) { 
             agev[m][i]=1;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             s[m][i]=-1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         else /*= 0 Unknown */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           agev[m][i]=1;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                      /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for (i=1; i<=imx; i++)  {                  prop[s[m][i]][iagemax+3] += weight[i]; 
       for(m=1; (m<= maxwav); m++){                } 
         if (s[m][i] > (nlstate+ndeath)) {              }
           printf("Error: Wrong value in nlstate or ndeath\n");              } /* end selection of waves */
           goto end;          }
         }        }
       }        for(i=iagemin; i <= iagemax+3; i++){  
     }          
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            posprop += prop[jk][i]; 
           } 
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);          for(jk=1; jk <=nlstate ; jk++){     
     free_vector(moisnais,1,n);            if( i <=  iagemax){ 
     free_vector(annais,1,n);              if(posprop>=1.e-5){ 
     free_matrix(mint,1,maxwav,1,n);                probs[i][jk][j1]= prop[jk][i]/posprop;
     free_matrix(anint,1,maxwav,1,n);              } 
     free_vector(moisdc,1,n);            } 
     free_vector(andc,1,n);          }/* end jk */ 
         }/* end i */ 
          } /* end i1 */
     wav=ivector(1,imx);    } /* end k1 */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
        /*free_vector(pp,1,nlstate);*/
     /* Concatenates waves */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  }  /* End of prevalence */
   
   /************* Waves Concatenation ***************/
 Tcode=ivector(1,100);  
    nbcode=imatrix(1,nvar,1,8);    void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    ncodemax[1]=1;  {
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         Death is a valid wave (if date is known).
    codtab=imatrix(1,100,1,10);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
    h=0;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
    m=pow(2,cptcovn);       and mw[mi+1][i]. dh depends on stepm.
         */
    for(k=1;k<=cptcovn; k++){  
      for(i=1; i <=(m/pow(2,k));i++){    int i, mi, m;
        for(j=1; j <= ncodemax[k]; j++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){       double sum=0., jmean=0.;*/
            h++;    int first;
            if (h>m) h=1;codtab[h][k]=j;    int j, k=0,jk, ju, jl;
          }    double sum=0.;
        }    first=0;
      }    jmin=1e+5;
    }    jmax=-1;
     jmean=0.;
    /*for(i=1; i <=m ;i++){    for(i=1; i<=imx; i++){
      for(k=1; k <=cptcovn; k++){      mi=0;
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);      m=firstpass;
      }      while(s[m][i] <= nlstate){
      printf("\n");        if(s[m][i]>=1)
    }*/          mw[++mi][i]=m;
    /*scanf("%d",i);*/        if(m >=lastpass)
              break;
    /* Calculates basic frequencies. Computes observed prevalence at single age        else
        and prints on file fileres'p'. */          m++;
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);      }/* end while */
       if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
   /*scanf("%d ",i);*/        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
         mw[mi][i]=m;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      wav[i]=mi;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if(mi==0){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        if(first==0){
              printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     /* For Powell, parameters are in a vector p[] starting at p[1]          first=1;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        if(first==1){
              fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        }
       } /* end mi==0 */
        } /* End individuals */
     /*--------- results files --------------*/  
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    for(i=1; i<=imx; i++){
          for(mi=1; mi<wav[i];mi++){
    jk=1;        if (stepm <=0)
    fprintf(ficres,"# Parameters\n");          dh[mi][i]=1;
    printf("# Parameters\n");        else{
    for(i=1,jk=1; i <=nlstate; i++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
      for(k=1; k <=(nlstate+ndeath); k++){            if (agedc[i] < 2*AGESUP) {
        if (k != i)              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
          {              if(j==0) j=1;  /* Survives at least one month after exam */
            printf("%d%d ",i,k);              else if(j<0){
            fprintf(ficres,"%1d%1d ",i,k);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
            for(j=1; j <=ncovmodel; j++){                j=1; /* Careful Patch */
              printf("%f ",p[jk]);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fixe the contradiction between dates.\n",stepm);
              fprintf(ficres,"%f ",p[jk]);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              jk++;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
            }              }
            printf("\n");              k=k+1;
            fprintf(ficres,"\n");              if (j >= jmax) jmax=j;
          }              if (j <= jmin) jmin=j;
      }              sum=sum+j;
    }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     /* Computing hessian and covariance matrix */            }
     ftolhess=ftol; /* Usually correct */          }
     hesscov(matcov, p, npar, delti, ftolhess, func);          else{
     fprintf(ficres,"# Scales\n");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     printf("# Scales\n");            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      for(i=1,jk=1; i <=nlstate; i++){            k=k+1;
       for(j=1; j <=nlstate+ndeath; j++){            if (j >= jmax) jmax=j;
         if (j!=i) {            else if (j <= jmin)jmin=j;
           fprintf(ficres,"%1d%1d",i,j);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           printf("%1d%1d",i,j);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           for(k=1; k<=ncovmodel;k++){            if(j<0){
             printf(" %.5e",delti[jk]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             fprintf(ficres," %.5e",delti[jk]);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             jk++;            }
           }            sum=sum+j;
           printf("\n");          }
           fprintf(ficres,"\n");          jk= j/stepm;
         }          jl= j -jk*stepm;
       }          ju= j -(jk+1)*stepm;
       }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                if(jl==0){
     k=1;              dh[mi][i]=jk;
     fprintf(ficres,"# Covariance\n");              bh[mi][i]=0;
     printf("# Covariance\n");            }else{ /* We want a negative bias in order to only have interpolation ie
     for(i=1;i<=npar;i++){                    * at the price of an extra matrix product in likelihood */
       /*  if (k>nlstate) k=1;              dh[mi][i]=jk+1;
       i1=(i-1)/(ncovmodel*nlstate)+1;              bh[mi][i]=ju;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            }
       printf("%s%d%d",alph[k],i1,tab[i]);*/          }else{
       fprintf(ficres,"%3d",i);            if(jl <= -ju){
       printf("%3d",i);              dh[mi][i]=jk;
       for(j=1; j<=i;j++){              bh[mi][i]=jl;       /* bias is positive if real duration
         fprintf(ficres," %.5e",matcov[i][j]);                                   * is higher than the multiple of stepm and negative otherwise.
         printf(" %.5e",matcov[i][j]);                                   */
       }            }
       fprintf(ficres,"\n");            else{
       printf("\n");              dh[mi][i]=jk+1;
       k++;              bh[mi][i]=ju;
     }            }
                if(dh[mi][i]==0){
     while((c=getc(ficpar))=='#' && c!= EOF){              dh[mi][i]=1; /* At least one step */
       ungetc(c,ficpar);              bh[mi][i]=ju; /* At least one step */
       fgets(line, MAXLINE, ficpar);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       puts(line);            }
       fputs(line,ficparo);          } /* end if mle */
     }        }
     ungetc(c,ficpar);      } /* end wave */
      }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    jmean=sum/k;
        printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     if (fage <= 2) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       bage = agemin;   }
       fage = agemax;  
     }  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  {
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    
 /*------------ gnuplot -------------*/    int Ndum[20],ij=1, k, j, i, maxncov=19;
 chdir(pathcd);    int cptcode=0;
   if((ficgp=fopen("graph.plt","w"))==NULL) {    cptcoveff=0; 
     printf("Problem with file graph.plt");goto end;   
   }    for (k=0; k<maxncov; k++) Ndum[k]=0;
 #ifdef windows    for (k=1; k<=7; k++) ncodemax[k]=0;
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 m=pow(2,cptcovn);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                   modality*/ 
  /* 1eme*/        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {        Ndum[ij]++; /*store the modality */
    for (k1=1; k1<= m ; k1 ++) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 #ifdef windows                                         Tvar[j]. If V=sex and male is 0 and 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);                                         female is 1, then  cptcode=1.*/
 #endif      }
 #ifdef unix  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      for (i=0; i<=cptcode; i++) {
 #endif        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      ij=1; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=1; i<=ncodemax[j]; i++) {
 }        for (k=0; k<= maxncov; k++) {
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          if (Ndum[k] != 0) {
     for (i=1; i<= nlstate ; i ++) {            nbcode[Tvar[j]][ij]=k; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            
 }            ij++;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          }
      for (i=1; i<= nlstate ; i ++) {          if (ij > ncodemax[j]) break; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      } 
 }      }  
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix   for (k=0; k< maxncov; k++) Ndum[k]=0;
 fprintf(ficgp,"\nset ter gif small size 400,300");  
 #endif   for (i=1; i<=ncovmodel-2; i++) { 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
    }     ij=Tvar[i];
   }     Ndum[ij]++;
   /*2 eme*/   }
   
   for (k1=1; k1<= m ; k1 ++) {   ij=1;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);   for (i=1; i<= maxncov; i++) {
         if((Ndum[i]!=0) && (i<=ncovcol)){
     for (i=1; i<= nlstate+1 ; i ++) {       Tvaraff[ij]=i; /*For printing */
       k=2*i;       ij++;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);     }
       for (j=1; j<= nlstate+1 ; j ++) {   }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");   cptcoveff=ij-1; /*Number of simple covariates*/
 }    }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  /*********** Health Expectancies ****************/
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");  {
 }      /* Health expectancies */
       fprintf(ficgp,"\" t\"\" w l 0,");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double age, agelim, hf;
       for (j=1; j<= nlstate+1 ; j ++) {    double ***p3mat,***varhe;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double **dnewm,**doldm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *xp;
 }      double **gp, **gm;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    double ***gradg, ***trgradg;
       else fprintf(ficgp,"\" t\"\" w l 0,");    int theta;
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
      dnewm=matrix(1,nlstate*nlstate,1,npar);
   /*3eme*/    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
    for (k1=1; k1<= m ; k1 ++) {    fprintf(ficreseij,"# Health expectancies\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficreseij,"# Age");
       k=2+nlstate*(cpt-1);    for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);      for(j=1; j<=nlstate;j++)
       for (i=1; i< nlstate ; i ++) {        fprintf(ficreseij," %1d-%1d (SE)",i,j);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    fprintf(ficreseij,"\n");
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
    }    }
      else  hstepm=estepm;   
   /* CV preval stat */    /* We compute the life expectancy from trapezoids spaced every estepm months
     for (k1=1; k1<= m ; k1 ++) {     * This is mainly to measure the difference between two models: for example
     for (cpt=1; cpt<nlstate ; cpt ++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
       k=3;     * we are calculating an estimate of the Life Expectancy assuming a linear 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);     * progression in between and thus overestimating or underestimating according
       for (i=1; i< nlstate ; i ++)     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficgp,"+$%d",k+i+1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);     * to compare the new estimate of Life expectancy with the same linear 
           * hypothesis. A more precise result, taking into account a more precise
       l=3+(nlstate+ndeath)*cpt;     * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
         l=3+(nlstate+ndeath)*cpt;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficgp,"+$%d",l+i+1);       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);         Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       and note for a fixed period like estepm months */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed only each two years of age and if
   /* proba elementaires */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   for(i=1,jk=1; i <=nlstate; i++){       results. So we changed our mind and took the option of the best precision.
     for(k=1; k <=(nlstate+ndeath); k++){    */
       if (k != i) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/  
         for(j=1; j <=ncovmodel; j++){    agelim=AGESUP;
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           jk++;      /* nhstepm age range expressed in number of stepm */
           fprintf(ficgp,"\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       }      /* if (stepm >= YEARM) hstepm=1;*/
     }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(jk=1; jk <=m; jk++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   for(i=1; i <=nlstate; i++) {      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         for(j=3; j <=ncovmodel; j++)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   
         fprintf(ficgp,")/(1");  
         for(k1=1; k1 <=(nlstate+ndeath); k1++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           if (k1 != i) {  
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);      /* Computing Variances of health expectancies */
             for(j=3; j <=ncovmodel; j++)  
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       for(theta=1; theta <=npar; theta++){
             fprintf(ficgp,")");        for(i=1; i<=npar; i++){ 
           }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficgp,") t \"p%d%d\" ", i,k);        }
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }    
     }        cptj=0;
   }        for(j=1; j<= nlstate; j++){
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            for(i=1; i<=nlstate; i++){
   }            cptj=cptj+1;
              for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
  fclose(ficgp);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
     chdir(path);          }
     free_matrix(agev,1,maxwav,1,imx);        }
     free_ivector(wav,1,imx);       
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        for(i=1; i<=npar; i++) 
              xp[i] = x[i] - (i==theta ?delti[theta]:0);
     free_imatrix(s,1,maxwav+1,1,n);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            
            cptj=0;
     free_ivector(num,1,n);        for(j=1; j<= nlstate; j++){
     free_vector(agedc,1,n);          for(i=1;i<=nlstate;i++){
     free_vector(weight,1,n);            cptj=cptj+1;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     fclose(ficparo);  
     fclose(ficres);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
    }            }
              }
    /*________fin mle=1_________*/        }
            for(j=1; j<= nlstate*nlstate; j++)
           for(h=0; h<=nhstepm-1; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     /* No more information from the sample is required now */          }
   /* Reads comments: lines beginning with '#' */       } 
   while((c=getc(ficpar))=='#' && c!= EOF){     
     ungetc(c,ficpar);  /* End theta */
     fgets(line, MAXLINE, ficpar);  
     puts(line);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     fputs(line,ficparo);  
   }       for(h=0; h<=nhstepm-1; h++)
   ungetc(c,ficpar);        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);       
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);  
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);       for(i=1;i<=nlstate*nlstate;i++)
 /*--------- index.htm --------*/        for(j=1;j<=nlstate*nlstate;j++)
           varhe[i][j][(int)age] =0.;
   if((fichtm=fopen("index.htm","w"))==NULL)    {  
     printf("Problem with index.htm \n");goto end;       printf("%d|",(int)age);fflush(stdout);
   }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n        for(k=0;k<=nhstepm-1;k++){
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          for(i=1;i<=nlstate*nlstate;i++)
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>            for(j=1;j<=nlstate*nlstate;j++)
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>        }
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      }
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      /* Computing expectancies */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
  fprintf(fichtm," <li>Graphs</li>\n<p>");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
  m=cptcovn;            
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
  j1=0;          }
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){      fprintf(ficreseij,"%3.0f",age );
        j1++;      cptj=0;
        if (cptcovn > 0) {      for(i=1; i<=nlstate;i++)
          fprintf(fichtm,"<hr>************ Results for covariates");        for(j=1; j<=nlstate;j++){
          for (cpt=1; cpt<=cptcovn;cpt++)          cptj++;
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
          fprintf(fichtm," ************\n<hr>");        }
        }      fprintf(ficreseij,"\n");
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>     
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        for(cpt=1; cpt<nlstate;cpt++){      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
        }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cpt=1; cpt<=nlstate;cpt++) {    }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    printf("\n");
 interval) in state (%d): v%s%d%d.gif <br>    fprintf(ficlog,"\n");
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    
      }    free_vector(xp,1,npar);
      for(cpt=1; cpt<=nlstate;cpt++) {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 <img src=\"ex%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
      }  }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.gif<br>  /************ Variance ******************/
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
 fprintf(fichtm,"\n</body>");  {
    }    /* Variance of health expectancies */
  }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 fclose(fichtm);    /* double **newm;*/
     double **dnewm,**doldm;
   /*--------------- Prevalence limit --------------*/    double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
   strcpy(filerespl,"pl");    int k, cptcode;
   strcat(filerespl,fileres);    double *xp;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    double **gp, **gm;  /* for var eij */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    double ***gradg, ***trgradg; /*for var eij */
   }    double **gradgp, **trgradgp; /* for var p point j */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    double *gpp, *gmp; /* for var p point j */
   fprintf(ficrespl,"#Prevalence limit\n");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   fprintf(ficrespl,"#Age ");    double ***p3mat;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    double age,agelim, hf;
   fprintf(ficrespl,"\n");    double ***mobaverage;
      int theta;
   prlim=matrix(1,nlstate,1,nlstate);    char digit[4];
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char digitp[25];
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char fileresprobmorprev[FILENAMELENGTH];
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    if(popbased==1){
   k=0;      if(mobilav!=0)
   agebase=agemin;        strcpy(digitp,"-populbased-mobilav-");
   agelim=agemax;      else strcpy(digitp,"-populbased-nomobil-");
   ftolpl=1.e-10;    }
   i1=cptcovn;    else 
   if (cptcovn < 1){i1=1;}      strcpy(digitp,"-stablbased-");
   
   for(cptcov=1;cptcov<=i1;cptcov++){    if (mobilav!=0) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         k=k+1;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrespl,"\n#****** ");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         for(j=1;j<=cptcovn;j++)      }
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    }
         fprintf(ficrespl,"******\n");  
            strcpy(fileresprobmorprev,"prmorprev"); 
         for (age=agebase; age<=agelim; age++){    sprintf(digit,"%-d",ij);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           fprintf(ficrespl,"%.0f",age );    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           for(i=1; i<=nlstate;i++)    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           fprintf(ficrespl," %.5f", prlim[i][i]);    strcat(fileresprobmorprev,fileres);
           fprintf(ficrespl,"\n");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }    }
   fclose(ficrespl);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /*------------- h Pij x at various ages ------------*/    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
   printf("Computing pij: result on file '%s' \n", filerespij);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficresprobmorprev,"\n");
   if (stepm<=24) stepsize=2;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   agelim=AGESUP;      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   hstepm=stepsize*YEARM; /* Every year of age */      exit(0);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    }
      else{
   k=0;      fprintf(ficgp,"\n# Routine varevsij");
   for(cptcov=1;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       k=k+1;      printf("Problem with html file: %s\n", optionfilehtm);
         fprintf(ficrespij,"\n#****** ");      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
         for(j=1;j<=cptcovn;j++)      exit(0);
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    }
         fprintf(ficrespij,"******\n");    else{
              fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresvij,"# Age");
           fprintf(ficrespij,"# Age");    for(i=1; i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)      for(j=1; j<=nlstate;j++)
             for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(ficresvij,"\n");
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){    xp=vector(1,npar);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    dnewm=matrix(1,nlstate,1,npar);
             for(i=1; i<=nlstate;i++)    doldm=matrix(1,nlstate,1,nlstate);
               for(j=1; j<=nlstate+ndeath;j++)    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             fprintf(ficrespij,"\n");  
           }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    gpp=vector(nlstate+1,nlstate+ndeath);
           fprintf(ficrespij,"\n");    gmp=vector(nlstate+1,nlstate+ndeath);
         }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     }    
   }    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   fclose(ficrespij);    }
     else  hstepm=estepm;   
   /*---------- Health expectancies and variances ------------*/    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcpy(filerest,"t");       nhstepm is the number of hstepm from age to agelim 
   strcat(filerest,fileres);       nstepm is the number of stepm from age to agelin. 
   if((ficrest=fopen(filerest,"w"))==NULL) {       Look at hpijx to understand the reason of that which relies in memory size
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       and note for a fixed period like k years */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   strcpy(filerese,"e");       results. So we changed our mind and took the option of the best precision.
   strcat(filerese,fileres);    */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  strcpy(fileresv,"v");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileresv,fileres);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      gp=matrix(0,nhstepm,1,nlstate);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      gm=matrix(0,nhstepm,1,nlstate);
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
       for(theta=1; theta <=npar; theta++){
   k=0;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   for(cptcov=1;cptcov<=i1;cptcov++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
       k=k+1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficrest,"\n#****** ");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(j=1;j<=cptcovn;j++)  
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        if (popbased==1) {
       fprintf(ficrest,"******\n");          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
       fprintf(ficreseij,"\n#****** ");              prlim[i][i]=probs[(int)age][i][ij];
       for(j=1;j<=cptcovn;j++)          }else{ /* mobilav */ 
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            for(i=1; i<=nlstate;i++)
       fprintf(ficreseij,"******\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
       fprintf(ficresvij,"\n#****** ");        }
       for(j=1;j<=cptcovn;j++)    
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        for(j=1; j<= nlstate; j++){
       fprintf(ficresvij,"******\n");          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       oldm=oldms;savm=savms;          }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);          }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        /* This for computing probability of death (h=1 means
       oldm=oldms;savm=savms;           computed over hstepm matrices product = hstepm*stepm months) 
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);           as a weighted average of prlim.
              */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficrest,"\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
                }    
       hf=1;        /* end probability of death */
       if (stepm >= YEARM) hf=stepm/YEARM;  
       epj=vector(1,nlstate+1);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       for(age=bage; age <=fage ;age++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficrest," %.0f",age);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        if (popbased==1) {
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          if(mobilav ==0){
           }            for(i=1; i<=nlstate;i++)
           epj[nlstate+1] +=epj[j];              prlim[i][i]=probs[(int)age][i][ij];
         }          }else{ /* mobilav */ 
         for(i=1, vepp=0.;i <=nlstate;i++)            for(i=1; i<=nlstate;i++)
           for(j=1;j <=nlstate;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
             vepp += vareij[i][j][(int)age];          }
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        }
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));        for(j=1; j<= nlstate; j++){
         }          for(h=0; h<=nhstepm; h++){
         fprintf(ficrest,"\n");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
   }        }
                /* This for computing probability of death (h=1 means
  fclose(ficreseij);           computed over hstepm matrices product = hstepm*stepm months) 
  fclose(ficresvij);           as a weighted average of prlim.
   fclose(ficrest);        */
   fclose(ficpar);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_vector(epj,1,nlstate+1);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   /*scanf("%d ",i); */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   /*------- Variance limit prevalence------*/          /* end probability of death */
   
 strcpy(fileresvpl,"vpl");        for(j=1; j<= nlstate; j++) /* vareij */
   strcat(fileresvpl,fileres);          for(h=0; h<=nhstepm; h++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          }
     exit(0);  
   }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
  k=0;  
  for(cptcov=1;cptcov<=i1;cptcov++){      } /* End theta */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
      k=k+1;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      fprintf(ficresvpl,"\n#****** ");  
      for(j=1;j<=cptcovn;j++)      for(h=0; h<=nhstepm; h++) /* veij */
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        for(j=1; j<=nlstate;j++)
      fprintf(ficresvpl,"******\n");          for(theta=1; theta <=npar; theta++)
                  trgradg[h][j][theta]=gradg[h][theta][j];
      varpl=matrix(1,nlstate,(int) bage, (int) fage);  
      oldm=oldms;savm=savms;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for(theta=1; theta <=npar; theta++)
    }          trgradgp[j][theta]=gradgp[theta][j];
  }    
   
   fclose(ficresvpl);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
   /*---------- End : free ----------------*/        for(j=1;j<=nlstate;j++)
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          vareij[i][j][(int)age] =0.;
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      for(h=0;h<=nhstepm;h++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(k=0;k<=nhstepm;k++){
            matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          for(i=1;i<=nlstate;i++)
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            for(j=1;j<=nlstate;j++)
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
        }
   free_matrix(matcov,1,npar,1,npar);    
   free_vector(delti,1,npar);      /* pptj */
        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
   printf("End of Imach\n");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          varppt[j][i]=doldmp[j][i];
        /* end ppptj */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      /*  x centered again */
   /*printf("Total time was %d uSec.\n", total_usecs);*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   /*------ End -----------*/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
  end:      if (popbased==1) {
 #ifdef windows        if(mobilav ==0){
  chdir(pathcd);          for(i=1; i<=nlstate;i++)
 #endif            prlim[i][i]=probs[(int)age][i][ij];
  system("wgnuplot graph.plt");        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
 #ifdef windows            prlim[i][i]=mobaverage[(int)age][i][ij];
   while (z[0] != 'q') {        }
     chdir(pathcd);      }
     printf("\nType e to edit output files, c to start again, and q for exiting: ");               
     scanf("%s",z);      /* This for computing probability of death (h=1 means
     if (z[0] == 'c') system("./imach");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     else if (z[0] == 'e') {         as a weighted average of prlim.
       chdir(path);      */
       system("index.htm");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     else if (z[0] == 'q') exit(0);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   }      }    
 #endif      /* end probability of death */
 }  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
     fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fclose(ficgp);
     fclose(fichtm);
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
     }
     else{
       fprintf(ficgp,"\n# Routine varprob");
     }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       printf("Problem with html file: %s\n", optionfilehtm);
       fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
     }
     else{
       fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(fichtm,"\n");
   
       fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
     }
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fclose(ficgp);
     fclose(fichtm);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
     if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
       fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     }
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"e%s\">e%s</a> <br>\n</li>", \
     jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
   <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
   <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): e%s%d.png<br>\
   <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): v%s%d%d.png <br>\
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   fclose(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
       fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     }
   
     /*#ifdef windows */
       fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   m=pow(2,cptcoveff);
     
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj;
     int numlinepar=0; /* Current linenumber of parameter file */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char *strt, *strtend;
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strt);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strt=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("Localtime (at start)=%s",strt); 
     fprintf(ficlog,"Localtime (at start)=%s",strt); 
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get ipmx number of contributions and sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",\
             version,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot);
     fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.4  
changed lines
  Added in v.1.85


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>