Diff for /imach/src/imach.c between versions 1.50 and 1.100

version 1.50, 2002/06/26 23:25:02 version 1.100, 2004/07/12 18:29:06
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.100  2004/07/12 18:29:06  brouard
      Add version for Mac OS X. Just define UNIX in Makefile
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.99  2004/06/05 08:57:40  brouard
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.98  2004/05/16 15:05:56  brouard
   second wave of interviews ("longitudinal") which measure each change    New version 0.97 . First attempt to estimate force of mortality
   (if any) in individual health status.  Health expectancies are    directly from the data i.e. without the need of knowing the health
   computed from the time spent in each health state according to a    state at each age, but using a Gompertz model: log u =a + b*age .
   model. More health states you consider, more time is necessary to reach the    This is the basic analysis of mortality and should be done before any
   Maximum Likelihood of the parameters involved in the model.  The    other analysis, in order to test if the mortality estimated from the
   simplest model is the multinomial logistic model where pij is the    cross-longitudinal survey is different from the mortality estimated
   probability to be observed in state j at the second wave    from other sources like vital statistic data.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    The same imach parameter file can be used but the option for mle should be -3.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Agnès, who wrote this part of the code, tried to keep most of the
   where the markup *Covariates have to be included here again* invites    former routines in order to include the new code within the former code.
   you to do it.  More covariates you add, slower the  
   convergence.    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Current limitations:
   identical for each individual. Also, if a individual missed an    A) Even if you enter covariates, i.e. with the
   intermediate interview, the information is lost, but taken into    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   account using an interpolation or extrapolation.      B) There is no computation of Life Expectancy nor Life Table.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.97  2004/02/20 13:25:42  lievre
   conditional to the observed state i at age x. The delay 'h' can be    Version 0.96d. Population forecasting command line is (temporarily)
   split into an exact number (nh*stepm) of unobserved intermediate    suppressed.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.96  2003/07/15 15:38:55  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   and the contribution of each individual to the likelihood is simply    rewritten within the same printf. Workaround: many printfs.
   hPijx.  
     Revision 1.95  2003/07/08 07:54:34  brouard
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Repository):
   of the life expectancies. It also computes the prevalence limits.    (Repository): Using imachwizard code to output a more meaningful covariance
      matrix (cov(a12,c31) instead of numbers.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.94  2003/06/27 13:00:02  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Just cleaning
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.93  2003/06/25 16:33:55  brouard
   software can be distributed freely for non commercial use. Latest version    (Module): On windows (cygwin) function asctime_r doesn't
   can be accessed at http://euroreves.ined.fr/imach .    exist so I changed back to asctime which exists.
   **********************************************************************/    (Module): Version 0.96b
    
 #include <math.h>    Revision 1.92  2003/06/25 16:30:45  brouard
 #include <stdio.h>    (Module): On windows (cygwin) function asctime_r doesn't
 #include <stdlib.h>    exist so I changed back to asctime which exists.
 #include <unistd.h>  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define MAXLINE 256    * imach.c (Repository): Duplicated warning errors corrected.
 #define GNUPLOTPROGRAM "gnuplot"    (Repository): Elapsed time after each iteration is now output. It
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    helps to forecast when convergence will be reached. Elapsed time
 #define FILENAMELENGTH 80    is stamped in powell.  We created a new html file for the graphs
 /*#define DEBUG*/    concerning matrix of covariance. It has extension -cov.htm.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.90  2003/06/24 12:34:15  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    of the covariance matrix to be input.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.89  2003/06/24 12:30:52  brouard
 #define NINTERVMAX 8    (Module): Some bugs corrected for windows. Also, when
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    of the covariance matrix to be input.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.88  2003/06/23 17:54:56  brouard
 #define YEARM 12. /* Number of months per year */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.87  2003/06/18 12:26:01  brouard
 #ifdef windows    Version 0.96
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.86  2003/06/17 20:04:08  brouard
 #else    (Module): Change position of html and gnuplot routines and added
 #define DIRSEPARATOR '/'    routine fileappend.
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    current date of interview. It may happen when the death was just
 int erreur; /* Error number */    prior to the death. In this case, dh was negative and likelihood
 int nvar;    was wrong (infinity). We still send an "Error" but patch by
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    assuming that the date of death was just one stepm after the
 int npar=NPARMAX;    interview.
 int nlstate=2; /* Number of live states */    (Repository): Because some people have very long ID (first column)
 int ndeath=1; /* Number of dead states */    we changed int to long in num[] and we added a new lvector for
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    memory allocation. But we also truncated to 8 characters (left
 int popbased=0;    truncation)
     (Repository): No more line truncation errors.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.84  2003/06/13 21:44:43  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Repository): Replace "freqsummary" at a correct
 int mle, weightopt;    place. It differs from routine "prevalence" which may be called
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    many times. Probs is memory consuming and must be used with
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    parcimony.
 double jmean; /* Mean space between 2 waves */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.83  2003/06/10 13:39:11  lievre
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    *** empty log message ***
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.82  2003/06/05 15:57:20  brouard
 FILE *ficresprobmorprev;    Add log in  imach.c and  fullversion number is now printed.
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;  */
 char filerese[FILENAMELENGTH];  /*
 FILE  *ficresvij;     Interpolated Markov Chain
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Short summary of the programme:
 char fileresvpl[FILENAMELENGTH];    
 char title[MAXLINE];    This program computes Healthy Life Expectancies from
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    case of a health survey which is our main interest) -2- at least a
 char filelog[FILENAMELENGTH]; /* Log file */    second wave of interviews ("longitudinal") which measure each change
 char filerest[FILENAMELENGTH];    (if any) in individual health status.  Health expectancies are
 char fileregp[FILENAMELENGTH];    computed from the time spent in each health state according to a
 char popfile[FILENAMELENGTH];    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
 #define NR_END 1    conditional to be observed in state i at the first wave. Therefore
 #define FREE_ARG char*    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define FTOL 1.0e-10    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 #define NRANSI    where the markup *Covariates have to be included here again* invites
 #define ITMAX 200    you to do it.  More covariates you add, slower the
     convergence.
 #define TOL 2.0e-4  
     The advantage of this computer programme, compared to a simple
 #define CGOLD 0.3819660    multinomial logistic model, is clear when the delay between waves is not
 #define ZEPS 1.0e-10    identical for each individual. Also, if a individual missed an
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 #define GOLD 1.618034  
 #define GLIMIT 100.0    hPijx is the probability to be observed in state i at age x+h
 #define TINY 1.0e-20    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 static double maxarg1,maxarg2;    states. This elementary transition (by month, quarter,
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    semester or year) is modelled as a multinomial logistic.  The hPx
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    matrix is simply the matrix product of nh*stepm elementary matrices
      and the contribution of each individual to the likelihood is simply
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    hPijx.
 #define rint(a) floor(a+0.5)  
     Also this programme outputs the covariance matrix of the parameters but also
 static double sqrarg;    of the life expectancies. It also computes the stable prevalence. 
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 int imx;    This software have been partly granted by Euro-REVES, a concerted action
 int stepm;    from the European Union.
 /* Stepm, step in month: minimum step interpolation*/    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 int estepm;    can be accessed at http://euroreves.ined.fr/imach .
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int m,nb;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    **********************************************************************/
 double **pmmij, ***probs, ***mobaverage;  /*
 double dateintmean=0;    main
     read parameterfile
 double *weight;    read datafile
 int **s; /* Status */    concatwav
 double *agedc, **covar, idx;    freqsummary
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    if (mle >= 1)
       mlikeli
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    print results files
 double ftolhess; /* Tolerance for computing hessian */    if mle==1 
        computes hessian
 /**************** split *************************/    read end of parameter file: agemin, agemax, bage, fage, estepm
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )        begin-prev-date,...
 {    open gnuplot file
    char *s;                             /* pointer */    open html file
    int  l1, l2;                         /* length counters */    stable prevalence
      for age prevalim()
    l1 = strlen( path );                 /* length of path */    h Pij x
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    variance of p varprob
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    forecasting if prevfcast==1 prevforecast call prevalence()
    if ( s == NULL ) {                   /* no directory, so use current */    health expectancies
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Variance-covariance of DFLE
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    prevalence()
 #if     defined(__bsd__)                /* get current working directory */     movingaverage()
       extern char       *getwd( );    varevsij() 
     if popbased==1 varevsij(,popbased)
       if ( getwd( dirc ) == NULL ) {    total life expectancies
 #else    Variance of stable prevalence
       extern char       *getcwd( );   end
   */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif  
          return( GLOCK_ERROR_GETCWD );  
       }   
       strcpy( name, path );             /* we've got it */  #include <math.h>
    } else {                             /* strip direcotry from path */  #include <stdio.h>
       s++;                              /* after this, the filename */  #include <stdlib.h>
       l2 = strlen( s );                 /* length of filename */  #include <unistd.h>
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  /* #include <sys/time.h> */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #include <time.h>
       dirc[l1-l2] = 0;                  /* add zero */  #include "timeval.h"
    }  
    l1 = strlen( dirc );                 /* length of directory */  /* #include <libintl.h> */
 #ifdef windows  /* #define _(String) gettext (String) */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  #define MAXLINE 256
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define GNUPLOTPROGRAM "gnuplot"
 #endif  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    s = strrchr( name, '.' );            /* find last / */  #define FILENAMELENGTH 132
    s++;  /*#define DEBUG*/
    strcpy(ext,s);                       /* save extension */  /*#define windows*/
    l1= strlen( name);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    l2= strlen( s)+1;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    return( 0 );                         /* we're done */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /******************************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 void replace(char *s, char*t)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   int i;  #define AGESUP 130
   int lg=20;  #define AGEBASE 40
   i=0;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   lg=strlen(t);  #ifdef UNIX
   for(i=0; i<= lg; i++) {  #define DIRSEPARATOR '/'
     (s[i] = t[i]);  #define ODIRSEPARATOR '\\'
     if (t[i]== '\\') s[i]='/';  #else
   }  #define DIRSEPARATOR '\\'
 }  #define ODIRSEPARATOR '/'
   #endif
 int nbocc(char *s, char occ)  
 {  /* $Id$ */
   int i,j=0;  /* $State$ */
   int lg=20;  
   i=0;  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
   lg=strlen(s);  char fullversion[]="$Revision$ $Date$"; 
   for(i=0; i<= lg; i++) {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   if  (s[i] == occ ) j++;  int nvar;
   }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   return j;  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 void cutv(char *u,char *v, char*t, char occ)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  int *wav; /* Number of waves for this individuual 0 is possible */
      gives u="abcedf" and v="ghi2j" */  int maxwav; /* Maxim number of waves */
   int i,lg,j,p=0;  int jmin, jmax; /* min, max spacing between 2 waves */
   i=0;  int gipmx, gsw; /* Global variables on the number of contributions 
   for(j=0; j<=strlen(t)-1; j++) {                     to the likelihood and the sum of weights (done by funcone)*/
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  int mle, weightopt;
   }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   lg=strlen(t);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   for(j=0; j<p; j++) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     (u[j] = t[j]);  double jmean; /* Mean space between 2 waves */
   }  double **oldm, **newm, **savm; /* Working pointers to matrices */
      u[p]='\0';  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    for(j=0; j<= lg; j++) {  FILE *ficlog, *ficrespow;
     if (j>=(p+1))(v[j-p-1] = t[j]);  int globpr; /* Global variable for printing or not */
   }  double fretone; /* Only one call to likelihood */
 }  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 /********************** nrerror ********************/  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 void nrerror(char error_text[])  FILE *ficresilk;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   fprintf(stderr,"ERREUR ...\n");  FILE *ficresprobmorprev;
   fprintf(stderr,"%s\n",error_text);  FILE *fichtm, *fichtmcov; /* Html File */
   exit(1);  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
 /*********************** vector *******************/  FILE  *ficresvij;
 double *vector(int nl, int nh)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   double *v;  char fileresvpl[FILENAMELENGTH];
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char title[MAXLINE];
   if (!v) nrerror("allocation failure in vector");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   return v-nl+NR_END;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /************************ free vector ******************/  int  outcmd=0;
 void free_vector(double*v, int nl, int nh)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /************************ivector *******************************/  char fileregp[FILENAMELENGTH];
 int *ivector(long nl,long nh)  char popfile[FILENAMELENGTH];
 {  
   int *v;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   return v-nl+NR_END;  struct timezone tzp;
 }  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 /******************free ivector **************************/  long time_value;
 void free_ivector(int *v, long nl, long nh)  extern long time();
 {  char strcurr[80], strfor[80];
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define NR_END 1
   #define FREE_ARG char*
 /******************* imatrix *******************************/  #define FTOL 1.0e-10
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define NRANSI 
 {  #define ITMAX 200 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  #define TOL 2.0e-4 
    
   /* allocate pointers to rows */  #define CGOLD 0.3819660 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define ZEPS 1.0e-10 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   m += NR_END;  
   m -= nrl;  #define GOLD 1.618034 
    #define GLIMIT 100.0 
    #define TINY 1.0e-20 
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  static double maxarg1,maxarg2;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl] += NR_END;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   m[nrl] -= ncl;    
    #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define rint(a) floor(a+0.5)
    
   /* return pointer to array of pointers to rows */  static double sqrarg;
   return m;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  int imx; 
       int **m;  int stepm=1;
       long nch,ncl,nrh,nrl;  /* Stepm, step in month: minimum step interpolation*/
      /* free an int matrix allocated by imatrix() */  
 {  int estepm;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   free((FREE_ARG) (m+nrl-NR_END));  
 }  int m,nb;
   long *num;
 /******************* matrix *******************************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 double **matrix(long nrl, long nrh, long ncl, long nch)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  double *ageexmed,*agecens;
   double **m;  double dateintmean=0;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double *weight;
   if (!m) nrerror("allocation failure 1 in matrix()");  int **s; /* Status */
   m += NR_END;  double *agedc, **covar, idx;
   m -= nrl;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double ftolhess; /* Tolerance for computing hessian */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
   return m;    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
 }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
 /*************************free matrix ************************/    char  *ss;                            /* pointer */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    int   l1, l2;                         /* length counters */
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    l1 = strlen(path );                   /* length of path */
   free((FREE_ARG)(m+nrl-NR_END));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
 /******************* ma3x *******************************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      /*    extern  char* getcwd ( char *buf , int len);*/
   double ***m;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      }
   if (!m) nrerror("allocation failure 1 in matrix()");      strcpy( name, path );               /* we've got it */
   m += NR_END;    } else {                              /* strip direcotry from path */
   m -= nrl;      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      strcpy( name, ss );         /* save file name */
   m[nrl] += NR_END;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl] -= ncl;      dirc[l1-l2] = 0;                    /* add zero */
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    l1 = strlen( dirc );                  /* length of directory */
     /*#ifdef windows
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #else
   m[nrl][ncl] += NR_END;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m[nrl][ncl] -= nll;  #endif
   for (j=ncl+1; j<=nch; j++)    */
     m[nrl][j]=m[nrl][j-1]+nlay;    ss = strrchr( name, '.' );            /* find last / */
      if (ss >0){
   for (i=nrl+1; i<=nrh; i++) {      ss++;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      strcpy(ext,ss);                     /* save extension */
     for (j=ncl+1; j<=nch; j++)      l1= strlen( name);
       m[i][j]=m[i][j-1]+nlay;      l2= strlen(ss)+1;
   }      strncpy( finame, name, l1-l2);
   return m;      finame[l1-l2]= 0;
 }    }
     return( 0 );                          /* we're done */
 /*************************free ma3x ************************/  }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /******************************************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  void replace_back_to_slash(char *s, char*t)
 }  {
     int i;
 /***************** f1dim *************************/    int lg=0;
 extern int ncom;    i=0;
 extern double *pcom,*xicom;    lg=strlen(t);
 extern double (*nrfunc)(double []);    for(i=0; i<= lg; i++) {
        (s[i] = t[i]);
 double f1dim(double x)      if (t[i]== '\\') s[i]='/';
 {    }
   int j;  }
   double f;  
   double *xt;  int nbocc(char *s, char occ)
    {
   xt=vector(1,ncom);    int i,j=0;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    int lg=20;
   f=(*nrfunc)(xt);    i=0;
   free_vector(xt,1,ncom);    lg=strlen(s);
   return f;    for(i=0; i<= lg; i++) {
 }    if  (s[i] == occ ) j++;
     }
 /*****************brent *************************/    return j;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  }
 {  
   int iter;  void cutv(char *u,char *v, char*t, char occ)
   double a,b,d,etemp;  {
   double fu,fv,fw,fx;    /* cuts string t into u and v where u is ended by char occ excluding it
   double ftemp;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   double p,q,r,tol1,tol2,u,v,w,x,xm;       gives u="abcedf" and v="ghi2j" */
   double e=0.0;    int i,lg,j,p=0;
      i=0;
   a=(ax < cx ? ax : cx);    for(j=0; j<=strlen(t)-1; j++) {
   b=(ax > cx ? ax : cx);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   x=w=v=bx;    }
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    lg=strlen(t);
     xm=0.5*(a+b);    for(j=0; j<p; j++) {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      (u[j] = t[j]);
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    }
     printf(".");fflush(stdout);       u[p]='\0';
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG     for(j=0; j<= lg; j++) {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      if (j>=(p+1))(v[j-p-1] = t[j]);
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  }
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  /********************** nrerror ********************/
       *xmin=x;  
       return fx;  void nrerror(char error_text[])
     }  {
     ftemp=fu;    fprintf(stderr,"ERREUR ...\n");
     if (fabs(e) > tol1) {    fprintf(stderr,"%s\n",error_text);
       r=(x-w)*(fx-fv);    exit(EXIT_FAILURE);
       q=(x-v)*(fx-fw);  }
       p=(x-v)*q-(x-w)*r;  /*********************** vector *******************/
       q=2.0*(q-r);  double *vector(int nl, int nh)
       if (q > 0.0) p = -p;  {
       q=fabs(q);    double *v;
       etemp=e;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       e=d;    if (!v) nrerror("allocation failure in vector");
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    return v-nl+NR_END;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
       else {  
         d=p/q;  /************************ free vector ******************/
         u=x+d;  void free_vector(double*v, int nl, int nh)
         if (u-a < tol2 || b-u < tol2)  {
           d=SIGN(tol1,xm-x);    free((FREE_ARG)(v+nl-NR_END));
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  {
     fu=(*f)(u);    int *v;
     if (fu <= fx) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       if (u >= x) a=x; else b=x;    if (!v) nrerror("allocation failure in ivector");
       SHFT(v,w,x,u)    return v-nl+NR_END;
         SHFT(fv,fw,fx,fu)  }
         } else {  
           if (u < x) a=u; else b=u;  /******************free ivector **************************/
           if (fu <= fw || w == x) {  void free_ivector(int *v, long nl, long nh)
             v=w;  {
             w=u;    free((FREE_ARG)(v+nl-NR_END));
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /************************lvector *******************************/
             v=u;  long *lvector(long nl,long nh)
             fv=fu;  {
           }    long *v;
         }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   }    if (!v) nrerror("allocation failure in ivector");
   nrerror("Too many iterations in brent");    return v-nl+NR_END;
   *xmin=x;  }
   return fx;  
 }  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
 /****************** mnbrak ***********************/  {
     free((FREE_ARG)(v+nl-NR_END));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  }
             double (*func)(double))  
 {  /******************* imatrix *******************************/
   double ulim,u,r,q, dum;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double fu;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
    { 
   *fa=(*func)(*ax);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   *fb=(*func)(*bx);    int **m; 
   if (*fb > *fa) {    
     SHFT(dum,*ax,*bx,dum)    /* allocate pointers to rows */ 
       SHFT(dum,*fb,*fa,dum)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   *cx=(*bx)+GOLD*(*bx-*ax);    m += NR_END; 
   *fc=(*func)(*cx);    m -= nrl; 
   while (*fb > *fc) {    
     r=(*bx-*ax)*(*fb-*fc);    
     q=(*bx-*cx)*(*fb-*fa);    /* allocate rows and set pointers to them */ 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m[nrl] += NR_END; 
     if ((*bx-u)*(u-*cx) > 0.0) {    m[nrl] -= ncl; 
       fu=(*func)(u);    
     } else if ((*cx-u)*(u-ulim) > 0.0) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       fu=(*func)(u);    
       if (fu < *fc) {    /* return pointer to array of pointers to rows */ 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    return m; 
           SHFT(*fb,*fc,fu,(*func)(u))  } 
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /****************** free_imatrix *************************/
       u=ulim;  void free_imatrix(m,nrl,nrh,ncl,nch)
       fu=(*func)(u);        int **m;
     } else {        long nch,ncl,nrh,nrl; 
       u=(*cx)+GOLD*(*cx-*bx);       /* free an int matrix allocated by imatrix() */ 
       fu=(*func)(u);  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     SHFT(*ax,*bx,*cx,u)    free((FREE_ARG) (m+nrl-NR_END)); 
       SHFT(*fa,*fb,*fc,fu)  } 
       }  
 }  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
 /*************** linmin ************************/  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 int ncom;    double **m;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      if (!m) nrerror("allocation failure 1 in matrix()");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m += NR_END;
 {    m -= nrl;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double f1dim(double x);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    m[nrl] += NR_END;
               double *fc, double (*func)(double));    m[nrl] -= ncl;
   int j;  
   double xx,xmin,bx,ax;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double fx,fb,fa;    return m;
      /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   ncom=n;     */
   pcom=vector(1,n);  }
   xicom=vector(1,n);  
   nrfunc=func;  /*************************free matrix ************************/
   for (j=1;j<=n;j++) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     pcom[j]=p[j];  {
     xicom[j]=xi[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }    free((FREE_ARG)(m+nrl-NR_END));
   ax=0.0;  }
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /******************* ma3x *******************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double ***m;
 #endif  
   for (j=1;j<=n;j++) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     xi[j] *= xmin;    if (!m) nrerror("allocation failure 1 in matrix()");
     p[j] += xi[j];    m += NR_END;
   }    m -= nrl;
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /*************** powell ************************/    m[nrl] -= ncl;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {  
   void linmin(double p[], double xi[], int n, double *fret,    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
               double (*func)(double []));    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   int i,ibig,j;    m[nrl][ncl] += NR_END;
   double del,t,*pt,*ptt,*xit;    m[nrl][ncl] -= nll;
   double fp,fptt;    for (j=ncl+1; j<=nch; j++) 
   double *xits;      m[nrl][j]=m[nrl][j-1]+nlay;
   pt=vector(1,n);    
   ptt=vector(1,n);    for (i=nrl+1; i<=nrh; i++) {
   xit=vector(1,n);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   xits=vector(1,n);      for (j=ncl+1; j<=nch; j++) 
   *fret=(*func)(p);        m[i][j]=m[i][j-1]+nlay;
   for (j=1;j<=n;j++) pt[j]=p[j];    }
   for (*iter=1;;++(*iter)) {    return m; 
     fp=(*fret);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     ibig=0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     del=0.0;    */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  }
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  /*************************free ma3x ************************/
       printf(" %d %.12f",i, p[i]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     fprintf(ficlog," %d %.12f",i, p[i]);  {
     printf("\n");    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     fprintf(ficlog,"\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for (i=1;i<=n;i++) {    free((FREE_ARG)(m+nrl-NR_END));
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  }
       fptt=(*fret);  
 #ifdef DEBUG  /*************** function subdirf ***********/
       printf("fret=%lf \n",*fret);  char *subdirf(char fileres[])
       fprintf(ficlog,"fret=%lf \n",*fret);  {
 #endif    /* Caution optionfilefiname is hidden */
       printf("%d",i);fflush(stdout);    strcpy(tmpout,optionfilefiname);
       fprintf(ficlog,"%d",i);fflush(ficlog);    strcat(tmpout,"/"); /* Add to the right */
       linmin(p,xit,n,fret,func);    strcat(tmpout,fileres);
       if (fabs(fptt-(*fret)) > del) {    return tmpout;
         del=fabs(fptt-(*fret));  }
         ibig=i;  
       }  /*************** function subdirf2 ***********/
 #ifdef DEBUG  char *subdirf2(char fileres[], char *preop)
       printf("%d %.12e",i,(*fret));  {
       fprintf(ficlog,"%d %.12e",i,(*fret));    
       for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    strcpy(tmpout,optionfilefiname);
         printf(" x(%d)=%.12e",j,xit[j]);    strcat(tmpout,"/");
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    strcat(tmpout,preop);
       }    strcat(tmpout,fileres);
       for(j=1;j<=n;j++) {    return tmpout;
         printf(" p=%.12e",p[j]);  }
         fprintf(ficlog," p=%.12e",p[j]);  
       }  /*************** function subdirf3 ***********/
       printf("\n");  char *subdirf3(char fileres[], char *preop, char *preop2)
       fprintf(ficlog,"\n");  {
 #endif    
     }    /* Caution optionfilefiname is hidden */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    strcpy(tmpout,optionfilefiname);
 #ifdef DEBUG    strcat(tmpout,"/");
       int k[2],l;    strcat(tmpout,preop);
       k[0]=1;    strcat(tmpout,preop2);
       k[1]=-1;    strcat(tmpout,fileres);
       printf("Max: %.12e",(*func)(p));    return tmpout;
       fprintf(ficlog,"Max: %.12e",(*func)(p));  }
       for (j=1;j<=n;j++) {  
         printf(" %.12e",p[j]);  /***************** f1dim *************************/
         fprintf(ficlog," %.12e",p[j]);  extern int ncom; 
       }  extern double *pcom,*xicom;
       printf("\n");  extern double (*nrfunc)(double []); 
       fprintf(ficlog,"\n");   
       for(l=0;l<=1;l++) {  double f1dim(double x) 
         for (j=1;j<=n;j++) {  { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    int j; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double f;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    double *xt; 
         }   
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    xt=vector(1,ncom); 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       }    f=(*nrfunc)(xt); 
 #endif    free_vector(xt,1,ncom); 
     return f; 
   } 
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /*****************brent *************************/
       free_vector(ptt,1,n);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       free_vector(pt,1,n);  { 
       return;    int iter; 
     }    double a,b,d,etemp;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    double fu,fv,fw,fx;
     for (j=1;j<=n;j++) {    double ftemp;
       ptt[j]=2.0*p[j]-pt[j];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       xit[j]=p[j]-pt[j];    double e=0.0; 
       pt[j]=p[j];   
     }    a=(ax < cx ? ax : cx); 
     fptt=(*func)(ptt);    b=(ax > cx ? ax : cx); 
     if (fptt < fp) {    x=w=v=bx; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    fw=fv=fx=(*f)(x); 
       if (t < 0.0) {    for (iter=1;iter<=ITMAX;iter++) { 
         linmin(p,xit,n,fret,func);      xm=0.5*(a+b); 
         for (j=1;j<=n;j++) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
           xi[j][ibig]=xi[j][n];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
           xi[j][n]=xit[j];      printf(".");fflush(stdout);
         }      fprintf(ficlog,".");fflush(ficlog);
 #ifdef DEBUG  #ifdef DEBUG
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         for(j=1;j<=n;j++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
           printf(" %.12e",xit[j]);  #endif
           fprintf(ficlog," %.12e",xit[j]);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         }        *xmin=x; 
         printf("\n");        return fx; 
         fprintf(ficlog,"\n");      } 
 #endif      ftemp=fu;
       }      if (fabs(e) > tol1) { 
     }        r=(x-w)*(fx-fv); 
   }        q=(x-v)*(fx-fw); 
 }        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
 /**** Prevalence limit ****************/        if (q > 0.0) p = -p; 
         q=fabs(q); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        etemp=e; 
 {        e=d; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
      matrix by transitions matrix until convergence is reached */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
   int i, ii,j,k;          d=p/q; 
   double min, max, maxmin, maxmax,sumnew=0.;          u=x+d; 
   double **matprod2();          if (u-a < tol2 || b-u < tol2) 
   double **out, cov[NCOVMAX], **pmij();            d=SIGN(tol1,xm-x); 
   double **newm;        } 
   double agefin, delaymax=50 ; /* Max number of years to converge */      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (ii=1;ii<=nlstate+ndeath;ii++)      } 
     for (j=1;j<=nlstate+ndeath;j++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      fu=(*f)(u); 
     }      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
    cov[1]=1.;        SHFT(v,w,x,u) 
            SHFT(fv,fw,fx,fu) 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */          } else { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){            if (u < x) a=u; else b=u; 
     newm=savm;            if (fu <= fw || w == x) { 
     /* Covariates have to be included here again */              v=w; 
      cov[2]=agefin;              w=u; 
                fv=fw; 
       for (k=1; k<=cptcovn;k++) {              fw=fu; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];            } else if (fu <= fv || v == x || v == w) { 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/              v=u; 
       }              fv=fu; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            } 
       for (k=1; k<=cptcovprod;k++)          } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    } 
     nrerror("Too many iterations in brent"); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    *xmin=x; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    return fx; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  } 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /****************** mnbrak ***********************/
     savm=oldm;  
     oldm=newm;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     maxmax=0.;              double (*func)(double)) 
     for(j=1;j<=nlstate;j++){  { 
       min=1.;    double ulim,u,r,q, dum;
       max=0.;    double fu; 
       for(i=1; i<=nlstate; i++) {   
         sumnew=0;    *fa=(*func)(*ax); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    *fb=(*func)(*bx); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    if (*fb > *fa) { 
         max=FMAX(max,prlim[i][j]);      SHFT(dum,*ax,*bx,dum) 
         min=FMIN(min,prlim[i][j]);        SHFT(dum,*fb,*fa,dum) 
       }        } 
       maxmin=max-min;    *cx=(*bx)+GOLD*(*bx-*ax); 
       maxmax=FMAX(maxmax,maxmin);    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
     if(maxmax < ftolpl){      r=(*bx-*ax)*(*fb-*fc); 
       return prlim;      q=(*bx-*cx)*(*fb-*fa); 
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
 /*************** transition probabilities ***************/        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        fu=(*func)(u); 
 {        if (fu < *fc) { 
   double s1, s2;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   /*double t34;*/            SHFT(*fb,*fc,fu,(*func)(u)) 
   int i,j,j1, nc, ii, jj;            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for(i=1; i<= nlstate; i++){        u=ulim; 
     for(j=1; j<i;j++){        fu=(*func)(u); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      } else { 
         /*s2 += param[i][j][nc]*cov[nc];*/        u=(*cx)+GOLD*(*cx-*bx); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        fu=(*func)(u); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      } 
       }      SHFT(*ax,*bx,*cx,u) 
       ps[i][j]=s2;        SHFT(*fa,*fb,*fc,fu) 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        } 
     }  } 
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*************** linmin ************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  int ncom; 
       }  double *pcom,*xicom;
       ps[i][j]=s2;  double (*nrfunc)(double []); 
     }   
   }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     /*ps[3][2]=1;*/  { 
     double brent(double ax, double bx, double cx, 
   for(i=1; i<= nlstate; i++){                 double (*f)(double), double tol, double *xmin); 
      s1=0;    double f1dim(double x); 
     for(j=1; j<i; j++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       s1+=exp(ps[i][j]);                double *fc, double (*func)(double)); 
     for(j=i+1; j<=nlstate+ndeath; j++)    int j; 
       s1+=exp(ps[i][j]);    double xx,xmin,bx,ax; 
     ps[i][i]=1./(s1+1.);    double fx,fb,fa;
     for(j=1; j<i; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];    ncom=n; 
     for(j=i+1; j<=nlstate+ndeath; j++)    pcom=vector(1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    xicom=vector(1,n); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    nrfunc=func; 
   } /* end i */    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      xicom[j]=xi[j]; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    } 
       ps[ii][jj]=0;    ax=0.0; 
       ps[ii][ii]=1;    xx=1.0; 
     }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(jj=1; jj<= nlstate+ndeath; jj++){  #endif
      printf("%lf ",ps[ii][jj]);    for (j=1;j<=n;j++) { 
    }      xi[j] *= xmin; 
     printf("\n ");      p[j] += xi[j]; 
     }    } 
     printf("\n ");printf("%lf ",cov[2]);*/    free_vector(xicom,1,n); 
 /*    free_vector(pcom,1,n); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  } 
   goto end;*/  
     return ps;  char *asc_diff_time(long time_sec, char ascdiff[])
 }  {
     long sec_left, days, hours, minutes;
 /**************** Product of 2 matrices ******************/    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    hours = (sec_left) / (60*60) ;
 {    sec_left = (sec_left) %(60*60);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    minutes = (sec_left) /60;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    sec_left = (sec_left) % (60);
   /* in, b, out are matrice of pointers which should have been initialized    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
      before: only the contents of out is modified. The function returns    return ascdiff;
      a pointer to pointers identical to out */  }
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  /*************** powell ************************/
     for(k=ncolol; k<=ncoloh; k++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)              double (*func)(double [])) 
         out[i][k] +=in[i][j]*b[j][k];  { 
     void linmin(double p[], double xi[], int n, double *fret, 
   return out;                double (*func)(double [])); 
 }    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
     double fp,fptt;
 /************* Higher Matrix Product ***************/    double *xits;
     int niterf, itmp;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {    pt=vector(1,n); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    ptt=vector(1,n); 
      duration (i.e. until    xit=vector(1,n); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    xits=vector(1,n); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    *fret=(*func)(p); 
      (typically every 2 years instead of every month which is too big).    for (j=1;j<=n;j++) pt[j]=p[j]; 
      Model is determined by parameters x and covariates have to be    for (*iter=1;;++(*iter)) { 
      included manually here.      fp=(*fret); 
       ibig=0; 
      */      del=0.0; 
       last_time=curr_time;
   int i, j, d, h, k;      (void) gettimeofday(&curr_time,&tzp);
   double **out, cov[NCOVMAX];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double **newm;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   /* Hstepm could be zero and should return the unit matrix */      */
   for (i=1;i<=nlstate+ndeath;i++)     for (i=1;i<=n;i++) {
     for (j=1;j<=nlstate+ndeath;j++){        printf(" %d %.12f",i, p[i]);
       oldm[i][j]=(i==j ? 1.0 : 0.0);        fprintf(ficlog," %d %.12lf",i, p[i]);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        fprintf(ficrespow," %.12lf", p[i]);
     }      }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      printf("\n");
   for(h=1; h <=nhstepm; h++){      fprintf(ficlog,"\n");
     for(d=1; d <=hstepm; d++){      fprintf(ficrespow,"\n");fflush(ficrespow);
       newm=savm;      if(*iter <=3){
       /* Covariates have to be included here again */        tm = *localtime(&curr_time.tv_sec);
       cov[1]=1.;        strcpy(strcurr,asctime(&tmf));
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /*       asctime_r(&tm,strcurr); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        forecast_time=curr_time;
       for (k=1; k<=cptcovage;k++)        itmp = strlen(strcurr);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        if(strcurr[itmp-1]=='\n')
       for (k=1; k<=cptcovprod;k++)          strcurr[itmp-1]='\0';
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          tmf = *localtime(&forecast_time.tv_sec);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /*      asctime_r(&tmf,strfor); */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          strcpy(strfor,asctime(&tmf));
       savm=oldm;          itmp = strlen(strfor);
       oldm=newm;          if(strfor[itmp-1]=='\n')
     }          strfor[itmp-1]='\0';
     for(i=1; i<=nlstate+ndeath; i++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for(j=1;j<=nlstate+ndeath;j++) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         po[i][j][h]=newm[i][j];        }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      }
          */      for (i=1;i<=n;i++) { 
       }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   } /* end h */        fptt=(*fret); 
   return po;  #ifdef DEBUG
 }        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
 /*************** log-likelihood *************/        printf("%d",i);fflush(stdout);
 double func( double *x)        fprintf(ficlog,"%d",i);fflush(ficlog);
 {        linmin(p,xit,n,fret,func); 
   int i, ii, j, k, mi, d, kk;        if (fabs(fptt-(*fret)) > del) { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          del=fabs(fptt-(*fret)); 
   double **out;          ibig=i; 
   double sw; /* Sum of weights */        } 
   double lli; /* Individual log likelihood */  #ifdef DEBUG
   long ipmx;        printf("%d %.12e",i,(*fret));
   /*extern weight */        fprintf(ficlog,"%d %.12e",i,(*fret));
   /* We are differentiating ll according to initial status */        for (j=1;j<=n;j++) {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   /*for(i=1;i<imx;i++)          printf(" x(%d)=%.12e",j,xit[j]);
     printf(" %d\n",s[4][i]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   */        }
   cov[1]=1.;        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
   for(k=1; k<=nlstate; k++) ll[k]=0.;          fprintf(ficlog," p=%.12e",p[j]);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        printf("\n");
     for(mi=1; mi<= wav[i]-1; mi++){        fprintf(ficlog,"\n");
       for (ii=1;ii<=nlstate+ndeath;ii++)  #endif
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } 
       for(d=0; d<dh[mi][i]; d++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         newm=savm;  #ifdef DEBUG
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        int k[2],l;
         for (kk=1; kk<=cptcovage;kk++) {        k[0]=1;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        k[1]=-1;
         }        printf("Max: %.12e",(*func)(p));
                fprintf(ficlog,"Max: %.12e",(*func)(p));
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for (j=1;j<=n;j++) {
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          printf(" %.12e",p[j]);
         savm=oldm;          fprintf(ficlog," %.12e",p[j]);
         oldm=newm;        }
                printf("\n");
                fprintf(ficlog,"\n");
       } /* end mult */        for(l=0;l<=1;l++) {
                for (j=1;j<=n;j++) {
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       ipmx +=1;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       sw += weight[i];          }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     } /* end of wave */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   } /* end of individual */        }
   #endif
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        free_vector(xit,1,n); 
   return -l;        free_vector(xits,1,n); 
 }        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
         return; 
 /*********** Maximum Likelihood Estimation ***************/      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      for (j=1;j<=n;j++) { 
 {        ptt[j]=2.0*p[j]-pt[j]; 
   int i,j, iter;        xit[j]=p[j]-pt[j]; 
   double **xi,*delti;        pt[j]=p[j]; 
   double fret;      } 
   xi=matrix(1,npar,1,npar);      fptt=(*func)(ptt); 
   for (i=1;i<=npar;i++)      if (fptt < fp) { 
     for (j=1;j<=npar;j++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       xi[i][j]=(i==j ? 1.0 : 0.0);        if (t < 0.0) { 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          linmin(p,xit,n,fret,func); 
   powell(p,xi,npar,ftol,&iter,&fret,func);          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));            xi[j][n]=xit[j]; 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
 /**** Computes Hessian and covariance matrix ***/            printf(" %.12e",xit[j]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            fprintf(ficlog," %.12e",xit[j]);
 {          }
   double  **a,**y,*x,pd;          printf("\n");
   double **hess;          fprintf(ficlog,"\n");
   int i, j,jk;  #endif
   int *indx;        }
       } 
   double hessii(double p[], double delta, int theta, double delti[]);    } 
   double hessij(double p[], double delti[], int i, int j);  } 
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /**** Prevalence limit (stable prevalence)  ****************/
   
   hess=matrix(1,npar,1,npar);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");       matrix by transitions matrix until convergence is reached */
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);    int i, ii,j,k;
     fprintf(ficlog,"%d",i);fflush(ficlog);    double min, max, maxmin, maxmax,sumnew=0.;
     hess[i][i]=hessii(p,ftolhess,i,delti);    double **matprod2();
     /*printf(" %f ",p[i]);*/    double **out, cov[NCOVMAX], **pmij();
     /*printf(" %lf ",hess[i][i]);*/    double **newm;
   }    double agefin, delaymax=50 ; /* Max number of years to converge */
    
   for (i=1;i<=npar;i++) {    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=npar;j++)  {      for (j=1;j<=nlstate+ndeath;j++){
       if (j>i) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf(".%d%d",i,j);fflush(stdout);      }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  
         hess[i][j]=hessij(p,delti,i,j);     cov[1]=1.;
         hess[j][i]=hess[i][j];       
         /*printf(" %lf ",hess[i][j]);*/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     }      newm=savm;
   }      /* Covariates have to be included here again */
   printf("\n");       cov[2]=agefin;
   fprintf(ficlog,"\n");    
         for (k=1; k<=cptcovn;k++) {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          }
   a=matrix(1,npar,1,npar);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   y=matrix(1,npar,1,npar);        for (k=1; k<=cptcovprod;k++)
   x=vector(1,npar);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   ludcmp(a,npar,indx,&pd);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;      savm=oldm;
     x[j]=1;      oldm=newm;
     lubksb(a,npar,indx,x);      maxmax=0.;
     for (i=1;i<=npar;i++){      for(j=1;j<=nlstate;j++){
       matcov[i][j]=x[i];        min=1.;
     }        max=0.;
   }        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   printf("\n#Hessian matrix#\n");          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   fprintf(ficlog,"\n#Hessian matrix#\n");          prlim[i][j]= newm[i][j]/(1-sumnew);
   for (i=1;i<=npar;i++) {          max=FMAX(max,prlim[i][j]);
     for (j=1;j<=npar;j++) {          min=FMIN(min,prlim[i][j]);
       printf("%.3e ",hess[i][j]);        }
       fprintf(ficlog,"%.3e ",hess[i][j]);        maxmin=max-min;
     }        maxmax=FMAX(maxmax,maxmin);
     printf("\n");      }
     fprintf(ficlog,"\n");      if(maxmax < ftolpl){
   }        return prlim;
       }
   /* Recompute Inverse */    }
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  /*************** transition probabilities ***************/ 
   
   /*  printf("\n#Hessian matrix recomputed#\n");  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
   for (j=1;j<=npar;j++) {    double s1, s2;
     for (i=1;i<=npar;i++) x[i]=0;    /*double t34;*/
     x[j]=1;    int i,j,j1, nc, ii, jj;
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){      for(i=1; i<= nlstate; i++){
       y[i][j]=x[i];        for(j=1; j<i;j++){
       printf("%.3e ",y[i][j]);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       fprintf(ficlog,"%.3e ",y[i][j]);            /*s2 += param[i][j][nc]*cov[nc];*/
     }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     printf("\n");  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     fprintf(ficlog,"\n");          }
   }          ps[i][j]=s2;
   */  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         }
   free_matrix(a,1,npar,1,npar);        for(j=i+1; j<=nlstate+ndeath;j++){
   free_matrix(y,1,npar,1,npar);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   free_vector(x,1,npar);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   free_ivector(indx,1,npar);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   free_matrix(hess,1,npar,1,npar);          }
           ps[i][j]=s2;
         }
 }      }
       /*ps[3][2]=1;*/
 /*************** hessian matrix ****************/      
 double hessii( double x[], double delta, int theta, double delti[])      for(i=1; i<= nlstate; i++){
 {        s1=0;
   int i;        for(j=1; j<i; j++)
   int l=1, lmax=20;          s1+=exp(ps[i][j]);
   double k1,k2;        for(j=i+1; j<=nlstate+ndeath; j++)
   double p2[NPARMAX+1];          s1+=exp(ps[i][j]);
   double res;        ps[i][i]=1./(s1+1.);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        for(j=1; j<i; j++)
   double fx;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   int k=0,kmax=10;        for(j=i+1; j<=nlstate+ndeath; j++)
   double l1;          ps[i][j]= exp(ps[i][j])*ps[i][i];
         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   fx=func(x);      } /* end i */
   for (i=1;i<=npar;i++) p2[i]=x[i];      
   for(l=0 ; l <=lmax; l++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     l1=pow(10,l);        for(jj=1; jj<= nlstate+ndeath; jj++){
     delts=delt;          ps[ii][jj]=0;
     for(k=1 ; k <kmax; k=k+1){          ps[ii][ii]=1;
       delt = delta*(l1*k);        }
       p2[theta]=x[theta] +delt;      }
       k1=func(p2)-fx;      
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /*         printf("ddd %lf ",ps[ii][jj]); */
        /*       } */
 #ifdef DEBUG  /*       printf("\n "); */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*        } */
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*        printf("\n ");printf("%lf ",cov[2]); */
 #endif         /*
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        goto end;*/
         k=kmax;      return ps;
       }  }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  /**************** Product of 2 matrices ******************/
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         delts=delt;  {
       }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   }    /* in, b, out are matrice of pointers which should have been initialized 
   delti[theta]=delts;       before: only the contents of out is modified. The function returns
   return res;       a pointer to pointers identical to out */
      long i, j, k;
 }    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
 double hessij( double x[], double delti[], int thetai,int thetaj)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
 {          out[i][k] +=in[i][j]*b[j][k];
   int i;  
   int l=1, l1, lmax=20;    return out;
   double k1,k2,k3,k4,res,fx;  }
   double p2[NPARMAX+1];  
   int k;  
   /************* Higher Matrix Product ***************/
   fx=func(x);  
   for (k=1; k<=2; k++) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for (i=1;i<=npar;i++) p2[i]=x[i];  {
     p2[thetai]=x[thetai]+delti[thetai]/k;    /* Computes the transition matrix starting at age 'age' over 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       'nhstepm*hstepm*stepm' months (i.e. until
     k1=func(p2)-fx;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         nhstepm*hstepm matrices. 
     p2[thetai]=x[thetai]+delti[thetai]/k;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       (typically every 2 years instead of every month which is too big 
     k2=func(p2)-fx;       for the memory).
         Model is determined by parameters x and covariates have to be 
     p2[thetai]=x[thetai]-delti[thetai]/k;       included manually here. 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;       */
    
     p2[thetai]=x[thetai]-delti[thetai]/k;    int i, j, d, h, k;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double **out, cov[NCOVMAX];
     k4=func(p2)-fx;    double **newm;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG    /* Hstepm could be zero and should return the unit matrix */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    for (i=1;i<=nlstate+ndeath;i++)
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      for (j=1;j<=nlstate+ndeath;j++){
 #endif        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
   return res;      }
 }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
 /************** Inverse of matrix **************/      for(d=1; d <=hstepm; d++){
 void ludcmp(double **a, int n, int *indx, double *d)        newm=savm;
 {        /* Covariates have to be included here again */
   int i,imax,j,k;        cov[1]=1.;
   double big,dum,sum,temp;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double *vv;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          for (k=1; k<=cptcovage;k++)
   vv=vector(1,n);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   *d=1.0;        for (k=1; k<=cptcovprod;k++)
   for (i=1;i<=n;i++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     big=0.0;  
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     vv[i]=1.0/big;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (j=1;j<=n;j++) {        savm=oldm;
     for (i=1;i<j;i++) {        oldm=newm;
       sum=a[i][j];      }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      for(i=1; i<=nlstate+ndeath; i++)
       a[i][j]=sum;        for(j=1;j<=nlstate+ndeath;j++) {
     }          po[i][j][h]=newm[i][j];
     big=0.0;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     for (i=j;i<=n;i++) {           */
       sum=a[i][j];        }
       for (k=1;k<j;k++)    } /* end h */
         sum -= a[i][k]*a[k][j];    return po;
       a[i][j]=sum;  }
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  
         imax=i;  /*************** log-likelihood *************/
       }  double func( double *x)
     }  {
     if (j != imax) {    int i, ii, j, k, mi, d, kk;
       for (k=1;k<=n;k++) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         dum=a[imax][k];    double **out;
         a[imax][k]=a[j][k];    double sw; /* Sum of weights */
         a[j][k]=dum;    double lli; /* Individual log likelihood */
       }    int s1, s2;
       *d = -(*d);    double bbh, survp;
       vv[imax]=vv[j];    long ipmx;
     }    /*extern weight */
     indx[j]=imax;    /* We are differentiating ll according to initial status */
     if (a[j][j] == 0.0) a[j][j]=TINY;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     if (j != n) {    /*for(i=1;i<imx;i++) 
       dum=1.0/(a[j][j]);      printf(" %d\n",s[4][i]);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    */
     }    cov[1]=1.;
   }  
   free_vector(vv,1,n);  /* Doesn't work */    for(k=1; k<=nlstate; k++) ll[k]=0.;
 ;  
 }    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void lubksb(double **a, int n, int *indx, double b[])        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   int i,ii=0,ip,j;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double sum;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=n;i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     ip=indx[i];            }
     sum=b[ip];          for(d=0; d<dh[mi][i]; d++){
     b[ip]=b[i];            newm=savm;
     if (ii)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            for (kk=1; kk<=cptcovage;kk++) {
     else if (sum) ii=i;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     b[i]=sum;            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (i=n;i>=1;i--) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     sum=b[i];            savm=oldm;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            oldm=newm;
     b[i]=sum/a[i][i];          } /* end mult */
   }        
 }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
 /************ Frequencies ********************/           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)           * (in months) between two waves is not a multiple of stepm, we rounded to 
 {  /* Some frequencies */           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   int first;           * probability in order to take into account the bias as a fraction of the way
   double ***freq; /* Frequencies */           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   double *pp;           * -stepm/2 to stepm/2 .
   double pos, k2, dateintsum=0,k2cpt=0;           * For stepm=1 the results are the same as for previous versions of Imach.
   FILE *ficresp;           * For stepm > 1 the results are less biased than in previous versions. 
   char fileresp[FILENAMELENGTH];           */
            s1=s[mw[mi][i]][i];
   pp=vector(1,nlstate);          s2=s[mw[mi+1][i]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          bbh=(double)bh[mi][i]/(double)stepm; 
   strcpy(fileresp,"p");          /* bias is positive if real duration
   strcat(fileresp,fileres);           * is higher than the multiple of stepm and negative otherwise.
   if((ficresp=fopen(fileresp,"w"))==NULL) {           */
     printf("Problem with prevalence resultfile: %s\n", fileresp);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          if( s2 > nlstate){ 
     exit(0);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   }               to the likelihood is the probability to die between last step unit time and current 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);               step unit time, which is also the differences between probability to die before dh 
   j1=0;               and probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
   j=cptcoveff;          as if date of death was unknown. Death was treated as any other
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   first=1;          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
   for(k1=1; k1<=j;k1++){          introduced the exact date of death then we should have modified
     for(i1=1; i1<=ncodemax[k1];i1++){          the contribution of an exact death to the likelihood. This new
       j1++;          contribution is smaller and very dependent of the step unit
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          stepm. It is no more the probability to die between last interview
         scanf("%d", i);*/          and month of death but the probability to survive from last
       for (i=-1; i<=nlstate+ndeath; i++)            interview up to one month before death multiplied by the
         for (jk=-1; jk<=nlstate+ndeath; jk++)            probability to die within a month. Thanks to Chris
           for(m=agemin; m <= agemax+3; m++)          Jackson for correcting this bug.  Former versions increased
             freq[i][jk][m]=0;          mortality artificially. The bad side is that we add another loop
                which slows down the processing. The difference can be up to 10%
       dateintsum=0;          lower mortality.
       k2cpt=0;            */
       for (i=1; i<=imx; i++) {            lli=log(out[s1][s2] - savm[s1][s2]);
         bool=1;          }else{
         if  (cptcovn>0) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           for (z1=1; z1<=cptcoveff; z1++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          } 
               bool=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
         if (bool==1) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           for(m=firstpass; m<=lastpass; m++){          ipmx +=1;
             k2=anint[m][i]+(mint[m][i]/12.);          sw += weight[i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               if(agev[m][i]==0) agev[m][i]=agemax+1;        } /* end of wave */
               if(agev[m][i]==1) agev[m][i]=agemax+2;      } /* end of individual */
               if (m<lastpass) {    }  else if(mle==2){
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               }        for(mi=1; mi<= wav[i]-1; mi++){
                        for (ii=1;ii<=nlstate+ndeath;ii++)
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            for (j=1;j<=nlstate+ndeath;j++){
                 dateintsum=dateintsum+k2;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 k2cpt++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               }            }
             }          for(d=0; d<=dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if  (cptcovn>0) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficresp, "\n#********** Variable ");            savm=oldm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            oldm=newm;
         fprintf(ficresp, "**********\n#");          } /* end mult */
       }        
       for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          s2=s[mw[mi+1][i]][i];
       fprintf(ficresp, "\n");          bbh=(double)bh[mi][i]/(double)stepm; 
                lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(i=(int)agemin; i <= (int)agemax+3; i++){          ipmx +=1;
         if(i==(int)agemax+3){          sw += weight[i];
           fprintf(ficlog,"Total");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }else{        } /* end of wave */
           if(first==1){      } /* end of individual */
             first=0;    }  else if(mle==3){  /* exponential inter-extrapolation */
             printf("See log file for details...\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           fprintf(ficlog,"Age %d", i);        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
           for(m=-1, pos=0; m <=0 ; m++)            newm=savm;
             pos += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if(pp[jk]>=1.e-10){            for (kk=1; kk<=cptcovage;kk++) {
             if(first==1){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            }
             }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }else{            savm=oldm;
             if(first==1)            oldm=newm;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          } /* end mult */
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        
           }          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
         for(jk=1; jk <=nlstate ; jk++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          ipmx +=1;
             pp[jk] += freq[jk][m][i];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
         for(jk=1,pos=0; jk <=nlstate ; jk++)      } /* end of individual */
           pos += pp[jk];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if(pos>=1.e-5){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if(first==1)        for(mi=1; mi<= wav[i]-1; mi++){
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for (j=1;j<=nlstate+ndeath;j++){
           }else{              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(first==1)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            }
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
           if( i <= (int) agemax){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if(pos>=1.e-5){            for (kk=1; kk<=cptcovage;kk++) {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               probs[i][jk][j1]= pp[jk]/pos;            }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          
             }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            savm=oldm;
           }            oldm=newm;
         }          } /* end mult */
                
         for(jk=-1; jk <=nlstate+ndeath; jk++)          s1=s[mw[mi][i]][i];
           for(m=-1; m <=nlstate+ndeath; m++)          s2=s[mw[mi+1][i]][i];
             if(freq[jk][m][i] !=0 ) {          if( s2 > nlstate){ 
             if(first==1)            lli=log(out[s1][s2] - savm[s1][s2]);
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          }else{
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             }          }
         if(i <= (int) agemax)          ipmx +=1;
           fprintf(ficresp,"\n");          sw += weight[i];
         if(first==1)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           printf("Others in log...\n");  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         fprintf(ficlog,"\n");        } /* end of wave */
       }      } /* end of individual */
     }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   dateintmean=dateintsum/k2cpt;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   fclose(ficresp);          for (ii=1;ii<=nlstate+ndeath;ii++)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (j=1;j<=nlstate+ndeath;j++){
   free_vector(pp,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* End of Freq */            }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /************ Prevalence ********************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            for (kk=1; kk<=cptcovage;kk++) {
 {  /* Some frequencies */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          
   double ***freq; /* Frequencies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double *pp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double pos, k2;            savm=oldm;
             oldm=newm;
   pp=vector(1,nlstate);          } /* end mult */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        
            s1=s[mw[mi][i]][i];
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          s2=s[mw[mi+1][i]][i];
   j1=0;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            ipmx +=1;
   j=cptcoveff;          sw += weight[i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   for(k1=1; k1<=j;k1++){        } /* end of wave */
     for(i1=1; i1<=ncodemax[k1];i1++){      } /* end of individual */
       j1++;    } /* End of if */
          for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for (i=-1; i<=nlstate+ndeath; i++)      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(m=agemin; m <= agemax+3; m++)    return -l;
             freq[i][jk][m]=0;  }
        
       for (i=1; i<=imx; i++) {  /*************** log-likelihood *************/
         bool=1;  double funcone( double *x)
         if  (cptcovn>0) {  {
           for (z1=1; z1<=cptcoveff; z1++)    /* Same as likeli but slower because of a lot of printf and if */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    int i, ii, j, k, mi, d, kk;
               bool=0;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
         if (bool==1) {    double lli; /* Individual log likelihood */
           for(m=firstpass; m<=lastpass; m++){    double llt;
             k2=anint[m][i]+(mint[m][i]/12.);    int s1, s2;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    double bbh, survp;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    /*extern weight */
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /* We are differentiating ll according to initial status */
               if (m<lastpass) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                 if (calagedate>0)    /*for(i=1;i<imx;i++) 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      printf(" %d\n",s[4][i]);
                 else    */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    cov[1]=1.;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  
               }    for(k=1; k<=nlstate; k++) ll[k]=0.;
             }  
           }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }      for(mi=1; mi<= wav[i]-1; mi++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){          for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }          }
         for(jk=1; jk <=nlstate ; jk++){        for(d=0; d<dh[mi][i]; d++){
           for(m=-1, pos=0; m <=0 ; m++)          newm=savm;
             pos += freq[jk][m][i];          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pp[jk] += freq[jk][m][i];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }          savm=oldm;
                  oldm=newm;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        } /* end mult */
                
         for(jk=1; jk <=nlstate ; jk++){            s1=s[mw[mi][i]][i];
           if( i <= (int) agemax){        s2=s[mw[mi+1][i]][i];
             if(pos>=1.e-5){        bbh=(double)bh[mi][i]/(double)stepm; 
               probs[i][jk][j1]= pp[jk]/pos;        /* bias is positive if real duration
             }         * is higher than the multiple of stepm and negative otherwise.
           }         */
         }/* end jk */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       }/* end i */          lli=log(out[s1][s2] - savm[s1][s2]);
     } /* end i1 */        } else if (mle==1){
   } /* end k1 */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        } else if(mle==3){  /* exponential inter-extrapolation */
   free_vector(pp,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
          } else if (mle==4){  /* mle=4 no inter-extrapolation */
 }  /* End of Freq */          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 /************* Waves Concatenation ***************/          lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        ipmx +=1;
 {        sw += weight[i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      Death is a valid wave (if date is known).  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        if(globpr){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
      and mw[mi+1][i]. dh depends on stepm.   %10.6f %10.6f %10.6f ", \
      */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   int i, mi, m;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            llt +=ll[k]*gipmx/gsw;
      double sum=0., jmean=0.;*/            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   int first;          }
   int j, k=0,jk, ju, jl;          fprintf(ficresilk," %10.6f\n", -llt);
   double sum=0.;        }
   first=0;      } /* end of wave */
   jmin=1e+5;    } /* end of individual */
   jmax=-1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   jmean=0.;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for(i=1; i<=imx; i++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     mi=0;    if(globpr==0){ /* First time we count the contributions and weights */
     m=firstpass;      gipmx=ipmx;
     while(s[m][i] <= nlstate){      gsw=sw;
       if(s[m][i]>=1)    }
         mw[++mi][i]=m;    return -l;
       if(m >=lastpass)  }
         break;  
       else  
         m++;  /*************** function likelione ***********/
     }/* end while */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     if (s[m][i] > nlstate){  {
       mi++;     /* Death is another wave */    /* This routine should help understanding what is done with 
       /* if(mi==0)  never been interviewed correctly before death */       the selection of individuals/waves and
          /* Only death is a correct wave */       to check the exact contribution to the likelihood.
       mw[mi][i]=m;       Plotting could be done.
     }     */
     int k;
     wav[i]=mi;  
     if(mi==0){    if(*globpri !=0){ /* Just counts and sums, no printings */
       if(first==0){      strcpy(fileresilk,"ilk"); 
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);      strcat(fileresilk,fileres);
         first=1;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       }        printf("Problem with resultfile: %s\n", fileresilk);
       if(first==1){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);      }
       }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     } /* end mi==0 */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
   for(i=1; i<=imx; i++){        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     for(mi=1; mi<wav[i];mi++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       if (stepm <=0)    }
         dh[mi][i]=1;  
       else{    *fretone=(*funcone)(p);
         if (s[mw[mi+1][i]][i] > nlstate) {    if(*globpri !=0){
           if (agedc[i] < 2*AGESUP) {      fclose(ficresilk);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           if(j==0) j=1;  /* Survives at least one month after exam */      fflush(fichtm); 
           k=k+1;    } 
           if (j >= jmax) jmax=j;    return;
           if (j <= jmin) jmin=j;  }
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  
           }  /*********** Maximum Likelihood Estimation ***************/
         }  
         else{  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  {
           k=k+1;    int i,j, iter;
           if (j >= jmax) jmax=j;    double **xi;
           else if (j <= jmin)jmin=j;    double fret;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    double fretone; /* Only one call to likelihood */
           sum=sum+j;    /*  char filerespow[FILENAMELENGTH];*/
         }    xi=matrix(1,npar,1,npar);
         jk= j/stepm;    for (i=1;i<=npar;i++)
         jl= j -jk*stepm;      for (j=1;j<=npar;j++)
         ju= j -(jk+1)*stepm;        xi[i][j]=(i==j ? 1.0 : 0.0);
         if(jl <= -ju)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
           dh[mi][i]=jk;    strcpy(filerespow,"pow"); 
         else    strcat(filerespow,fileres);
           dh[mi][i]=jk+1;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         if(dh[mi][i]==0)      printf("Problem with resultfile: %s\n", filerespow);
           dh[mi][i]=1; /* At least one step */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }    }
     }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   }    for (i=1;i<=nlstate;i++)
   jmean=sum/k;      for(j=1;j<=nlstate+ndeath;j++)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    fprintf(ficrespow,"\n");
  }  
     powell(p,xi,npar,ftol,&iter,&fret,func);
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)    fclose(ficrespow);
 {    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   int Ndum[20],ij=1, k, j, i;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int cptcode=0;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   cptcoveff=0;  
    }
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  {
     for (i=1; i<=imx; i++) {    double  **a,**y,*x,pd;
       ij=(int)(covar[Tvar[j]][i]);    double **hess;
       Ndum[ij]++;    int i, j,jk;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    int *indx;
       if (ij > cptcode) cptcode=ij;  
     }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for (i=0; i<=cptcode; i++) {    void lubksb(double **a, int npar, int *indx, double b[]) ;
       if(Ndum[i]!=0) ncodemax[j]++;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     }    double gompertz(double p[]);
     ij=1;    hess=matrix(1,npar,1,npar);
   
     printf("\nCalculation of the hessian matrix. Wait...\n");
     for (i=1; i<=ncodemax[j]; i++) {    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for (k=0; k<=19; k++) {    for (i=1;i<=npar;i++){
         if (Ndum[k] != 0) {      printf("%d",i);fflush(stdout);
           nbcode[Tvar[j]][ij]=k;      fprintf(ficlog,"%d",i);fflush(ficlog);
               
           ij++;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         }      
         if (ij > ncodemax[j]) break;      /*  printf(" %f ",p[i]);
       }            printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }    }
   }      
     for (i=1;i<=npar;i++) {
  for (k=0; k<19; k++) Ndum[k]=0;      for (j=1;j<=npar;j++)  {
         if (j>i) { 
  for (i=1; i<=ncovmodel-2; i++) {          printf(".%d%d",i,j);fflush(stdout);
    ij=Tvar[i];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
    Ndum[ij]++;          hess[i][j]=hessij(p,delti,i,j,func,npar);
  }          
           hess[j][i]=hess[i][j];    
  ij=1;          /*printf(" %lf ",hess[i][j]);*/
  for (i=1; i<=10; i++) {        }
    if((Ndum[i]!=0) && (i<=ncovcol)){      }
      Tvaraff[ij]=i;    }
      ij++;    printf("\n");
    }    fprintf(ficlog,"\n");
  }  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
  cptcoveff=ij-1;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 }    
     a=matrix(1,npar,1,npar);
 /*********** Health Expectancies ****************/    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
 {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   /* Health expectancies */    ludcmp(a,npar,indx,&pd);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  
   double age, agelim, hf;    for (j=1;j<=npar;j++) {
   double ***p3mat,***varhe;      for (i=1;i<=npar;i++) x[i]=0;
   double **dnewm,**doldm;      x[j]=1;
   double *xp;      lubksb(a,npar,indx,x);
   double **gp, **gm;      for (i=1;i<=npar;i++){ 
   double ***gradg, ***trgradg;        matcov[i][j]=x[i];
   int theta;      }
     }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);    printf("\n#Hessian matrix#\n");
   dnewm=matrix(1,nlstate*2,1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
   doldm=matrix(1,nlstate*2,1,nlstate*2);    for (i=1;i<=npar;i++) { 
        for (j=1;j<=npar;j++) { 
   fprintf(ficreseij,"# Health expectancies\n");        printf("%.3e ",hess[i][j]);
   fprintf(ficreseij,"# Age");        fprintf(ficlog,"%.3e ",hess[i][j]);
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=nlstate;j++)      printf("\n");
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      fprintf(ficlog,"\n");
   fprintf(ficreseij,"\n");    }
   
   if(estepm < stepm){    /* Recompute Inverse */
     printf ("Problem %d lower than %d\n",estepm, stepm);    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   else  hstepm=estepm;      ludcmp(a,npar,indx,&pd);
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example    /*  printf("\n#Hessian matrix recomputed#\n");
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear    for (j=1;j<=npar;j++) {
    * progression inbetween and thus overestimating or underestimating according      for (i=1;i<=npar;i++) x[i]=0;
    * to the curvature of the survival function. If, for the same date, we      x[j]=1;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      lubksb(a,npar,indx,x);
    * to compare the new estimate of Life expectancy with the same linear      for (i=1;i<=npar;i++){ 
    * hypothesis. A more precise result, taking into account a more precise        y[i][j]=x[i];
    * curvature will be obtained if estepm is as small as stepm. */        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
   /* For example we decided to compute the life expectancy with the smallest unit */      }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      printf("\n");
      nhstepm is the number of hstepm from age to agelim      fprintf(ficlog,"\n");
      nstepm is the number of stepm from age to agelin.    }
      Look at hpijx to understand the reason of that which relies in memory size    */
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    free_matrix(a,1,npar,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    free_matrix(y,1,npar,1,npar);
      means that if the survival funtion is printed only each two years of age and if    free_vector(x,1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    free_ivector(indx,1,npar);
      results. So we changed our mind and took the option of the best precision.    free_matrix(hess,1,npar,1,npar);
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
   }
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*************** hessian matrix ****************/
     /* nhstepm age range expressed in number of stepm */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  {
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    int i;
     /* if (stepm >= YEARM) hstepm=1;*/    int l=1, lmax=20;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double k1,k2;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double p2[NPARMAX+1];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    double res;
     gp=matrix(0,nhstepm,1,nlstate*2);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     gm=matrix(0,nhstepm,1,nlstate*2);    double fx;
     int k=0,kmax=10;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double l1;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      fx=func(x);
      for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      l1=pow(10,l);
       delts=delt;
     /* Computing Variances of health expectancies */      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
      for(theta=1; theta <=npar; theta++){        p2[theta]=x[theta] +delt;
       for(i=1; i<=npar; i++){        k1=func(p2)-fx;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        p2[theta]=x[theta]-delt;
       }        k2=func(p2)-fx;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /*res= (k1-2.0*fx+k2)/delt/delt; */
          res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       cptj=0;        
       for(j=1; j<= nlstate; j++){  #ifdef DEBUG
         for(i=1; i<=nlstate; i++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           cptj=cptj+1;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  #endif
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         }          k=kmax;
       }        }
              else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                k=kmax; l=lmax*10.;
       for(i=1; i<=npar; i++)        }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            delts=delt;
              }
       cptj=0;      }
       for(j=1; j<= nlstate; j++){    }
         for(i=1;i<=nlstate;i++){    delti[theta]=delts;
           cptj=cptj+1;    return res; 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  }
           }  
         }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       }  {
       for(j=1; j<= nlstate*2; j++)    int i;
         for(h=0; h<=nhstepm-1; h++){    int l=1, l1, lmax=20;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double k1,k2,k3,k4,res,fx;
         }    double p2[NPARMAX+1];
      }    int k;
      
 /* End theta */    fx=func(x);
     for (k=1; k<=2; k++) {
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
      for(h=0; h<=nhstepm-1; h++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(j=1; j<=nlstate*2;j++)      k1=func(p2)-fx;
         for(theta=1; theta <=npar; theta++)    
           trgradg[h][j][theta]=gradg[h][theta][j];      p2[thetai]=x[thetai]+delti[thetai]/k;
            p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
      for(i=1;i<=nlstate*2;i++)    
       for(j=1;j<=nlstate*2;j++)      p2[thetai]=x[thetai]-delti[thetai]/k;
         varhe[i][j][(int)age] =0.;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
      printf("%d|",(int)age);fflush(stdout);    
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      p2[thetai]=x[thetai]-delti[thetai]/k;
      for(h=0;h<=nhstepm-1;h++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(k=0;k<=nhstepm-1;k++){      k4=func(p2)-fx;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  #ifdef DEBUG
         for(i=1;i<=nlstate*2;i++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           for(j=1;j<=nlstate*2;j++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  #endif
       }    }
     }    return res;
     /* Computing expectancies */  }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)  /************** Inverse of matrix **************/
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  void ludcmp(double **a, int n, int *indx, double *d) 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  { 
              int i,imax,j,k; 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double big,dum,sum,temp; 
     double *vv; 
         }   
     vv=vector(1,n); 
     fprintf(ficreseij,"%3.0f",age );    *d=1.0; 
     cptj=0;    for (i=1;i<=n;i++) { 
     for(i=1; i<=nlstate;i++)      big=0.0; 
       for(j=1; j<=nlstate;j++){      for (j=1;j<=n;j++) 
         cptj++;        if ((temp=fabs(a[i][j])) > big) big=temp; 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       }      vv[i]=1.0/big; 
     fprintf(ficreseij,"\n");    } 
        for (j=1;j<=n;j++) { 
     free_matrix(gm,0,nhstepm,1,nlstate*2);      for (i=1;i<j;i++) { 
     free_matrix(gp,0,nhstepm,1,nlstate*2);        sum=a[i][j]; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        a[i][j]=sum; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } 
   }      big=0.0; 
   printf("\n");      for (i=j;i<=n;i++) { 
   fprintf(ficlog,"\n");        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   free_vector(xp,1,npar);          sum -= a[i][k]*a[k][j]; 
   free_matrix(dnewm,1,nlstate*2,1,npar);        a[i][j]=sum; 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          big=dum; 
 }          imax=i; 
         } 
 /************ Variance ******************/      } 
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)      if (j != imax) { 
 {        for (k=1;k<=n;k++) { 
   /* Variance of health expectancies */          dum=a[imax][k]; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          a[imax][k]=a[j][k]; 
   /* double **newm;*/          a[j][k]=dum; 
   double **dnewm,**doldm;        } 
   double **dnewmp,**doldmp;        *d = -(*d); 
   int i, j, nhstepm, hstepm, h, nstepm ;        vv[imax]=vv[j]; 
   int k, cptcode;      } 
   double *xp;      indx[j]=imax; 
   double **gp, **gm;  /* for var eij */      if (a[j][j] == 0.0) a[j][j]=TINY; 
   double ***gradg, ***trgradg; /*for var eij */      if (j != n) { 
   double **gradgp, **trgradgp; /* for var p point j */        dum=1.0/(a[j][j]); 
   double *gpp, *gmp; /* for var p point j */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      } 
   double ***p3mat;    } 
   double age,agelim, hf;    free_vector(vv,1,n);  /* Doesn't work */
   int theta;  ;
   char digit[4];  } 
   char digitp[16];  
   void lubksb(double **a, int n, int *indx, double b[]) 
   char fileresprobmorprev[FILENAMELENGTH];  { 
     int i,ii=0,ip,j; 
   if(popbased==1)    double sum; 
     strcpy(digitp,"-populbased-");   
   else    for (i=1;i<=n;i++) { 
     strcpy(digitp,"-stablbased-");      ip=indx[i]; 
       sum=b[ip]; 
   strcpy(fileresprobmorprev,"prmorprev");      b[ip]=b[i]; 
   sprintf(digit,"%-d",ij);      if (ii) 
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      else if (sum) ii=i; 
   strcat(fileresprobmorprev,digitp); /* Popbased or not */      b[i]=sum; 
   strcat(fileresprobmorprev,fileres);    } 
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    for (i=n;i>=1;i--) { 
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      sum=b[i]; 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    } 
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  } 
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");  
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  /************ Frequencies ********************/
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     fprintf(ficresprobmorprev," p.%-d SE",j);  {  /* Some frequencies */
     for(i=1; i<=nlstate;i++)    
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   }      int first;
   fprintf(ficresprobmorprev,"\n");    double ***freq; /* Frequencies */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double *pp, **prop;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    FILE *ficresp;
     exit(0);    char fileresp[FILENAMELENGTH];
   }    
   else{    pp=vector(1,nlstate);
     fprintf(ficgp,"\n# Routine varevsij");    prop=matrix(1,nlstate,iagemin,iagemax+3);
   }    strcpy(fileresp,"p");
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    strcat(fileresp,fileres);
     printf("Problem with html file: %s\n", optionfilehtm);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     exit(0);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   }      exit(0);
   else{    }
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   }    j1=0;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    
     j=cptcoveff;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    first=1;
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    for(k1=1; k1<=j;k1++){
   fprintf(ficresvij,"\n");      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   xp=vector(1,npar);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   dnewm=matrix(1,nlstate,1,npar);          scanf("%d", i);*/
   doldm=matrix(1,nlstate,1,nlstate);        for (i=-1; i<=nlstate+ndeath; i++)  
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);  
   gpp=vector(nlstate+1,nlstate+ndeath);      for (i=1; i<=nlstate; i++)  
   gmp=vector(nlstate+1,nlstate+ndeath);        for(m=iagemin; m <= iagemax+3; m++)
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          prop[i][m]=0;
          
   if(estepm < stepm){        dateintsum=0;
     printf ("Problem %d lower than %d\n",estepm, stepm);        k2cpt=0;
   }        for (i=1; i<=imx; i++) {
   else  hstepm=estepm;            bool=1;
   /* For example we decided to compute the life expectancy with the smallest unit */          if  (cptcovn>0) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            for (z1=1; z1<=cptcoveff; z1++) 
      nhstepm is the number of hstepm from age to agelim              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      nstepm is the number of stepm from age to agelin.                bool=0;
      Look at hpijx to understand the reason of that which relies in memory size          }
      and note for a fixed period like k years */          if (bool==1){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            for(m=firstpass; m<=lastpass; m++){
      survival function given by stepm (the optimization length). Unfortunately it              k2=anint[m][i]+(mint[m][i]/12.);
      means that if the survival funtion is printed only each two years of age and if              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      results. So we changed our mind and took the option of the best precision.                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                if (m<lastpass) {
   agelim = AGESUP;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);                  dateintsum=dateintsum+k2;
     gp=matrix(0,nhstepm,1,nlstate);                  k2cpt++;
     gm=matrix(0,nhstepm,1,nlstate);                }
                 /*}*/
             }
     for(theta=1; theta <=npar; theta++){          }
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);         
       }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
       if (popbased==1) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for(i=1; i<=nlstate;i++)          fprintf(ficresp, "**********\n#");
           prlim[i][i]=probs[(int)age][i][ij];        }
       }        for(i=1; i<=nlstate;i++) 
            fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       for(j=1; j<= nlstate; j++){        fprintf(ficresp, "\n");
         for(h=0; h<=nhstepm; h++){        
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        for(i=iagemin; i <= iagemax+3; i++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          if(i==iagemax+3){
         }            fprintf(ficlog,"Total");
       }          }else{
       /* This for computing forces of mortality (h=1)as a weighted average */            if(first==1){
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){              first=0;
         for(i=1; i<= nlstate; i++)              printf("See log file for details...\n");
           gpp[j] += prlim[i][i]*p3mat[i][j][1];            }
       }                fprintf(ficlog,"Age %d", i);
       /* end force of mortality */          }
           for(jk=1; jk <=nlstate ; jk++){
       for(i=1; i<=npar; i++) /* Computes gradient */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              pp[jk] += freq[jk][m][i]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(jk=1; jk <=nlstate ; jk++){
              for(m=-1, pos=0; m <=0 ; m++)
       if (popbased==1) {              pos += freq[jk][m][i];
         for(i=1; i<=nlstate;i++)            if(pp[jk]>=1.e-10){
           prlim[i][i]=probs[(int)age][i][ij];              if(first==1){
       }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
       for(j=1; j<= nlstate; j++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for(h=0; h<=nhstepm; h++){            }else{
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              if(first==1)
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
       /* This for computing force of mortality (h=1)as a weighted average */          }
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  
         for(i=1; i<= nlstate; i++)          for(jk=1; jk <=nlstate ; jk++){
           gmp[j] += prlim[i][i]*p3mat[i][j][1];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       }                  pp[jk] += freq[jk][m][i];
       /* end force of mortality */          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       for(j=1; j<= nlstate; j++) /* vareij */            pos += pp[jk];
         for(h=0; h<=nhstepm; h++){            posprop += prop[jk][i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          }
         }          for(jk=1; jk <=nlstate ; jk++){
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */            if(pos>=1.e-5){
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     } /* End theta */            }else{
               if(first==1)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(h=0; h<=nhstepm; h++) /* veij */            }
       for(j=1; j<=nlstate;j++)            if( i <= iagemax){
         for(theta=1; theta <=npar; theta++)              if(pos>=1.e-5){
           trgradg[h][j][theta]=gradg[h][theta][j];                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       for(theta=1; theta <=npar; theta++)              }
         trgradgp[j][theta]=gradgp[theta][j];              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            }
     for(i=1;i<=nlstate;i++)          }
       for(j=1;j<=nlstate;j++)          
         vareij[i][j][(int)age] =0.;          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
     for(h=0;h<=nhstepm;h++){              if(freq[jk][m][i] !=0 ) {
       for(k=0;k<=nhstepm;k++){              if(first==1)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         for(i=1;i<=nlstate;i++)              }
           for(j=1;j<=nlstate;j++)          if(i <= iagemax)
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            fprintf(ficresp,"\n");
       }          if(first==1)
     }            printf("Others in log...\n");
           fprintf(ficlog,"\n");
     /* pptj */        }
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      }
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    }
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    dateintmean=dateintsum/k2cpt; 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)   
         varppt[j][i]=doldmp[j][i];    fclose(ficresp);
     /* end ppptj */    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      free_vector(pp,1,nlstate);
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      /* End of Freq */
     if (popbased==1) {  }
       for(i=1; i<=nlstate;i++)  
         prlim[i][i]=probs[(int)age][i][ij];  /************ Prevalence ********************/
     }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
      {  
     /* This for computing force of mortality (h=1)as a weighted average */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){       in each health status at the date of interview (if between dateprev1 and dateprev2).
       for(i=1; i<= nlstate; i++)       We still use firstpass and lastpass as another selection.
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    */
     }       
     /* end force of mortality */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    double *pp, **prop;
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    double pos,posprop; 
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    double  y2; /* in fractional years */
       for(i=1; i<=nlstate;i++){    int iagemin, iagemax;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }    iagemin= (int) agemin;
     }    iagemax= (int) agemax;
     fprintf(ficresprobmorprev,"\n");    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
     fprintf(ficresvij,"%.0f ",age );    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     for(i=1; i<=nlstate;i++)    j1=0;
       for(j=1; j<=nlstate;j++){    
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficresvij,"\n");    
     free_matrix(gp,0,nhstepm,1,nlstate);    for(k1=1; k1<=j;k1++){
     free_matrix(gm,0,nhstepm,1,nlstate);      for(i1=1; i1<=ncodemax[k1];i1++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        j1++;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (i=1; i<=nlstate; i++)  
   } /* End age */          for(m=iagemin; m <= iagemax+3; m++)
   free_vector(gpp,nlstate+1,nlstate+ndeath);            prop[i][m]=0.0;
   free_vector(gmp,nlstate+1,nlstate+ndeath);       
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        for (i=1; i<=imx; i++) { /* Each individual */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          bool=1;
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");          if  (cptcovn>0) {
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */            for (z1=1; z1<=cptcoveff; z1++) 
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);                bool=0;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);          } 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);          if (bool==1) { 
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   free_vector(xp,1,npar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   free_matrix(doldm,1,nlstate,1,nlstate);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   free_matrix(dnewm,1,nlstate,1,npar);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                  prop[s[m][i]][iagemax+3] += weight[i]; 
   fclose(ficresprobmorprev);                } 
   fclose(ficgp);              }
   fclose(fichtm);            } /* end selection of waves */
           }
 }        }
         for(i=iagemin; i <= iagemax+3; i++){  
 /************ Variance of prevlim ******************/          
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 {            posprop += prop[jk][i]; 
   /* Variance of prevalence limit */          } 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;          for(jk=1; jk <=nlstate ; jk++){     
   double **dnewm,**doldm;            if( i <=  iagemax){ 
   int i, j, nhstepm, hstepm;              if(posprop>=1.e-5){ 
   int k, cptcode;                probs[i][jk][j1]= prop[jk][i]/posprop;
   double *xp;              } 
   double *gp, *gm;            } 
   double **gradg, **trgradg;          }/* end jk */ 
   double age,agelim;        }/* end i */ 
   int theta;      } /* end i1 */
        } /* end k1 */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    
   fprintf(ficresvpl,"# Age");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   for(i=1; i<=nlstate;i++)    /*free_vector(pp,1,nlstate);*/
       fprintf(ficresvpl," %1d-%1d",i,i);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   fprintf(ficresvpl,"\n");  }  /* End of prevalence */
   
   xp=vector(1,npar);  /************* Waves Concatenation ***************/
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    {
   hstepm=1*YEARM; /* Every year of age */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       Death is a valid wave (if date is known).
   agelim = AGESUP;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       and mw[mi+1][i]. dh depends on stepm.
     if (stepm >= YEARM) hstepm=1;       */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);    int i, mi, m;
     gp=vector(1,nlstate);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     gm=vector(1,nlstate);       double sum=0., jmean=0.;*/
     int first;
     for(theta=1; theta <=npar; theta++){    int j, k=0,jk, ju, jl;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double sum=0.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    first=0;
       }    jmin=1e+5;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    jmax=-1;
       for(i=1;i<=nlstate;i++)    jmean=0.;
         gp[i] = prlim[i][i];    for(i=1; i<=imx; i++){
          mi=0;
       for(i=1; i<=npar; i++) /* Computes gradient */      m=firstpass;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      while(s[m][i] <= nlstate){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if(s[m][i]>=1)
       for(i=1;i<=nlstate;i++)          mw[++mi][i]=m;
         gm[i] = prlim[i][i];        if(m >=lastpass)
           break;
       for(i=1;i<=nlstate;i++)        else
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          m++;
     } /* End theta */      }/* end while */
       if (s[m][i] > nlstate){
     trgradg =matrix(1,nlstate,1,npar);        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
     for(j=1; j<=nlstate;j++)           /* Only death is a correct wave */
       for(theta=1; theta <=npar; theta++)        mw[mi][i]=m;
         trgradg[j][theta]=gradg[theta][j];      }
   
     for(i=1;i<=nlstate;i++)      wav[i]=mi;
       varpl[i][(int)age] =0.;      if(mi==0){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        nbwarn++;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        if(first==0){
     for(i=1;i<=nlstate;i++)          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          first=1;
         }
     fprintf(ficresvpl,"%.0f ",age );        if(first==1){
     for(i=1; i<=nlstate;i++)          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        }
     fprintf(ficresvpl,"\n");      } /* end mi==0 */
     free_vector(gp,1,nlstate);    } /* End individuals */
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);    for(i=1; i<=imx; i++){
     free_matrix(trgradg,1,nlstate,1,npar);      for(mi=1; mi<wav[i];mi++){
   } /* End age */        if (stepm <=0)
           dh[mi][i]=1;
   free_vector(xp,1,npar);        else{
   free_matrix(doldm,1,nlstate,1,npar);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   free_matrix(dnewm,1,nlstate,1,nlstate);            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 }              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
 /************ Variance of one-step probabilities  ******************/                nberr++;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 {                j=1; /* Temporary Dangerous patch */
   int i, j=0,  i1, k1, l1, t, tj;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   int k2, l2, j1,  z1;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   int k=0,l, cptcode;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   int first=1, first1;              }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;              k=k+1;
   double **dnewm,**doldm;              if (j >= jmax) jmax=j;
   double *xp;              if (j <= jmin) jmin=j;
   double *gp, *gm;              sum=sum+j;
   double **gradg, **trgradg;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   double **mu;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   double age,agelim, cov[NCOVMAX];            }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          }
   int theta;          else{
   char fileresprob[FILENAMELENGTH];            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   char fileresprobcov[FILENAMELENGTH];            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   char fileresprobcor[FILENAMELENGTH];            k=k+1;
             if (j >= jmax) jmax=j;
   double ***varpij;            else if (j <= jmin)jmin=j;
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   strcpy(fileresprob,"prob");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   strcat(fileresprob,fileres);            if(j<0){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {              nberr++;
     printf("Problem with resultfile: %s\n", fileresprob);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }            }
   strcpy(fileresprobcov,"probcov");            sum=sum+j;
   strcat(fileresprobcov,fileres);          }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          jk= j/stepm;
     printf("Problem with resultfile: %s\n", fileresprobcov);          jl= j -jk*stepm;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          ju= j -(jk+1)*stepm;
   }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   strcpy(fileresprobcor,"probcor");            if(jl==0){
   strcat(fileresprobcor,fileres);              dh[mi][i]=jk;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {              bh[mi][i]=0;
     printf("Problem with resultfile: %s\n", fileresprobcor);            }else{ /* We want a negative bias in order to only have interpolation ie
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);                    * at the price of an extra matrix product in likelihood */
   }              dh[mi][i]=jk+1;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              bh[mi][i]=ju;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          }else{
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            if(jl <= -ju){
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              dh[mi][i]=jk;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              bh[mi][i]=jl;       /* bias is positive if real duration
                                     * is higher than the multiple of stepm and negative otherwise.
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");                                   */
   fprintf(ficresprob,"# Age");            }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");            else{
   fprintf(ficresprobcov,"# Age");              dh[mi][i]=jk+1;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");              bh[mi][i]=ju;
   fprintf(ficresprobcov,"# Age");            }
             if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
   for(i=1; i<=nlstate;i++)              bh[mi][i]=ju; /* At least one step */
     for(j=1; j<=(nlstate+ndeath);j++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);            }
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          } /* end if mle */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        }
     }        } /* end wave */
   fprintf(ficresprob,"\n");    }
   fprintf(ficresprobcov,"\n");    jmean=sum/k;
   fprintf(ficresprobcor,"\n");    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   xp=vector(1,npar);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);   }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  /*********** Tricode ****************************/
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  void tricode(int *Tvar, int **nbcode, int imx)
   first=1;  {
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    int cptcode=0;
     exit(0);    cptcoveff=0; 
   }   
   else{    for (k=0; k<maxncov; k++) Ndum[k]=0;
     fprintf(ficgp,"\n# Routine varprob");    for (k=1; k<=7; k++) ncodemax[k]=0;
   }  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     printf("Problem with html file: %s\n", optionfilehtm);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);                                 modality*/ 
     exit(0);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   }        Ndum[ij]++; /*store the modality */
   else{        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     fprintf(fichtm,"\n");                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      }
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   }      }
   
        ij=1; 
   cov[1]=1;      for (i=1; i<=ncodemax[j]; i++) {
   tj=cptcoveff;        for (k=0; k<= maxncov; k++) {
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}          if (Ndum[k] != 0) {
   j1=0;            nbcode[Tvar[j]][ij]=k; 
   for(t=1; t<=tj;t++){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     for(i1=1; i1<=ncodemax[t];i1++){            
       j1++;            ij++;
                }
       if  (cptcovn>0) {          if (ij > ncodemax[j]) break; 
         fprintf(ficresprob, "\n#********** Variable ");        }  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      } 
         fprintf(ficresprob, "**********\n#");    }  
         fprintf(ficresprobcov, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   for (k=0; k< maxncov; k++) Ndum[k]=0;
         fprintf(ficresprobcov, "**********\n#");  
           for (i=1; i<=ncovmodel-2; i++) { 
         fprintf(ficgp, "\n#********** Variable ");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);     ij=Tvar[i];
         fprintf(ficgp, "**********\n#");     Ndum[ij]++;
           }
          
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");   ij=1;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   for (i=1; i<= maxncov; i++) {
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");     if((Ndum[i]!=0) && (i<=ncovcol)){
               Tvaraff[ij]=i; /*For printing */
         fprintf(ficresprobcor, "\n#********** Variable ");           ij++;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);     }
         fprintf(ficgp, "**********\n#");       }
       }   
         cptcoveff=ij-1; /*Number of simple covariates*/
       for (age=bage; age<=fage; age ++){  }
         cov[2]=age;  
         for (k=1; k<=cptcovn;k++) {  /*********** Health Expectancies ****************/
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)  {
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* Health expectancies */
            int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    double age, agelim, hf;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    double ***p3mat,***varhe;
         gp=vector(1,(nlstate)*(nlstate+ndeath));    double **dnewm,**doldm;
         gm=vector(1,(nlstate)*(nlstate+ndeath));    double *xp;
        double **gp, **gm;
         for(theta=1; theta <=npar; theta++){    double ***gradg, ***trgradg;
           for(i=1; i<=npar; i++)    int theta;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  
              varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    xp=vector(1,npar);
              dnewm=matrix(1,nlstate*nlstate,1,npar);
           k=0;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           for(i=1; i<= (nlstate); i++){    
             for(j=1; j<=(nlstate+ndeath);j++){    fprintf(ficreseij,"# Health expectancies\n");
               k=k+1;    fprintf(ficreseij,"# Age");
               gp[k]=pmmij[i][j];    for(i=1; i<=nlstate;i++)
             }      for(j=1; j<=nlstate;j++)
           }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
              fprintf(ficreseij,"\n");
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    }
           k=0;    else  hstepm=estepm;   
           for(i=1; i<=(nlstate); i++){    /* We compute the life expectancy from trapezoids spaced every estepm months
             for(j=1; j<=(nlstate+ndeath);j++){     * This is mainly to measure the difference between two models: for example
               k=k+1;     * if stepm=24 months pijx are given only every 2 years and by summing them
               gm[k]=pmmij[i][j];     * we are calculating an estimate of the Life Expectancy assuming a linear 
             }     * progression in between and thus overestimating or underestimating according
           }     * to the curvature of the survival function. If, for the same date, we 
           * estimate the model with stepm=1 month, we can keep estepm to 24 months
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     * to compare the new estimate of Life expectancy with the same linear 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];       * hypothesis. A more precise result, taking into account a more precise
         }     * curvature will be obtained if estepm is as small as stepm. */
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    /* For example we decided to compute the life expectancy with the smallest unit */
           for(theta=1; theta <=npar; theta++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             trgradg[j][theta]=gradg[theta][j];       nhstepm is the number of hstepm from age to agelim 
               nstepm is the number of stepm from age to agelin. 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);       Look at hpijx to understand the reason of that which relies in memory size
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);       and note for a fixed period like estepm months */
            /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         pmij(pmmij,cov,ncovmodel,x,nlstate);       survival function given by stepm (the optimization length). Unfortunately it
               means that if the survival funtion is printed only each two years of age and if
         k=0;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         for(i=1; i<=(nlstate); i++){       results. So we changed our mind and took the option of the best precision.
           for(j=1; j<=(nlstate+ndeath);j++){    */
             k=k+1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             mu[k][(int) age]=pmmij[i][j];  
           }    agelim=AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      /* nhstepm age range expressed in number of stepm */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
             varpij[i][j][(int)age] = doldm[i][j];      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
         /*printf("\n%d ",(int)age);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      gp=matrix(0,nhstepm,1,nlstate*nlstate);
      }*/      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
         fprintf(ficresprob,"\n%d ",(int)age);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         fprintf(ficresprobcov,"\n%d ",(int)age);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficresprobcor,"\n%d ",(int)age);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
    
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      /* Computing  Variances of health expectancies */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }       for(theta=1; theta <=npar; theta++){
         i=0;        for(i=1; i<=npar; i++){ 
         for (k=1; k<=(nlstate);k++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for (l=1; l<=(nlstate+ndeath);l++){        }
             i=i++;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        cptj=0;
             for (j=1; j<=i;j++){        for(j=1; j<= nlstate; j++){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          for(i=1; i<=nlstate; i++){
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            cptj=cptj+1;
             }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
           }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         }/* end of loop for state */            }
       } /* end of loop for age */          }
         }
       /* Confidence intervalle of pij  */       
       /*       
       fprintf(ficgp,"\nset noparametric;unset label");        for(i=1; i<=npar; i++) 
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);        
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        cptj=0;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        for(j=1; j<= nlstate; j++){
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          for(i=1;i<=nlstate;i++){
       */            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  
       first1=1;              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       for (k1=1; k1<=(nlstate);k1++){            }
         for (l1=1; l1<=(nlstate+ndeath);l1++){          }
           if(l1==k1) continue;        }
           i=(k1-1)*(nlstate+ndeath)+l1;        for(j=1; j<= nlstate*nlstate; j++)
           for (k2=1; k2<=(nlstate);k2++){          for(h=0; h<=nhstepm-1; h++){
             for (l2=1; l2<=(nlstate+ndeath);l2++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
               if(l2==k2) continue;          }
               j=(k2-1)*(nlstate+ndeath)+l2;       } 
               if(j<=i) continue;     
               for (age=bage; age<=fage; age ++){  /* End theta */
                 if ((int)age %5==0){  
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;       for(h=0; h<=nhstepm-1; h++)
                   mu1=mu[i][(int) age]/stepm*YEARM ;        for(j=1; j<=nlstate*nlstate;j++)
                   mu2=mu[j][(int) age]/stepm*YEARM;          for(theta=1; theta <=npar; theta++)
                   /* Computing eigen value of matrix of covariance */            trgradg[h][j][theta]=gradg[h][theta][j];
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));       
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));  
                   if(first1==1){       for(i=1;i<=nlstate*nlstate;i++)
                     first1=0;        for(j=1;j<=nlstate*nlstate;j++)
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);          varhe[i][j][(int)age] =0.;
                   }  
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);       printf("%d|",(int)age);fflush(stdout);
                   /* Eigen vectors */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));       for(h=0;h<=nhstepm-1;h++){
                   v21=sqrt(1.-v11*v11);        for(k=0;k<=nhstepm-1;k++){
                   v12=-v21;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   v22=v11;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   /*printf(fignu*/          for(i=1;i<=nlstate*nlstate;i++)
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            for(j=1;j<=nlstate*nlstate;j++)
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
                   if(first==1){        }
                     first=0;      }
                     fprintf(ficgp,"\nset parametric;set nolabel");      /* Computing expectancies */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);      for(i=1; i<=nlstate;i++)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for(j=1; j<=nlstate;j++)
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);            
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      fprintf(ficreseij,"%3.0f",age );
                     */      cptj=0;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      for(i=1; i<=nlstate;i++)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        for(j=1; j<=nlstate;j++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));          cptj++;
                   }else{          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                     first=0;        }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      fprintf(ficreseij,"\n");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);     
                     /*      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                     */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    printf("\n");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));    fprintf(ficlog,"\n");
                   }/* if first */  
                 } /* age mod 5 */    free_vector(xp,1,npar);
               } /* end loop age */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
               first=1;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
             } /*l12 */  }
           } /* k12 */  
         } /*l1 */  /************ Variance ******************/
       }/* k1 */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
     } /* loop covariates */  {
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    /* Variance of health expectancies */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    /* double **newm;*/
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    double **dnewm,**doldm;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double **dnewmp,**doldmp;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int i, j, nhstepm, hstepm, h, nstepm ;
   }    int k, cptcode;
   free_vector(xp,1,npar);    double *xp;
   fclose(ficresprob);    double **gp, **gm;  /* for var eij */
   fclose(ficresprobcov);    double ***gradg, ***trgradg; /*for var eij */
   fclose(ficresprobcor);    double **gradgp, **trgradgp; /* for var p point j */
   fclose(ficgp);    double *gpp, *gmp; /* for var p point j */
   fclose(fichtm);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 }    double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
 /******************* Printing html file ***********/    int theta;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    char digit[4];
                   int lastpass, int stepm, int weightopt, char model[],\    char digitp[25];
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\    char fileresprobmorprev[FILENAMELENGTH];
                   double jprev1, double mprev1,double anprev1, \  
                   double jprev2, double mprev2,double anprev2){    if(popbased==1){
   int jj1, k1, i1, cpt;      if(mobilav!=0)
   /*char optionfilehtm[FILENAMELENGTH];*/        strcpy(digitp,"-populbased-mobilav-");
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      else strcpy(digitp,"-populbased-nomobil-");
     printf("Problem with %s \n",optionfilehtm), exit(0);    }
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    else 
   }      strcpy(digitp,"-stablbased-");
   
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    if (mobilav!=0) {
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  - Life expectancies by age and initial health status (estepm=%2d months):        printf(" Error in movingaverage mobilav=%d\n",mobilav);
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    }
   
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
  m=cptcoveff;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  jj1=0;    strcat(fileresprobmorprev,fileres);
  for(k1=1; k1<=m;k1++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
    for(i1=1; i1<=ncodemax[k1];i1++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
      jj1++;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      if (cptcovn > 0) {    }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
        for (cpt=1; cpt<=cptcoveff;cpt++)    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      /* Pij */      fprintf(ficresprobmorprev," p.%-d SE",j);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      for(i=1; i<=nlstate;i++)
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      /* Quasi-incidences */    }  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    fprintf(ficresprobmorprev,"\n");
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    fprintf(ficgp,"\n# Routine varevsij");
        /* Stable prevalence in each health state */    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
        for(cpt=1; cpt<nlstate;cpt++){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  /*   } */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        }  
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    fprintf(ficresvij,"# Age");
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    for(i=1; i<=nlstate;i++)
      }      for(j=1; j<=nlstate;j++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 health expectancies in states (1) and (2): e%s%d.png<br>    fprintf(ficresvij,"\n");
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
    } /* end i1 */    xp=vector(1,npar);
  }/* End k1 */    dnewm=matrix(1,nlstate,1,npar);
  fprintf(fichtm,"</ul>");    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n  
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    gpp=vector(nlstate+1,nlstate+ndeath);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    gmp=vector(nlstate+1,nlstate+ndeath);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    if(estepm < stepm){
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
  if(popforecast==1) fprintf(fichtm,"\n    else  hstepm=estepm;   
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    /* For example we decided to compute the life expectancy with the smallest unit */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         <br>",fileres,fileres,fileres,fileres);       nhstepm is the number of hstepm from age to agelim 
  else       nstepm is the number of stepm from age to agelin. 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);       Look at hpijx to understand the reason of that which relies in memory size
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  m=cptcoveff;       survival function given by stepm (the optimization length). Unfortunately it
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  jj1=0;       results. So we changed our mind and took the option of the best precision.
  for(k1=1; k1<=m;k1++){    */
    for(i1=1; i1<=ncodemax[k1];i1++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      jj1++;    agelim = AGESUP;
      if (cptcovn > 0) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        for (cpt=1; cpt<=cptcoveff;cpt++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      }      gp=matrix(0,nhstepm,1,nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {      gm=matrix(0,nhstepm,1,nlstate);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>  
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(theta=1; theta <=npar; theta++){
      }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
    } /* end i1 */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
  }/* End k1 */        }
  fprintf(fichtm,"</ul>");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 fclose(fichtm);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 }  
         if (popbased==1) {
 /******************* Gnuplot file **************/          if(mobilav ==0){
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          }else{ /* mobilav */ 
   int ng;            for(i=1; i<=nlstate;i++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              prlim[i][i]=mobaverage[(int)age][i][ij];
     printf("Problem with file %s",optionfilegnuplot);          }
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);        }
   }    
         for(j=1; j<= nlstate; j++){
 #ifdef windows          for(h=0; h<=nhstepm; h++){
     fprintf(ficgp,"cd \"%s\" \n",pathc);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 #endif              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 m=pow(2,cptcoveff);          }
          }
  /* 1eme*/        /* This for computing probability of death (h=1 means
   for (cpt=1; cpt<= nlstate ; cpt ++) {           computed over hstepm matrices product = hstepm*stepm months) 
    for (k1=1; k1<= m ; k1 ++) {           as a weighted average of prlim.
         */
 #ifdef windows        for(j=nlstate+1;j<=nlstate+ndeath;j++){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
 #endif        }    
 #ifdef unix        /* end probability of death */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 #endif          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 for (i=1; i<= nlstate ; i ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if (popbased==1) {
 }          if(mobilav ==0){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            for(i=1; i<=nlstate;i++)
     for (i=1; i<= nlstate ; i ++) {              prlim[i][i]=probs[(int)age][i][ij];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }else{ /* mobilav */ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(i=1; i<=nlstate;i++)
 }              prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          }
      for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<= nlstate; j++){
 }            for(h=0; h<=nhstepm; h++){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 #ifdef unix              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          }
 #endif        }
    }        /* This for computing probability of death (h=1 means
   }           computed over hstepm matrices product = hstepm*stepm months) 
   /*2 eme*/           as a weighted average of prlim.
         */
   for (k1=1; k1<= m ; k1 ++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
            }    
     for (i=1; i<= nlstate+1 ; i ++) {        /* end probability of death */
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<= nlstate; j++) /* vareij */
       for (j=1; j<= nlstate+1 ; j ++) {          for(h=0; h<=nhstepm; h++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        }
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      } /* End theta */
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      for(h=0; h<=nhstepm; h++) /* veij */
       for (j=1; j<= nlstate+1 ; j ++) {        for(j=1; j<=nlstate;j++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for(theta=1; theta <=npar; theta++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");            trgradg[h][j][theta]=gradg[h][theta][j];
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       else fprintf(ficgp,"\" t\"\" w l 0,");        for(theta=1; theta <=npar; theta++)
     }          trgradgp[j][theta]=gradgp[theta][j];
   }    
    
   /*3eme*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
   for (k1=1; k1<= m ; k1 ++) {        for(j=1;j<=nlstate;j++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {          vareij[i][j][(int)age] =0.;
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      for(h=0;h<=nhstepm;h++){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        for(k=0;k<=nhstepm;k++){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          for(i=1;i<=nlstate;i++)
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            for(j=1;j<=nlstate;j++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        }
       }
 */    
       for (i=1; i< nlstate ; i ++) {      /* pptj */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   }          varppt[j][i]=doldmp[j][i];
        /* end ppptj */
   /* CV preval stat */      /*  x centered again */
     for (k1=1; k1<= m ; k1 ++) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     for (cpt=1; cpt<nlstate ; cpt ++) {      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       k=3;   
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      if (popbased==1) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++)            prlim[i][i]=probs[(int)age][i][ij];
         fprintf(ficgp,"+$%d",k+i+1);        }else{ /* mobilav */ 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          for(i=1; i<=nlstate;i++)
                  prlim[i][i]=mobaverage[(int)age][i][ij];
       l=3+(nlstate+ndeath)*cpt;        }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      }
       for (i=1; i< nlstate ; i ++) {               
         l=3+(nlstate+ndeath)*cpt;      /* This for computing probability of death (h=1 means
         fprintf(ficgp,"+$%d",l+i+1);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       }         as a weighted average of prlim.
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        */
     }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   /* proba elementaires */      }    
    for(i=1,jk=1; i <=nlstate; i++){      /* end probability of death */
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         for(j=1; j <=ncovmodel; j++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           jk++;        for(i=1; i<=nlstate;i++){
           fprintf(ficgp,"\n");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }        }
       }      } 
     }      fprintf(ficresprobmorprev,"\n");
    }  
       fprintf(ficresvij,"%.0f ",age );
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      for(i=1; i<=nlstate;i++)
      for(jk=1; jk <=m; jk++) {        for(j=1; j<=nlstate;j++){
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
        if (ng==2)        }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      fprintf(ficresvij,"\n");
        else      free_matrix(gp,0,nhstepm,1,nlstate);
          fprintf(ficgp,"\nset title \"Probability\"\n");      free_matrix(gm,0,nhstepm,1,nlstate);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        i=1;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        for(k2=1; k2<=nlstate; k2++) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          k3=i;    } /* End age */
          for(k=1; k<=(nlstate+ndeath); k++) {    free_vector(gpp,nlstate+1,nlstate+ndeath);
            if (k != k2){    free_vector(gmp,nlstate+1,nlstate+ndeath);
              if(ng==2)    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
              else    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
              ij=1;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
              for(j=3; j <=ncovmodel; j++) {  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                  ij++;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
                else    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
              }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
              fprintf(ficgp,")/(1");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                */
              for(k1=1; k1 <=nlstate; k1++){    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                ij=1;  
                for(j=3; j <=ncovmodel; j++){    free_vector(xp,1,npar);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_matrix(doldm,1,nlstate,1,nlstate);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_matrix(dnewm,1,nlstate,1,npar);
                    ij++;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                  }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                  else    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                }    fclose(ficresprobmorprev);
                fprintf(ficgp,")");    fflush(ficgp);
              }    fflush(fichtm); 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  }  /* end varevsij */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;  /************ Variance of prevlim ******************/
            }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
          } /* end k */  {
        } /* end k2 */    /* Variance of prevalence limit */
      } /* end jk */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
    } /* end ng */    double **newm;
    fclose(ficgp);    double **dnewm,**doldm;
 }  /* end gnuplot */    int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
 /*************** Moving average **************/    double *gp, *gm;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    double **gradg, **trgradg;
     double age,agelim;
   int i, cpt, cptcod;    int theta;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)     
       for (i=1; i<=nlstate;i++)    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    fprintf(ficresvpl,"# Age");
           mobaverage[(int)agedeb][i][cptcod]=0.;    for(i=1; i<=nlstate;i++)
            fprintf(ficresvpl," %1d-%1d",i,i);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    fprintf(ficresvpl,"\n");
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    xp=vector(1,npar);
           for (cpt=0;cpt<=4;cpt++){    dnewm=matrix(1,nlstate,1,npar);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    doldm=matrix(1,nlstate,1,nlstate);
           }    
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    hstepm=1*YEARM; /* Every year of age */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       }    agelim = AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 }      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
 /************** Forecasting ******************/      gp=vector(1,nlstate);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      gm=vector(1,nlstate);
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for(theta=1; theta <=npar; theta++){
   int *popage;        for(i=1; i<=npar; i++){ /* Computes gradient */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double *popeffectif,*popcount;        }
   double ***p3mat;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char fileresf[FILENAMELENGTH];        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
  agelim=AGESUP;      
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
            gm[i] = prlim[i][i];
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);        for(i=1;i<=nlstate;i++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     printf("Problem with forecast resultfile: %s\n", fileresf);      } /* End theta */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  
   }      trgradg =matrix(1,nlstate,1,npar);
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          trgradg[j][theta]=gradg[theta][j];
   
   if (mobilav==1) {      for(i=1;i<=nlstate;i++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        varpl[i][(int)age] =0.;
     movingaverage(agedeb, fage, ageminpar, mobaverage);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   if (stepm<=12) stepsize=1;  
        fprintf(ficresvpl,"%.0f ",age );
   agelim=AGESUP;      for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   hstepm=1;      fprintf(ficresvpl,"\n");
   hstepm=hstepm/stepm;      free_vector(gp,1,nlstate);
   yp1=modf(dateintmean,&yp);      free_vector(gm,1,nlstate);
   anprojmean=yp;      free_matrix(gradg,1,npar,1,nlstate);
   yp2=modf((yp1*12),&yp);      free_matrix(trgradg,1,nlstate,1,npar);
   mprojmean=yp;    } /* End age */
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;    free_vector(xp,1,npar);
   if(jprojmean==0) jprojmean=1;    free_matrix(doldm,1,nlstate,1,npar);
   if(mprojmean==0) jprojmean=1;    free_matrix(dnewm,1,nlstate,1,nlstate);
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  }
    
   for(cptcov=1;cptcov<=i2;cptcov++){  /************ Variance of one-step probabilities  ******************/
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
       k=k+1;  {
       fprintf(ficresf,"\n#******");    int i, j=0,  i1, k1, l1, t, tj;
       for(j=1;j<=cptcoveff;j++) {    int k2, l2, j1,  z1;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int k=0,l, cptcode;
       }    int first=1, first1;
       fprintf(ficresf,"******\n");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       fprintf(ficresf,"# StartingAge FinalAge");    double **dnewm,**doldm;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double *xp;
          double *gp, *gm;
          double **gradg, **trgradg;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    double **mu;
         fprintf(ficresf,"\n");    double age,agelim, cov[NCOVMAX];
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    char fileresprob[FILENAMELENGTH];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    char fileresprobcov[FILENAMELENGTH];
           nhstepm = nhstepm/hstepm;    char fileresprobcor[FILENAMELENGTH];
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***varpij;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      strcpy(fileresprob,"prob"); 
            strcat(fileresprob,fileres);
           for (h=0; h<=nhstepm; h++){    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
             if (h==(int) (calagedate+YEARM*cpt)) {      printf("Problem with resultfile: %s\n", fileresprob);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
             }    }
             for(j=1; j<=nlstate+ndeath;j++) {    strcpy(fileresprobcov,"probcov"); 
               kk1=0.;kk2=0;    strcat(fileresprobcov,fileres);
               for(i=1; i<=nlstate;i++) {                  if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                 if (mobilav==1)      printf("Problem with resultfile: %s\n", fileresprobcov);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    strcpy(fileresprobcor,"probcor"); 
                 }    strcat(fileresprobcor,fileres);
                    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
               }      printf("Problem with resultfile: %s\n", fileresprobcor);
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                 fprintf(ficresf," %.3f", kk1);    }
                            printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }    
     }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   }    fprintf(ficresprob,"# Age");
            fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   fclose(ficresf);    fprintf(ficresprobcov,"# Age");
 }  
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    for(i=1; i<=nlstate;i++)
        for(j=1; j<=(nlstate+ndeath);j++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   int *popage;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   double *popeffectif,*popcount;      }  
   double ***p3mat,***tabpop,***tabpopprev;   /* fprintf(ficresprob,"\n");
   char filerespop[FILENAMELENGTH];    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   xp=vector(1,npar);
   agelim=AGESUP;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      first=1;
      fprintf(ficgp,"\n# Routine varprob");
   strcpy(filerespop,"pop");    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   strcat(filerespop,fileres);    fprintf(fichtm,"\n");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   }    file %s<br>\n",optionfilehtmcov);
   printf("Computing forecasting: result on file '%s' \n", filerespop);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   if (mobilav==1) {  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  standard deviations wide on each axis. <br>\
     movingaverage(agedeb, fage, ageminpar, mobaverage);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    cov[1]=1;
      tj=cptcoveff;
   agelim=AGESUP;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      j1=0;
   hstepm=1;    for(t=1; t<=tj;t++){
   hstepm=hstepm/stepm;      for(i1=1; i1<=ncodemax[t];i1++){ 
          j1++;
   if (popforecast==1) {        if  (cptcovn>0) {
     if((ficpop=fopen(popfile,"r"))==NULL) {          fprintf(ficresprob, "\n#********** Variable "); 
       printf("Problem with population file : %s\n",popfile);exit(0);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          fprintf(ficresprob, "**********\n#\n");
     }          fprintf(ficresprobcov, "\n#********** Variable "); 
     popage=ivector(0,AGESUP);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     popeffectif=vector(0,AGESUP);          fprintf(ficresprobcov, "**********\n#\n");
     popcount=vector(0,AGESUP);          
              fprintf(ficgp, "\n#********** Variable "); 
     i=1;            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          fprintf(ficgp, "**********\n#\n");
              
     imx=i;          
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   for(cptcov=1;cptcov<=i2;cptcov++){          
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          fprintf(ficresprobcor, "\n#********** Variable ");    
       k=k+1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficrespop,"\n#******");          fprintf(ficresprobcor, "**********\n#");    
       for(j=1;j<=cptcoveff;j++) {        }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        
       }        for (age=bage; age<=fage; age ++){ 
       fprintf(ficrespop,"******\n");          cov[2]=age;
       fprintf(ficrespop,"# Age");          for (k=1; k<=cptcovn;k++) {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       if (popforecast==1)  fprintf(ficrespop," [Population]");          }
                for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (cpt=0; cpt<=0;cpt++) {          for (k=1; k<=cptcovprod;k++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           nhstepm = nhstepm/hstepm;          gp=vector(1,(nlstate)*(nlstate+ndeath));
                    gm=vector(1,(nlstate)*(nlstate+ndeath));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
           oldm=oldms;savm=savms;          for(theta=1; theta <=npar; theta++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(i=1; i<=npar; i++)
                      xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           for (h=0; h<=nhstepm; h++){            
             if (h==(int) (calagedate+YEARM*cpt)) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            
             }            k=0;
             for(j=1; j<=nlstate+ndeath;j++) {            for(i=1; i<= (nlstate); i++){
               kk1=0.;kk2=0;              for(j=1; j<=(nlstate+ndeath);j++){
               for(i=1; i<=nlstate;i++) {                              k=k+1;
                 if (mobilav==1)                gp[k]=pmmij[i][j];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              }
                 else {            }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            
                 }            for(i=1; i<=npar; i++)
               }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
               if (h==(int)(calagedate+12*cpt)){      
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   /*fprintf(ficrespop," %.3f", kk1);            k=0;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            for(i=1; i<=(nlstate); i++){
               }              for(j=1; j<=(nlstate+ndeath);j++){
             }                k=k+1;
             for(i=1; i<=nlstate;i++){                gm[k]=pmmij[i][j];
               kk1=0.;              }
                 for(j=1; j<=nlstate;j++){            }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];       
                 }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
             }          }
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            for(theta=1; theta <=npar; theta++)
           }              trgradg[j][theta]=gradg[theta][j];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
         }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
            free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   /******/          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          pmij(pmmij,cov,ncovmodel,x,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          
           nhstepm = nhstepm/hstepm;          k=0;
                    for(i=1; i<=(nlstate); i++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(j=1; j<=(nlstate+ndeath);j++){
           oldm=oldms;savm=savms;              k=k+1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                mu[k][(int) age]=pmmij[i][j];
           for (h=0; h<=nhstepm; h++){            }
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
             for(j=1; j<=nlstate+ndeath;j++) {              varpij[i][j][(int)age] = doldm[i][j];
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                        /*printf("\n%d ",(int)age);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }            }*/
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresprob,"\n%d ",(int)age);
         }          fprintf(ficresprobcov,"\n%d ",(int)age);
       }          fprintf(ficresprobcor,"\n%d ",(int)age);
    }  
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
              fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   if (popforecast==1) {            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     free_ivector(popage,0,AGESUP);          }
     free_vector(popeffectif,0,AGESUP);          i=0;
     free_vector(popcount,0,AGESUP);          for (k=1; k<=(nlstate);k++){
   }            for (l=1; l<=(nlstate+ndeath);l++){ 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              i=i++;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   fclose(ficrespop);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 }              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 /***********************************************/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 /**************** Main Program *****************/              }
 /***********************************************/            }
           }/* end of loop for state */
 int main(int argc, char *argv[])        } /* end of loop for age */
 {  
         /* Confidence intervalle of pij  */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        /*
   double agedeb, agefin,hf;          fprintf(ficgp,"\nset noparametric;unset label");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   double fret;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   double **xi,tmp,delta;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   double dum; /* Dummy variable */          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   double ***p3mat;        */
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];        first1=1;
   int firstobs=1, lastobs=10;        for (k2=1; k2<=(nlstate);k2++){
   int sdeb, sfin; /* Status at beginning and end */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   int c,  h , cpt,l;            if(l2==k2) continue;
   int ju,jl, mi;            j=(k2-1)*(nlstate+ndeath)+l2;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            for (k1=1; k1<=(nlstate);k1++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   int mobilav=0,popforecast=0;                if(l1==k1) continue;
   int hstepm, nhstepm;                i=(k1-1)*(nlstate+ndeath)+l1;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
   double bage, fage, age, agelim, agebase;                  if ((int)age %5==0){
   double ftolpl=FTOL;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   double **prlim;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   double *severity;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   double ***param; /* Matrix of parameters */                    mu1=mu[i][(int) age]/stepm*YEARM ;
   double  *p;                    mu2=mu[j][(int) age]/stepm*YEARM;
   double **matcov; /* Matrix of covariance */                    c12=cv12/sqrt(v1*v2);
   double ***delti3; /* Scale */                    /* Computing eigen value of matrix of covariance */
   double *delti; /* Scale */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   double ***eij, ***vareij;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   double **varpl; /* Variances of prevalence limits by age */                    /* Eigen vectors */
   double *epj, vepp;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   double kk1, kk2;                    /*v21=sqrt(1.-v11*v11); *//* error */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;                    v21=(lc1-v1)/cv12*v11;
                      v12=-v21;
                     v22=v11;
   char *alph[]={"a","a","b","c","d","e"}, str[4];                    tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
   char z[1]="c", occ;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 #include <sys/time.h>                    }
 #include <time.h>                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                    /*printf(fignu*/
                      /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   /* long total_usecs;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   struct timeval start_time, end_time;                    if(first==1){
                        first=0;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                      fprintf(ficgp,"\nset parametric;unset label");
   getcwd(pathcd, size);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   printf("\n%s",version);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   if(argc <=1){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     printf("\nEnter the parameter file name: ");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     scanf("%s",pathtot);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   else{                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     strcpy(pathtot,argv[1]);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /*cygwin_split_path(pathtot,path,optionfile);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /* cutv(path,optionfile,pathtot,'\\');*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);                    }else{
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                      first=0;
   chdir(path);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   replace(pathc,path);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 /*-------- arguments in the command line --------*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   /* Log file */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   strcat(filelog, optionfilefiname);                    }/* if first */
   strcat(filelog,".log");    /* */                  } /* age mod 5 */
   if((ficlog=fopen(filelog,"w"))==NULL)    {                } /* end loop age */
     printf("Problem with logfile %s\n",filelog);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     goto end;                first=1;
   }              } /*l12 */
   fprintf(ficlog,"Log filename:%s\n",filelog);            } /* k12 */
   fprintf(ficlog,"\n%s",version);          } /*l1 */
   fprintf(ficlog,"\nEnter the parameter file name: ");        }/* k1 */
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      } /* loop covariates */
   fflush(ficlog);    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   /* */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   strcpy(fileres,"r");    free_vector(xp,1,npar);
   strcat(fileres, optionfilefiname);    fclose(ficresprob);
   strcat(fileres,".txt");    /* Other files have txt extension */    fclose(ficresprobcov);
     fclose(ficresprobcor);
   /*---------arguments file --------*/    fflush(ficgp);
     fflush(fichtmcov);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  }
     printf("Problem with optionfile %s\n",optionfile);  
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);  
     goto end;  /******************* Printing html file ***********/
   }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   strcpy(filereso,"o");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   strcat(filereso,fileres);                    int popforecast, int estepm ,\
   if((ficparo=fopen(filereso,"w"))==NULL) {                    double jprev1, double mprev1,double anprev1, \
     printf("Problem with Output resultfile: %s\n", filereso);                    double jprev2, double mprev2,double anprev2){
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    int jj1, k1, i1, cpt;
     goto end;  
   }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   /* Reads comments: lines beginning with '#' */             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   while((c=getc(ficpar))=='#' && c!= EOF){     fprintf(fichtm,"\
     ungetc(c,ficpar);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     fgets(line, MAXLINE, ficpar);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     puts(line);     fprintf(fichtm,"\
     fputs(line,ficparo);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   ungetc(c,ficpar);     fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);     <a href=\"%s\">%s</a> <br>\n</li>",
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);   m=cptcoveff;
     puts(line);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     fputs(line,ficparo);  
   }   jj1=0;
   ungetc(c,ficpar);   for(k1=1; k1<=m;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
           jj1++;
   covar=matrix(0,NCOVMAX,1,n);       if (cptcovn > 0) {
   cptcovn=0;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   ncovmodel=2+cptcovn;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */       }
         /* Pij */
   /* Read guess parameters */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   /* Reads comments: lines beginning with '#' */  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   while((c=getc(ficpar))=='#' && c!= EOF){       /* Quasi-incidences */
     ungetc(c,ficpar);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     fgets(line, MAXLINE, ficpar);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     puts(line);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     fputs(line,ficparo);         /* Stable prevalence in each health state */
   }         for(cpt=1; cpt<nlstate;cpt++){
   ungetc(c,ficpar);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
    <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);         }
     for(i=1; i <=nlstate; i++)       for(cpt=1; cpt<=nlstate;cpt++) {
     for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
       fscanf(ficpar,"%1d%1d",&i1,&j1);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       fprintf(ficparo,"%1d%1d",i1,j1);       }
       if(mle==1)     } /* end i1 */
         printf("%1d%1d",i,j);   }/* End k1 */
       fprintf(ficlog,"%1d%1d",i,j);   fprintf(fichtm,"</ul>");
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);  
         if(mle==1){   fprintf(fichtm,"\
           printf(" %lf",param[i][j][k]);  \n<br><li><h4> Result files (second order: variances)</h4>\n\
           fprintf(ficlog," %lf",param[i][j][k]);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
         }  
         else   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficlog," %lf",param[i][j][k]);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
         fprintf(ficparo," %lf",param[i][j][k]);   fprintf(fichtm,"\
       }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fscanf(ficpar,"\n");           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       if(mle==1)  
         printf("\n");   fprintf(fichtm,"\
       fprintf(ficlog,"\n");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficparo,"\n");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     }   fprintf(fichtm,"\
     - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
   p=param[1][1];   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   /* Reads comments: lines beginning with '#' */   fprintf(fichtm,"\
   while((c=getc(ficpar))=='#' && c!= EOF){   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     ungetc(c,ficpar);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /*  if(popforecast==1) fprintf(fichtm,"\n */
     fputs(line,ficparo);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   ungetc(c,ficpar);  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */   fflush(fichtm);
   for(i=1; i <=nlstate; i++){   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);   m=cptcoveff;
       printf("%1d%1d",i,j);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){   jj1=0;
         fscanf(ficpar,"%le",&delti3[i][j][k]);   for(k1=1; k1<=m;k1++){
         printf(" %le",delti3[i][j][k]);     for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(ficparo," %le",delti3[i][j][k]);       jj1++;
       }       if (cptcovn > 0) {
       fscanf(ficpar,"\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       printf("\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
       fprintf(ficparo,"\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   }       }
   delti=delti3[1][1];       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   /* Reads comments: lines beginning with '#' */  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     ungetc(c,ficpar);       }
     fgets(line, MAXLINE, ficpar);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     puts(line);  health expectancies in states (1) and (2): %s%d.png<br>\
     fputs(line,ficparo);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   }     } /* end i1 */
   ungetc(c,ficpar);   }/* End k1 */
     fprintf(fichtm,"</ul>");
   matcov=matrix(1,npar,1,npar);   fflush(fichtm);
   for(i=1; i <=npar; i++){  }
     fscanf(ficpar,"%s",&str);  
     if(mle==1)  /******************* Gnuplot file **************/
       printf("%s",str);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     fprintf(ficlog,"%s",str);  
     fprintf(ficparo,"%s",str);    char dirfileres[132],optfileres[132];
     for(j=1; j <=i; j++){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       fscanf(ficpar," %le",&matcov[i][j]);    int ng;
       if(mle==1){  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
         printf(" %.5le",matcov[i][j]);  /*     printf("Problem with file %s",optionfilegnuplot); */
         fprintf(ficlog," %.5le",matcov[i][j]);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       }  /*   } */
       else  
         fprintf(ficlog," %.5le",matcov[i][j]);    /*#ifdef windows */
       fprintf(ficparo," %.5le",matcov[i][j]);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     }      /*#endif */
     fscanf(ficpar,"\n");    m=pow(2,cptcoveff);
     if(mle==1)  
       printf("\n");    strcpy(dirfileres,optionfilefiname);
     fprintf(ficlog,"\n");    strcpy(optfileres,"vpl");
     fprintf(ficparo,"\n");   /* 1eme*/
   }    for (cpt=1; cpt<= nlstate ; cpt ++) {
   for(i=1; i <=npar; i++)     for (k1=1; k1<= m ; k1 ++) {
     for(j=i+1;j<=npar;j++)       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       matcov[i][j]=matcov[j][i];       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \n\
   if(mle==1)  set ylabel \"Probability\" \n\
     printf("\n");  set ter png small\n\
   fprintf(ficlog,"\n");  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
     /*-------- Rewriting paramater file ----------*/       for (i=1; i<= nlstate ; i ++) {
      strcpy(rfileres,"r");    /* "Rparameterfile */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
      strcat(rfileres,".");    /* */       }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     if((ficres =fopen(rfileres,"w"))==NULL) {       for (i=1; i<= nlstate ; i ++) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       } 
     fprintf(ficres,"#%s\n",version);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
           for (i=1; i<= nlstate ; i ++) {
     /*-------- data file ----------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     if((fic=fopen(datafile,"r"))==NULL)    {         else fprintf(ficgp," \%%*lf (\%%*lf)");
       printf("Problem with datafile: %s\n", datafile);goto end;       }  
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     }     }
     }
     n= lastobs;    /*2 eme*/
     severity = vector(1,maxwav);    
     outcome=imatrix(1,maxwav+1,1,n);    for (k1=1; k1<= m ; k1 ++) { 
     num=ivector(1,n);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     moisnais=vector(1,n);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     annais=vector(1,n);      
     moisdc=vector(1,n);      for (i=1; i<= nlstate+1 ; i ++) {
     andc=vector(1,n);        k=2*i;
     agedc=vector(1,n);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     cod=ivector(1,n);        for (j=1; j<= nlstate+1 ; j ++) {
     weight=vector(1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          else fprintf(ficgp," \%%*lf (\%%*lf)");
     mint=matrix(1,maxwav,1,n);        }   
     anint=matrix(1,maxwav,1,n);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     s=imatrix(1,maxwav+1,1,n);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     adl=imatrix(1,maxwav+1,1,n);            fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     tab=ivector(1,NCOVMAX);        for (j=1; j<= nlstate+1 ; j ++) {
     ncodemax=ivector(1,8);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
     i=1;        }   
     while (fgets(line, MAXLINE, fic) != NULL)    {        fprintf(ficgp,"\" t\"\" w l 0,");
       if ((i >= firstobs) && (i <=lastobs)) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                for (j=1; j<= nlstate+1 ; j ++) {
         for (j=maxwav;j>=1;j--){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          else fprintf(ficgp," \%%*lf (\%%*lf)");
           strcpy(line,stra);        }   
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        else fprintf(ficgp,"\" t\"\" w l 0,");
         }      }
            }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    /*3eme*/
     
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (k1=1; k1<= m ; k1 ++) { 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         for (j=ncovcol;j>=1;j--){        fprintf(ficgp,"set ter png small\n\
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  set size 0.65,0.65\n\
         }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         num[i]=atol(stra);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         i=i+1;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       }          
     }        */
     /* printf("ii=%d", ij);        for (i=1; i< nlstate ; i ++) {
        scanf("%d",i);*/          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   imx=i-1; /* Number of individuals */          
         } 
   /* for (i=1; i<=imx; i++){      }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    /* CV preval stable (period) */
     }*/    for (k1=1; k1<= m ; k1 ++) { 
    /*  for (i=1; i<=imx; i++){      for (cpt=1; cpt<=nlstate ; cpt ++) {
      if (s[4][i]==9)  s[4][i]=-1;        k=3;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    set ter png small\nset size 0.65,0.65\n\
   /* Calculation of the number of parameter from char model*/  unset log y\n\
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   Tprod=ivector(1,15);        
   Tvaraff=ivector(1,15);        for (i=1; i< nlstate ; i ++)
   Tvard=imatrix(1,15,1,2);          fprintf(ficgp,"+$%d",k+i+1);
   Tage=ivector(1,15);              fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
            
   if (strlen(model) >1){        l=3+(nlstate+ndeath)*cpt;
     j=0, j1=0, k1=1, k2=1;        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     j=nbocc(model,'+');        for (i=1; i< nlstate ; i ++) {
     j1=nbocc(model,'*');          l=3+(nlstate+ndeath)*cpt;
     cptcovn=j+1;          fprintf(ficgp,"+$%d",l+i+1);
     cptcovprod=j1;        }
            fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     strcpy(modelsav,model);      } 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    }  
       printf("Error. Non available option model=%s ",model);    
       fprintf(ficlog,"Error. Non available option model=%s ",model);    /* proba elementaires */
       goto end;    for(i=1,jk=1; i <=nlstate; i++){
     }      for(k=1; k <=(nlstate+ndeath); k++){
            if (k != i) {
     for(i=(j+1); i>=1;i--){          for(j=1; j <=ncovmodel; j++){
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */            jk++; 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            fprintf(ficgp,"\n");
       /*scanf("%d",i);*/          }
       if (strchr(strb,'*')) {  /* Model includes a product */        }
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      }
         if (strcmp(strc,"age")==0) { /* Vn*age */     }
           cptcovprod--;  
           cutv(strb,stre,strd,'V');     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/       for(jk=1; jk <=m; jk++) {
           cptcovage++;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
             Tage[cptcovage]=i;         if (ng==2)
             /*printf("stre=%s ", stre);*/           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
         }         else
         else if (strcmp(strd,"age")==0) { /* or age*Vn */           fprintf(ficgp,"\nset title \"Probability\"\n");
           cptcovprod--;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           cutv(strb,stre,strc,'V');         i=1;
           Tvar[i]=atoi(stre);         for(k2=1; k2<=nlstate; k2++) {
           cptcovage++;           k3=i;
           Tage[cptcovage]=i;           for(k=1; k<=(nlstate+ndeath); k++) {
         }             if (k != k2){
         else {  /* Age is not in the model */               if(ng==2)
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           Tvar[i]=ncovcol+k1;               else
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           Tprod[k1]=i;               ij=1;
           Tvard[k1][1]=atoi(strc); /* m*/               for(j=3; j <=ncovmodel; j++) {
           Tvard[k1][2]=atoi(stre); /* n */                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           Tvar[cptcovn+k2]=Tvard[k1][1];                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                   ij++;
           for (k=1; k<=lastobs;k++)                 }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                 else
           k1++;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           k2=k2+2;               }
         }               fprintf(ficgp,")/(1");
       }               
       else { /* no more sum */               for(k1=1; k1 <=nlstate; k1++){   
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
        /*  scanf("%d",i);*/                 ij=1;
       cutv(strd,strc,strb,'V');                 for(j=3; j <=ncovmodel; j++){
       Tvar[i]=atoi(strc);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       strcpy(modelsav,stra);                       ij++;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                   }
         scanf("%d",i);*/                   else
     } /* end of loop + */                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   } /* end model */                 }
                   fprintf(ficgp,")");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);               }
   printf("cptcovprod=%d ", cptcovprod);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   scanf("%d ",i);*/               i=i+ncovmodel;
     fclose(fic);             }
            } /* end k */
     /*  if(mle==1){*/         } /* end k2 */
     if (weightopt != 1) { /* Maximisation without weights*/       } /* end jk */
       for(i=1;i<=n;i++) weight[i]=1.0;     } /* end ng */
     }     fflush(ficgp); 
     /*-calculation of age at interview from date of interview and age at death -*/  }  /* end gnuplot */
     agev=matrix(1,maxwav,1,imx);  
   
     for (i=1; i<=imx; i++) {  /*************** Moving average **************/
       for(m=2; (m<= maxwav); m++) {  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;    int i, cpt, cptcod;
          s[m][i]=-1;    int modcovmax =1;
        }    int mobilavrange, mob;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    double age;
       }  
     }    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     for (i=1; i<=imx; i++)  {    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
         if(s[m][i] >0){      if(mobilav==1) mobilavrange=5; /* default */
           if (s[m][i] >= nlstate+1) {      else mobilavrange=mobilav;
             if(agedc[i]>0)      for (age=bage; age<=fage; age++)
               if(moisdc[i]!=99 && andc[i]!=9999)        for (i=1; i<=nlstate;i++)
                 agev[m][i]=agedc[i];          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
            else {      /* We keep the original values on the extreme ages bage, fage and for 
               if (andc[i]!=9999){         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
               printf("Warning negative age at death: %d line:%d\n",num[i],i);         we use a 5 terms etc. until the borders are no more concerned. 
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);      */ 
               agev[m][i]=-1;      for (mob=3;mob <=mobilavrange;mob=mob+2){
               }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
             }          for (i=1; i<=nlstate;i++){
           }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           else if(s[m][i] !=9){ /* Should no more exist */              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
             if(mint[m][i]==99 || anint[m][i]==9999)                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
               agev[m][i]=1;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
             else if(agev[m][i] <agemin){                }
               agemin=agev[m][i];              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            }
             }          }
             else if(agev[m][i] >agemax){        }/* end age */
               agemax=agev[m][i];      }/* end mob */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    }else return -1;
             }    return 0;
             /*agev[m][i]=anint[m][i]-annais[i];*/  }/* End movingaverage */
             /*   agev[m][i] = age[i]+2*m;*/  
           }  
           else { /* =9 */  /************** Forecasting ******************/
             agev[m][i]=1;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
             s[m][i]=-1;    /* proj1, year, month, day of starting projection 
           }       agemin, agemax range of age
         }       dateprev1 dateprev2 range of dates during which prevalence is computed
         else /*= 0 Unknown */       anproj2 year of en of projection (same day and month as proj1).
           agev[m][i]=1;    */
       }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
        int *popage;
     }    double agec; /* generic age */
     for (i=1; i<=imx; i++)  {    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       for(m=1; (m<= maxwav); m++){    double *popeffectif,*popcount;
         if (s[m][i] > (nlstate+ndeath)) {    double ***p3mat;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      double ***mobaverage;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      char fileresf[FILENAMELENGTH];
           goto end;  
         }    agelim=AGESUP;
       }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     }   
     strcpy(fileresf,"f"); 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    strcat(fileresf,fileres);
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
     free_vector(severity,1,maxwav);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     free_imatrix(outcome,1,maxwav+1,1,n);    }
     free_vector(moisnais,1,n);    printf("Computing forecasting: result on file '%s' \n", fileresf);
     free_vector(annais,1,n);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
          if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     wav=ivector(1,imx);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      }
        }
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       Tcode=ivector(1,100);      printf ("Problem %d lower than %d\n",estepm, stepm);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    }
       ncodemax[1]=1;    else  hstepm=estepm;   
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
          hstepm=hstepm/stepm; 
    codtab=imatrix(1,100,1,10);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
    h=0;                                 fractional in yp1 */
    m=pow(2,cptcoveff);    anprojmean=yp;
      yp2=modf((yp1*12),&yp);
    for(k=1;k<=cptcoveff; k++){    mprojmean=yp;
      for(i=1; i <=(m/pow(2,k));i++){    yp1=modf((yp2*30.5),&yp);
        for(j=1; j <= ncodemax[k]; j++){    jprojmean=yp;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    if(jprojmean==0) jprojmean=1;
            h++;    if(mprojmean==0) jprojmean=1;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    i1=cptcoveff;
          }    if (cptcovn < 1){i1=1;}
        }    
      }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
    }    
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    fprintf(ficresf,"#****** Routine prevforecast **\n");
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){  /*            if (h==(int)(YEARM*yearp)){ */
       for(k=1; k <=cptcovn; k++){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       }        k=k+1;
       printf("\n");        fprintf(ficresf,"\n#******");
       }        for(j=1;j<=cptcoveff;j++) {
       scanf("%d",i);*/          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
            }
    /* Calculates basic frequencies. Computes observed prevalence at single age        fprintf(ficresf,"******\n");
        and prints on file fileres'p'. */        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
              for(i=1; i<=nlstate;i++)              
                fprintf(ficresf," p%d%d",i,j);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresf," p.%d",j);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresf,"\n");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
        
     /* For Powell, parameters are in a vector p[] starting at p[1]          for (agec=fage; agec>=(ageminpar-1); agec--){ 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if(mle==1){            oldm=oldms;savm=savms;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     }          
                for (h=0; h<=nhstepm; h++){
     /*--------- results files --------------*/              if (h*hstepm/YEARM*stepm ==yearp) {
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                fprintf(ficresf,"\n");
                  for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
    jk=1;                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              } 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              for(j=1; j<=nlstate+ndeath;j++) {
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                ppij=0.;
    for(i=1,jk=1; i <=nlstate; i++){                for(i=1; i<=nlstate;i++) {
      for(k=1; k <=(nlstate+ndeath); k++){                  if (mobilav==1) 
        if (k != i)                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
          {                  else {
            printf("%d%d ",i,k);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
            fprintf(ficlog,"%d%d ",i,k);                  }
            fprintf(ficres,"%1d%1d ",i,k);                  if (h*hstepm/YEARM*stepm== yearp) {
            for(j=1; j <=ncovmodel; j++){                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
              printf("%f ",p[jk]);                  }
              fprintf(ficlog,"%f ",p[jk]);                } /* end i */
              fprintf(ficres,"%f ",p[jk]);                if (h*hstepm/YEARM*stepm==yearp) {
              jk++;                  fprintf(ficresf," %.3f", ppij);
            }                }
            printf("\n");              }/* end j */
            fprintf(ficlog,"\n");            } /* end h */
            fprintf(ficres,"\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          }          } /* end agec */
      }        } /* end yearp */
    }      } /* end cptcod */
    if(mle==1){    } /* end  cptcov */
      /* Computing hessian and covariance matrix */         
      ftolhess=ftol; /* Usually correct */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      hesscov(matcov, p, npar, delti, ftolhess, func);  
    }    fclose(ficresf);
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  }
    printf("# Scales (for hessian or gradient estimation)\n");  
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");  /************** Forecasting *****not tested NB*************/
    for(i=1,jk=1; i <=nlstate; i++){  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
      for(j=1; j <=nlstate+ndeath; j++){    
        if (j!=i) {    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
          fprintf(ficres,"%1d%1d",i,j);    int *popage;
          printf("%1d%1d",i,j);    double calagedatem, agelim, kk1, kk2;
          fprintf(ficlog,"%1d%1d",i,j);    double *popeffectif,*popcount;
          for(k=1; k<=ncovmodel;k++){    double ***p3mat,***tabpop,***tabpopprev;
            printf(" %.5e",delti[jk]);    double ***mobaverage;
            fprintf(ficlog," %.5e",delti[jk]);    char filerespop[FILENAMELENGTH];
            fprintf(ficres," %.5e",delti[jk]);  
            jk++;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
          }    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
          printf("\n");    agelim=AGESUP;
          fprintf(ficlog,"\n");    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
          fprintf(ficres,"\n");    
        }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
      }    
    }    
        strcpy(filerespop,"pop"); 
    k=1;    strcat(filerespop,fileres);
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
    if(mle==1)      printf("Problem with forecast resultfile: %s\n", filerespop);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
    for(i=1;i<=npar;i++){    printf("Computing forecasting: result on file '%s' \n", filerespop);
      /*  if (k>nlstate) k=1;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
          i1=(i-1)/(ncovmodel*nlstate)+1;  
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
          printf("%s%d%d",alph[k],i1,tab[i]);*/  
      fprintf(ficres,"%3d",i);    if (mobilav!=0) {
      if(mle==1)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        printf("%3d",i);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
      fprintf(ficlog,"%3d",i);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      for(j=1; j<=i;j++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        fprintf(ficres," %.5e",matcov[i][j]);      }
        if(mle==1)    }
          printf(" %.5e",matcov[i][j]);  
        fprintf(ficlog," %.5e",matcov[i][j]);    stepsize=(int) (stepm+YEARM-1)/YEARM;
      }    if (stepm<=12) stepsize=1;
      fprintf(ficres,"\n");    
      if(mle==1)    agelim=AGESUP;
        printf("\n");    
      fprintf(ficlog,"\n");    hstepm=1;
      k++;    hstepm=hstepm/stepm; 
    }    
        if (popforecast==1) {
    while((c=getc(ficpar))=='#' && c!= EOF){      if((ficpop=fopen(popfile,"r"))==NULL) {
      ungetc(c,ficpar);        printf("Problem with population file : %s\n",popfile);exit(0);
      fgets(line, MAXLINE, ficpar);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
      puts(line);      } 
      fputs(line,ficparo);      popage=ivector(0,AGESUP);
    }      popeffectif=vector(0,AGESUP);
    ungetc(c,ficpar);      popcount=vector(0,AGESUP);
    estepm=0;      
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      i=1;   
    if (estepm==0 || estepm < stepm) estepm=stepm;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
    if (fage <= 2) {     
      bage = ageminpar;      imx=i;
      fage = agemaxpar;      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
    }    }
      
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        k=k+1;
            fprintf(ficrespop,"\n#******");
    while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1;j<=cptcoveff;j++) {
      ungetc(c,ficpar);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      fgets(line, MAXLINE, ficpar);        }
      puts(line);        fprintf(ficrespop,"******\n");
      fputs(line,ficparo);        fprintf(ficrespop,"# Age");
    }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
    ungetc(c,ficpar);        if (popforecast==1)  fprintf(ficrespop," [Population]");
          
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        for (cpt=0; cpt<=0;cpt++) { 
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          
              for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
    while((c=getc(ficpar))=='#' && c!= EOF){            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
      ungetc(c,ficpar);            nhstepm = nhstepm/hstepm; 
      fgets(line, MAXLINE, ficpar);            
      puts(line);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fputs(line,ficparo);            oldm=oldms;savm=savms;
    }            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
    ungetc(c,ficpar);          
              for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              } 
               for(j=1; j<=nlstate+ndeath;j++) {
   fscanf(ficpar,"pop_based=%d\n",&popbased);                kk1=0.;kk2=0;
   fprintf(ficparo,"pop_based=%d\n",popbased);                  for(i=1; i<=nlstate;i++) {              
   fprintf(ficres,"pop_based=%d\n",popbased);                    if (mobilav==1) 
                      kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   while((c=getc(ficpar))=='#' && c!= EOF){                  else {
     ungetc(c,ficpar);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     fgets(line, MAXLINE, ficpar);                  }
     puts(line);                }
     fputs(line,ficparo);                if (h==(int)(calagedatem+12*cpt)){
   }                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   ungetc(c,ficpar);                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
 while((c=getc(ficpar))=='#' && c!= EOF){                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
     ungetc(c,ficpar);                  }
     fgets(line, MAXLINE, ficpar);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     puts(line);              }
     fputs(line,ficparo);  
   }              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   ungetc(c,ficpar);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        }
    
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /******/
   
 /*------------ gnuplot -------------*/        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   strcpy(optionfilegnuplot,optionfilefiname);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   strcat(optionfilegnuplot,".gp");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     printf("Problem with file %s",optionfilegnuplot);            nhstepm = nhstepm/hstepm; 
   }            
   fclose(ficgp);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);            oldm=oldms;savm=savms;
 /*--------- index.htm --------*/            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
   strcpy(optionfilehtm,optionfile);              if (h==(int) (calagedatem+YEARM*cpt)) {
   strcat(optionfilehtm,".htm");                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              } 
     printf("Problem with %s \n",optionfilehtm), exit(0);              for(j=1; j<=nlstate+ndeath;j++) {
   }                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                }
 \n                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
 Total number of observations=%d <br>\n              }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            }
 <hr  size=\"2\" color=\"#EC5E5E\">            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  <ul><li><h4>Parameter files</h4>\n          }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n     } 
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    }
   fclose(fichtm);   
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  
      if (popforecast==1) {
 /*------------ free_vector  -------------*/      free_ivector(popage,0,AGESUP);
  chdir(path);      free_vector(popeffectif,0,AGESUP);
        free_vector(popcount,0,AGESUP);
  free_ivector(wav,1,imx);    }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  free_ivector(num,1,n);    fclose(ficrespop);
  free_vector(agedc,1,n);  } /* End of popforecast */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);  int fileappend(FILE *fichier, char *optionfich)
  fclose(ficres);  {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
   /*--------------- Prevalence limit --------------*/      fprintf(ficlog,"Problem with file: %s\n", optionfich);
        return (0);
   strcpy(filerespl,"pl");    }
   strcat(filerespl,fileres);    fflush(fichier);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    return (1);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  }
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  /**************** function prwizard **********************/
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   fprintf(ficrespl,"#Prevalence limit\n");  {
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    /* Wizard to print covariance matrix template */
   fprintf(ficrespl,"\n");  
      char ca[32], cb[32], cc[32];
   prlim=matrix(1,nlstate,1,nlstate);    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int numlinepar;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    for(i=1; i <=nlstate; i++){
   k=0;      jj=0;
   agebase=ageminpar;      for(j=1; j <=nlstate+ndeath; j++){
   agelim=agemaxpar;        if(j==i) continue;
   ftolpl=1.e-10;        jj++;
   i1=cptcoveff;        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   if (cptcovn < 1){i1=1;}        printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
   for(cptcov=1;cptcov<=i1;cptcov++){        for(k=1; k<=ncovmodel;k++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          /*        printf(" %lf",param[i][j][k]); */
         k=k+1;          /*        fprintf(ficparo," %lf",param[i][j][k]); */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          printf(" 0.");
         fprintf(ficrespl,"\n#******");          fprintf(ficparo," 0.");
         printf("\n#******");        }
         fprintf(ficlog,"\n#******");        printf("\n");
         for(j=1;j<=cptcoveff;j++) {        fprintf(ficparo,"\n");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("# Scales (for hessian or gradient estimation)\n");
         }    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
         fprintf(ficrespl,"******\n");    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
         printf("******\n");    for(i=1; i <=nlstate; i++){
         fprintf(ficlog,"******\n");      jj=0;
              for(j=1; j <=nlstate+ndeath; j++){
         for (age=agebase; age<=agelim; age++){        if(j==i) continue;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        jj++;
           fprintf(ficrespl,"%.0f",age );        fprintf(ficparo,"%1d%1d",i,j);
           for(i=1; i<=nlstate;i++)        printf("%1d%1d",i,j);
           fprintf(ficrespl," %.5f", prlim[i][i]);        fflush(stdout);
           fprintf(ficrespl,"\n");        for(k=1; k<=ncovmodel;k++){
         }          /*      printf(" %le",delti3[i][j][k]); */
       }          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
     }          printf(" 0.");
   fclose(ficrespl);          fprintf(ficparo," 0.");
         }
   /*------------- h Pij x at various ages ------------*/        numlinepar++;
          printf("\n");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        fprintf(ficparo,"\n");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    }
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    printf("# Covariance matrix\n");
   }  /* # 121 Var(a12)\n\ */
   printf("Computing pij: result on file '%s' \n", filerespij);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
    /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /*if (stepm<=24) stepsize=2;*/  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   agelim=AGESUP;  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   hstepm=stepsize*YEARM; /* Every year of age */    fflush(stdout);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
   /* hstepm=1;   aff par mois*/    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
   k=0;    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(itimes=1;itimes<=2;itimes++){
       k=k+1;      jj=0;
         fprintf(ficrespij,"\n#****** ");      for(i=1; i <=nlstate; i++){
         for(j=1;j<=cptcoveff;j++)        for(j=1; j <=nlstate+ndeath; j++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if(j==i) continue;
         fprintf(ficrespij,"******\n");          for(k=1; k<=ncovmodel;k++){
                    jj++;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            ca[0]= k+'a'-1;ca[1]='\0';
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            if(itimes==1){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/            }else{
               printf("%1d%1d%d",i,j,k);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              fprintf(ficparo,"%1d%1d%d",i,j,k);
           oldm=oldms;savm=savms;              /*  printf(" %.5le",matcov[i][j]); */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              }
           fprintf(ficrespij,"# Age");            ll=0;
           for(i=1; i<=nlstate;i++)            for(li=1;li <=nlstate; li++){
             for(j=1; j<=nlstate+ndeath;j++)              for(lj=1;lj <=nlstate+ndeath; lj++){
               fprintf(ficrespij," %1d-%1d",i,j);                if(lj==li) continue;
           fprintf(ficrespij,"\n");                for(lk=1;lk<=ncovmodel;lk++){
            for (h=0; h<=nhstepm; h++){                  ll++;
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                  if(ll<=jj){
             for(i=1; i<=nlstate;i++)                    cb[0]= lk +'a'-1;cb[1]='\0';
               for(j=1; j<=nlstate+ndeath;j++)                    if(ll<jj){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                      if(itimes==1){
             fprintf(ficrespij,"\n");                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
              }                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      }else{
           fprintf(ficrespij,"\n");                        printf(" 0.");
         }                        fprintf(ficparo," 0.");
     }                      }
   }                    }else{
                       if(itimes==1){
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                        printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   fclose(ficrespij);                      }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
   /*---------- Forecasting ------------------*/                      }
   if((stepm == 1) && (strcmp(model,".")==0)){                    }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                  }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                } /* end lk */
   }              } /* end lj */
   else{            } /* end li */
     erreur=108;            printf("\n");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            fprintf(ficparo,"\n");
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            numlinepar++;
   }          } /* end k*/
          } /*end j */
       } /* end i */
   /*---------- Health expectancies and variances ------------*/    } /* end itimes */
   
   strcpy(filerest,"t");  } /* end of prwizard */
   strcat(filerest,fileres);  /******************* Gompertz Likelihood ******************************/
   if((ficrest=fopen(filerest,"w"))==NULL) {  double gompertz(double x[])
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  { 
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    double A,B,L=0.0,sump=0.,num=0.;
   }    int i,n=0; /* n is the size of the sample */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    for (i=0;i<=imx-1 ; i++) {
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);      sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
   strcpy(filerese,"e");    }
   strcat(filerese,fileres);   
   if((ficreseij=fopen(filerese,"w"))==NULL) {   
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    /* for (i=1; i<=imx; i++) 
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    for (i=0;i<=imx-1 ; i++)
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      {
         if (cens[i]==1 & wav[i]>1)
   strcpy(fileresv,"v");          A=-x[1]/(x[2])*
   strcat(fileresv,fileres);            (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        if (cens[i]==0 & wav[i]>1)
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);          A=-x[1]/(x[2])*
   }               (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        
   calagedate=-1;        if (wav[i]>1 & agecens[i]>15) {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   k=0;        }
   for(cptcov=1;cptcov<=i1;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
       fprintf(ficrest,"\n#****** ");   
       for(j=1;j<=cptcoveff;j++)    return -2*L*num/sump;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }
       fprintf(ficrest,"******\n");  
   /******************* Printing html file ***********/
       fprintf(ficreseij,"\n#****** ");  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
       for(j=1;j<=cptcoveff;j++)                    int lastpass, int stepm, int weightopt, char model[],\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    int imx,  double p[],double **matcov){
       fprintf(ficreseij,"******\n");    int i;
   
       fprintf(ficresvij,"\n#****** ");    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
       for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (i=1;i<=2;i++) 
       fprintf(ficresvij,"******\n");      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(fichtm,"</ul>");
       oldm=oldms;savm=savms;    fflush(fichtm);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    }
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /******************* Gnuplot file **************/
       oldm=oldms;savm=savms;  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);  
       if(popbased==1){    char dirfileres[132],optfileres[132];
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
        }    int ng;
   
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    /*#ifdef windows */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       fprintf(ficrest,"\n");      /*#endif */
   
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    strcpy(dirfileres,optionfilefiname);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    strcpy(optfileres,"vpl");
         if (popbased==1) {    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
           for(i=1; i<=nlstate;i++)    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
             prlim[i][i]=probs[(int)age][i][k];    fprintf(ficgp, "set ter png small\n set log y\n"); 
         }    fprintf(ficgp, "set size 0.65,0.65\n");
            fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  } 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }  
           epj[nlstate+1] +=epj[j];  /***********************************************/
         }  /**************** Main Program *****************/
   /***********************************************/
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)  int main(int argc, char *argv[])
             vepp += vareij[i][j][(int)age];  {
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
         for(j=1;j <=nlstate;j++){    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    int jj, ll, li, lj, lk, imk;
         }    int numlinepar=0; /* Current linenumber of parameter file */
         fprintf(ficrest,"\n");    int itimes;
       }    int NDIM=2;
     }  
   }    char ca[32], cb[32], cc[32];
 free_matrix(mint,1,maxwav,1,n);    /*  FILE *fichtm; *//* Html File */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    /* FILE *ficgp;*/ /*Gnuplot File */
     free_vector(weight,1,n);    double agedeb, agefin,hf;
   fclose(ficreseij);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   fclose(ficresvij);  
   fclose(ficrest);    double fret;
   fclose(ficpar);    double **xi,tmp,delta;
   free_vector(epj,1,nlstate+1);  
      double dum; /* Dummy variable */
   /*------- Variance limit prevalence------*/      double ***p3mat;
     double ***mobaverage;
   strcpy(fileresvpl,"vpl");    int *indx;
   strcat(fileresvpl,fileres);    char line[MAXLINE], linepar[MAXLINE];
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    char pathr[MAXLINE], pathimach[MAXLINE]; 
     exit(0);    int firstobs=1, lastobs=10;
   }    int sdeb, sfin; /* Status at beginning and end */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    int c,  h , cpt,l;
     int ju,jl, mi;
   k=0;    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   for(cptcov=1;cptcov<=i1;cptcov++){    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
       k=k+1;    int mobilav=0,popforecast=0;
       fprintf(ficresvpl,"\n#****** ");    int hstepm, nhstepm;
       for(j=1;j<=cptcoveff;j++)    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
       fprintf(ficresvpl,"******\n");  
          double bage, fage, age, agelim, agebase;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    double ftolpl=FTOL;
       oldm=oldms;savm=savms;    double **prlim;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    double *severity;
     }    double ***param; /* Matrix of parameters */
  }    double  *p;
     double **matcov; /* Matrix of covariance */
   fclose(ficresvpl);    double ***delti3; /* Scale */
     double *delti; /* Scale */
   /*---------- End : free ----------------*/    double ***eij, ***vareij;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    double **varpl; /* Variances of prevalence limits by age */
      double *epj, vepp;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double kk1, kk2;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
      double **ximort;
      char *alph[]={"a","a","b","c","d","e"}, str[4];
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    int *dcwave;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    char z[1]="c", occ;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
      char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   free_matrix(matcov,1,npar,1,npar);    char strstart[80], *strt, strtend[80];
   free_vector(delti,1,npar);    char *stratrunc;
   free_matrix(agev,1,maxwav,1,imx);    int lstra;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     long total_usecs;
   fprintf(fichtm,"\n</body>");   
   fclose(fichtm);  /*   setlocale (LC_ALL, ""); */
   fclose(ficgp);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
    /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   if(erreur >0){  /*   setlocale (LC_MESSAGES, ""); */
     printf("End of Imach with error or warning %d\n",erreur);  
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   }else{    (void) gettimeofday(&start_time,&tzp);
    printf("End of Imach\n");    curr_time=start_time;
    fprintf(ficlog,"End of Imach\n");    tm = *localtime(&start_time.tv_sec);
   }    tmg = *gmtime(&start_time.tv_sec);
   printf("See log file on %s\n",filelog);    strcpy(strstart,asctime(&tm));
   fclose(ficlog);  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  /*  printf("Localtime (at start)=%s",strstart); */
    /*  tp.tv_sec = tp.tv_sec +86400; */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  /*  tm = *localtime(&start_time.tv_sec); */
   /*printf("Total time was %d uSec.\n", total_usecs);*/  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*------ End -----------*/  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
  end:  /*   strt=asctime(&tmg); */
 #ifdef windows  /*   printf("Time(after) =%s",strstart);  */
   /* chdir(pathcd);*/  /*  (void) time (&time_value);
 #endif  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
  /*system("wgnuplot graph.plt");*/  *  tm = *localtime(&time_value);
  /*system("../gp37mgw/wgnuplot graph.plt");*/  *  strstart=asctime(&tm);
  /*system("cd ../gp37mgw");*/  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  */
  strcpy(plotcmd,GNUPLOTPROGRAM);  
  strcat(plotcmd," ");    nberr=0; /* Number of errors and warnings */
  strcat(plotcmd,optionfilegnuplot);    nbwarn=0;
  system(plotcmd);    getcwd(pathcd, size);
   
 #ifdef windows    printf("\n%s\n%s",version,fullversion);
   while (z[0] != 'q') {    if(argc <=1){
     /* chdir(path); */      printf("\nEnter the parameter file name: ");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      scanf("%s",pathtot);
     scanf("%s",z);    }
     if (z[0] == 'c') system("./imach");    else{
     else if (z[0] == 'e') system(optionfilehtm);      strcpy(pathtot,argv[1]);
     else if (z[0] == 'g') system(plotcmd);    }
     else if (z[0] == 'q') exit(0);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   }    /*cygwin_split_path(pathtot,path,optionfile);
 #endif      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 }    /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.100


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>