Diff for /imach/src/imach.c between versions 1.50 and 1.131

version 1.50, 2002/06/26 23:25:02 version 1.131, 2009/06/20 16:22:47
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.131  2009/06/20 16:22:47  brouard
      Some dimensions resccaled
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.130  2009/05/26 06:44:34  brouard
   first survey ("cross") where individuals from different ages are    (Module): Max Covariate is now set to 20 instead of 8. A
   interviewed on their health status or degree of disability (in the    lot of cleaning with variables initialized to 0. Trying to make
   case of a health survey which is our main interest) -2- at least a    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.129  2007/08/31 13:49:27  lievre
   computed from the time spent in each health state according to a    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.128  2006/06/30 13:02:05  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Clarifications on computing e.j
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.127  2006/04/28 18:11:50  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Yes the sum of survivors was wrong since
   'age' is age and 'sex' is a covariate. If you want to have a more    imach-114 because nhstepm was no more computed in the age
   complex model than "constant and age", you should modify the program    loop. Now we define nhstepma in the age loop.
   where the markup *Covariates have to be included here again* invites    (Module): In order to speed up (in case of numerous covariates) we
   you to do it.  More covariates you add, slower the    compute health expectancies (without variances) in a first step
   convergence.    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
   The advantage of this computer programme, compared to a simple    computation.
   multinomial logistic model, is clear when the delay between waves is not    In the future we should be able to stop the program is only health
   identical for each individual. Also, if a individual missed an    expectancies and graph are needed without standard deviations.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
   hPijx is the probability to be observed in state i at age x+h    imach-114 because nhstepm was no more computed in the age
   conditional to the observed state i at age x. The delay 'h' can be    loop. Now we define nhstepma in the age loop.
   split into an exact number (nh*stepm) of unobserved intermediate    Version 0.98h
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.125  2006/04/04 15:20:31  lievre
   matrix is simply the matrix product of nh*stepm elementary matrices    Errors in calculation of health expectancies. Age was not initialized.
   and the contribution of each individual to the likelihood is simply    Forecasting file added.
   hPijx.  
     Revision 1.124  2006/03/22 17:13:53  lievre
   Also this programme outputs the covariance matrix of the parameters but also    Parameters are printed with %lf instead of %f (more numbers after the comma).
   of the life expectancies. It also computes the prevalence limits.    The log-likelihood is printed in the log file
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.123  2006/03/20 10:52:43  brouard
            Institut national d'études démographiques, Paris.    * imach.c (Module): <title> changed, corresponds to .htm file
   This software have been partly granted by Euro-REVES, a concerted action    name. <head> headers where missing.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    * imach.c (Module): Weights can have a decimal point as for
   software can be distributed freely for non commercial use. Latest version    English (a comma might work with a correct LC_NUMERIC environment,
   can be accessed at http://euroreves.ined.fr/imach .    otherwise the weight is truncated).
   **********************************************************************/    Modification of warning when the covariates values are not 0 or
      1.
 #include <math.h>    Version 0.98g
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.122  2006/03/20 09:45:41  brouard
 #include <unistd.h>    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define MAXLINE 256    otherwise the weight is truncated).
 #define GNUPLOTPROGRAM "gnuplot"    Modification of warning when the covariates values are not 0 or
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    1.
 #define FILENAMELENGTH 80    Version 0.98g
 /*#define DEBUG*/  
 #define windows    Revision 1.121  2006/03/16 17:45:01  lievre
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    * imach.c (Module): Comments concerning covariates added
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     * imach.c (Module): refinements in the computation of lli if
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    status=-2 in order to have more reliable computation if stepm is
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    not 1 month. Version 0.98f
   
 #define NINTERVMAX 8    Revision 1.120  2006/03/16 15:10:38  lievre
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): refinements in the computation of lli if
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    status=-2 in order to have more reliable computation if stepm is
 #define NCOVMAX 8 /* Maximum number of covariates */    not 1 month. Version 0.98f
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.119  2006/03/15 17:42:26  brouard
 #define AGESUP 130    (Module): Bug if status = -2, the loglikelihood was
 #define AGEBASE 40    computed as likelihood omitting the logarithm. Version O.98e
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.118  2006/03/14 18:20:07  brouard
 #define ODIRSEPARATOR '/'    (Module): varevsij Comments added explaining the second
 #else    table of variances if popbased=1 .
 #define DIRSEPARATOR '/'    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define ODIRSEPARATOR '\\'    (Module): Function pstamp added
 #endif    (Module): Version 0.98d
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Revision 1.117  2006/03/14 17:16:22  brouard
 int erreur; /* Error number */    (Module): varevsij Comments added explaining the second
 int nvar;    table of variances if popbased=1 .
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int npar=NPARMAX;    (Module): Function pstamp added
 int nlstate=2; /* Number of live states */    (Module): Version 0.98d
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.116  2006/03/06 10:29:27  brouard
 int popbased=0;    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.115  2006/02/27 12:17:45  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): One freematrix added in mlikeli! 0.98c
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.114  2006/02/26 12:57:58  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Some improvements in processing parameter
 double jmean; /* Mean space between 2 waves */    filename with strsep.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.113  2006/02/24 14:20:24  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Memory leaks checks with valgrind and:
 FILE *ficlog;    datafile was not closed, some imatrix were not freed and on matrix
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    allocation too.
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Revision 1.112  2006/01/30 09:55:26  brouard
 FILE *ficreseij;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.111  2006/01/25 20:38:18  brouard
 char fileresv[FILENAMELENGTH];    (Module): Lots of cleaning and bugs added (Gompertz)
 FILE  *ficresvpl;    (Module): Comments can be added in data file. Missing date values
 char fileresvpl[FILENAMELENGTH];    can be a simple dot '.'.
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.110  2006/01/25 00:51:50  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    (Module): Lots of cleaning and bugs added (Gompertz)
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.109  2006/01/24 19:37:15  brouard
 char filelog[FILENAMELENGTH]; /* Log file */    (Module): Comments (lines starting with a #) are allowed in data.
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.108  2006/01/19 18:05:42  lievre
 char popfile[FILENAMELENGTH];    Gnuplot problem appeared...
     To be fixed
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.107  2006/01/19 16:20:37  brouard
 #define NR_END 1    Test existence of gnuplot in imach path
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 #define NRANSI  
 #define ITMAX 200    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 #define TOL 2.0e-4  
     Revision 1.104  2005/09/30 16:11:43  lievre
 #define CGOLD 0.3819660    (Module): sump fixed, loop imx fixed, and simplifications.
 #define ZEPS 1.0e-10    (Module): If the status is missing at the last wave but we know
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 #define GOLD 1.618034    contributions to the likelihood is 1 - Prob of dying from last
 #define GLIMIT 100.0    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define TINY 1.0e-20    the healthy state at last known wave). Version is 0.98
   
 static double maxarg1,maxarg2;    Revision 1.103  2005/09/30 15:54:49  lievre
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): sump fixed, loop imx fixed, and simplifications.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.102  2004/09/15 17:31:30  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Add the possibility to read data file including tab characters.
 #define rint(a) floor(a+0.5)  
     Revision 1.101  2004/09/15 10:38:38  brouard
 static double sqrarg;    Fix on curr_time
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 int imx;  
 int stepm;    Revision 1.99  2004/06/05 08:57:40  brouard
 /* Stepm, step in month: minimum step interpolation*/    *** empty log message ***
   
 int estepm;    Revision 1.98  2004/05/16 15:05:56  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 int m,nb;    state at each age, but using a Gompertz model: log u =a + b*age .
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    This is the basic analysis of mortality and should be done before any
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    other analysis, in order to test if the mortality estimated from the
 double **pmmij, ***probs, ***mobaverage;    cross-longitudinal survey is different from the mortality estimated
 double dateintmean=0;    from other sources like vital statistic data.
   
 double *weight;    The same imach parameter file can be used but the option for mle should be -3.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Agnès, who wrote this part of the code, tried to keep most of the
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    former routines in order to include the new code within the former code.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    The output is very simple: only an estimate of the intercept and of
 double ftolhess; /* Tolerance for computing hessian */    the slope with 95% confident intervals.
   
 /**************** split *************************/    Current limitations:
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    A) Even if you enter covariates, i.e. with the
 {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
    char *s;                             /* pointer */    B) There is no computation of Life Expectancy nor Life Table.
    int  l1, l2;                         /* length counters */  
     Revision 1.97  2004/02/20 13:25:42  lievre
    l1 = strlen( path );                 /* length of path */    Version 0.96d. Population forecasting command line is (temporarily)
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    suppressed.
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.96  2003/07/15 15:38:55  brouard
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    rewritten within the same printf. Workaround: many printfs.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
       if ( getwd( dirc ) == NULL ) {    (Repository): Using imachwizard code to output a more meaningful covariance
 #else    matrix (cov(a12,c31) instead of numbers.
       extern char       *getcwd( );  
     Revision 1.94  2003/06/27 13:00:02  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Just cleaning
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.93  2003/06/25 16:33:55  brouard
       }    (Module): On windows (cygwin) function asctime_r doesn't
       strcpy( name, path );             /* we've got it */    exist so I changed back to asctime which exists.
    } else {                             /* strip direcotry from path */    (Module): Version 0.96b
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.92  2003/06/25 16:30:45  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): On windows (cygwin) function asctime_r doesn't
       strcpy( name, s );                /* save file name */    exist so I changed back to asctime which exists.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.91  2003/06/25 15:30:29  brouard
    }    * imach.c (Repository): Duplicated warning errors corrected.
    l1 = strlen( dirc );                 /* length of directory */    (Repository): Elapsed time after each iteration is now output. It
 #ifdef windows    helps to forecast when convergence will be reached. Elapsed time
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    is stamped in powell.  We created a new html file for the graphs
 #else    concerning matrix of covariance. It has extension -cov.htm.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.90  2003/06/24 12:34:15  brouard
    s = strrchr( name, '.' );            /* find last / */    (Module): Some bugs corrected for windows. Also, when
    s++;    mle=-1 a template is output in file "or"mypar.txt with the design
    strcpy(ext,s);                       /* save extension */    of the covariance matrix to be input.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.89  2003/06/24 12:30:52  brouard
    strncpy( finame, name, l1-l2);    (Module): Some bugs corrected for windows. Also, when
    finame[l1-l2]= 0;    mle=-1 a template is output in file "or"mypar.txt with the design
    return( 0 );                         /* we're done */    of the covariance matrix to be input.
 }  
     Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 /******************************************/  
     Revision 1.87  2003/06/18 12:26:01  brouard
 void replace(char *s, char*t)    Version 0.96
 {  
   int i;    Revision 1.86  2003/06/17 20:04:08  brouard
   int lg=20;    (Module): Change position of html and gnuplot routines and added
   i=0;    routine fileappend.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.85  2003/06/17 13:12:43  brouard
     (s[i] = t[i]);    * imach.c (Repository): Check when date of death was earlier that
     if (t[i]== '\\') s[i]='/';    current date of interview. It may happen when the death was just
   }    prior to the death. In this case, dh was negative and likelihood
 }    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 int nbocc(char *s, char occ)    interview.
 {    (Repository): Because some people have very long ID (first column)
   int i,j=0;    we changed int to long in num[] and we added a new lvector for
   int lg=20;    memory allocation. But we also truncated to 8 characters (left
   i=0;    truncation)
   lg=strlen(s);    (Repository): No more line truncation errors.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.84  2003/06/13 21:44:43  brouard
   }    * imach.c (Repository): Replace "freqsummary" at a correct
   return j;    place. It differs from routine "prevalence" which may be called
 }    many times. Probs is memory consuming and must be used with
     parcimony.
 void cutv(char *u,char *v, char*t, char occ)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it    Revision 1.83  2003/06/10 13:39:11  lievre
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    *** empty log message ***
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;    Revision 1.82  2003/06/05 15:57:20  brouard
   i=0;    Add log in  imach.c and  fullversion number is now printed.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  */
   }  /*
      Interpolated Markov Chain
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Short summary of the programme:
     (u[j] = t[j]);    
   }    This program computes Healthy Life Expectancies from
      u[p]='\0';    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
    for(j=0; j<= lg; j++) {    interviewed on their health status or degree of disability (in the
     if (j>=(p+1))(v[j-p-1] = t[j]);    case of a health survey which is our main interest) -2- at least a
   }    second wave of interviews ("longitudinal") which measure each change
 }    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 /********************** nrerror ********************/    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 void nrerror(char error_text[])    simplest model is the multinomial logistic model where pij is the
 {    probability to be observed in state j at the second wave
   fprintf(stderr,"ERREUR ...\n");    conditional to be observed in state i at the first wave. Therefore
   fprintf(stderr,"%s\n",error_text);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   exit(1);    'age' is age and 'sex' is a covariate. If you want to have a more
 }    complex model than "constant and age", you should modify the program
 /*********************** vector *******************/    where the markup *Covariates have to be included here again* invites
 double *vector(int nl, int nh)    you to do it.  More covariates you add, slower the
 {    convergence.
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    The advantage of this computer programme, compared to a simple
   if (!v) nrerror("allocation failure in vector");    multinomial logistic model, is clear when the delay between waves is not
   return v-nl+NR_END;    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    hPijx is the probability to be observed in state i at age x+h
 {    conditional to the observed state i at age x. The delay 'h' can be
   free((FREE_ARG)(v+nl-NR_END));    split into an exact number (nh*stepm) of unobserved intermediate
 }    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 /************************ivector *******************************/    matrix is simply the matrix product of nh*stepm elementary matrices
 int *ivector(long nl,long nh)    and the contribution of each individual to the likelihood is simply
 {    hPijx.
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Also this programme outputs the covariance matrix of the parameters but also
   if (!v) nrerror("allocation failure in ivector");    of the life expectancies. It also computes the period (stable) prevalence. 
   return v-nl+NR_END;    
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 /******************free ivector **************************/    This software have been partly granted by Euro-REVES, a concerted action
 void free_ivector(int *v, long nl, long nh)    from the European Union.
 {    It is copyrighted identically to a GNU software product, ie programme and
   free((FREE_ARG)(v+nl-NR_END));    software can be distributed freely for non commercial use. Latest version
 }    can be accessed at http://euroreves.ined.fr/imach .
   
 /******************* imatrix *******************************/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int **imatrix(long nrl, long nrh, long ncl, long nch)    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    
 {    **********************************************************************/
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  /*
   int **m;    main
      read parameterfile
   /* allocate pointers to rows */    read datafile
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    concatwav
   if (!m) nrerror("allocation failure 1 in matrix()");    freqsummary
   m += NR_END;    if (mle >= 1)
   m -= nrl;      mlikeli
      print results files
      if mle==1 
   /* allocate rows and set pointers to them */       computes hessian
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    read end of parameter file: agemin, agemax, bage, fage, estepm
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");        begin-prev-date,...
   m[nrl] += NR_END;    open gnuplot file
   m[nrl] -= ncl;    open html file
      period (stable) prevalence
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     for age prevalim()
      h Pij x
   /* return pointer to array of pointers to rows */    variance of p varprob
   return m;    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 /****************** free_imatrix *************************/    prevalence()
 void free_imatrix(m,nrl,nrh,ncl,nch)     movingaverage()
       int **m;    varevsij() 
       long nch,ncl,nrh,nrl;    if popbased==1 varevsij(,popbased)
      /* free an int matrix allocated by imatrix() */    total life expectancies
 {    Variance of period (stable) prevalence
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   end
   free((FREE_ARG) (m+nrl-NR_END));  */
 }  
   
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)   
 {  #include <math.h>
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #include <stdio.h>
   double **m;  #include <stdlib.h>
   #include <string.h>
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <unistd.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #include <limits.h>
   m -= nrl;  #include <sys/types.h>
   #include <sys/stat.h>
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include <errno.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  extern int errno;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /* #include <sys/time.h> */
   #include <time.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include "timeval.h"
   return m;  
 }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define MAXLINE 256
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define GNUPLOTPROGRAM "gnuplot"
   free((FREE_ARG)(m+nrl-NR_END));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   
 /******************* ma3x *******************************/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   double ***m;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NINTERVMAX 8
   if (!m) nrerror("allocation failure 1 in matrix()");  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   m += NR_END;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m -= nrl;  #define NCOVMAX 20 /* Maximum number of covariates */
   #define MAXN 20000
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define YEARM 12. /* Number of months per year */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define AGESUP 130
   m[nrl] += NR_END;  #define AGEBASE 40
   m[nrl] -= ncl;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define ODIRSEPARATOR '\\'
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #else
   m[nrl][ncl] += NR_END;  #define DIRSEPARATOR '\\'
   m[nrl][ncl] -= nll;  #define CHARSEPARATOR "\\"
   for (j=ncl+1; j<=nch; j++)  #define ODIRSEPARATOR '/'
     m[nrl][j]=m[nrl][j-1]+nlay;  #endif
    
   for (i=nrl+1; i<=nrh; i++) {  /* $Id$ */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /* $State$ */
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  char version[]="Imach version 0.98k, June 2006, INED-EUROREVES-Institut de longevite ";
   }  char fullversion[]="$Revision$ $Date$"; 
   return m;  char strstart[80];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 /*************************free ma3x ************************/  int nvar=0;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
 {  int npar=NPARMAX;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int nlstate=2; /* Number of live states */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int ndeath=1; /* Number of dead states */
   free((FREE_ARG)(m+nrl-NR_END));  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 }  int popbased=0;
   
 /***************** f1dim *************************/  int *wav; /* Number of waves for this individuual 0 is possible */
 extern int ncom;  int maxwav=0; /* Maxim number of waves */
 extern double *pcom,*xicom;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 extern double (*nrfunc)(double []);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
    int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 double f1dim(double x)                     to the likelihood and the sum of weights (done by funcone)*/
 {  int mle=1, weightopt=0;
   int j;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   double f;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   double *xt;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
               * wave mi and wave mi+1 is not an exact multiple of stepm. */
   xt=vector(1,ncom);  double jmean=1; /* Mean space between 2 waves */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double **oldm, **newm, **savm; /* Working pointers to matrices */
   f=(*nrfunc)(xt);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   free_vector(xt,1,ncom);  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   return f;  FILE *ficlog, *ficrespow;
 }  int globpr=0; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /*****************brent *************************/  long ipmx=0; /* Number of contributions */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   int iter;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   double a,b,d,etemp;  FILE *ficresilk;
   double fu,fv,fw,fx;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   double ftemp;  FILE *ficresprobmorprev;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  FILE *fichtm, *fichtmcov; /* Html File */
   double e=0.0;  FILE *ficreseij;
    char filerese[FILENAMELENGTH];
   a=(ax < cx ? ax : cx);  FILE *ficresstdeij;
   b=(ax > cx ? ax : cx);  char fileresstde[FILENAMELENGTH];
   x=w=v=bx;  FILE *ficrescveij;
   fw=fv=fx=(*f)(x);  char filerescve[FILENAMELENGTH];
   for (iter=1;iter<=ITMAX;iter++) {  FILE  *ficresvij;
     xm=0.5*(a+b);  char fileresv[FILENAMELENGTH];
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  FILE  *ficresvpl;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char fileresvpl[FILENAMELENGTH];
     printf(".");fflush(stdout);  char title[MAXLINE];
     fprintf(ficlog,".");fflush(ficlog);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #ifdef DEBUG  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char command[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int  outcmd=0;
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       *xmin=x;  
       return fx;  char filelog[FILENAMELENGTH]; /* Log file */
     }  char filerest[FILENAMELENGTH];
     ftemp=fu;  char fileregp[FILENAMELENGTH];
     if (fabs(e) > tol1) {  char popfile[FILENAMELENGTH];
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       if (q > 0.0) p = -p;  struct timezone tzp;
       q=fabs(q);  extern int gettimeofday();
       etemp=e;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       e=d;  long time_value;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  extern long time();
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char strcurr[80], strfor[80];
       else {  
         d=p/q;  char *endptr;
         u=x+d;  long lval;
         if (u-a < tol2 || b-u < tol2)  double dval;
           d=SIGN(tol1,xm-x);  
       }  #define NR_END 1
     } else {  #define FREE_ARG char*
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define FTOL 1.0e-10
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define NRANSI 
     fu=(*f)(u);  #define ITMAX 200 
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  #define TOL 2.0e-4 
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  #define CGOLD 0.3819660 
         } else {  #define ZEPS 1.0e-10 
           if (u < x) a=u; else b=u;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
           if (fu <= fw || w == x) {  
             v=w;  #define GOLD 1.618034 
             w=u;  #define GLIMIT 100.0 
             fv=fw;  #define TINY 1.0e-20 
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  static double maxarg1,maxarg2;
             v=u;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
             fv=fu;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
           }    
         }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   }  #define rint(a) floor(a+0.5)
   nrerror("Too many iterations in brent");  
   *xmin=x;  static double sqrarg;
   return fx;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
 /****************** mnbrak ***********************/  
   int imx; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int stepm=1;
             double (*func)(double))  /* Stepm, step in month: minimum step interpolation*/
 {  
   double ulim,u,r,q, dum;  int estepm;
   double fu;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
    
   *fa=(*func)(*ax);  int m,nb;
   *fb=(*func)(*bx);  long *num;
   if (*fb > *fa) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     SHFT(dum,*ax,*bx,dum)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       SHFT(dum,*fb,*fa,dum)  double **pmmij, ***probs;
       }  double *ageexmed,*agecens;
   *cx=(*bx)+GOLD*(*bx-*ax);  double dateintmean=0;
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  double *weight;
     r=(*bx-*ax)*(*fb-*fc);  int **s; /* Status */
     q=(*bx-*cx)*(*fb-*fa);  double *agedc, **covar, idx;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  double *lsurv, *lpop, *tpop;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       fu=(*func)(u);  double ftolhess; /* Tolerance for computing hessian */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /**************** split *************************/
       if (fu < *fc) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  {
           SHFT(*fb,*fc,fu,(*func)(u))    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
           }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    */ 
       u=ulim;    char  *ss;                            /* pointer */
       fu=(*func)(u);    int   l1, l2;                         /* length counters */
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);    l1 = strlen(path );                   /* length of path */
       fu=(*func)(u);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     SHFT(*ax,*bx,*cx,u)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       SHFT(*fa,*fb,*fc,fu)      strcpy( name, path );               /* we got the fullname name because no directory */
       }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 /*************** linmin ************************/      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 int ncom;        return( GLOCK_ERROR_GETCWD );
 double *pcom,*xicom;      }
 double (*nrfunc)(double []);      /* got dirc from getcwd*/
        printf(" DIRC = %s \n",dirc);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   double brent(double ax, double bx, double cx,      l2 = strlen( ss );                  /* length of filename */
                double (*f)(double), double tol, double *xmin);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double f1dim(double x);      strcpy( name, ss );         /* save file name */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      strncpy( dirc, path, l1 - l2 );     /* now the directory */
               double *fc, double (*func)(double));      dirc[l1-l2] = 0;                    /* add zero */
   int j;      printf(" DIRC2 = %s \n",dirc);
   double xx,xmin,bx,ax;    }
   double fx,fb,fa;    /* We add a separator at the end of dirc if not exists */
      l1 = strlen( dirc );                  /* length of directory */
   ncom=n;    if( dirc[l1-1] != DIRSEPARATOR ){
   pcom=vector(1,n);      dirc[l1] =  DIRSEPARATOR;
   xicom=vector(1,n);      dirc[l1+1] = 0; 
   nrfunc=func;      printf(" DIRC3 = %s \n",dirc);
   for (j=1;j<=n;j++) {    }
     pcom[j]=p[j];    ss = strrchr( name, '.' );            /* find last / */
     xicom[j]=xi[j];    if (ss >0){
   }      ss++;
   ax=0.0;      strcpy(ext,ss);                     /* save extension */
   xx=1.0;      l1= strlen( name);
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      l2= strlen(ss)+1;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      strncpy( finame, name, l1-l2);
 #ifdef DEBUG      finame[l1-l2]= 0;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    }
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    return( 0 );                          /* we're done */
   for (j=1;j<=n;j++) {  }
     xi[j] *= xmin;  
     p[j] += xi[j];  
   }  /******************************************/
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  void replace_back_to_slash(char *s, char*t)
 }  {
     int i;
 /*************** powell ************************/    int lg=0;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    i=0;
             double (*func)(double []))    lg=strlen(t);
 {    for(i=0; i<= lg; i++) {
   void linmin(double p[], double xi[], int n, double *fret,      (s[i] = t[i]);
               double (*func)(double []));      if (t[i]== '\\') s[i]='/';
   int i,ibig,j;    }
   double del,t,*pt,*ptt,*xit;  }
   double fp,fptt;  
   double *xits;  int nbocc(char *s, char occ)
   pt=vector(1,n);  {
   ptt=vector(1,n);    int i,j=0;
   xit=vector(1,n);    int lg=20;
   xits=vector(1,n);    i=0;
   *fret=(*func)(p);    lg=strlen(s);
   for (j=1;j<=n;j++) pt[j]=p[j];    for(i=0; i<= lg; i++) {
   for (*iter=1;;++(*iter)) {    if  (s[i] == occ ) j++;
     fp=(*fret);    }
     ibig=0;    return j;
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  void cutv(char *u,char *v, char*t, char occ)
     for (i=1;i<=n;i++)  {
       printf(" %d %.12f",i, p[i]);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     fprintf(ficlog," %d %.12f",i, p[i]);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     printf("\n");       gives u="abcedf" and v="ghi2j" */
     fprintf(ficlog,"\n");    int i,lg,j,p=0;
     for (i=1;i<=n;i++) {    i=0;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    for(j=0; j<=strlen(t)-1; j++) {
       fptt=(*fret);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 #ifdef DEBUG    }
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);    lg=strlen(t);
 #endif    for(j=0; j<p; j++) {
       printf("%d",i);fflush(stdout);      (u[j] = t[j]);
       fprintf(ficlog,"%d",i);fflush(ficlog);    }
       linmin(p,xit,n,fret,func);       u[p]='\0';
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));     for(j=0; j<= lg; j++) {
         ibig=i;      if (j>=(p+1))(v[j-p-1] = t[j]);
       }    }
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  
       fprintf(ficlog,"%d %.12e",i,(*fret));  /********************** nrerror ********************/
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  void nrerror(char error_text[])
         printf(" x(%d)=%.12e",j,xit[j]);  {
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    fprintf(stderr,"ERREUR ...\n");
       }    fprintf(stderr,"%s\n",error_text);
       for(j=1;j<=n;j++) {    exit(EXIT_FAILURE);
         printf(" p=%.12e",p[j]);  }
         fprintf(ficlog," p=%.12e",p[j]);  /*********************** vector *******************/
       }  double *vector(int nl, int nh)
       printf("\n");  {
       fprintf(ficlog,"\n");    double *v;
 #endif    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     }    if (!v) nrerror("allocation failure in vector");
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    return v-nl+NR_END;
 #ifdef DEBUG  }
       int k[2],l;  
       k[0]=1;  /************************ free vector ******************/
       k[1]=-1;  void free_vector(double*v, int nl, int nh)
       printf("Max: %.12e",(*func)(p));  {
       fprintf(ficlog,"Max: %.12e",(*func)(p));    free((FREE_ARG)(v+nl-NR_END));
       for (j=1;j<=n;j++) {  }
         printf(" %.12e",p[j]);  
         fprintf(ficlog," %.12e",p[j]);  /************************ivector *******************************/
       }  int *ivector(long nl,long nh)
       printf("\n");  {
       fprintf(ficlog,"\n");    int *v;
       for(l=0;l<=1;l++) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in ivector");
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    return v-nl+NR_END;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  /******************free ivector **************************/
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  void free_ivector(int *v, long nl, long nh)
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  {
       }    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
   
   /************************lvector *******************************/
       free_vector(xit,1,n);  long *lvector(long nl,long nh)
       free_vector(xits,1,n);  {
       free_vector(ptt,1,n);    long *v;
       free_vector(pt,1,n);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       return;    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /******************free lvector **************************/
       xit[j]=p[j]-pt[j];  void free_lvector(long *v, long nl, long nh)
       pt[j]=p[j];  {
     }    free((FREE_ARG)(v+nl-NR_END));
     fptt=(*func)(ptt);  }
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /******************* imatrix *******************************/
       if (t < 0.0) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         linmin(p,xit,n,fret,func);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         for (j=1;j<=n;j++) {  { 
           xi[j][ibig]=xi[j][n];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           xi[j][n]=xit[j];    int **m; 
         }    
 #ifdef DEBUG    /* allocate pointers to rows */ 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    if (!m) nrerror("allocation failure 1 in matrix()"); 
         for(j=1;j<=n;j++){    m += NR_END; 
           printf(" %.12e",xit[j]);    m -= nrl; 
           fprintf(ficlog," %.12e",xit[j]);    
         }    
         printf("\n");    /* allocate rows and set pointers to them */ 
         fprintf(ficlog,"\n");    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       }    m[nrl] += NR_END; 
     }    m[nrl] -= ncl; 
   }    
 }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
 /**** Prevalence limit ****************/    /* return pointer to array of pointers to rows */ 
     return m; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  } 
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /****************** free_imatrix *************************/
      matrix by transitions matrix until convergence is reached */  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
   int i, ii,j,k;        long nch,ncl,nrh,nrl; 
   double min, max, maxmin, maxmax,sumnew=0.;       /* free an int matrix allocated by imatrix() */ 
   double **matprod2();  { 
   double **out, cov[NCOVMAX], **pmij();    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double **newm;    free((FREE_ARG) (m+nrl-NR_END)); 
   double agefin, delaymax=50 ; /* Max number of years to converge */  } 
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  /******************* matrix *******************************/
     for (j=1;j<=nlstate+ndeath;j++){  double **matrix(long nrl, long nrh, long ncl, long nch)
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
     }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
    cov[1]=1.;  
      m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    if (!m) nrerror("allocation failure 1 in matrix()");
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    m += NR_END;
     newm=savm;    m -= nrl;
     /* Covariates have to be included here again */  
      cov[2]=agefin;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       for (k=1; k<=cptcovn;k++) {    m[nrl] += NR_END;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl] -= ncl;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return m;
       for (k=1; k<=cptcovprod;k++)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];     */
   }
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /*************************free matrix ************************/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     savm=oldm;    free((FREE_ARG)(m+nrl-NR_END));
     oldm=newm;  }
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /******************* ma3x *******************************/
       min=1.;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         sumnew=0;    double ***m;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         max=FMAX(max,prlim[i][j]);    if (!m) nrerror("allocation failure 1 in matrix()");
         min=FMIN(min,prlim[i][j]);    m += NR_END;
       }    m -= nrl;
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if(maxmax < ftolpl){    m[nrl] += NR_END;
       return prlim;    m[nrl] -= ncl;
     }  
   }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 /*************** transition probabilities ***************/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    m[nrl][ncl] -= nll;
 {    for (j=ncl+1; j<=nch; j++) 
   double s1, s2;      m[nrl][j]=m[nrl][j-1]+nlay;
   /*double t34;*/    
   int i,j,j1, nc, ii, jj;    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for(i=1; i<= nlstate; i++){      for (j=ncl+1; j<=nch; j++) 
     for(j=1; j<i;j++){        m[i][j]=m[i][j-1]+nlay;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    }
         /*s2 += param[i][j][nc]*cov[nc];*/    return m; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       }    */
       ps[i][j]=s2;  }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  /*************************free ma3x ************************/
     for(j=i+1; j<=nlstate+ndeath;j++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       ps[i][j]=s2;  }
     }  
   }  /*************** function subdirf ***********/
     /*ps[3][2]=1;*/  char *subdirf(char fileres[])
   {
   for(i=1; i<= nlstate; i++){    /* Caution optionfilefiname is hidden */
      s1=0;    strcpy(tmpout,optionfilefiname);
     for(j=1; j<i; j++)    strcat(tmpout,"/"); /* Add to the right */
       s1+=exp(ps[i][j]);    strcat(tmpout,fileres);
     for(j=i+1; j<=nlstate+ndeath; j++)    return tmpout;
       s1+=exp(ps[i][j]);  }
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  /*************** function subdirf2 ***********/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  char *subdirf2(char fileres[], char *preop)
     for(j=i+1; j<=nlstate+ndeath; j++)  {
       ps[i][j]= exp(ps[i][j])*ps[i][i];    
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    /* Caution optionfilefiname is hidden */
   } /* end i */    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    strcat(tmpout,preop);
     for(jj=1; jj<= nlstate+ndeath; jj++){    strcat(tmpout,fileres);
       ps[ii][jj]=0;    return tmpout;
       ps[ii][ii]=1;  }
     }  
   }  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    
     for(jj=1; jj<= nlstate+ndeath; jj++){    /* Caution optionfilefiname is hidden */
      printf("%lf ",ps[ii][jj]);    strcpy(tmpout,optionfilefiname);
    }    strcat(tmpout,"/");
     printf("\n ");    strcat(tmpout,preop);
     }    strcat(tmpout,preop2);
     printf("\n ");printf("%lf ",cov[2]);*/    strcat(tmpout,fileres);
 /*    return tmpout;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  }
   goto end;*/  
     return ps;  /***************** f1dim *************************/
 }  extern int ncom; 
   extern double *pcom,*xicom;
 /**************** Product of 2 matrices ******************/  extern double (*nrfunc)(double []); 
    
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  double f1dim(double x) 
 {  { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    int j; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double f;
   /* in, b, out are matrice of pointers which should have been initialized    double *xt; 
      before: only the contents of out is modified. The function returns   
      a pointer to pointers identical to out */    xt=vector(1,ncom); 
   long i, j, k;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   for(i=nrl; i<= nrh; i++)    f=(*nrfunc)(xt); 
     for(k=ncolol; k<=ncoloh; k++)    free_vector(xt,1,ncom); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    return f; 
         out[i][k] +=in[i][j]*b[j][k];  } 
   
   return out;  /*****************brent *************************/
 }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
     int iter; 
 /************* Higher Matrix Product ***************/    double a,b,d,etemp;
     double fu,fv,fw,fx;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    double ftemp;
 {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    double e=0.0; 
      duration (i.e. until   
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    a=(ax < cx ? ax : cx); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    b=(ax > cx ? ax : cx); 
      (typically every 2 years instead of every month which is too big).    x=w=v=bx; 
      Model is determined by parameters x and covariates have to be    fw=fv=fx=(*f)(x); 
      included manually here.    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
      */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   int i, j, d, h, k;      printf(".");fflush(stdout);
   double **out, cov[NCOVMAX];      fprintf(ficlog,".");fflush(ficlog);
   double **newm;  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /* Hstepm could be zero and should return the unit matrix */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (i=1;i<=nlstate+ndeath;i++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for (j=1;j<=nlstate+ndeath;j++){  #endif
       oldm[i][j]=(i==j ? 1.0 : 0.0);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        *xmin=x; 
     }        return fx; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      } 
   for(h=1; h <=nhstepm; h++){      ftemp=fu;
     for(d=1; d <=hstepm; d++){      if (fabs(e) > tol1) { 
       newm=savm;        r=(x-w)*(fx-fv); 
       /* Covariates have to be included here again */        q=(x-v)*(fx-fw); 
       cov[1]=1.;        p=(x-v)*q-(x-w)*r; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        q=2.0*(q-r); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        if (q > 0.0) p = -p; 
       for (k=1; k<=cptcovage;k++)        q=fabs(q); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        etemp=e; 
       for (k=1; k<=cptcovprod;k++)        e=d; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          d=p/q; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          u=x+d; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          if (u-a < tol2 || b-u < tol2) 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));            d=SIGN(tol1,xm-x); 
       savm=oldm;        } 
       oldm=newm;      } else { 
     }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(i=1; i<=nlstate+ndeath; i++)      } 
       for(j=1;j<=nlstate+ndeath;j++) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         po[i][j][h]=newm[i][j];      fu=(*f)(u); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      if (fu <= fx) { 
          */        if (u >= x) a=x; else b=x; 
       }        SHFT(v,w,x,u) 
   } /* end h */          SHFT(fv,fw,fx,fu) 
   return po;          } else { 
 }            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
               v=w; 
 /*************** log-likelihood *************/              w=u; 
 double func( double *x)              fv=fw; 
 {              fw=fu; 
   int i, ii, j, k, mi, d, kk;            } else if (fu <= fv || v == x || v == w) { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];              v=u; 
   double **out;              fv=fu; 
   double sw; /* Sum of weights */            } 
   double lli; /* Individual log likelihood */          } 
   long ipmx;    } 
   /*extern weight */    nrerror("Too many iterations in brent"); 
   /* We are differentiating ll according to initial status */    *xmin=x; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    return fx; 
   /*for(i=1;i<imx;i++)  } 
     printf(" %d\n",s[4][i]);  
   */  /****************** mnbrak ***********************/
   cov[1]=1.;  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for(k=1; k<=nlstate; k++) ll[k]=0.;              double (*func)(double)) 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  { 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    double ulim,u,r,q, dum;
     for(mi=1; mi<= wav[i]-1; mi++){    double fu; 
       for (ii=1;ii<=nlstate+ndeath;ii++)   
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    *fa=(*func)(*ax); 
       for(d=0; d<dh[mi][i]; d++){    *fb=(*func)(*bx); 
         newm=savm;    if (*fb > *fa) { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      SHFT(dum,*ax,*bx,dum) 
         for (kk=1; kk<=cptcovage;kk++) {        SHFT(dum,*fb,*fa,dum) 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        } 
         }    *cx=(*bx)+GOLD*(*bx-*ax); 
            *fc=(*func)(*cx); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    while (*fb > *fc) { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      r=(*bx-*ax)*(*fb-*fc); 
         savm=oldm;      q=(*bx-*cx)*(*fb-*fa); 
         oldm=newm;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
                (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
              ulim=(*bx)+GLIMIT*(*cx-*bx); 
       } /* end mult */      if ((*bx-u)*(u-*cx) > 0.0) { 
              fu=(*func)(u); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        fu=(*func)(u); 
       ipmx +=1;        if (fu < *fc) { 
       sw += weight[i];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            SHFT(*fb,*fc,fu,(*func)(u)) 
     } /* end of wave */            } 
   } /* end of individual */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fu=(*func)(u); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      } else { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        u=(*cx)+GOLD*(*cx-*bx); 
   return -l;        fu=(*func)(u); 
 }      } 
       SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
 /*********** Maximum Likelihood Estimation ***************/        } 
   } 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  /*************** linmin ************************/
   int i,j, iter;  
   double **xi,*delti;  int ncom; 
   double fret;  double *pcom,*xicom;
   xi=matrix(1,npar,1,npar);  double (*nrfunc)(double []); 
   for (i=1;i<=npar;i++)   
     for (j=1;j<=npar;j++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       xi[i][j]=(i==j ? 1.0 : 0.0);  { 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    double brent(double ax, double bx, double cx, 
   powell(p,xi,npar,ftol,&iter,&fret,func);                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));                double *fc, double (*func)(double)); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    int j; 
     double xx,xmin,bx,ax; 
 }    double fx,fb,fa;
    
 /**** Computes Hessian and covariance matrix ***/    ncom=n; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    pcom=vector(1,n); 
 {    xicom=vector(1,n); 
   double  **a,**y,*x,pd;    nrfunc=func; 
   double **hess;    for (j=1;j<=n;j++) { 
   int i, j,jk;      pcom[j]=p[j]; 
   int *indx;      xicom[j]=xi[j]; 
     } 
   double hessii(double p[], double delta, int theta, double delti[]);    ax=0.0; 
   double hessij(double p[], double delti[], int i, int j);    xx=1.0; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   hess=matrix(1,npar,1,npar);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   printf("\nCalculation of the hessian matrix. Wait...\n");  #endif
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++){      xi[j] *= xmin; 
     printf("%d",i);fflush(stdout);      p[j] += xi[j]; 
     fprintf(ficlog,"%d",i);fflush(ficlog);    } 
     hess[i][i]=hessii(p,ftolhess,i,delti);    free_vector(xicom,1,n); 
     /*printf(" %f ",p[i]);*/    free_vector(pcom,1,n); 
     /*printf(" %lf ",hess[i][i]);*/  } 
   }  
    char *asc_diff_time(long time_sec, char ascdiff[])
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++)  {    long sec_left, days, hours, minutes;
       if (j>i) {    days = (time_sec) / (60*60*24);
         printf(".%d%d",i,j);fflush(stdout);    sec_left = (time_sec) % (60*60*24);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    hours = (sec_left) / (60*60) ;
         hess[i][j]=hessij(p,delti,i,j);    sec_left = (sec_left) %(60*60);
         hess[j][i]=hess[i][j];        minutes = (sec_left) /60;
         /*printf(" %lf ",hess[i][j]);*/    sec_left = (sec_left) % (60);
       }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     }    return ascdiff;
   }  }
   printf("\n");  
   fprintf(ficlog,"\n");  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");              double (*func)(double [])) 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  { 
      void linmin(double p[], double xi[], int n, double *fret, 
   a=matrix(1,npar,1,npar);                double (*func)(double [])); 
   y=matrix(1,npar,1,npar);    int i,ibig,j; 
   x=vector(1,npar);    double del,t,*pt,*ptt,*xit;
   indx=ivector(1,npar);    double fp,fptt;
   for (i=1;i<=npar;i++)    double *xits;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    int niterf, itmp;
   ludcmp(a,npar,indx,&pd);  
     pt=vector(1,n); 
   for (j=1;j<=npar;j++) {    ptt=vector(1,n); 
     for (i=1;i<=npar;i++) x[i]=0;    xit=vector(1,n); 
     x[j]=1;    xits=vector(1,n); 
     lubksb(a,npar,indx,x);    *fret=(*func)(p); 
     for (i=1;i<=npar;i++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
       matcov[i][j]=x[i];    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
   }      ibig=0; 
       del=0.0; 
   printf("\n#Hessian matrix#\n");      last_time=curr_time;
   fprintf(ficlog,"\n#Hessian matrix#\n");      (void) gettimeofday(&curr_time,&tzp);
   for (i=1;i<=npar;i++) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for (j=1;j<=npar;j++) {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       printf("%.3e ",hess[i][j]);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       fprintf(ficlog,"%.3e ",hess[i][j]);     for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
     printf("\n");        fprintf(ficlog," %d %.12lf",i, p[i]);
     fprintf(ficlog,"\n");        fprintf(ficrespow," %.12lf", p[i]);
   }      }
       printf("\n");
   /* Recompute Inverse */      fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++)      fprintf(ficrespow,"\n");fflush(ficrespow);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      if(*iter <=3){
   ludcmp(a,npar,indx,&pd);        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
   /*  printf("\n#Hessian matrix recomputed#\n");  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
   for (j=1;j<=npar;j++) {        itmp = strlen(strcurr);
     for (i=1;i<=npar;i++) x[i]=0;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     x[j]=1;          strcurr[itmp-1]='\0';
     lubksb(a,npar,indx,x);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for (i=1;i<=npar;i++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       y[i][j]=x[i];        for(niterf=10;niterf<=30;niterf+=10){
       printf("%.3e ",y[i][j]);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       fprintf(ficlog,"%.3e ",y[i][j]);          tmf = *localtime(&forecast_time.tv_sec);
     }  /*      asctime_r(&tmf,strfor); */
     printf("\n");          strcpy(strfor,asctime(&tmf));
     fprintf(ficlog,"\n");          itmp = strlen(strfor);
   }          if(strfor[itmp-1]=='\n')
   */          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   free_matrix(a,1,npar,1,npar);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   free_matrix(y,1,npar,1,npar);        }
   free_vector(x,1,npar);      }
   free_ivector(indx,1,npar);      for (i=1;i<=n;i++) { 
   free_matrix(hess,1,npar,1,npar);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
   #ifdef DEBUG
 }        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
 /*************** hessian matrix ****************/  #endif
 double hessii( double x[], double delta, int theta, double delti[])        printf("%d",i);fflush(stdout);
 {        fprintf(ficlog,"%d",i);fflush(ficlog);
   int i;        linmin(p,xit,n,fret,func); 
   int l=1, lmax=20;        if (fabs(fptt-(*fret)) > del) { 
   double k1,k2;          del=fabs(fptt-(*fret)); 
   double p2[NPARMAX+1];          ibig=i; 
   double res;        } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #ifdef DEBUG
   double fx;        printf("%d %.12e",i,(*fret));
   int k=0,kmax=10;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double l1;        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   fx=func(x);          printf(" x(%d)=%.12e",j,xit[j]);
   for (i=1;i<=npar;i++) p2[i]=x[i];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for(l=0 ; l <=lmax; l++){        }
     l1=pow(10,l);        for(j=1;j<=n;j++) {
     delts=delt;          printf(" p=%.12e",p[j]);
     for(k=1 ; k <kmax; k=k+1){          fprintf(ficlog," p=%.12e",p[j]);
       delt = delta*(l1*k);        }
       p2[theta]=x[theta] +delt;        printf("\n");
       k1=func(p2)-fx;        fprintf(ficlog,"\n");
       p2[theta]=x[theta]-delt;  #endif
       k2=func(p2)-fx;      } 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  #ifdef DEBUG
              int k[2],l;
 #ifdef DEBUG        k[0]=1;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        k[1]=-1;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        printf("Max: %.12e",(*func)(p));
 #endif        fprintf(ficlog,"Max: %.12e",(*func)(p));
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for (j=1;j<=n;j++) {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          printf(" %.12e",p[j]);
         k=kmax;          fprintf(ficlog," %.12e",p[j]);
       }        }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        printf("\n");
         k=kmax; l=lmax*10.;        fprintf(ficlog,"\n");
       }        for(l=0;l<=1;l++) {
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          for (j=1;j<=n;j++) {
         delts=delt;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }          }
   delti[theta]=delts;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   return res;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          }
 }  #endif
   
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {        free_vector(xit,1,n); 
   int i;        free_vector(xits,1,n); 
   int l=1, l1, lmax=20;        free_vector(ptt,1,n); 
   double k1,k2,k3,k4,res,fx;        free_vector(pt,1,n); 
   double p2[NPARMAX+1];        return; 
   int k;      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   fx=func(x);      for (j=1;j<=n;j++) { 
   for (k=1; k<=2; k++) {        ptt[j]=2.0*p[j]-pt[j]; 
     for (i=1;i<=npar;i++) p2[i]=x[i];        xit[j]=p[j]-pt[j]; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        pt[j]=p[j]; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      } 
     k1=func(p2)-fx;      fptt=(*func)(ptt); 
        if (fptt < fp) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        if (t < 0.0) { 
     k2=func(p2)-fx;          linmin(p,xit,n,fret,func); 
            for (j=1;j<=n;j++) { 
     p2[thetai]=x[thetai]-delti[thetai]/k;            xi[j][ibig]=xi[j][n]; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            xi[j][n]=xit[j]; 
     k3=func(p2)-fx;          }
    #ifdef DEBUG
     p2[thetai]=x[thetai]-delti[thetai]/k;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     k4=func(p2)-fx;          for(j=1;j<=n;j++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            printf(" %.12e",xit[j]);
 #ifdef DEBUG            fprintf(ficlog," %.12e",xit[j]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          }
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          printf("\n");
 #endif          fprintf(ficlog,"\n");
   }  #endif
   return res;        }
 }      } 
     } 
 /************** Inverse of matrix **************/  } 
 void ludcmp(double **a, int n, int *indx, double *d)  
 {  /**** Prevalence limit (stable or period prevalence)  ****************/
   int i,imax,j,k;  
   double big,dum,sum,temp;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double *vv;  {
      /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   vv=vector(1,n);       matrix by transitions matrix until convergence is reached */
   *d=1.0;  
   for (i=1;i<=n;i++) {    int i, ii,j,k;
     big=0.0;    double min, max, maxmin, maxmax,sumnew=0.;
     for (j=1;j<=n;j++)    double **matprod2();
       if ((temp=fabs(a[i][j])) > big) big=temp;    double **out, cov[NCOVMAX+1], **pmij();
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double **newm;
     vv[i]=1.0/big;    double agefin, delaymax=50 ; /* Max number of years to converge */
   }  
   for (j=1;j<=n;j++) {    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1;i<j;i++) {      for (j=1;j<=nlstate+ndeath;j++){
       sum=a[i][j];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      }
       a[i][j]=sum;  
     }     cov[1]=1.;
     big=0.0;   
     for (i=j;i<=n;i++) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       sum=a[i][j];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       for (k=1;k<j;k++)      newm=savm;
         sum -= a[i][k]*a[k][j];      /* Covariates have to be included here again */
       a[i][j]=sum;       cov[2]=agefin;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    
         big=dum;        for (k=1; k<=cptcovn;k++) {
         imax=i;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     }        }
     if (j != imax) {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=1;k<=n;k++) {        for (k=1; k<=cptcovprod;k++)
         dum=a[imax][k];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         a[imax][k]=a[j][k];  
         a[j][k]=dum;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       *d = -(*d);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       vv[imax]=vv[j];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     }  
     indx[j]=imax;      savm=oldm;
     if (a[j][j] == 0.0) a[j][j]=TINY;      oldm=newm;
     if (j != n) {      maxmax=0.;
       dum=1.0/(a[j][j]);      for(j=1;j<=nlstate;j++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        min=1.;
     }        max=0.;
   }        for(i=1; i<=nlstate; i++) {
   free_vector(vv,1,n);  /* Doesn't work */          sumnew=0;
 ;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 }          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
 void lubksb(double **a, int n, int *indx, double b[])          min=FMIN(min,prlim[i][j]);
 {        }
   int i,ii=0,ip,j;        maxmin=max-min;
   double sum;        maxmax=FMAX(maxmax,maxmin);
        }
   for (i=1;i<=n;i++) {      if(maxmax < ftolpl){
     ip=indx[i];        return prlim;
     sum=b[ip];      }
     b[ip]=b[i];    }
     if (ii)  }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;  /*************** transition probabilities ***************/ 
     b[i]=sum;  
   }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   for (i=n;i>=1;i--) {  {
     sum=b[i];    double s1, s2;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    /*double t34;*/
     b[i]=sum/a[i][i];    int i,j,j1, nc, ii, jj;
   }  
 }      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
 /************ Frequencies ********************/          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            /*s2 += param[i][j][nc]*cov[nc];*/
 {  /* Some frequencies */            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
    /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          }
   int first;          ps[i][j]=s2;
   double ***freq; /* Frequencies */  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   double *pp;        }
   double pos, k2, dateintsum=0,k2cpt=0;        for(j=i+1; j<=nlstate+ndeath;j++){
   FILE *ficresp;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   char fileresp[FILENAMELENGTH];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
    /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   pp=vector(1,nlstate);          }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          ps[i][j]=s2;
   strcpy(fileresp,"p");        }
   strcat(fileresp,fileres);      }
   if((ficresp=fopen(fileresp,"w"))==NULL) {      /*ps[3][2]=1;*/
     printf("Problem with prevalence resultfile: %s\n", fileresp);      
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      for(i=1; i<= nlstate; i++){
     exit(0);        s1=0;
   }        for(j=1; j<i; j++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          s1+=exp(ps[i][j]);
   j1=0;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
          }
   j=cptcoveff;        for(j=i+1; j<=nlstate+ndeath; j++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          s1+=exp(ps[i][j]);
           /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   first=1;        }
         ps[i][i]=1./(s1+1.);
   for(k1=1; k1<=j;k1++){        for(j=1; j<i; j++)
     for(i1=1; i1<=ncodemax[k1];i1++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
       j1++;        for(j=i+1; j<=nlstate+ndeath; j++)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          ps[i][j]= exp(ps[i][j])*ps[i][i];
         scanf("%d", i);*/        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for (i=-1; i<=nlstate+ndeath; i++)        } /* end i */
         for (jk=-1; jk<=nlstate+ndeath; jk++)        
           for(m=agemin; m <= agemax+3; m++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
             freq[i][jk][m]=0;        for(jj=1; jj<= nlstate+ndeath; jj++){
                ps[ii][jj]=0;
       dateintsum=0;          ps[ii][ii]=1;
       k2cpt=0;        }
       for (i=1; i<=imx; i++) {      }
         bool=1;      
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
               bool=0;  /*         printf("ddd %lf ",ps[ii][jj]); */
         }  /*       } */
         if (bool==1) {  /*       printf("\n "); */
           for(m=firstpass; m<=lastpass; m++){  /*        } */
             k2=anint[m][i]+(mint[m][i]/12.);  /*        printf("\n ");printf("%lf ",cov[2]); */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {         /*
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;        goto end;*/
               if (m<lastpass) {      return ps;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
               }  /**************** Product of 2 matrices ******************/
                
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
                 dateintsum=dateintsum+k2;  {
                 k2cpt++;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
               }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
             }    /* in, b, out are matrice of pointers which should have been initialized 
           }       before: only the contents of out is modified. The function returns
         }       a pointer to pointers identical to out */
       }    long i, j, k;
            for(i=nrl; i<= nrh; i++)
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
       if  (cptcovn>0) {          out[i][k] +=in[i][j]*b[j][k];
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    return out;
         fprintf(ficresp, "**********\n#");  }
       }  
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  /************* Higher Matrix Product ***************/
       fprintf(ficresp, "\n");  
        double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       for(i=(int)agemin; i <= (int)agemax+3; i++){  {
         if(i==(int)agemax+3){    /* Computes the transition matrix starting at age 'age' over 
           fprintf(ficlog,"Total");       'nhstepm*hstepm*stepm' months (i.e. until
         }else{       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           if(first==1){       nhstepm*hstepm matrices. 
             first=0;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
             printf("See log file for details...\n");       (typically every 2 years instead of every month which is too big 
           }       for the memory).
           fprintf(ficlog,"Age %d", i);       Model is determined by parameters x and covariates have to be 
         }       included manually here. 
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)       */
             pp[jk] += freq[jk][m][i];  
         }    int i, j, d, h, k;
         for(jk=1; jk <=nlstate ; jk++){    double **out, cov[NCOVMAX+1];
           for(m=-1, pos=0; m <=0 ; m++)    double **newm;
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10){    /* Hstepm could be zero and should return the unit matrix */
             if(first==1){    for (i=1;i<=nlstate+ndeath;i++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      for (j=1;j<=nlstate+ndeath;j++){
             }        oldm[i][j]=(i==j ? 1.0 : 0.0);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        po[i][j][0]=(i==j ? 1.0 : 0.0);
           }else{      }
             if(first==1)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for(h=1; h <=nhstepm; h++){
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for(d=1; d <=hstepm; d++){
           }        newm=savm;
         }        /* Covariates have to be included here again */
         cov[1]=1.;
         for(jk=1; jk <=nlstate ; jk++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovn;k++) 
             pp[jk] += freq[jk][m][i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         }        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for(jk=1,pos=0; jk <=nlstate ; jk++)        for (k=1; k<=cptcovprod;k++)
           pos += pp[jk];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for(jk=1; jk <=nlstate ; jk++){  
           if(pos>=1.e-5){  
             if(first==1)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           }else{                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             if(first==1)        savm=oldm;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        oldm=newm;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      }
           }      for(i=1; i<=nlstate+ndeath; i++)
           if( i <= (int) agemax){        for(j=1;j<=nlstate+ndeath;j++) {
             if(pos>=1.e-5){          po[i][j][h]=newm[i][j];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
               probs[i][jk][j1]= pp[jk]/pos;        }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      /*printf("h=%d ",h);*/
             }    } /* end h */
             else  /*     printf("\n H=%d \n",h); */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    return po;
           }  }
         }  
          
         for(jk=-1; jk <=nlstate+ndeath; jk++)  /*************** log-likelihood *************/
           for(m=-1; m <=nlstate+ndeath; m++)  double func( double *x)
             if(freq[jk][m][i] !=0 ) {  {
             if(first==1)    int i, ii, j, k, mi, d, kk;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    double **out;
             }    double sw; /* Sum of weights */
         if(i <= (int) agemax)    double lli; /* Individual log likelihood */
           fprintf(ficresp,"\n");    int s1, s2;
         if(first==1)    double bbh, survp;
           printf("Others in log...\n");    long ipmx;
         fprintf(ficlog,"\n");    /*extern weight */
       }    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   dateintmean=dateintsum/k2cpt;      printf(" %d\n",s[4][i]);
      */
   fclose(ficresp);    cov[1]=1.;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   /* End of Freq */    if(mle==1){
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************ Prevalence ********************/        for(mi=1; mi<= wav[i]-1; mi++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {  /* Some frequencies */            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***freq; /* Frequencies */            }
   double *pp;          for(d=0; d<dh[mi][i]; d++){
   double pos, k2;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   pp=vector(1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   j1=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   j=cptcoveff;            oldm=newm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          } /* end mult */
          
   for(k1=1; k1<=j;k1++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     for(i1=1; i1<=ncodemax[k1];i1++){          /* But now since version 0.9 we anticipate for bias at large stepm.
       j1++;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                 * (in months) between two waves is not a multiple of stepm, we rounded to 
       for (i=-1; i<=nlstate+ndeath; i++)             * the nearest (and in case of equal distance, to the lowest) interval but now
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * we keep into memory the bias bh[mi][i] and also the previous matrix product
           for(m=agemin; m <= agemax+3; m++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             freq[i][jk][m]=0;           * probability in order to take into account the bias as a fraction of the way
                 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       for (i=1; i<=imx; i++) {           * -stepm/2 to stepm/2 .
         bool=1;           * For stepm=1 the results are the same as for previous versions of Imach.
         if  (cptcovn>0) {           * For stepm > 1 the results are less biased than in previous versions. 
           for (z1=1; z1<=cptcoveff; z1++)           */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s1=s[mw[mi][i]][i];
               bool=0;          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
         if (bool==1) {          /* bias bh is positive if real duration
           for(m=firstpass; m<=lastpass; m++){           * is higher than the multiple of stepm and negative otherwise.
             k2=anint[m][i]+(mint[m][i]/12.);           */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
               if(agev[m][i]==0) agev[m][i]=agemax+1;          if( s2 > nlstate){ 
               if(agev[m][i]==1) agev[m][i]=agemax+2;            /* i.e. if s2 is a death state and if the date of death is known 
               if (m<lastpass) {               then the contribution to the likelihood is the probability to 
                 if (calagedate>0)               die between last step unit time and current  step unit time, 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];               which is also equal to probability to die before dh 
                 else               minus probability to die before dh-stepm . 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];               In version up to 0.92 likelihood was computed
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          as if date of death was unknown. Death was treated as any other
               }          health state: the date of the interview describes the actual state
             }          and not the date of a change in health state. The former idea was
           }          to consider that at each interview the state was recorded
         }          (healthy, disable or death) and IMaCh was corrected; but when we
       }          introduced the exact date of death then we should have modified
       for(i=(int)agemin; i <= (int)agemax+3; i++){          the contribution of an exact death to the likelihood. This new
         for(jk=1; jk <=nlstate ; jk++){          contribution is smaller and very dependent of the step unit
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          stepm. It is no more the probability to die between last interview
             pp[jk] += freq[jk][m][i];          and month of death but the probability to survive from last
         }          interview up to one month before death multiplied by the
         for(jk=1; jk <=nlstate ; jk++){          probability to die within a month. Thanks to Chris
           for(m=-1, pos=0; m <=0 ; m++)          Jackson for correcting this bug.  Former versions increased
             pos += freq[jk][m][i];          mortality artificially. The bad side is that we add another loop
         }          which slows down the processing. The difference can be up to 10%
                  lower mortality.
         for(jk=1; jk <=nlstate ; jk++){            */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            lli=log(out[s1][s2] - savm[s1][s2]);
             pp[jk] += freq[jk][m][i];  
         }  
                  } else if  (s2==-2) {
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            for (j=1,survp=0. ; j<=nlstate; j++) 
                      survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for(jk=1; jk <=nlstate ; jk++){                /*survp += out[s1][j]; */
           if( i <= (int) agemax){            lli= log(survp);
             if(pos>=1.e-5){          }
               probs[i][jk][j1]= pp[jk]/pos;          
             }          else if  (s2==-4) { 
           }            for (j=3,survp=0. ; j<=nlstate; j++)  
         }/* end jk */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }/* end i */            lli= log(survp); 
     } /* end i1 */          } 
   } /* end k1 */  
           else if  (s2==-5) { 
              for (j=1,survp=0. ; j<=2; j++)  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   free_vector(pp,1,nlstate);            lli= log(survp); 
            } 
 }  /* End of Freq */          
           else{
 /************* Waves Concatenation ***************/            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          } 
 {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          /*if(lli ==000.0)*/
      Death is a valid wave (if date is known).          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          ipmx +=1;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          sw += weight[i];
      and mw[mi+1][i]. dh depends on stepm.          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      */        } /* end of wave */
       } /* end of individual */
   int i, mi, m;    }  else if(mle==2){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      double sum=0., jmean=0.;*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int first;        for(mi=1; mi<= wav[i]-1; mi++){
   int j, k=0,jk, ju, jl;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double sum=0.;            for (j=1;j<=nlstate+ndeath;j++){
   first=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmin=1e+5;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmax=-1;            }
   jmean=0.;          for(d=0; d<=dh[mi][i]; d++){
   for(i=1; i<=imx; i++){            newm=savm;
     mi=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     m=firstpass;            for (kk=1; kk<=cptcovage;kk++) {
     while(s[m][i] <= nlstate){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(s[m][i]>=1)            }
         mw[++mi][i]=m;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if(m >=lastpass)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         break;            savm=oldm;
       else            oldm=newm;
         m++;          } /* end mult */
     }/* end while */        
     if (s[m][i] > nlstate){          s1=s[mw[mi][i]][i];
       mi++;     /* Death is another wave */          s2=s[mw[mi+1][i]][i];
       /* if(mi==0)  never been interviewed correctly before death */          bbh=(double)bh[mi][i]/(double)stepm; 
          /* Only death is a correct wave */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       mw[mi][i]=m;          ipmx +=1;
     }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     wav[i]=mi;        } /* end of wave */
     if(mi==0){      } /* end of individual */
       if(first==0){    }  else if(mle==3){  /* exponential inter-extrapolation */
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         first=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
       if(first==1){          for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     } /* end mi==0 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<dh[mi][i]; d++){
   for(i=1; i<=imx; i++){            newm=savm;
     for(mi=1; mi<wav[i];mi++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (stepm <=0)            for (kk=1; kk<=cptcovage;kk++) {
         dh[mi][i]=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       else{            }
         if (s[mw[mi+1][i]][i] > nlstate) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (agedc[i] < 2*AGESUP) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            savm=oldm;
           if(j==0) j=1;  /* Survives at least one month after exam */            oldm=newm;
           k=k+1;          } /* end mult */
           if (j >= jmax) jmax=j;        
           if (j <= jmin) jmin=j;          s1=s[mw[mi][i]][i];
           sum=sum+j;          s2=s[mw[mi+1][i]][i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          bbh=(double)bh[mi][i]/(double)stepm; 
           }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         }          ipmx +=1;
         else{          sw += weight[i];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           k=k+1;        } /* end of wave */
           if (j >= jmax) jmax=j;      } /* end of individual */
           else if (j <= jmin)jmin=j;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           sum=sum+j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         jk= j/stepm;          for (ii=1;ii<=nlstate+ndeath;ii++)
         jl= j -jk*stepm;            for (j=1;j<=nlstate+ndeath;j++){
         ju= j -(jk+1)*stepm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(jl <= -ju)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=jk;            }
         else          for(d=0; d<dh[mi][i]; d++){
           dh[mi][i]=jk+1;            newm=savm;
         if(dh[mi][i]==0)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           dh[mi][i]=1; /* At least one step */            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
   }          
   jmean=sum/k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            savm=oldm;
  }            oldm=newm;
           } /* end mult */
 /*********** Tricode ****************************/        
 void tricode(int *Tvar, int **nbcode, int imx)          s1=s[mw[mi][i]][i];
 {          s2=s[mw[mi+1][i]][i];
   int Ndum[20],ij=1, k, j, i;          if( s2 > nlstate){ 
   int cptcode=0;            lli=log(out[s1][s2] - savm[s1][s2]);
   cptcoveff=0;          }else{
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for (k=0; k<19; k++) Ndum[k]=0;          }
   for (k=1; k<=7; k++) ncodemax[k]=0;          ipmx +=1;
           sw += weight[i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1; i<=imx; i++) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       ij=(int)(covar[Tvar[j]][i]);        } /* end of wave */
       Ndum[ij]++;      } /* end of individual */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       if (ij > cptcode) cptcode=ij;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for (i=0; i<=cptcode; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       if(Ndum[i]!=0) ncodemax[j]++;            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     ij=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
           for(d=0; d<dh[mi][i]; d++){
     for (i=1; i<=ncodemax[j]; i++) {            newm=savm;
       for (k=0; k<=19; k++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (Ndum[k] != 0) {            for (kk=1; kk<=cptcovage;kk++) {
           nbcode[Tvar[j]][ij]=k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                      }
           ij++;          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (ij > ncodemax[j]) break;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }              savm=oldm;
     }            oldm=newm;
   }            } /* end mult */
         
  for (k=0; k<19; k++) Ndum[k]=0;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
  for (i=1; i<=ncovmodel-2; i++) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
    ij=Tvar[i];          ipmx +=1;
    Ndum[ij]++;          sw += weight[i];
  }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
  ij=1;        } /* end of wave */
  for (i=1; i<=10; i++) {      } /* end of individual */
    if((Ndum[i]!=0) && (i<=ncovcol)){    } /* End of if */
      Tvaraff[ij]=i;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      ij++;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
    }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  }    return -l;
    }
  cptcoveff=ij-1;  
 }  /*************** log-likelihood *************/
   double funcone( double *x)
 /*********** Health Expectancies ****************/  {
     /* Same as likeli but slower because of a lot of printf and if */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 {    double **out;
   /* Health expectancies */    double lli; /* Individual log likelihood */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    double llt;
   double age, agelim, hf;    int s1, s2;
   double ***p3mat,***varhe;    double bbh, survp;
   double **dnewm,**doldm;    /*extern weight */
   double *xp;    /* We are differentiating ll according to initial status */
   double **gp, **gm;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double ***gradg, ***trgradg;    /*for(i=1;i<imx;i++) 
   int theta;      printf(" %d\n",s[4][i]);
     */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    cov[1]=1.;
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate*2,1,npar);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   doldm=matrix(1,nlstate*2,1,nlstate*2);  
      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficreseij,"# Health expectancies\n");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficreseij,"# Age");      for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=nlstate;i++)        for (ii=1;ii<=nlstate+ndeath;ii++)
     for(j=1; j<=nlstate;j++)          for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"\n");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
   if(estepm < stepm){        for(d=0; d<dh[mi][i]; d++){
     printf ("Problem %d lower than %d\n",estepm, stepm);          newm=savm;
   }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   else  hstepm=estepm;            for (kk=1; kk<=cptcovage;kk++) {
   /* We compute the life expectancy from trapezoids spaced every estepm months            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    * This is mainly to measure the difference between two models: for example          }
    * if stepm=24 months pijx are given only every 2 years and by summing them          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    * we are calculating an estimate of the Life Expectancy assuming a linear                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    * progression inbetween and thus overestimating or underestimating according          savm=oldm;
    * to the curvature of the survival function. If, for the same date, we          oldm=newm;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        } /* end mult */
    * to compare the new estimate of Life expectancy with the same linear        
    * hypothesis. A more precise result, taking into account a more precise        s1=s[mw[mi][i]][i];
    * curvature will be obtained if estepm is as small as stepm. */        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   /* For example we decided to compute the life expectancy with the smallest unit */        /* bias is positive if real duration
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.         * is higher than the multiple of stepm and negative otherwise.
      nhstepm is the number of hstepm from age to agelim         */
      nstepm is the number of stepm from age to agelin.        if( s2 > nlstate && (mle <5) ){  /* Jackson */
      Look at hpijx to understand the reason of that which relies in memory size          lli=log(out[s1][s2] - savm[s1][s2]);
      and note for a fixed period like estepm months */        } else if  (s2==-2) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          for (j=1,survp=0. ; j<=nlstate; j++) 
      survival function given by stepm (the optimization length). Unfortunately it            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      means that if the survival funtion is printed only each two years of age and if          lli= log(survp);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        }else if (mle==1){
      results. So we changed our mind and took the option of the best precision.          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   */        } else if(mle==2){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
   agelim=AGESUP;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     /* nhstepm age range expressed in number of stepm */          lli=log(out[s1][s2]); /* Original formula */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          lli=log(out[s1][s2]); /* Original formula */
     /* if (stepm >= YEARM) hstepm=1;*/        } /* End of if */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        ipmx +=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        sw += weight[i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     gp=matrix(0,nhstepm,1,nlstate*2);        printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); 
     gm=matrix(0,nhstepm,1,nlstate*2);        if(globpr){
           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     /* Computed by stepm unit matrices, product of hstepm matrices, stored   %11.6f %11.6f %11.6f ", \
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                    2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
            for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
     /* Computing Variances of health expectancies */          fprintf(ficresilk," %10.6f\n", -llt);
         }
      for(theta=1; theta <=npar; theta++){      } /* end of wave */
       for(i=1; i<=npar; i++){    } /* end of individual */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      if(globpr==0){ /* First time we count the contributions and weights */
       cptj=0;      gipmx=ipmx;
       for(j=1; j<= nlstate; j++){      gsw=sw;
         for(i=1; i<=nlstate; i++){    }
           cptj=cptj+1;    return -l;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }  
         }  /*************** function likelione ***********/
       }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
        {
          /* This routine should help understanding what is done with 
       for(i=1; i<=npar; i++)       the selection of individuals/waves and
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       to check the exact contribution to the likelihood.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         Plotting could be done.
           */
       cptj=0;    int k;
       for(j=1; j<= nlstate; j++){  
         for(i=1;i<=nlstate;i++){    if(*globpri !=0){ /* Just counts and sums, no printings */
           cptj=cptj+1;      strcpy(fileresilk,"ilk"); 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      strcat(fileresilk,fileres);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           }        printf("Problem with resultfile: %s\n", fileresilk);
         }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }      }
       for(j=1; j<= nlstate*2; j++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         for(h=0; h<=nhstepm-1; h++){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         }      for(k=1; k<=nlstate; k++) 
      }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
          fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 /* End theta */    }
   
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    *fretone=(*funcone)(p);
     if(*globpri !=0){
      for(h=0; h<=nhstepm-1; h++)      fclose(ficresilk);
       for(j=1; j<=nlstate*2;j++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         for(theta=1; theta <=npar; theta++)      fflush(fichtm); 
           trgradg[h][j][theta]=gradg[h][theta][j];    } 
          return;
   }
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;  /*********** Maximum Likelihood Estimation ***************/
   
      printf("%d|",(int)age);fflush(stdout);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);  {
      for(h=0;h<=nhstepm-1;h++){    int i,j, iter;
       for(k=0;k<=nhstepm-1;k++){    double **xi;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    double fret;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    double fretone; /* Only one call to likelihood */
         for(i=1;i<=nlstate*2;i++)    /*  char filerespow[FILENAMELENGTH];*/
           for(j=1;j<=nlstate*2;j++)    xi=matrix(1,npar,1,npar);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
     }        xi[i][j]=(i==j ? 1.0 : 0.0);
     /* Computing expectancies */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     for(i=1; i<=nlstate;i++)    strcpy(filerespow,"pow"); 
       for(j=1; j<=nlstate;j++)    strcat(filerespow,fileres);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      printf("Problem with resultfile: %s\n", filerespow);
                fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
         }    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
     fprintf(ficreseij,"%3.0f",age );        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     cptj=0;    fprintf(ficrespow,"\n");
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    powell(p,xi,npar,ftol,&iter,&fret,func);
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    free_matrix(xi,1,npar,1,npar);
       }    fclose(ficrespow);
     fprintf(ficreseij,"\n");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
        fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     free_matrix(gm,0,nhstepm,1,nlstate*2);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /**** Computes Hessian and covariance matrix ***/
   }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   printf("\n");  {
   fprintf(ficlog,"\n");    double  **a,**y,*x,pd;
     double **hess;
   free_vector(xp,1,npar);    int i, j,jk;
   free_matrix(dnewm,1,nlstate*2,1,npar);    int *indx;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
 /************ Variance ******************/    void ludcmp(double **a, int npar, int *indx, double *d) ;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    double gompertz(double p[]);
 {    hess=matrix(1,npar,1,npar);
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    printf("\nCalculation of the hessian matrix. Wait...\n");
   /* double **newm;*/    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double **dnewm,**doldm;    for (i=1;i<=npar;i++){
   double **dnewmp,**doldmp;      printf("%d",i);fflush(stdout);
   int i, j, nhstepm, hstepm, h, nstepm ;      fprintf(ficlog,"%d",i);fflush(ficlog);
   int k, cptcode;     
   double *xp;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double **gp, **gm;  /* for var eij */      
   double ***gradg, ***trgradg; /*for var eij */      /*  printf(" %f ",p[i]);
   double **gradgp, **trgradgp; /* for var p point j */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double *gpp, *gmp; /* for var p point j */    }
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    
   double ***p3mat;    for (i=1;i<=npar;i++) {
   double age,agelim, hf;      for (j=1;j<=npar;j++)  {
   int theta;        if (j>i) { 
   char digit[4];          printf(".%d%d",i,j);fflush(stdout);
   char digitp[16];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
   char fileresprobmorprev[FILENAMELENGTH];          
           hess[j][i]=hess[i][j];    
   if(popbased==1)          /*printf(" %lf ",hess[i][j]);*/
     strcpy(digitp,"-populbased-");        }
   else      }
     strcpy(digitp,"-stablbased-");    }
     printf("\n");
   strcpy(fileresprobmorprev,"prmorprev");    fprintf(ficlog,"\n");
   sprintf(digit,"%-d",ij);  
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    
   strcat(fileresprobmorprev,fileres);    a=matrix(1,npar,1,npar);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    y=matrix(1,npar,1,npar);
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    x=vector(1,npar);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    indx=ivector(1,npar);
   }    for (i=1;i<=npar;i++)
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    ludcmp(a,npar,indx,&pd);
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");  
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    for (j=1;j<=npar;j++) {
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      for (i=1;i<=npar;i++) x[i]=0;
     fprintf(ficresprobmorprev," p.%-d SE",j);      x[j]=1;
     for(i=1; i<=nlstate;i++)      lubksb(a,npar,indx,x);
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);      for (i=1;i<=npar;i++){ 
   }          matcov[i][j]=x[i];
   fprintf(ficresprobmorprev,"\n");      }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    printf("\n#Hessian matrix#\n");
     exit(0);    fprintf(ficlog,"\n#Hessian matrix#\n");
   }    for (i=1;i<=npar;i++) { 
   else{      for (j=1;j<=npar;j++) { 
     fprintf(ficgp,"\n# Routine varevsij");        printf("%.3e ",hess[i][j]);
   }        fprintf(ficlog,"%.3e ",hess[i][j]);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      }
     printf("Problem with html file: %s\n", optionfilehtm);      printf("\n");
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      fprintf(ficlog,"\n");
     exit(0);    }
   }  
   else{    /* Recompute Inverse */
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    ludcmp(a,npar,indx,&pd);
   
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    /*  printf("\n#Hessian matrix recomputed#\n");
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    for (j=1;j<=npar;j++) {
     for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++) x[i]=0;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      x[j]=1;
   fprintf(ficresvij,"\n");      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   xp=vector(1,npar);        y[i][j]=x[i];
   dnewm=matrix(1,nlstate,1,npar);        printf("%.3e ",y[i][j]);
   doldm=matrix(1,nlstate,1,nlstate);        fprintf(ficlog,"%.3e ",y[i][j]);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      }
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      printf("\n");
       fprintf(ficlog,"\n");
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    }
   gpp=vector(nlstate+1,nlstate+ndeath);    */
   gmp=vector(nlstate+1,nlstate+ndeath);  
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    free_matrix(a,1,npar,1,npar);
      free_matrix(y,1,npar,1,npar);
   if(estepm < stepm){    free_vector(x,1,npar);
     printf ("Problem %d lower than %d\n",estepm, stepm);    free_ivector(indx,1,npar);
   }    free_matrix(hess,1,npar,1,npar);
   else  hstepm=estepm;    
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  }
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  /*************** hessian matrix ****************/
      Look at hpijx to understand the reason of that which relies in memory size  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
      and note for a fixed period like k years */  {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    int i;
      survival function given by stepm (the optimization length). Unfortunately it    int l=1, lmax=20;
      means that if the survival funtion is printed only each two years of age and if    double k1,k2;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double p2[NPARMAX+1];
      results. So we changed our mind and took the option of the best precision.    double res;
   */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double fx;
   agelim = AGESUP;    int k=0,kmax=10;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double l1;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    fx=func(x);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++) p2[i]=x[i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    for(l=0 ; l <=lmax; l++){
     gp=matrix(0,nhstepm,1,nlstate);      l1=pow(10,l);
     gm=matrix(0,nhstepm,1,nlstate);      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
     for(theta=1; theta <=npar; theta++){        p2[theta]=x[theta] +delt;
       for(i=1; i<=npar; i++){ /* Computes gradient */        k1=func(p2)-fx;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        p2[theta]=x[theta]-delt;
       }        k2=func(p2)-fx;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /*res= (k1-2.0*fx+k2)/delt/delt; */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
       if (popbased==1) {  #ifdef DEBUG
         for(i=1; i<=nlstate;i++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }  #endif
          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(j=1; j<= nlstate; j++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         for(h=0; h<=nhstepm; h++){          k=kmax;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         }          k=kmax; l=lmax*10.;
       }        }
       /* This for computing forces of mortality (h=1)as a weighted average */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){          delts=delt;
         for(i=1; i<= nlstate; i++)        }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      }
       }        }
       /* end force of mortality */    delti[theta]=delts;
     return res; 
       for(i=1; i<=npar; i++) /* Computes gradient */    
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
    {
       if (popbased==1) {    int i;
         for(i=1; i<=nlstate;i++)    int l=1, l1, lmax=20;
           prlim[i][i]=probs[(int)age][i][ij];    double k1,k2,k3,k4,res,fx;
       }    double p2[NPARMAX+1];
     int k;
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    fx=func(x);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    for (k=1; k<=2; k++) {
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      for (i=1;i<=npar;i++) p2[i]=x[i];
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       /* This for computing force of mortality (h=1)as a weighted average */      k1=func(p2)-fx;
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    
         for(i=1; i<= nlstate; i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
           gmp[j] += prlim[i][i]*p3mat[i][j][1];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }          k2=func(p2)-fx;
       /* end force of mortality */    
       p2[thetai]=x[thetai]-delti[thetai]/k;
       for(j=1; j<= nlstate; j++) /* vareij */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for(h=0; h<=nhstepm; h++){      k3=func(p2)-fx;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    
         }      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      k4=func(p2)-fx;
       }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
     } /* End theta */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  #endif
     }
     for(h=0; h<=nhstepm; h++) /* veij */    return res;
       for(j=1; j<=nlstate;j++)  }
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */  { 
       for(theta=1; theta <=npar; theta++)    int i,imax,j,k; 
         trgradgp[j][theta]=gradgp[theta][j];    double big,dum,sum,temp; 
     double *vv; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */   
     for(i=1;i<=nlstate;i++)    vv=vector(1,n); 
       for(j=1;j<=nlstate;j++)    *d=1.0; 
         vareij[i][j][(int)age] =0.;    for (i=1;i<=n;i++) { 
       big=0.0; 
     for(h=0;h<=nhstepm;h++){      for (j=1;j<=n;j++) 
       for(k=0;k<=nhstepm;k++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      vv[i]=1.0/big; 
         for(i=1;i<=nlstate;i++)    } 
           for(j=1;j<=nlstate;j++)    for (j=1;j<=n;j++) { 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for (i=1;i<j;i++) { 
       }        sum=a[i][j]; 
     }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     /* pptj */      } 
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      big=0.0; 
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      for (i=j;i<=n;i++) { 
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        sum=a[i][j]; 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)        for (k=1;k<j;k++) 
         varppt[j][i]=doldmp[j][i];          sum -= a[i][k]*a[k][j]; 
     /* end ppptj */        a[i][j]=sum; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          if ( (dum=vv[i]*fabs(sum)) >= big) { 
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          big=dum; 
            imax=i; 
     if (popbased==1) {        } 
       for(i=1; i<=nlstate;i++)      } 
         prlim[i][i]=probs[(int)age][i][ij];      if (j != imax) { 
     }        for (k=1;k<=n;k++) { 
              dum=a[imax][k]; 
     /* This for computing force of mortality (h=1)as a weighted average */          a[imax][k]=a[j][k]; 
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          a[j][k]=dum; 
       for(i=1; i<= nlstate; i++)        } 
         gmp[j] += prlim[i][i]*p3mat[i][j][1];        *d = -(*d); 
     }            vv[imax]=vv[j]; 
     /* end force of mortality */      } 
       indx[j]=imax; 
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      if (j != n) { 
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        dum=1.0/(a[j][j]); 
       for(i=1; i<=nlstate;i++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);      } 
       }    } 
     }    free_vector(vv,1,n);  /* Doesn't work */
     fprintf(ficresprobmorprev,"\n");  ;
   } 
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  void lubksb(double **a, int n, int *indx, double b[]) 
       for(j=1; j<=nlstate;j++){  { 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    int i,ii=0,ip,j; 
       }    double sum; 
     fprintf(ficresvij,"\n");   
     free_matrix(gp,0,nhstepm,1,nlstate);    for (i=1;i<=n;i++) { 
     free_matrix(gm,0,nhstepm,1,nlstate);      ip=indx[i]; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      sum=b[ip]; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      b[ip]=b[i]; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (ii) 
   } /* End age */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   free_vector(gpp,nlstate+1,nlstate+ndeath);      else if (sum) ii=i; 
   free_vector(gmp,nlstate+1,nlstate+ndeath);      b[i]=sum; 
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    } 
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    for (i=n;i>=1;i--) { 
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      sum=b[i]; 
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      b[i]=sum/a[i][i]; 
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    } 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);  } 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);  void pstamp(FILE *fichier)
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  {
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,nlstate);  /************ Frequencies ********************/
   free_matrix(dnewm,1,nlstate,1,npar);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  {  /* Some frequencies */
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    int i, m, jk, k1,i1, j1, bool, z1,j;
   fclose(ficresprobmorprev);    int first;
   fclose(ficgp);    double ***freq; /* Frequencies */
   fclose(fichtm);    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
 }    char fileresp[FILENAMELENGTH];
     
 /************ Variance of prevlim ******************/    pp=vector(1,nlstate);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    prop=matrix(1,nlstate,iagemin,iagemax+3);
 {    strcpy(fileresp,"p");
   /* Variance of prevalence limit */    strcat(fileresp,fileres);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    if((ficresp=fopen(fileresp,"w"))==NULL) {
   double **newm;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   double **dnewm,**doldm;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   int i, j, nhstepm, hstepm;      exit(0);
   int k, cptcode;    }
   double *xp;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   double *gp, *gm;    j1=0;
   double **gradg, **trgradg;    
   double age,agelim;    j=cptcoveff;
   int theta;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    first=1;
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    for(k1=1; k1<=j;k1++){
       fprintf(ficresvpl," %1d-%1d",i,i);      for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficresvpl,"\n");        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   xp=vector(1,npar);          scanf("%d", i);*/
   dnewm=matrix(1,nlstate,1,npar);        for (i=-5; i<=nlstate+ndeath; i++)  
   doldm=matrix(1,nlstate,1,nlstate);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
              for(m=iagemin; m <= iagemax+3; m++)
   hstepm=1*YEARM; /* Every year of age */              freq[i][jk][m]=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;      for (i=1; i<=nlstate; i++)  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(m=iagemin; m <= iagemax+3; m++)
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          prop[i][m]=0;
     if (stepm >= YEARM) hstepm=1;        
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        dateintsum=0;
     gradg=matrix(1,npar,1,nlstate);        k2cpt=0;
     gp=vector(1,nlstate);        for (i=1; i<=imx; i++) {
     gm=vector(1,nlstate);          bool=1;
           if  (cptcovn>0) {
     for(theta=1; theta <=npar; theta++){            for (z1=1; z1<=cptcoveff; z1++) 
       for(i=1; i<=npar; i++){ /* Computes gradient */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                bool=0;
       }          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if (bool==1){
       for(i=1;i<=nlstate;i++)            for(m=firstpass; m<=lastpass; m++){
         gp[i] = prlim[i][i];              k2=anint[m][i]+(mint[m][i]/12.);
                  /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for(i=1; i<=npar; i++) /* Computes gradient */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(i=1;i<=nlstate;i++)                if (m<lastpass) {
         gm[i] = prlim[i][i];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for(i=1;i<=nlstate;i++)                }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                
     } /* End theta */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
     trgradg =matrix(1,nlstate,1,npar);                  k2cpt++;
                 }
     for(j=1; j<=nlstate;j++)                /*}*/
       for(theta=1; theta <=npar; theta++)            }
         trgradg[j][theta]=gradg[theta][j];          }
         }
     for(i=1;i<=nlstate;i++)         
       varpl[i][(int)age] =0.;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        pstamp(ficresp);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        if  (cptcovn>0) {
     for(i=1;i<=nlstate;i++)          fprintf(ficresp, "\n#********** Variable "); 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
     fprintf(ficresvpl,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)        for(i=1; i<=nlstate;i++) 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fprintf(ficresvpl,"\n");        fprintf(ficresp, "\n");
     free_vector(gp,1,nlstate);        
     free_vector(gm,1,nlstate);        for(i=iagemin; i <= iagemax+3; i++){
     free_matrix(gradg,1,npar,1,nlstate);          if(i==iagemax+3){
     free_matrix(trgradg,1,nlstate,1,npar);            fprintf(ficlog,"Total");
   } /* End age */          }else{
             if(first==1){
   free_vector(xp,1,npar);              first=0;
   free_matrix(doldm,1,nlstate,1,npar);              printf("See log file for details...\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);            }
             fprintf(ficlog,"Age %d", i);
 }          }
           for(jk=1; jk <=nlstate ; jk++){
 /************ Variance of one-step probabilities  ******************/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              pp[jk] += freq[jk][m][i]; 
 {          }
   int i, j=0,  i1, k1, l1, t, tj;          for(jk=1; jk <=nlstate ; jk++){
   int k2, l2, j1,  z1;            for(m=-1, pos=0; m <=0 ; m++)
   int k=0,l, cptcode;              pos += freq[jk][m][i];
   int first=1, first1;            if(pp[jk]>=1.e-10){
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;              if(first==1){
   double **dnewm,**doldm;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double *xp;              }
   double *gp, *gm;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double **gradg, **trgradg;            }else{
   double **mu;              if(first==1)
   double age,agelim, cov[NCOVMAX];                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int theta;            }
   char fileresprob[FILENAMELENGTH];          }
   char fileresprobcov[FILENAMELENGTH];  
   char fileresprobcor[FILENAMELENGTH];          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double ***varpij;              pp[jk] += freq[jk][m][i];
           }       
   strcpy(fileresprob,"prob");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   strcat(fileresprob,fileres);            pos += pp[jk];
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            posprop += prop[jk][i];
     printf("Problem with resultfile: %s\n", fileresprob);          }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);          for(jk=1; jk <=nlstate ; jk++){
   }            if(pos>=1.e-5){
   strcpy(fileresprobcov,"probcov");              if(first==1)
   strcat(fileresprobcov,fileres);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     printf("Problem with resultfile: %s\n", fileresprobcov);            }else{
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);              if(first==1)
   }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   strcpy(fileresprobcor,"probcor");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   strcat(fileresprobcor,fileres);            }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {            if( i <= iagemax){
     printf("Problem with resultfile: %s\n", fileresprobcor);              if(pos>=1.e-5){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   }                /*probs[i][jk][j1]= pp[jk]/pos;*/
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);              else
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            }
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          }
            
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          for(jk=-1; jk <=nlstate+ndeath; jk++)
   fprintf(ficresprob,"# Age");            for(m=-1; m <=nlstate+ndeath; m++)
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");              if(freq[jk][m][i] !=0 ) {
   fprintf(ficresprobcov,"# Age");              if(first==1)
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   fprintf(ficresprobcov,"# Age");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
           if(i <= iagemax)
   for(i=1; i<=nlstate;i++)            fprintf(ficresp,"\n");
     for(j=1; j<=(nlstate+ndeath);j++){          if(first==1)
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);            printf("Others in log...\n");
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          fprintf(ficlog,"\n");
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        }
     }        }
   fprintf(ficresprob,"\n");    }
   fprintf(ficresprobcov,"\n");    dateintmean=dateintsum/k2cpt; 
   fprintf(ficresprobcor,"\n");   
   xp=vector(1,npar);    fclose(ficresp);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    free_vector(pp,1,nlstate);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    /* End of Freq */
   first=1;  }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  /************ Prevalence ********************/
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     exit(0);  {  
   }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   else{       in each health status at the date of interview (if between dateprev1 and dateprev2).
     fprintf(ficgp,"\n# Routine varprob");       We still use firstpass and lastpass as another selection.
   }    */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {   
     printf("Problem with html file: %s\n", optionfilehtm);    int i, m, jk, k1, i1, j1, bool, z1,j;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    double ***freq; /* Frequencies */
     exit(0);    double *pp, **prop;
   }    double pos,posprop; 
   else{    double  y2; /* in fractional years */
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    int iagemin, iagemax;
     fprintf(fichtm,"\n");  
     iagemin= (int) agemin;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    iagemax= (int) agemax;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    /*pp=vector(1,nlstate);*/
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   }    j1=0;
     
      j=cptcoveff;
   cov[1]=1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   tj=cptcoveff;    
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    for(k1=1; k1<=j;k1++){
   j1=0;      for(i1=1; i1<=ncodemax[k1];i1++){
   for(t=1; t<=tj;t++){        j1++;
     for(i1=1; i1<=ncodemax[t];i1++){        
       j1++;        for (i=1; i<=nlstate; i++)  
                for(m=iagemin; m <= iagemax+3; m++)
       if  (cptcovn>0) {            prop[i][m]=0.0;
         fprintf(ficresprob, "\n#********** Variable ");       
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (i=1; i<=imx; i++) { /* Each individual */
         fprintf(ficresprob, "**********\n#");          bool=1;
         fprintf(ficresprobcov, "\n#********** Variable ");          if  (cptcovn>0) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for (z1=1; z1<=cptcoveff; z1++) 
         fprintf(ficresprobcov, "**********\n#");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                        bool=0;
         fprintf(ficgp, "\n#********** Variable ");          } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          if (bool==1) { 
         fprintf(ficgp, "**********\n#");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                      y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                      if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                        if (s[m][i]>0 && s[m][i]<=nlstate) { 
         fprintf(ficresprobcor, "\n#********** Variable ");                      /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficgp, "**********\n#");                      prop[s[m][i]][iagemax+3] += weight[i]; 
       }                } 
                    }
       for (age=bage; age<=fage; age ++){            } /* end selection of waves */
         cov[2]=age;          }
         for (k=1; k<=cptcovn;k++) {        }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for(i=iagemin; i <= iagemax+3; i++){  
         }          
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         for (k=1; k<=cptcovprod;k++)            posprop += prop[jk][i]; 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          } 
          
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          for(jk=1; jk <=nlstate ; jk++){     
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            if( i <=  iagemax){ 
         gp=vector(1,(nlstate)*(nlstate+ndeath));              if(posprop>=1.e-5){ 
         gm=vector(1,(nlstate)*(nlstate+ndeath));                probs[i][jk][j1]= prop[jk][i]/posprop;
                  } else
         for(theta=1; theta <=npar; theta++){                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
           for(i=1; i<=npar; i++)            } 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          }/* end jk */ 
                  }/* end i */ 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      } /* end i1 */
              } /* end k1 */
           k=0;    
           for(i=1; i<= (nlstate); i++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             for(j=1; j<=(nlstate+ndeath);j++){    /*free_vector(pp,1,nlstate);*/
               k=k+1;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
               gp[k]=pmmij[i][j];  }  /* End of prevalence */
             }  
           }  /************* Waves Concatenation ***************/
            
           for(i=1; i<=npar; i++)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  {
        /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           pmij(pmmij,cov,ncovmodel,xp,nlstate);       Death is a valid wave (if date is known).
           k=0;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           for(i=1; i<=(nlstate); i++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             for(j=1; j<=(nlstate+ndeath);j++){       and mw[mi+1][i]. dh depends on stepm.
               k=k+1;       */
               gm[k]=pmmij[i][j];  
             }    int i, mi, m;
           }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             double sum=0., jmean=0.;*/
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    int first;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      int j, k=0,jk, ju, jl;
         }    double sum=0.;
     first=0;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    jmin=1e+5;
           for(theta=1; theta <=npar; theta++)    jmax=-1;
             trgradg[j][theta]=gradg[theta][j];    jmean=0.;
            for(i=1; i<=imx; i++){
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      mi=0;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      m=firstpass;
              while(s[m][i] <= nlstate){
         pmij(pmmij,cov,ncovmodel,x,nlstate);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                  mw[++mi][i]=m;
         k=0;        if(m >=lastpass)
         for(i=1; i<=(nlstate); i++){          break;
           for(j=1; j<=(nlstate+ndeath);j++){        else
             k=k+1;          m++;
             mu[k][(int) age]=pmmij[i][j];      }/* end while */
           }      if (s[m][i] > nlstate){
         }        mi++;     /* Death is another wave */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        /* if(mi==0)  never been interviewed correctly before death */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)           /* Only death is a correct wave */
             varpij[i][j][(int)age] = doldm[i][j];        mw[mi][i]=m;
       }
         /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      wav[i]=mi;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      if(mi==0){
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        nbwarn++;
      }*/        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         fprintf(ficresprob,"\n%d ",(int)age);          first=1;
         fprintf(ficresprobcov,"\n%d ",(int)age);        }
         fprintf(ficresprobcor,"\n%d ",(int)age);        if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      } /* end mi==0 */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    } /* End individuals */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    for(i=1; i<=imx; i++){
         }      for(mi=1; mi<wav[i];mi++){
         i=0;        if (stepm <=0)
         for (k=1; k<=(nlstate);k++){          dh[mi][i]=1;
           for (l=1; l<=(nlstate+ndeath);l++){        else{
             i=i++;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            if (agedc[i] < 2*AGESUP) {
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             for (j=1; j<=i;j++){              if(j==0) j=1;  /* Survives at least one month after exam */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              else if(j<0){
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));                nberr++;
             }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                j=1; /* Temporary Dangerous patch */
         }/* end of loop for state */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       } /* end of loop for age */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       /* Confidence intervalle of pij  */              }
       /*              k=k+1;
       fprintf(ficgp,"\nset noparametric;unset label");              if (j >= jmax){
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");                jmax=j;
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                ijmax=i;
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);              }
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);              if (j <= jmin){
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);                jmin=j;
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);                ijmin=i;
       */              }
               sum=sum+j;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       first1=1;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       for (k1=1; k1<=(nlstate);k1++){            }
         for (l1=1; l1<=(nlstate+ndeath);l1++){          }
           if(l1==k1) continue;          else{
           i=(k1-1)*(nlstate+ndeath)+l1;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           for (k2=1; k2<=(nlstate);k2++){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
             for (l2=1; l2<=(nlstate+ndeath);l2++){  
               if(l2==k2) continue;            k=k+1;
               j=(k2-1)*(nlstate+ndeath)+l2;            if (j >= jmax) {
               if(j<=i) continue;              jmax=j;
               for (age=bage; age<=fage; age ++){              ijmax=i;
                 if ((int)age %5==0){            }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            else if (j <= jmin){
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              jmin=j;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              ijmin=i;
                   mu1=mu[i][(int) age]/stepm*YEARM ;            }
                   mu2=mu[j][(int) age]/stepm*YEARM;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                   /* Computing eigen value of matrix of covariance */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            if(j<0){
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              nberr++;
                   if(first1==1){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                     first1=0;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);            }
                   }            sum=sum+j;
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);          }
                   /* Eigen vectors */          jk= j/stepm;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          jl= j -jk*stepm;
                   v21=sqrt(1.-v11*v11);          ju= j -(jk+1)*stepm;
                   v12=-v21;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                   v22=v11;            if(jl==0){
                   /*printf(fignu*/              dh[mi][i]=jk;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              bh[mi][i]=0;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */            }else{ /* We want a negative bias in order to only have interpolation ie
                   if(first==1){                    * at the price of an extra matrix product in likelihood */
                     first=0;              dh[mi][i]=jk+1;
                     fprintf(ficgp,"\nset parametric;set nolabel");              bh[mi][i]=ju;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);            }
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          }else{
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);            if(jl <= -ju){
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);              dh[mi][i]=jk;
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);              bh[mi][i]=jl;       /* bias is positive if real duration
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);                                   * is higher than the multiple of stepm and negative otherwise.
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);                                   */
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            else{
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              dh[mi][i]=jk+1;
                     */              bh[mi][i]=ju;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            if(dh[mi][i]==0){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));              dh[mi][i]=1; /* At least one step */
                   }else{              bh[mi][i]=ju; /* At least one step */
                     first=0;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          } /* end if mle */
                     /*        }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      } /* end wave */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    jmean=sum/k;
                     */    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \   }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));  
                   }/* if first */  /*********** Tricode ****************************/
                 } /* age mod 5 */  void tricode(int *Tvar, int **nbcode, int imx)
               } /* end loop age */  {
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);    
               first=1;    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
             } /*l12 */  
           } /* k12 */    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
         } /*l1 */    int cptcode=0;
       }/* k1 */    cptcoveff=0; 
     } /* loop covariates */   
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                                 modality*/ 
   }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
   free_vector(xp,1,npar);        Ndum[ij]++; /*counts the occurence of this modality */
   fclose(ficresprob);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   fclose(ficresprobcov);        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
   fclose(ficresprobcor);                                         Tvar[j]. If V=sex and male is 0 and 
   fclose(ficgp);                                         female is 1, then  cptcode=1.*/
   fclose(fichtm);      }
 }  
       for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariate. In fact ncodemax[j]=2 (dichotom. variables only) but it can be more */
 /******************* Printing html file ***********/      } /* Ndum[-1] number of undefined modalities */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\      ij=1; 
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
                   int popforecast, int estepm ,\        for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
                   double jprev1, double mprev1,double anprev1, \          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
                   double jprev2, double mprev2,double anprev2){            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   int jj1, k1, i1, cpt;                                       k is a modality. If we have model=V1+V1*sex 
   /*char optionfilehtm[FILENAMELENGTH];*/                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            ij++;
     printf("Problem with %s \n",optionfilehtm), exit(0);          }
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          if (ij > ncodemax[j]) break; 
   }        }  
       } 
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    }  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n   for (k=0; k< maxncov; k++) Ndum[k]=0;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months):   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
      Ndum[ij]++;
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");   }
   
  m=cptcoveff;   ij=1;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
  jj1=0;       Tvaraff[ij]=i; /*For printing */
  for(k1=1; k1<=m;k1++){       ij++;
    for(i1=1; i1<=ncodemax[k1];i1++){     }
      jj1++;   }
      if (cptcovn > 0) {   ij--;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");   cptcoveff=ij; /*Number of simple covariates*/
        for (cpt=1; cpt<=cptcoveff;cpt++)  }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  /*********** Health Expectancies ****************/
      }  
      /* Pij */  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      {
      /* Quasi-incidences */    /* Health expectancies, no variances */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    int nhstepma, nstepma; /* Decreasing with age */
        /* Stable prevalence in each health state */    double age, agelim, hf;
        for(cpt=1; cpt<nlstate;cpt++){    double ***p3mat;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    double eip;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }    pstamp(ficreseij);
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    fprintf(ficreseij,"# Age");
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    for(i=1; i<=nlstate;i++){
      }      for(j=1; j<=nlstate;j++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        fprintf(ficreseij," e%1d%1d ",i,j);
 health expectancies in states (1) and (2): e%s%d.png<br>      }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      fprintf(ficreseij," e%1d. ",i);
    } /* end i1 */    }
  }/* End k1 */    fprintf(ficreseij,"\n");
  fprintf(fichtm,"</ul>");  
     
     if(estepm < stepm){
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n      printf ("Problem %d lower than %d\n",estepm, stepm);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    }
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    else  hstepm=estepm;   
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    /* We compute the life expectancy from trapezoids spaced every estepm months
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n     * This is mainly to measure the difference between two models: for example
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n     * if stepm=24 months pijx are given only every 2 years and by summing them
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n     * we are calculating an estimate of the Life Expectancy assuming a linear 
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
  if(popforecast==1) fprintf(fichtm,"\n     * estimate the model with stepm=1 month, we can keep estepm to 24 months
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n     * to compare the new estimate of Life expectancy with the same linear 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n     * hypothesis. A more precise result, taking into account a more precise
         <br>",fileres,fileres,fileres,fileres);     * curvature will be obtained if estepm is as small as stepm. */
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    /* For example we decided to compute the life expectancy with the smallest unit */
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
  m=cptcoveff;       nstepm is the number of stepm from age to agelin. 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
  jj1=0;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  for(k1=1; k1<=m;k1++){       survival function given by stepm (the optimization length). Unfortunately it
    for(i1=1; i1<=ncodemax[k1];i1++){       means that if the survival funtion is printed only each two years of age and if
      jj1++;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      if (cptcovn > 0) {       results. So we changed our mind and took the option of the best precision.
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    */
        for (cpt=1; cpt<=cptcoveff;cpt++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    agelim=AGESUP;
      }    /* If stepm=6 months */
      for(cpt=1; cpt<=nlstate;cpt++) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 interval) in state (%d): v%s%d%d.png <br>      
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /* nhstepm age range expressed in number of stepm */
      }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
    } /* end i1 */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
  }/* End k1 */    /* if (stepm >= YEARM) hstepm=1;*/
  fprintf(fichtm,"</ul>");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 fclose(fichtm);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }  
     for (age=bage; age<=fage; age ++){ 
 /******************* Gnuplot file **************/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   int ng;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      /* If stepm=6 months */
     printf("Problem with file %s",optionfilegnuplot);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   }      
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 #ifdef windows      
     fprintf(ficgp,"cd \"%s\" \n",pathc);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 #endif      
 m=pow(2,cptcoveff);      printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
  /* 1eme*/      
   for (cpt=1; cpt<= nlstate ; cpt ++) {      /* Computing expectancies */
    for (k1=1; k1<= m ; k1 ++) {      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
 #ifdef windows          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            
 #endif            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 #ifdef unix  
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  
 #endif      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
 for (i=1; i<= nlstate ; i ++) {        eip=0;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1; j<=nlstate;j++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          eip +=eij[i][j][(int)age];
 }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        }
     for (i=1; i<= nlstate ; i ++) {        fprintf(ficreseij,"%9.4f", eip );
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficreseij,"\n");
 }      
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    }
      for (i=1; i<= nlstate ; i ++) {    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    printf("\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficlog,"\n");
 }      
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  }
 #ifdef unix  
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 #endif  
    }  {
   }    /* Covariances of health expectancies eij and of total life expectancies according
   /*2 eme*/     to initial status i, ei. .
     */
   for (k1=1; k1<= m ; k1 ++) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    int nhstepma, nstepma; /* Decreasing with age */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    double age, agelim, hf;
        double ***p3matp, ***p3matm, ***varhe;
     for (i=1; i<= nlstate+1 ; i ++) {    double **dnewm,**doldm;
       k=2*i;    double *xp, *xm;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    double **gp, **gm;
       for (j=1; j<= nlstate+1 ; j ++) {    double ***gradg, ***trgradg;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int theta;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      double eip, vip;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    xp=vector(1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    xm=vector(1,npar);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    dnewm=matrix(1,nlstate*nlstate,1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 }      
       fprintf(ficgp,"\" t\"\" w l 0,");    pstamp(ficresstdeij);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficresstdeij,"# Age");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for(i=1; i<=nlstate;i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(j=1; j<=nlstate;j++)
 }          fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      fprintf(ficresstdeij," e%1d. ",i);
       else fprintf(ficgp,"\" t\"\" w l 0,");    }
     }    fprintf(ficresstdeij,"\n");
   }  
      pstamp(ficrescveij);
   /*3eme*/    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
   for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=nlstate;i++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for(j=1; j<=nlstate;j++){
       k=2+nlstate*(2*cpt-2);        cptj= (j-1)*nlstate+i;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(i2=1; i2<=nlstate;i2++)
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          for(j2=1; j2<=nlstate;j2++){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            cptj2= (j2-1)*nlstate+i2;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            if(cptj2 <= cptj)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    fprintf(ficrescveij,"\n");
     
 */    if(estepm < stepm){
       for (i=1; i< nlstate ; i ++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    }
     else  hstepm=estepm;   
       }    /* We compute the life expectancy from trapezoids spaced every estepm months
     }     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
       * we are calculating an estimate of the Life Expectancy assuming a linear 
   /* CV preval stat */     * progression in between and thus overestimating or underestimating according
     for (k1=1; k1<= m ; k1 ++) {     * to the curvature of the survival function. If, for the same date, we 
     for (cpt=1; cpt<nlstate ; cpt ++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       k=3;     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     * hypothesis. A more precise result, taking into account a more precise
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);     * curvature will be obtained if estepm is as small as stepm. */
   
       for (i=1; i< nlstate ; i ++)    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficgp,"+$%d",k+i+1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       nhstepm is the number of hstepm from age to agelim 
             nstepm is the number of stepm from age to agelin. 
       l=3+(nlstate+ndeath)*cpt;       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);       and note for a fixed period like estepm months */
       for (i=1; i< nlstate ; i ++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         l=3+(nlstate+ndeath)*cpt;       survival function given by stepm (the optimization length). Unfortunately it
         fprintf(ficgp,"+$%d",l+i+1);       means that if the survival funtion is printed only each two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);         results. So we changed our mind and took the option of the best precision.
     }    */
   }      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
   /* proba elementaires */    /* If stepm=6 months */
    for(i=1,jk=1; i <=nlstate; i++){    /* nhstepm age range expressed in number of stepm */
     for(k=1; k <=(nlstate+ndeath); k++){    agelim=AGESUP;
       if (k != i) {    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
         for(j=1; j <=ncovmodel; j++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    /* if (stepm >= YEARM) hstepm=1;*/
           jk++;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           fprintf(ficgp,"\n");    
         }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
    }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    gm=matrix(0,nhstepm,1,nlstate*nlstate);
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    for (age=bage; age<=fage; age ++){ 
        if (ng==2)      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        else      /* if (stepm >= YEARM) hstepm=1;*/
          fprintf(ficgp,"\nset title \"Probability\"\n");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
        i=1;      /* If stepm=6 months */
        for(k2=1; k2<=nlstate; k2++) {      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          k3=i;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
          for(k=1; k<=(nlstate+ndeath); k++) {      
            if (k != k2){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              if(ng==2)  
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      /* Computing  Variances of health expectancies */
              else      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);         decrease memory allocation */
              ij=1;      for(theta=1; theta <=npar; theta++){
              for(j=3; j <=ncovmodel; j++) {        for(i=1; i<=npar; i++){ 
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
                  ij++;        }
                }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
                else        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    
              }        for(j=1; j<= nlstate; j++){
              fprintf(ficgp,")/(1");          for(i=1; i<=nlstate; i++){
                          for(h=0; h<=nhstepm-1; h++){
              for(k1=1; k1 <=nlstate; k1++){                gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                ij=1;            }
                for(j=3; j <=ncovmodel; j++){          }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       
                    ij++;        for(ij=1; ij<= nlstate*nlstate; ij++)
                  }          for(h=0; h<=nhstepm-1; h++){
                  else            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
                }      }/* End theta */
                fprintf(ficgp,")");      
              }      
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);      for(h=0; h<=nhstepm-1; h++)
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        for(j=1; j<=nlstate*nlstate;j++)
              i=i+ncovmodel;          for(theta=1; theta <=npar; theta++)
            }            trgradg[h][j][theta]=gradg[h][theta][j];
          } /* end k */      
        } /* end k2 */  
      } /* end jk */       for(ij=1;ij<=nlstate*nlstate;ij++)
    } /* end ng */        for(ji=1;ji<=nlstate*nlstate;ji++)
    fclose(ficgp);          varhe[ij][ji][(int)age] =0.;
 }  /* end gnuplot */  
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 /*************** Moving average **************/       for(h=0;h<=nhstepm-1;h++){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   int i, cpt, cptcod;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          for(ij=1;ij<=nlstate*nlstate;ij++)
       for (i=1; i<=nlstate;i++)            for(ji=1;ji<=nlstate*nlstate;ji++)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
           mobaverage[(int)agedeb][i][cptcod]=0.;        }
          }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){      /* Computing expectancies */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           for (cpt=0;cpt<=4;cpt++){      for(i=1; i<=nlstate;i++)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        for(j=1; j<=nlstate;j++)
           }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         }            
       }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     }  
              }
 }  
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
 /************** Forecasting ******************/        eip=0.;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        vip=0.;
          for(j=1; j<=nlstate;j++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          eip += eij[i][j][(int)age];
   int *popage;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   double *popeffectif,*popcount;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   double ***p3mat;        }
   char fileresf[FILENAMELENGTH];        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
  agelim=AGESUP;      fprintf(ficresstdeij,"\n");
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
       fprintf(ficrescveij,"%3.0f",age );
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
            cptj= (j-1)*nlstate+i;
   strcpy(fileresf,"f");          for(i2=1; i2<=nlstate;i2++)
   strcat(fileresf,fileres);            for(j2=1; j2<=nlstate;j2++){
   if((ficresf=fopen(fileresf,"w"))==NULL) {              cptj2= (j2-1)*nlstate+i2;
     printf("Problem with forecast resultfile: %s\n", fileresf);              if(cptj2 <= cptj)
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   }            }
   printf("Computing forecasting: result on file '%s' \n", fileresf);        }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      fprintf(ficrescveij,"\n");
      
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   if (mobilav==1) {    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    printf("\n");
   if (stepm<=12) stepsize=1;    fprintf(ficlog,"\n");
    
   agelim=AGESUP;    free_vector(xm,1,npar);
      free_vector(xp,1,npar);
   hstepm=1;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   hstepm=hstepm/stepm;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   yp1=modf(dateintmean,&yp);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   anprojmean=yp;  }
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;  /************ Variance ******************/
   yp1=modf((yp2*30.5),&yp);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   jprojmean=yp;  {
   if(jprojmean==0) jprojmean=1;    /* Variance of health expectancies */
   if(mprojmean==0) jprojmean=1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double **dnewm,**doldm;
      double **dnewmp,**doldmp;
   for(cptcov=1;cptcov<=i2;cptcov++){    int i, j, nhstepm, hstepm, h, nstepm ;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int k, cptcode;
       k=k+1;    double *xp;
       fprintf(ficresf,"\n#******");    double **gp, **gm;  /* for var eij */
       for(j=1;j<=cptcoveff;j++) {    double ***gradg, ***trgradg; /*for var eij */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **gradgp, **trgradgp; /* for var p point j */
       }    double *gpp, *gmp; /* for var p point j */
       fprintf(ficresf,"******\n");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       fprintf(ficresf,"# StartingAge FinalAge");    double ***p3mat;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double age,agelim, hf;
          double ***mobaverage;
          int theta;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    char digit[4];
         fprintf(ficresf,"\n");    char digitp[25];
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
     char fileresprobmorprev[FILENAMELENGTH];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    if(popbased==1){
           nhstepm = nhstepm/hstepm;      if(mobilav!=0)
                  strcpy(digitp,"-populbased-mobilav-");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      else strcpy(digitp,"-populbased-nomobil-");
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      else 
              strcpy(digitp,"-stablbased-");
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    if (mobilav!=0) {
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               kk1=0.;kk2=0;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               for(i=1; i<=nlstate;i++) {                    }
                 if (mobilav==1)    }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {    strcpy(fileresprobmorprev,"prmorprev"); 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    sprintf(digit,"%-d",ij);
                 }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                    strcat(fileresprobmorprev,digit); /* Tvar to be done */
               }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
               if (h==(int)(calagedate+12*cpt)){    strcat(fileresprobmorprev,fileres);
                 fprintf(ficresf," %.3f", kk1);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                              printf("Problem with resultfile: %s\n", fileresprobmorprev);
               }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             }    }
           }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
         }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       }    pstamp(ficresprobmorprev);
     }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
            for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   fclose(ficresf);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 }    }  
 /************** Forecasting ******************/    fprintf(ficresprobmorprev,"\n");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    fprintf(ficgp,"\n# Routine varevsij");
      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   int *popage;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  /*   } */
   double *popeffectif,*popcount;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double ***p3mat,***tabpop,***tabpopprev;    pstamp(ficresvij);
   char filerespop[FILENAMELENGTH];    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else
   agelim=AGESUP;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);    xp=vector(1,npar);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    dnewm=matrix(1,nlstate,1,npar);
     printf("Problem with forecast resultfile: %s\n", filerespop);    doldm=matrix(1,nlstate,1,nlstate);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   if (mobilav==1) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if(estepm < stepm){
     movingaverage(agedeb, fage, ageminpar, mobaverage);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
     else  hstepm=estepm;   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* For example we decided to compute the life expectancy with the smallest unit */
   if (stepm<=12) stepsize=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   agelim=AGESUP;       nstepm is the number of stepm from age to agelin. 
         Look at function hpijx to understand why (it is linked to memory size questions) */
   hstepm=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   hstepm=hstepm/stepm;       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
   if (popforecast==1) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     if((ficpop=fopen(popfile,"r"))==NULL) {       results. So we changed our mind and took the option of the best precision.
       printf("Problem with population file : %s\n",popfile);exit(0);    */
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }    agelim = AGESUP;
     popage=ivector(0,AGESUP);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     popeffectif=vector(0,AGESUP);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     popcount=vector(0,AGESUP);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     i=1;        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      gp=matrix(0,nhstepm,1,nlstate);
          gm=matrix(0,nhstepm,1,nlstate);
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   for(cptcov=1;cptcov<=i2;cptcov++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
       k=k+1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficrespop,"\n#******");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (popbased==1) {
       }          if(mobilav ==0){
       fprintf(ficrespop,"******\n");            for(i=1; i<=nlstate;i++)
       fprintf(ficrespop,"# Age");              prlim[i][i]=probs[(int)age][i][ij];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          }else{ /* mobilav */ 
       if (popforecast==1)  fprintf(ficrespop," [Population]");            for(i=1; i<=nlstate;i++)
                    prlim[i][i]=mobaverage[(int)age][i][ij];
       for (cpt=0; cpt<=0;cpt++) {          }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }
            
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(j=1; j<= nlstate; j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(h=0; h<=nhstepm; h++){
           nhstepm = nhstepm/hstepm;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                        gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          /* This for computing probability of death (h=1 means
                   computed over hstepm matrices product = hstepm*stepm months) 
           for (h=0; h<=nhstepm; h++){           as a weighted average of prlim.
             if (h==(int) (calagedate+YEARM*cpt)) {        */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             for(j=1; j<=nlstate+ndeath;j++) {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
               kk1=0.;kk2=0;        }    
               for(i=1; i<=nlstate;i++) {                      /* end probability of death */
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                 else {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                 }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               }   
               if (h==(int)(calagedate+12*cpt)){        if (popbased==1) {
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          if(mobilav ==0){
                   /*fprintf(ficrespop," %.3f", kk1);            for(i=1; i<=nlstate;i++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              prlim[i][i]=probs[(int)age][i][ij];
               }          }else{ /* mobilav */ 
             }            for(i=1; i<=nlstate;i++)
             for(i=1; i<=nlstate;i++){              prlim[i][i]=mobaverage[(int)age][i][ij];
               kk1=0.;          }
                 for(j=1; j<=nlstate;j++){        }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          for(h=0; h<=nhstepm; h++){
             }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        }
           }        /* This for computing probability of death (h=1 means
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           computed over hstepm matrices product = hstepm*stepm months) 
         }           as a weighted average of prlim.
       }        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /******/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        }    
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          /* end probability of death */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(j=1; j<= nlstate; j++) /* vareij */
           nhstepm = nhstepm/hstepm;          for(h=0; h<=nhstepm; h++){
                      gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           for (h=0; h<=nhstepm; h++){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             if (h==(int) (calagedate+YEARM*cpt)) {        }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }      } /* End theta */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          for(h=0; h<=nhstepm; h++) /* veij */
               }        for(j=1; j<=nlstate;j++)
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          for(theta=1; theta <=npar; theta++)
             }            trgradg[h][j][theta]=gradg[h][theta][j];
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         }        for(theta=1; theta <=npar; theta++)
       }          trgradgp[j][theta]=gradgp[theta][j];
    }    
   }  
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
   if (popforecast==1) {          vareij[i][j][(int)age] =0.;
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);      for(h=0;h<=nhstepm;h++){
     free_vector(popcount,0,AGESUP);        for(k=0;k<=nhstepm;k++){
   }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1;i<=nlstate;i++)
   fclose(ficrespop);            for(j=1;j<=nlstate;j++)
 }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
 /***********************************************/      }
 /**************** Main Program *****************/    
 /***********************************************/      /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 int main(int argc, char *argv[])      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          varppt[j][i]=doldmp[j][i];
   double agedeb, agefin,hf;      /* end ppptj */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   double fret;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   double **xi,tmp,delta;   
       if (popbased==1) {
   double dum; /* Dummy variable */        if(mobilav ==0){
   double ***p3mat;          for(i=1; i<=nlstate;i++)
   int *indx;            prlim[i][i]=probs[(int)age][i][ij];
   char line[MAXLINE], linepar[MAXLINE];        }else{ /* mobilav */ 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          for(i=1; i<=nlstate;i++)
   int firstobs=1, lastobs=10;            prlim[i][i]=mobaverage[(int)age][i][ij];
   int sdeb, sfin; /* Status at beginning and end */        }
   int c,  h , cpt,l;      }
   int ju,jl, mi;               
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      /* This for computing probability of death (h=1 means
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   int mobilav=0,popforecast=0;         as a weighted average of prlim.
   int hstepm, nhstepm;      */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   double bage, fage, age, agelim, agebase;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   double ftolpl=FTOL;      }    
   double **prlim;      /* end probability of death */
   double *severity;  
   double ***param; /* Matrix of parameters */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   double  *p;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double **matcov; /* Matrix of covariance */        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   double ***delti3; /* Scale */        for(i=1; i<=nlstate;i++){
   double *delti; /* Scale */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   double ***eij, ***vareij;        }
   double **varpl; /* Variances of prevalence limits by age */      } 
   double *epj, vepp;      fprintf(ficresprobmorprev,"\n");
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
   char z[1]="c", occ;      free_matrix(gp,0,nhstepm,1,nlstate);
 #include <sys/time.h>      free_matrix(gm,0,nhstepm,1,nlstate);
 #include <time.h>      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* long total_usecs;    } /* End age */
   struct timeval start_time, end_time;    free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   getcwd(pathcd, size);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
   printf("\n%s",version);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   if(argc <=1){    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     printf("\nEnter the parameter file name: ");  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     scanf("%s",pathtot);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   else{    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     strcpy(pathtot,argv[1]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   /*cygwin_split_path(pathtot,path,optionfile);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   /* cutv(path,optionfile,pathtot,'\\');*/  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);    free_vector(xp,1,npar);
   replace(pathc,path);    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
 /*-------- arguments in the command line --------*/    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   /* Log file */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcat(filelog, optionfilefiname);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(filelog,".log");    /* */    fclose(ficresprobmorprev);
   if((ficlog=fopen(filelog,"w"))==NULL)    {    fflush(ficgp);
     printf("Problem with logfile %s\n",filelog);    fflush(fichtm); 
     goto end;  }  /* end varevsij */
   }  
   fprintf(ficlog,"Log filename:%s\n",filelog);  /************ Variance of prevlim ******************/
   fprintf(ficlog,"\n%s",version);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   fprintf(ficlog,"\nEnter the parameter file name: ");  {
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    /* Variance of prevalence limit */
   fflush(ficlog);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
   /* */    double **dnewm,**doldm;
   strcpy(fileres,"r");    int i, j, nhstepm, hstepm;
   strcat(fileres, optionfilefiname);    int k, cptcode;
   strcat(fileres,".txt");    /* Other files have txt extension */    double *xp;
     double *gp, *gm;
   /*---------arguments file --------*/    double **gradg, **trgradg;
     double age,agelim;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    int theta;
     printf("Problem with optionfile %s\n",optionfile);    
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    pstamp(ficresvpl);
     goto end;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   }    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   strcpy(filereso,"o");        fprintf(ficresvpl," %1d-%1d",i,i);
   strcat(filereso,fileres);    fprintf(ficresvpl,"\n");
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);    xp=vector(1,npar);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    dnewm=matrix(1,nlstate,1,npar);
     goto end;    doldm=matrix(1,nlstate,1,nlstate);
   }    
     hstepm=1*YEARM; /* Every year of age */
   /* Reads comments: lines beginning with '#' */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   while((c=getc(ficpar))=='#' && c!= EOF){    agelim = AGESUP;
     ungetc(c,ficpar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fgets(line, MAXLINE, ficpar);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     puts(line);      if (stepm >= YEARM) hstepm=1;
     fputs(line,ficparo);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   }      gradg=matrix(1,npar,1,nlstate);
   ungetc(c,ficpar);      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      for(theta=1; theta <=npar; theta++){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        for(i=1; i<=npar; i++){ /* Computes gradient */
 while((c=getc(ficpar))=='#' && c!= EOF){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     puts(line);        for(i=1;i<=nlstate;i++)
     fputs(line,ficparo);          gp[i] = prlim[i][i];
   }      
   ungetc(c,ficpar);        for(i=1; i<=npar; i++) /* Computes gradient */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   covar=matrix(0,NCOVMAX,1,n);        for(i=1;i<=nlstate;i++)
   cptcovn=0;          gm[i] = prlim[i][i];
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
         for(i=1;i<=nlstate;i++)
   ncovmodel=2+cptcovn;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      } /* End theta */
    
   /* Read guess parameters */      trgradg =matrix(1,nlstate,1,npar);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=1; j<=nlstate;j++)
     ungetc(c,ficpar);        for(theta=1; theta <=npar; theta++)
     fgets(line, MAXLINE, ficpar);          trgradg[j][theta]=gradg[theta][j];
     puts(line);  
     fputs(line,ficparo);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] =0.;
   ungetc(c,ficpar);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for(i=1;i<=nlstate;i++)
     for(i=1; i <=nlstate; i++)        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficresvpl,"%.0f ",age );
       fprintf(ficparo,"%1d%1d",i1,j1);      for(i=1; i<=nlstate;i++)
       if(mle==1)        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         printf("%1d%1d",i,j);      fprintf(ficresvpl,"\n");
       fprintf(ficlog,"%1d%1d",i,j);      free_vector(gp,1,nlstate);
       for(k=1; k<=ncovmodel;k++){      free_vector(gm,1,nlstate);
         fscanf(ficpar," %lf",&param[i][j][k]);      free_matrix(gradg,1,npar,1,nlstate);
         if(mle==1){      free_matrix(trgradg,1,nlstate,1,npar);
           printf(" %lf",param[i][j][k]);    } /* End age */
           fprintf(ficlog," %lf",param[i][j][k]);  
         }    free_vector(xp,1,npar);
         else    free_matrix(doldm,1,nlstate,1,npar);
           fprintf(ficlog," %lf",param[i][j][k]);    free_matrix(dnewm,1,nlstate,1,nlstate);
         fprintf(ficparo," %lf",param[i][j][k]);  
       }  }
       fscanf(ficpar,"\n");  
       if(mle==1)  /************ Variance of one-step probabilities  ******************/
         printf("\n");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       fprintf(ficlog,"\n");  {
       fprintf(ficparo,"\n");    int i, j=0,  i1, k1, l1, t, tj;
     }    int k2, l2, j1,  z1;
      int k=0,l, cptcode;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   p=param[1][1];    double **dnewm,**doldm;
      double *xp;
   /* Reads comments: lines beginning with '#' */    double *gp, *gm;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **gradg, **trgradg;
     ungetc(c,ficpar);    double **mu;
     fgets(line, MAXLINE, ficpar);    double age,agelim, cov[NCOVMAX];
     puts(line);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     fputs(line,ficparo);    int theta;
   }    char fileresprob[FILENAMELENGTH];
   ungetc(c,ficpar);    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double ***varpij;
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){    strcpy(fileresprob,"prob"); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    strcat(fileresprob,fileres);
       printf("%1d%1d",i,j);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       fprintf(ficparo,"%1d%1d",i1,j1);      printf("Problem with resultfile: %s\n", fileresprob);
       for(k=1; k<=ncovmodel;k++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    }
         printf(" %le",delti3[i][j][k]);    strcpy(fileresprobcov,"probcov"); 
         fprintf(ficparo," %le",delti3[i][j][k]);    strcat(fileresprobcov,fileres);
       }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       fscanf(ficpar,"\n");      printf("Problem with resultfile: %s\n", fileresprobcov);
       printf("\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficparo,"\n");    }
     }    strcpy(fileresprobcor,"probcor"); 
   }    strcat(fileresprobcor,fileres);
   delti=delti3[1][1];    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcor);
   /* Reads comments: lines beginning with '#' */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     puts(line);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fputs(line,ficparo);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   ungetc(c,ficpar);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      pstamp(ficresprob);
   matcov=matrix(1,npar,1,npar);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   for(i=1; i <=npar; i++){    fprintf(ficresprob,"# Age");
     fscanf(ficpar,"%s",&str);    pstamp(ficresprobcov);
     if(mle==1)    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       printf("%s",str);    fprintf(ficresprobcov,"# Age");
     fprintf(ficlog,"%s",str);    pstamp(ficresprobcor);
     fprintf(ficparo,"%s",str);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     for(j=1; j <=i; j++){    fprintf(ficresprobcor,"# Age");
       fscanf(ficpar," %le",&matcov[i][j]);  
       if(mle==1){  
         printf(" %.5le",matcov[i][j]);    for(i=1; i<=nlstate;i++)
         fprintf(ficlog," %.5le",matcov[i][j]);      for(j=1; j<=(nlstate+ndeath);j++){
       }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       else        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficlog," %.5le",matcov[i][j]);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       fprintf(ficparo," %.5le",matcov[i][j]);      }  
     }   /* fprintf(ficresprob,"\n");
     fscanf(ficpar,"\n");    fprintf(ficresprobcov,"\n");
     if(mle==1)    fprintf(ficresprobcor,"\n");
       printf("\n");   */
     fprintf(ficlog,"\n");    xp=vector(1,npar);
     fprintf(ficparo,"\n");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   for(i=1; i <=npar; i++)    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     for(j=i+1;j<=npar;j++)    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       matcov[i][j]=matcov[j][i];    first=1;
        fprintf(ficgp,"\n# Routine varprob");
   if(mle==1)    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     printf("\n");    fprintf(fichtm,"\n");
   fprintf(ficlog,"\n");  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     /*-------- Rewriting paramater file ----------*/    file %s<br>\n",optionfilehtmcov);
      strcpy(rfileres,"r");    /* "Rparameterfile */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  and drawn. It helps understanding how is the covariance between two incidences.\
      strcat(rfileres,".");    /* */   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     if((ficres =fopen(rfileres,"w"))==NULL) {  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;  standard deviations wide on each axis. <br>\
     }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     fprintf(ficres,"#%s\n",version);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {    cov[1]=1;
       printf("Problem with datafile: %s\n", datafile);goto end;    tj=cptcoveff;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     }    j1=0;
     for(t=1; t<=tj;t++){
     n= lastobs;      for(i1=1; i1<=ncodemax[t];i1++){ 
     severity = vector(1,maxwav);        j1++;
     outcome=imatrix(1,maxwav+1,1,n);        if  (cptcovn>0) {
     num=ivector(1,n);          fprintf(ficresprob, "\n#********** Variable "); 
     moisnais=vector(1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     annais=vector(1,n);          fprintf(ficresprob, "**********\n#\n");
     moisdc=vector(1,n);          fprintf(ficresprobcov, "\n#********** Variable "); 
     andc=vector(1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     agedc=vector(1,n);          fprintf(ficresprobcov, "**********\n#\n");
     cod=ivector(1,n);          
     weight=vector(1,n);          fprintf(ficgp, "\n#********** Variable "); 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     mint=matrix(1,maxwav,1,n);          fprintf(ficgp, "**********\n#\n");
     anint=matrix(1,maxwav,1,n);          
     s=imatrix(1,maxwav+1,1,n);          
     adl=imatrix(1,maxwav+1,1,n);              fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     tab=ivector(1,NCOVMAX);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ncodemax=ivector(1,8);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
     i=1;          fprintf(ficresprobcor, "\n#********** Variable ");    
     while (fgets(line, MAXLINE, fic) != NULL)    {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       if ((i >= firstobs) && (i <=lastobs)) {          fprintf(ficresprobcor, "**********\n#");    
                }
         for (j=maxwav;j>=1;j--){        
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        for (age=bage; age<=fage; age ++){ 
           strcpy(line,stra);          cov[2]=age;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (k=1; k<=cptcovn;k++) {
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         }          }
                  for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          for (k=1; k<=cptcovprod;k++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (j=ncovcol;j>=1;j--){      
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(theta=1; theta <=npar; theta++){
         }            for(i=1; i<=npar; i++)
         num[i]=atol(stra);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                    
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            
             k=0;
         i=i+1;            for(i=1; i<= (nlstate); i++){
       }              for(j=1; j<=(nlstate+ndeath);j++){
     }                k=k+1;
     /* printf("ii=%d", ij);                gp[k]=pmmij[i][j];
        scanf("%d",i);*/              }
   imx=i-1; /* Number of individuals */            }
             
   /* for (i=1; i<=imx; i++){            for(i=1; i<=npar; i++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     }*/            k=0;
    /*  for (i=1; i<=imx; i++){            for(i=1; i<=(nlstate); i++){
      if (s[4][i]==9)  s[4][i]=-1;              for(j=1; j<=(nlstate+ndeath);j++){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                k=k+1;
                  gm[k]=pmmij[i][j];
                }
   /* Calculation of the number of parameter from char model*/            }
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */       
   Tprod=ivector(1,15);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   Tvaraff=ivector(1,15);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   Tvard=imatrix(1,15,1,2);          }
   Tage=ivector(1,15);        
              for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   if (strlen(model) >1){            for(theta=1; theta <=npar; theta++)
     j=0, j1=0, k1=1, k2=1;              trgradg[j][theta]=gradg[theta][j];
     j=nbocc(model,'+');          
     j1=nbocc(model,'*');          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     cptcovn=j+1;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     cptcovprod=j1;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
              free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     strcpy(modelsav,model);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       printf("Error. Non available option model=%s ",model);  
       fprintf(ficlog,"Error. Non available option model=%s ",model);          pmij(pmmij,cov,ncovmodel,x,nlstate);
       goto end;          
     }          k=0;
              for(i=1; i<=(nlstate); i++){
     for(i=(j+1); i>=1;i--){            for(j=1; j<=(nlstate+ndeath);j++){
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */              k=k+1;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */              mu[k][(int) age]=pmmij[i][j];
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            }
       /*scanf("%d",i);*/          }
       if (strchr(strb,'*')) {  /* Model includes a product */          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         if (strcmp(strc,"age")==0) { /* Vn*age */              varpij[i][j][(int)age] = doldm[i][j];
           cptcovprod--;  
           cutv(strb,stre,strd,'V');          /*printf("\n%d ",(int)age);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           cptcovage++;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             Tage[cptcovage]=i;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             /*printf("stre=%s ", stre);*/            }*/
         }  
         else if (strcmp(strd,"age")==0) { /* or age*Vn */          fprintf(ficresprob,"\n%d ",(int)age);
           cptcovprod--;          fprintf(ficresprobcov,"\n%d ",(int)age);
           cutv(strb,stre,strc,'V');          fprintf(ficresprobcor,"\n%d ",(int)age);
           Tvar[i]=atoi(stre);  
           cptcovage++;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           Tage[cptcovage]=i;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         else {  /* Age is not in the model */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           Tvar[i]=ncovcol+k1;          }
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */          i=0;
           Tprod[k1]=i;          for (k=1; k<=(nlstate);k++){
           Tvard[k1][1]=atoi(strc); /* m*/            for (l=1; l<=(nlstate+ndeath);l++){ 
           Tvard[k1][2]=atoi(stre); /* n */              i=i++;
           Tvar[cptcovn+k2]=Tvard[k1][1];              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           for (k=1; k<=lastobs;k++)              for (j=1; j<=i;j++){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           k1++;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           k2=k2+2;              }
         }            }
       }          }/* end of loop for state */
       else { /* no more sum */        } /* end of loop for age */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/        /* Confidence intervalle of pij  */
       cutv(strd,strc,strb,'V');        /*
       Tvar[i]=atoi(strc);          fprintf(ficgp,"\nunset parametric;unset label");
       }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       strcpy(modelsav,stra);            fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         scanf("%d",i);*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     } /* end of loop + */          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   } /* end model */          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
          */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        first1=1;
   scanf("%d ",i);*/        for (k2=1; k2<=(nlstate);k2++){
     fclose(fic);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
     /*  if(mle==1){*/            j=(k2-1)*(nlstate+ndeath)+l2;
     if (weightopt != 1) { /* Maximisation without weights*/            for (k1=1; k1<=(nlstate);k1++){
       for(i=1;i<=n;i++) weight[i]=1.0;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     }                if(l1==k1) continue;
     /*-calculation of age at interview from date of interview and age at death -*/                i=(k1-1)*(nlstate+ndeath)+l1;
     agev=matrix(1,maxwav,1,imx);                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
     for (i=1; i<=imx; i++) {                  if ((int)age %5==0){
       for(m=2; (m<= maxwav); m++) {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
          anint[m][i]=9999;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
          s[m][i]=-1;                    mu1=mu[i][(int) age]/stepm*YEARM ;
        }                    mu2=mu[j][(int) age]/stepm*YEARM;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                    c12=cv12/sqrt(v1*v2);
       }                    /* Computing eigen value of matrix of covariance */
     }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     for (i=1; i<=imx; i++)  {                    /* Eigen vectors */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       for(m=1; (m<= maxwav); m++){                    /*v21=sqrt(1.-v11*v11); *//* error */
         if(s[m][i] >0){                    v21=(lc1-v1)/cv12*v11;
           if (s[m][i] >= nlstate+1) {                    v12=-v21;
             if(agedc[i]>0)                    v22=v11;
               if(moisdc[i]!=99 && andc[i]!=9999)                    tnalp=v21/v11;
                 agev[m][i]=agedc[i];                    if(first1==1){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                      first1=0;
            else {                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
               if (andc[i]!=9999){                    }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);                    /*printf(fignu*/
               agev[m][i]=-1;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
               }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
             }                    if(first==1){
           }                      first=0;
           else if(s[m][i] !=9){ /* Should no more exist */                      fprintf(ficgp,"\nset parametric;unset label");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
             if(mint[m][i]==99 || anint[m][i]==9999)                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
               agev[m][i]=1;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
             else if(agev[m][i] <agemin){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
               agemin=agev[m][i];  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
             }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             else if(agev[m][i] >agemax){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               agemax=agev[m][i];                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
             /*agev[m][i]=anint[m][i]-annais[i];*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             /*   agev[m][i] = age[i]+2*m;*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           else { /* =9 */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             agev[m][i]=1;                    }else{
             s[m][i]=-1;                      first=0;
           }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
         }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         else /*= 0 Unknown */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           agev[m][i]=1;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                  mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     }                    }/* if first */
     for (i=1; i<=imx; i++)  {                  } /* age mod 5 */
       for(m=1; (m<= maxwav); m++){                } /* end loop age */
         if (s[m][i] > (nlstate+ndeath)) {                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                  first=1;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                } /*l12 */
           goto end;            } /* k12 */
         }          } /*l1 */
       }        }/* k1 */
     }      } /* loop covariates */
     }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_vector(severity,1,maxwav);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_imatrix(outcome,1,maxwav+1,1,n);    free_vector(xp,1,npar);
     free_vector(moisnais,1,n);    fclose(ficresprob);
     free_vector(annais,1,n);    fclose(ficresprobcov);
     /* free_matrix(mint,1,maxwav,1,n);    fclose(ficresprobcor);
        free_matrix(anint,1,maxwav,1,n);*/    fflush(ficgp);
     free_vector(moisdc,1,n);    fflush(fichtmcov);
     free_vector(andc,1,n);  }
   
      
     wav=ivector(1,imx);  /******************* Printing html file ***********/
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                    int lastpass, int stepm, int weightopt, char model[],\
                        int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     /* Concatenates waves */                    int popforecast, int estepm ,\
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       ncodemax[1]=1;     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  </ul>");
           fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    codtab=imatrix(1,100,1,10);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
    h=0;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
    m=pow(2,cptcoveff);     fprintf(fichtm,"\
     - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
    for(k=1;k<=cptcoveff; k++){             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      for(i=1; i <=(m/pow(2,k));i++){     fprintf(fichtm,"\
        for(j=1; j <= ncodemax[k]; j++){   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
            h++;     fprintf(fichtm,"\
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/     <a href=\"%s\">%s</a> <br>\n",
          }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
        }     fprintf(fichtm,"\
      }   - Population projections by age and states: \
    }     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    /* for(i=1; i <=m ;i++){  
       for(k=1; k <=cptcovn; k++){   m=cptcoveff;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       }  
       printf("\n");   jj1=0;
       }   for(k1=1; k1<=m;k1++){
       scanf("%d",i);*/     for(i1=1; i1<=ncodemax[k1];i1++){
           jj1++;
    /* Calculates basic frequencies. Computes observed prevalence at single age       if (cptcovn > 0) {
        and prints on file fileres'p'. */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
               fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       /* Pij */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       /* Quasi-incidences */
             fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     /* For Powell, parameters are in a vector p[] starting at p[1]   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
     if(mle==1){           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     }         }
           for(cpt=1; cpt<=nlstate;cpt++) {
     /*--------- results files --------------*/          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         }
      } /* end i1 */
    jk=1;   }/* End k1 */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   fprintf(fichtm,"</ul>");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){   fprintf(fichtm,"\
      for(k=1; k <=(nlstate+ndeath); k++){  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
        if (k != i)   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
          {  
            printf("%d%d ",i,k);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            fprintf(ficlog,"%d%d ",i,k);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
            fprintf(ficres,"%1d%1d ",i,k);   fprintf(fichtm,"\
            for(j=1; j <=ncovmodel; j++){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              printf("%f ",p[jk]);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
              fprintf(ficlog,"%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);   fprintf(fichtm,"\
              jk++;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
            printf("\n");   fprintf(fichtm,"\
            fprintf(ficlog,"\n");   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
            fprintf(ficres,"\n");     <a href=\"%s\">%s</a> <br>\n</li>",
          }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
      }   fprintf(fichtm,"\
    }   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
    if(mle==1){     <a href=\"%s\">%s</a> <br>\n</li>",
      /* Computing hessian and covariance matrix */             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
      ftolhess=ftol; /* Usually correct */   fprintf(fichtm,"\
      hesscov(matcov, p, npar, delti, ftolhess, func);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
    }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");   fprintf(fichtm,"\
    printf("# Scales (for hessian or gradient estimation)\n");   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    for(i=1,jk=1; i <=nlstate; i++){   fprintf(fichtm,"\
      for(j=1; j <=nlstate+ndeath; j++){   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
        if (j!=i) {           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
          fprintf(ficres,"%1d%1d",i,j);  
          printf("%1d%1d",i,j);  /*  if(popforecast==1) fprintf(fichtm,"\n */
          fprintf(ficlog,"%1d%1d",i,j);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
          for(k=1; k<=ncovmodel;k++){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
            printf(" %.5e",delti[jk]);  /*      <br>",fileres,fileres,fileres,fileres); */
            fprintf(ficlog," %.5e",delti[jk]);  /*  else  */
            fprintf(ficres," %.5e",delti[jk]);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
            jk++;   fflush(fichtm);
          }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
          printf("\n");  
          fprintf(ficlog,"\n");   m=cptcoveff;
          fprintf(ficres,"\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
        }  
      }   jj1=0;
    }   for(k1=1; k1<=m;k1++){
         for(i1=1; i1<=ncodemax[k1];i1++){
    k=1;       jj1++;
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       if (cptcovn > 0) {
    if(mle==1)         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    for(i=1;i<=npar;i++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
      /*  if (k>nlstate) k=1;       }
          i1=(i-1)/(ncovmodel*nlstate)+1;       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
          printf("%s%d%d",alph[k],i1,tab[i]);*/  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
      fprintf(ficres,"%3d",i);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
      if(mle==1)       }
        printf("%3d",i);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
      fprintf(ficlog,"%3d",i);  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
      for(j=1; j<=i;j++){  true period expectancies (those weighted with period prevalences are also\
        fprintf(ficres," %.5e",matcov[i][j]);   drawn in addition to the population based expectancies computed using\
        if(mle==1)   observed and cahotic prevalences: %s%d.png<br>\
          printf(" %.5e",matcov[i][j]);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
        fprintf(ficlog," %.5e",matcov[i][j]);     } /* end i1 */
      }   }/* End k1 */
      fprintf(ficres,"\n");   fprintf(fichtm,"</ul>");
      if(mle==1)   fflush(fichtm);
        printf("\n");  }
      fprintf(ficlog,"\n");  
      k++;  /******************* Gnuplot file **************/
    }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
      
    while((c=getc(ficpar))=='#' && c!= EOF){    char dirfileres[132],optfileres[132];
      ungetc(c,ficpar);    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
      fgets(line, MAXLINE, ficpar);    int ng=0;
      puts(line);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
      fputs(line,ficparo);  /*     printf("Problem with file %s",optionfilegnuplot); */
    }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
    ungetc(c,ficpar);  /*   } */
    estepm=0;  
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    /*#ifdef windows */
    if (estepm==0 || estepm < stepm) estepm=stepm;    fprintf(ficgp,"cd \"%s\" \n",pathc);
    if (fage <= 2) {      /*#endif */
      bage = ageminpar;    m=pow(2,cptcoveff);
      fage = agemaxpar;  
    }    strcpy(dirfileres,optionfilefiname);
        strcpy(optfileres,"vpl");
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   /* 1eme*/
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    for (cpt=1; cpt<= nlstate ; cpt ++) {
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);     for (k1=1; k1<= m ; k1 ++) {
           fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
    while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
      ungetc(c,ficpar);       fprintf(ficgp,"set xlabel \"Age\" \n\
      fgets(line, MAXLINE, ficpar);  set ylabel \"Probability\" \n\
      puts(line);  set ter png small\n\
      fputs(line,ficparo);  set size 0.65,0.65\n\
    }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    ungetc(c,ficpar);  
         for (i=1; i<= nlstate ; i ++) {
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         else        fprintf(ficgp," \%%*lf (\%%*lf)");
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       }
           fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
    while((c=getc(ficpar))=='#' && c!= EOF){       for (i=1; i<= nlstate ; i ++) {
      ungetc(c,ficpar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      fgets(line, MAXLINE, ficpar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
      puts(line);       } 
      fputs(line,ficparo);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
    }       for (i=1; i<= nlstate ; i ++) {
    ungetc(c,ficpar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
    dateprev1=anprev1+mprev1/12.+jprev1/365.;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
    dateprev2=anprev2+mprev2/12.+jprev2/365.;     }
     }
   fscanf(ficpar,"pop_based=%d\n",&popbased);    /*2 eme*/
   fprintf(ficparo,"pop_based=%d\n",popbased);      
   fprintf(ficres,"pop_based=%d\n",popbased);      for (k1=1; k1<= m ; k1 ++) { 
        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);      for (i=1; i<= nlstate+1 ; i ++) {
     puts(line);        k=2*i;
     fputs(line,ficparo);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   ungetc(c,ficpar);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        }   
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
 while((c=getc(ficpar))=='#' && c!= EOF){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     ungetc(c,ficpar);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fgets(line, MAXLINE, ficpar);        }   
     puts(line);        fprintf(ficgp,"\" t\"\" w l 0,");
     fputs(line,ficparo);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   ungetc(c,ficpar);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        }   
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        else fprintf(ficgp,"\" t\"\" w l 0,");
       }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }
     
 /*------------ gnuplot -------------*/    /*3eme*/
   strcpy(optionfilegnuplot,optionfilefiname);    
   strcat(optionfilegnuplot,".gp");    for (k1=1; k1<= m ; k1 ++) { 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      for (cpt=1; cpt<= nlstate ; cpt ++) {
     printf("Problem with file %s",optionfilegnuplot);        /*       k=2+nlstate*(2*cpt-2); */
   }        k=2+(nlstate+1)*(cpt-1);
   fclose(ficgp);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        fprintf(ficgp,"set ter png small\n\
 /*--------- index.htm --------*/  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   strcpy(optionfilehtm,optionfile);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   strcat(optionfilehtm,".htm");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     printf("Problem with %s \n",optionfilehtm), exit(0);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        */
 \n        for (i=1; i< nlstate ; i ++) {
 Total number of observations=%d <br>\n          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 <hr  size=\"2\" color=\"#EC5E5E\">          
  <ul><li><h4>Parameter files</h4>\n        } 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n      }
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    }
   fclose(fichtm);    
     /* CV preval stable (period) */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<=nlstate ; cpt ++) {
 /*------------ free_vector  -------------*/        k=3;
  chdir(path);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
  free_ivector(wav,1,imx);  set ter png small\nset size 0.65,0.65\n\
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  unset log y\n\
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
  free_ivector(num,1,n);        
  free_vector(agedc,1,n);        for (i=1; i< nlstate ; i ++)
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          fprintf(ficgp,"+$%d",k+i+1);
  fclose(ficparo);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
  fclose(ficres);        
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   /*--------------- Prevalence limit --------------*/        for (i=1; i< nlstate ; i ++) {
            l=3+(nlstate+ndeath)*cpt;
   strcpy(filerespl,"pl");          fprintf(ficgp,"+$%d",l+i+1);
   strcat(filerespl,fileres);        }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      } 
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    }  
   }    
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    /* proba elementaires */
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);    for(i=1,jk=1; i <=nlstate; i++){
   fprintf(ficrespl,"#Prevalence limit\n");      for(k=1; k <=(nlstate+ndeath); k++){
   fprintf(ficrespl,"#Age ");        if (k != i) {
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          for(j=1; j <=ncovmodel; j++){
   fprintf(ficrespl,"\n");            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
              jk++; 
   prlim=matrix(1,nlstate,1,nlstate);            fprintf(ficgp,"\n");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   agebase=ageminpar;       for(jk=1; jk <=m; jk++) {
   agelim=agemaxpar;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   ftolpl=1.e-10;         if (ng==2)
   i1=cptcoveff;           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   if (cptcovn < 1){i1=1;}         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         i=1;
         k=k+1;         for(k2=1; k2<=nlstate; k2++) {
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/           k3=i;
         fprintf(ficrespl,"\n#******");           for(k=1; k<=(nlstate+ndeath); k++) {
         printf("\n#******");             if (k != k2){
         fprintf(ficlog,"\n#******");               if(ng==2)
         for(j=1;j<=cptcoveff;j++) {                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               else
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               ij=1;
         }               for(j=3; j <=ncovmodel; j++) {
         fprintf(ficrespl,"******\n");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         printf("******\n");                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         fprintf(ficlog,"******\n");                   ij++;
                         }
         for (age=agebase; age<=agelim; age++){                 else
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           fprintf(ficrespl,"%.0f",age );               }
           for(i=1; i<=nlstate;i++)               fprintf(ficgp,")/(1");
           fprintf(ficrespl," %.5f", prlim[i][i]);               
           fprintf(ficrespl,"\n");               for(k1=1; k1 <=nlstate; k1++){   
         }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       }                 ij=1;
     }                 for(j=3; j <=ncovmodel; j++){
   fclose(ficrespl);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   /*------------- h Pij x at various ages ------------*/                     ij++;
                     }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                   else
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                 }
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;                 fprintf(ficgp,")");
   }               }
   printf("Computing pij: result on file '%s' \n", filerespij);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                 i=i+ncovmodel;
   stepsize=(int) (stepm+YEARM-1)/YEARM;             }
   /*if (stepm<=24) stepsize=2;*/           } /* end k */
          } /* end k2 */
   agelim=AGESUP;       } /* end jk */
   hstepm=stepsize*YEARM; /* Every year of age */     } /* end ng */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     fflush(ficgp); 
   }  /* end gnuplot */
   /* hstepm=1;   aff par mois*/  
   
   k=0;  /*************** Moving average **************/
   for(cptcov=1;cptcov<=i1;cptcov++){  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    int i, cpt, cptcod;
         fprintf(ficrespij,"\n#****** ");    int modcovmax =1;
         for(j=1;j<=cptcoveff;j++)    int mobilavrange, mob;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double age;
         fprintf(ficrespij,"******\n");  
            modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                             a covariate has 2 modalities */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (age=bage; age<=fage; age++)
           oldm=oldms;savm=savms;        for (i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for (cptcod=1;cptcod<=modcovmax;cptcod++)
           fprintf(ficrespij,"# Age");            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
           for(i=1; i<=nlstate;i++)      /* We keep the original values on the extreme ages bage, fage and for 
             for(j=1; j<=nlstate+ndeath;j++)         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
               fprintf(ficrespij," %1d-%1d",i,j);         we use a 5 terms etc. until the borders are no more concerned. 
           fprintf(ficrespij,"\n");      */ 
            for (h=0; h<=nhstepm; h++){      for (mob=3;mob <=mobilavrange;mob=mob+2){
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
             for(i=1; i<=nlstate;i++)          for (i=1; i<=nlstate;i++){
               for(j=1; j<=nlstate+ndeath;j++)            for (cptcod=1;cptcod<=modcovmax;cptcod++){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
             fprintf(ficrespij,"\n");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
              }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           fprintf(ficrespij,"\n");                }
         }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     }            }
   }          }
         }/* end age */
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);      }/* end mob */
     }else return -1;
   fclose(ficrespij);    return 0;
   }/* End movingaverage */
   
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){  /************** Forecasting ******************/
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    /* proj1, year, month, day of starting projection 
   }       agemin, agemax range of age
   else{       dateprev1 dateprev2 range of dates during which prevalence is computed
     erreur=108;       anproj2 year of en of projection (same day and month as proj1).
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    */
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   }    int *popage;
      double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   /*---------- Health expectancies and variances ------------*/    double *popeffectif,*popcount;
     double ***p3mat;
   strcpy(filerest,"t");    double ***mobaverage;
   strcat(filerest,fileres);    char fileresf[FILENAMELENGTH];
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    agelim=AGESUP;
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   }   
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    strcpy(fileresf,"f"); 
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
   strcpy(filerese,"e");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   strcat(filerese,fileres);    }
   if((ficreseij=fopen(filerese,"w"))==NULL) {    printf("Computing forecasting: result on file '%s' \n", fileresf);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(fileresv,"v");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   strcat(fileresv,fileres);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      }
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    }
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    if (stepm<=12) stepsize=1;
   calagedate=-1;    if(estepm < stepm){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   k=0;    else  hstepm=estepm;   
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    hstepm=hstepm/stepm; 
       k=k+1;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       fprintf(ficrest,"\n#****** ");                                 fractional in yp1 */
       for(j=1;j<=cptcoveff;j++)    anprojmean=yp;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    yp2=modf((yp1*12),&yp);
       fprintf(ficrest,"******\n");    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
       fprintf(ficreseij,"\n#****** ");    jprojmean=yp;
       for(j=1;j<=cptcoveff;j++)    if(jprojmean==0) jprojmean=1;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if(mprojmean==0) jprojmean=1;
       fprintf(ficreseij,"******\n");  
     i1=cptcoveff;
       fprintf(ficresvij,"\n#****** ");    if (cptcovn < 1){i1=1;}
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       fprintf(ficresvij,"******\n");    
     fprintf(ficresf,"#****** Routine prevforecast **\n");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  /*            if (h==(int)(YEARM*yearp)){ */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      for(cptcov=1, k=0;cptcov<=i1;cptcov++){
        for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        k=k+1;
       oldm=oldms;savm=savms;        fprintf(ficresf,"\n#******");
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);        for(j=1;j<=cptcoveff;j++) {
       if(popbased==1){          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);        }
        }        fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
          for(j=1; j<=nlstate+ndeath;j++){ 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          for(i=1; i<=nlstate;i++)              
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            fprintf(ficresf," p%d%d",i,j);
       fprintf(ficrest,"\n");          fprintf(ficresf," p.%d",j);
         }
       epj=vector(1,nlstate+1);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       for(age=bage; age <=fage ;age++){          fprintf(ficresf,"\n");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             prlim[i][i]=probs[(int)age][i][k];            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
         }            nhstepm = nhstepm/hstepm; 
                    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrest," %4.0f",age);            oldm=oldms;savm=savms;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          
             epj[j] += prlim[i][i]*eij[i][j][(int)age];            for (h=0; h<=nhstepm; h++){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/              if (h*hstepm/YEARM*stepm ==yearp) {
           }                fprintf(ficresf,"\n");
           epj[nlstate+1] +=epj[j];                for(j=1;j<=cptcoveff;j++) 
         }                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
         for(i=1, vepp=0.;i <=nlstate;i++)              } 
           for(j=1;j <=nlstate;j++)              for(j=1; j<=nlstate+ndeath;j++) {
             vepp += vareij[i][j][(int)age];                ppij=0.;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                for(i=1; i<=nlstate;i++) {
         for(j=1;j <=nlstate;j++){                  if (mobilav==1) 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
         }                  else {
         fprintf(ficrest,"\n");                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
       }                  }
     }                  if (h*hstepm/YEARM*stepm== yearp) {
   }                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
 free_matrix(mint,1,maxwav,1,n);                  }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                } /* end i */
     free_vector(weight,1,n);                if (h*hstepm/YEARM*stepm==yearp) {
   fclose(ficreseij);                  fprintf(ficresf," %.3f", ppij);
   fclose(ficresvij);                }
   fclose(ficrest);              }/* end j */
   fclose(ficpar);            } /* end h */
   free_vector(epj,1,nlstate+1);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            } /* end agec */
   /*------- Variance limit prevalence------*/          } /* end yearp */
       } /* end cptcod */
   strcpy(fileresvpl,"vpl");    } /* end  cptcov */
   strcat(fileresvpl,fileres);         
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);    fclose(ficresf);
   }  }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
   /************** Forecasting *****not tested NB*************/
   k=0;  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
       k=k+1;    int *popage;
       fprintf(ficresvpl,"\n#****** ");    double calagedatem, agelim, kk1, kk2;
       for(j=1;j<=cptcoveff;j++)    double *popeffectif,*popcount;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***p3mat,***tabpop,***tabpopprev;
       fprintf(ficresvpl,"******\n");    double ***mobaverage;
          char filerespop[FILENAMELENGTH];
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }    agelim=AGESUP;
  }    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
   fclose(ficresvpl);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
   /*---------- End : free ----------------*/    
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    strcpy(filerespop,"pop"); 
      strcat(filerespop,fileres);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      printf("Problem with forecast resultfile: %s\n", filerespop);
        fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
      }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    printf("Computing forecasting: result on file '%s' \n", filerespop);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
   free_matrix(matcov,1,npar,1,npar);    if (mobilav!=0) {
   free_vector(delti,1,npar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_matrix(agev,1,maxwav,1,imx);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(fichtm,"\n</body>");      }
   fclose(fichtm);    }
   fclose(ficgp);  
      stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
   if(erreur >0){    
     printf("End of Imach with error or warning %d\n",erreur);    agelim=AGESUP;
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    
   }else{    hstepm=1;
    printf("End of Imach\n");    hstepm=hstepm/stepm; 
    fprintf(ficlog,"End of Imach\n");    
   }    if (popforecast==1) {
   printf("See log file on %s\n",filelog);      if((ficpop=fopen(popfile,"r"))==NULL) {
   fclose(ficlog);        printf("Problem with population file : %s\n",popfile);exit(0);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
        } 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      popage=ivector(0,AGESUP);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      popeffectif=vector(0,AGESUP);
   /*------ End -----------*/      popcount=vector(0,AGESUP);
       
       i=1;   
  end:      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 #ifdef windows     
   /* chdir(pathcd);*/      imx=i;
 #endif      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
  /*system("wgnuplot graph.plt");*/    }
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
  strcpy(plotcmd,GNUPLOTPROGRAM);        k=k+1;
  strcat(plotcmd," ");        fprintf(ficrespop,"\n#******");
  strcat(plotcmd,optionfilegnuplot);        for(j=1;j<=cptcoveff;j++) {
  system(plotcmd);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
 #ifdef windows        fprintf(ficrespop,"******\n");
   while (z[0] != 'q') {        fprintf(ficrespop,"# Age");
     /* chdir(path); */        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        if (popforecast==1)  fprintf(ficrespop," [Population]");
     scanf("%s",z);        
     if (z[0] == 'c') system("./imach");        for (cpt=0; cpt<=0;cpt++) { 
     else if (z[0] == 'e') system(optionfilehtm);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     else if (z[0] == 'g') system(plotcmd);          
     else if (z[0] == 'q') exit(0);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 #endif            nhstepm = nhstepm/hstepm; 
 }            
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);fflush(ficlog);
           goto end;
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sum the number of covariates including ages as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=1;/* debug */
       /*    likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone);*/ /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.131


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>