Diff for /imach/src/imach.c between versions 1.50 and 1.134

version 1.50, 2002/06/26 23:25:02 version 1.134, 2009/10/29 13:18:53
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.134  2009/10/29 13:18:53  brouard
      (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.133  2009/07/06 10:21:25  brouard
   first survey ("cross") where individuals from different ages are    just nforces
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.132  2009/07/06 08:22:05  brouard
   second wave of interviews ("longitudinal") which measure each change    Many tings
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.131  2009/06/20 16:22:47  brouard
   model. More health states you consider, more time is necessary to reach the    Some dimensions resccaled
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.130  2009/05/26 06:44:34  brouard
   probability to be observed in state j at the second wave    (Module): Max Covariate is now set to 20 instead of 8. A
   conditional to be observed in state i at the first wave. Therefore    lot of cleaning with variables initialized to 0. Trying to make
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.129  2007/08/31 13:49:27  lievre
   where the markup *Covariates have to be included here again* invites    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.127  2006/04/28 18:11:50  brouard
   identical for each individual. Also, if a individual missed an    (Module): Yes the sum of survivors was wrong since
   intermediate interview, the information is lost, but taken into    imach-114 because nhstepm was no more computed in the age
   account using an interpolation or extrapolation.      loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
   hPijx is the probability to be observed in state i at age x+h    compute health expectancies (without variances) in a first step
   conditional to the observed state i at age x. The delay 'h' can be    and then all the health expectancies with variances or standard
   split into an exact number (nh*stepm) of unobserved intermediate    deviation (needs data from the Hessian matrices) which slows the
   states. This elementary transition (by month or quarter trimester,    computation.
   semester or year) is model as a multinomial logistic.  The hPx    In the future we should be able to stop the program is only health
   matrix is simply the matrix product of nh*stepm elementary matrices    expectancies and graph are needed without standard deviations.
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
   Also this programme outputs the covariance matrix of the parameters but also    imach-114 because nhstepm was no more computed in the age
   of the life expectancies. It also computes the prevalence limits.    loop. Now we define nhstepma in the age loop.
      Version 0.98h
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.125  2006/04/04 15:20:31  lievre
   This software have been partly granted by Euro-REVES, a concerted action    Errors in calculation of health expectancies. Age was not initialized.
   from the European Union.    Forecasting file added.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.124  2006/03/22 17:13:53  lievre
   can be accessed at http://euroreves.ined.fr/imach .    Parameters are printed with %lf instead of %f (more numbers after the comma).
   **********************************************************************/    The log-likelihood is printed in the log file
    
 #include <math.h>    Revision 1.123  2006/03/20 10:52:43  brouard
 #include <stdio.h>    * imach.c (Module): <title> changed, corresponds to .htm file
 #include <stdlib.h>    name. <head> headers where missing.
 #include <unistd.h>  
     * imach.c (Module): Weights can have a decimal point as for
 #define MAXLINE 256    English (a comma might work with a correct LC_NUMERIC environment,
 #define GNUPLOTPROGRAM "gnuplot"    otherwise the weight is truncated).
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Modification of warning when the covariates values are not 0 or
 #define FILENAMELENGTH 80    1.
 /*#define DEBUG*/    Version 0.98g
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.122  2006/03/20 09:45:41  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    otherwise the weight is truncated).
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Modification of warning when the covariates values are not 0 or
     1.
 #define NINTERVMAX 8    Version 0.98g
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.121  2006/03/16 17:45:01  lievre
 #define NCOVMAX 8 /* Maximum number of covariates */    * imach.c (Module): Comments concerning covariates added
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    * imach.c (Module): refinements in the computation of lli if
 #define AGESUP 130    status=-2 in order to have more reliable computation if stepm is
 #define AGEBASE 40    not 1 month. Version 0.98f
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.120  2006/03/16 15:10:38  lievre
 #define ODIRSEPARATOR '/'    (Module): refinements in the computation of lli if
 #else    status=-2 in order to have more reliable computation if stepm is
 #define DIRSEPARATOR '/'    not 1 month. Version 0.98f
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    computed as likelihood omitting the logarithm. Version O.98e
 int erreur; /* Error number */  
 int nvar;    Revision 1.118  2006/03/14 18:20:07  brouard
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    (Module): varevsij Comments added explaining the second
 int npar=NPARMAX;    table of variances if popbased=1 .
 int nlstate=2; /* Number of live states */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int ndeath=1; /* Number of dead states */    (Module): Function pstamp added
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Version 0.98d
 int popbased=0;  
     Revision 1.117  2006/03/14 17:16:22  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): varevsij Comments added explaining the second
 int maxwav; /* Maxim number of waves */    table of variances if popbased=1 .
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int mle, weightopt;    (Module): Function pstamp added
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Version 0.98d
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.116  2006/03/06 10:29:27  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Variance-covariance wrong links and
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    varian-covariance of ej. is needed (Saito).
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;    Revision 1.115  2006/02/27 12:17:45  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (Module): One freematrix added in mlikeli! 0.98c
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Revision 1.114  2006/02/26 12:57:58  brouard
 FILE *ficreseij;    (Module): Some improvements in processing parameter
 char filerese[FILENAMELENGTH];    filename with strsep.
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.113  2006/02/24 14:20:24  brouard
 FILE  *ficresvpl;    (Module): Memory leaks checks with valgrind and:
 char fileresvpl[FILENAMELENGTH];    datafile was not closed, some imatrix were not freed and on matrix
 char title[MAXLINE];    allocation too.
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
 char filelog[FILENAMELENGTH]; /* Log file */    Revision 1.111  2006/01/25 20:38:18  brouard
 char filerest[FILENAMELENGTH];    (Module): Lots of cleaning and bugs added (Gompertz)
 char fileregp[FILENAMELENGTH];    (Module): Comments can be added in data file. Missing date values
 char popfile[FILENAMELENGTH];    can be a simple dot '.'.
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.109  2006/01/24 19:37:15  brouard
 #define FTOL 1.0e-10    (Module): Comments (lines starting with a #) are allowed in data.
   
 #define NRANSI    Revision 1.108  2006/01/19 18:05:42  lievre
 #define ITMAX 200    Gnuplot problem appeared...
     To be fixed
 #define TOL 2.0e-4  
     Revision 1.107  2006/01/19 16:20:37  brouard
 #define CGOLD 0.3819660    Test existence of gnuplot in imach path
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.105  2006/01/05 20:23:19  lievre
 #define TINY 1.0e-20    *** empty log message ***
   
 static double maxarg1,maxarg2;    Revision 1.104  2005/09/30 16:11:43  lievre
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): sump fixed, loop imx fixed, and simplifications.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): If the status is missing at the last wave but we know
      that the person is alive, then we can code his/her status as -2
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (instead of missing=-1 in earlier versions) and his/her
 #define rint(a) floor(a+0.5)    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 static double sqrarg;    the healthy state at last known wave). Version is 0.98
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 int imx;  
 int stepm;    Revision 1.102  2004/09/15 17:31:30  brouard
 /* Stepm, step in month: minimum step interpolation*/    Add the possibility to read data file including tab characters.
   
 int estepm;    Revision 1.101  2004/09/15 10:38:38  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Fix on curr_time
   
 int m,nb;    Revision 1.100  2004/07/12 18:29:06  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Add version for Mac OS X. Just define UNIX in Makefile
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.99  2004/06/05 08:57:40  brouard
 double dateintmean=0;    *** empty log message ***
   
 double *weight;    Revision 1.98  2004/05/16 15:05:56  brouard
 int **s; /* Status */    New version 0.97 . First attempt to estimate force of mortality
 double *agedc, **covar, idx;    directly from the data i.e. without the need of knowing the health
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    other analysis, in order to test if the mortality estimated from the
 double ftolhess; /* Tolerance for computing hessian */    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    The same imach parameter file can be used but the option for mle should be -3.
 {  
    char *s;                             /* pointer */    Agnès, who wrote this part of the code, tried to keep most of the
    int  l1, l2;                         /* length counters */    former routines in order to include the new code within the former code.
   
    l1 = strlen( path );                 /* length of path */    The output is very simple: only an estimate of the intercept and of
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    the slope with 95% confident intervals.
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Current limitations:
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    A) Even if you enter covariates, i.e. with the
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #if     defined(__bsd__)                /* get current working directory */    B) There is no computation of Life Expectancy nor Life Table.
       extern char       *getwd( );  
     Revision 1.97  2004/02/20 13:25:42  lievre
       if ( getwd( dirc ) == NULL ) {    Version 0.96d. Population forecasting command line is (temporarily)
 #else    suppressed.
       extern char       *getcwd( );  
     Revision 1.96  2003/07/15 15:38:55  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #endif    rewritten within the same printf. Workaround: many printfs.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.95  2003/07/08 07:54:34  brouard
       strcpy( name, path );             /* we've got it */    * imach.c (Repository):
    } else {                             /* strip direcotry from path */    (Repository): Using imachwizard code to output a more meaningful covariance
       s++;                              /* after this, the filename */    matrix (cov(a12,c31) instead of numbers.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.94  2003/06/27 13:00:02  brouard
       strcpy( name, s );                /* save file name */    Just cleaning
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.93  2003/06/25 16:33:55  brouard
    }    (Module): On windows (cygwin) function asctime_r doesn't
    l1 = strlen( dirc );                 /* length of directory */    exist so I changed back to asctime which exists.
 #ifdef windows    (Module): Version 0.96b
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.92  2003/06/25 16:30:45  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): On windows (cygwin) function asctime_r doesn't
 #endif    exist so I changed back to asctime which exists.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.91  2003/06/25 15:30:29  brouard
    strcpy(ext,s);                       /* save extension */    * imach.c (Repository): Duplicated warning errors corrected.
    l1= strlen( name);    (Repository): Elapsed time after each iteration is now output. It
    l2= strlen( s)+1;    helps to forecast when convergence will be reached. Elapsed time
    strncpy( finame, name, l1-l2);    is stamped in powell.  We created a new html file for the graphs
    finame[l1-l2]= 0;    concerning matrix of covariance. It has extension -cov.htm.
    return( 0 );                         /* we're done */  
 }    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /******************************************/    of the covariance matrix to be input.
   
 void replace(char *s, char*t)    Revision 1.89  2003/06/24 12:30:52  brouard
 {    (Module): Some bugs corrected for windows. Also, when
   int i;    mle=-1 a template is output in file "or"mypar.txt with the design
   int lg=20;    of the covariance matrix to be input.
   i=0;  
   lg=strlen(t);    Revision 1.88  2003/06/23 17:54:56  brouard
   for(i=0; i<= lg; i++) {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.87  2003/06/18 12:26:01  brouard
   }    Version 0.96
 }  
     Revision 1.86  2003/06/17 20:04:08  brouard
 int nbocc(char *s, char occ)    (Module): Change position of html and gnuplot routines and added
 {    routine fileappend.
   int i,j=0;  
   int lg=20;    Revision 1.85  2003/06/17 13:12:43  brouard
   i=0;    * imach.c (Repository): Check when date of death was earlier that
   lg=strlen(s);    current date of interview. It may happen when the death was just
   for(i=0; i<= lg; i++) {    prior to the death. In this case, dh was negative and likelihood
   if  (s[i] == occ ) j++;    was wrong (infinity). We still send an "Error" but patch by
   }    assuming that the date of death was just one stepm after the
   return j;    interview.
 }    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 void cutv(char *u,char *v, char*t, char occ)    memory allocation. But we also truncated to 8 characters (left
 {    truncation)
   /* cuts string t into u and v where u is ended by char occ excluding it    (Repository): No more line truncation errors.
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */    Revision 1.84  2003/06/13 21:44:43  brouard
   int i,lg,j,p=0;    * imach.c (Repository): Replace "freqsummary" at a correct
   i=0;    place. It differs from routine "prevalence" which may be called
   for(j=0; j<=strlen(t)-1; j++) {    many times. Probs is memory consuming and must be used with
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    parcimony.
   }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   lg=strlen(t);    Revision 1.83  2003/06/10 13:39:11  lievre
   for(j=0; j<p; j++) {    *** empty log message ***
     (u[j] = t[j]);  
   }    Revision 1.82  2003/06/05 15:57:20  brouard
      u[p]='\0';    Add log in  imach.c and  fullversion number is now printed.
   
    for(j=0; j<= lg; j++) {  */
     if (j>=(p+1))(v[j-p-1] = t[j]);  /*
   }     Interpolated Markov Chain
 }  
     Short summary of the programme:
 /********************** nrerror ********************/    
     This program computes Healthy Life Expectancies from
 void nrerror(char error_text[])    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
   fprintf(stderr,"ERREUR ...\n");    interviewed on their health status or degree of disability (in the
   fprintf(stderr,"%s\n",error_text);    case of a health survey which is our main interest) -2- at least a
   exit(1);    second wave of interviews ("longitudinal") which measure each change
 }    (if any) in individual health status.  Health expectancies are
 /*********************** vector *******************/    computed from the time spent in each health state according to a
 double *vector(int nl, int nh)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   double *v;    simplest model is the multinomial logistic model where pij is the
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    probability to be observed in state j at the second wave
   if (!v) nrerror("allocation failure in vector");    conditional to be observed in state i at the first wave. Therefore
   return v-nl+NR_END;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 /************************ free vector ******************/    where the markup *Covariates have to be included here again* invites
 void free_vector(double*v, int nl, int nh)    you to do it.  More covariates you add, slower the
 {    convergence.
   free((FREE_ARG)(v+nl-NR_END));  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 /************************ivector *******************************/    identical for each individual. Also, if a individual missed an
 int *ivector(long nl,long nh)    intermediate interview, the information is lost, but taken into
 {    account using an interpolation or extrapolation.  
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    hPijx is the probability to be observed in state i at age x+h
   if (!v) nrerror("allocation failure in ivector");    conditional to the observed state i at age x. The delay 'h' can be
   return v-nl+NR_END;    split into an exact number (nh*stepm) of unobserved intermediate
 }    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 /******************free ivector **************************/    matrix is simply the matrix product of nh*stepm elementary matrices
 void free_ivector(int *v, long nl, long nh)    and the contribution of each individual to the likelihood is simply
 {    hPijx.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence. 
 /******************* imatrix *******************************/    
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */             Institut national d'études démographiques, Paris.
 {    This software have been partly granted by Euro-REVES, a concerted action
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    from the European Union.
   int **m;    It is copyrighted identically to a GNU software product, ie programme and
      software can be distributed freely for non commercial use. Latest version
   /* allocate pointers to rows */    can be accessed at http://euroreves.ined.fr/imach .
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m += NR_END;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   m -= nrl;    
      **********************************************************************/
    /*
   /* allocate rows and set pointers to them */    main
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    read parameterfile
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    read datafile
   m[nrl] += NR_END;    concatwav
   m[nrl] -= ncl;    freqsummary
      if (mle >= 1)
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;      mlikeli
      print results files
   /* return pointer to array of pointers to rows */    if mle==1 
   return m;       computes hessian
 }    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 /****************** free_imatrix *************************/    open gnuplot file
 void free_imatrix(m,nrl,nrh,ncl,nch)    open html file
       int **m;    period (stable) prevalence
       long nch,ncl,nrh,nrl;     for age prevalim()
      /* free an int matrix allocated by imatrix() */    h Pij x
 {    variance of p varprob
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    forecasting if prevfcast==1 prevforecast call prevalence()
   free((FREE_ARG) (m+nrl-NR_END));    health expectancies
 }    Variance-covariance of DFLE
     prevalence()
 /******************* matrix *******************************/     movingaverage()
 double **matrix(long nrl, long nrh, long ncl, long nch)    varevsij() 
 {    if popbased==1 varevsij(,popbased)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    total life expectancies
   double **m;    Variance of period (stable) prevalence
    end
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  
   m -= nrl;  
    
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include <math.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <stdio.h>
   m[nrl] += NR_END;  #include <stdlib.h>
   m[nrl] -= ncl;  #include <string.h>
   #include <unistd.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #include <limits.h>
 }  #include <sys/types.h>
   #include <sys/stat.h>
 /*************************free matrix ************************/  #include <errno.h>
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  extern int errno;
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /* #include <sys/time.h> */
   free((FREE_ARG)(m+nrl-NR_END));  #include <time.h>
 }  #include "timeval.h"
   
 /******************* ma3x *******************************/  /* #include <libintl.h> */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  /* #define _(String) gettext (String) */
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define MAXLINE 256
   double ***m;  
   #define GNUPLOTPROGRAM "gnuplot"
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   if (!m) nrerror("allocation failure 1 in matrix()");  #define FILENAMELENGTH 132
   m += NR_END;  
   m -= nrl;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   m[nrl] += NR_END;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   m[nrl] -= ncl;  
   #define NINTERVMAX 8
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define NCOVMAX 20 /* Maximum number of covariates */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define MAXN 20000
   m[nrl][ncl] += NR_END;  #define YEARM 12. /* Number of months per year */
   m[nrl][ncl] -= nll;  #define AGESUP 130
   for (j=ncl+1; j<=nch; j++)  #define AGEBASE 40
     m[nrl][j]=m[nrl][j-1]+nlay;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
    #ifdef UNIX
   for (i=nrl+1; i<=nrh; i++) {  #define DIRSEPARATOR '/'
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define CHARSEPARATOR "/"
     for (j=ncl+1; j<=nch; j++)  #define ODIRSEPARATOR '\\'
       m[i][j]=m[i][j-1]+nlay;  #else
   }  #define DIRSEPARATOR '\\'
   return m;  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #endif
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /* $Id$ */
 {  /* $State$ */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char version[]="Imach version 0.98l, October 2009, INED-EUROREVES-Institut de longevite ";
   free((FREE_ARG)(m+nrl-NR_END));  char fullversion[]="$Revision$ $Date$"; 
 }  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 /***************** f1dim *************************/  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 extern int ncom;  int nvar=0, nforce=0; /* Number of variables, number of forces */
 extern double *pcom,*xicom;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
 extern double (*nrfunc)(double []);  int npar=NPARMAX;
    int nlstate=2; /* Number of live states */
 double f1dim(double x)  int ndeath=1; /* Number of dead states */
 {  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int j;  int popbased=0;
   double f;  
   double *xt;  int *wav; /* Number of waves for this individuual 0 is possible */
    int maxwav=0; /* Maxim number of waves */
   xt=vector(1,ncom);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   f=(*nrfunc)(xt);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   free_vector(xt,1,ncom);                     to the likelihood and the sum of weights (done by funcone)*/
   return f;  int mle=1, weightopt=0;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /*****************brent *************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean=1; /* Mean space between 2 waves */
   int iter;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double a,b,d,etemp;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double fu,fv,fw,fx;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   double ftemp;  FILE *ficlog, *ficrespow;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int globpr=0; /* Global variable for printing or not */
   double e=0.0;  double fretone; /* Only one call to likelihood */
    long ipmx=0; /* Number of contributions */
   a=(ax < cx ? ax : cx);  double sw; /* Sum of weights */
   b=(ax > cx ? ax : cx);  char filerespow[FILENAMELENGTH];
   x=w=v=bx;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   fw=fv=fx=(*f)(x);  FILE *ficresilk;
   for (iter=1;iter<=ITMAX;iter++) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     xm=0.5*(a+b);  FILE *ficresprobmorprev;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  FILE *fichtm, *fichtmcov; /* Html File */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  FILE *ficreseij;
     printf(".");fflush(stdout);  char filerese[FILENAMELENGTH];
     fprintf(ficlog,".");fflush(ficlog);  FILE *ficresstdeij;
 #ifdef DEBUG  char fileresstde[FILENAMELENGTH];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  FILE *ficrescveij;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char filerescve[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  FILE  *ficresvij;
 #endif  char fileresv[FILENAMELENGTH];
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  FILE  *ficresvpl;
       *xmin=x;  char fileresvpl[FILENAMELENGTH];
       return fx;  char title[MAXLINE];
     }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     ftemp=fu;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     if (fabs(e) > tol1) {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       r=(x-w)*(fx-fv);  char command[FILENAMELENGTH];
       q=(x-v)*(fx-fw);  int  outcmd=0;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       if (q > 0.0) p = -p;  
       q=fabs(q);  char filelog[FILENAMELENGTH]; /* Log file */
       etemp=e;  char filerest[FILENAMELENGTH];
       e=d;  char fileregp[FILENAMELENGTH];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char popfile[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         d=p/q;  
         u=x+d;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
         if (u-a < tol2 || b-u < tol2)  struct timezone tzp;
           d=SIGN(tol1,xm-x);  extern int gettimeofday();
       }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     } else {  long time_value;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  extern long time();
     }  char strcurr[80], strfor[80];
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  char *endptr;
     if (fu <= fx) {  long lval;
       if (u >= x) a=x; else b=x;  double dval;
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  #define NR_END 1
         } else {  #define FREE_ARG char*
           if (u < x) a=u; else b=u;  #define FTOL 1.0e-10
           if (fu <= fw || w == x) {  
             v=w;  #define NRANSI 
             w=u;  #define ITMAX 200 
             fv=fw;  
             fw=fu;  #define TOL 2.0e-4 
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  #define CGOLD 0.3819660 
             fv=fu;  #define ZEPS 1.0e-10 
           }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         }  
   }  #define GOLD 1.618034 
   nrerror("Too many iterations in brent");  #define GLIMIT 100.0 
   *xmin=x;  #define TINY 1.0e-20 
   return fx;  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /****************** mnbrak ***********************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
             double (*func)(double))  #define rint(a) floor(a+0.5)
 {  
   double ulim,u,r,q, dum;  static double sqrarg;
   double fu;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
    #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   *fa=(*func)(*ax);  int agegomp= AGEGOMP;
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  int imx; 
     SHFT(dum,*ax,*bx,dum)  int stepm=1;
       SHFT(dum,*fb,*fa,dum)  /* Stepm, step in month: minimum step interpolation*/
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  int estepm;
   *fc=(*func)(*cx);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  int m,nb;
     q=(*bx-*cx)*(*fb-*fa);  long *num;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  double **pmmij, ***probs;
     if ((*bx-u)*(u-*cx) > 0.0) {  double *ageexmed,*agecens;
       fu=(*func)(u);  double dateintmean=0;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  double *weight;
       if (fu < *fc) {  int **s; /* Status */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  double *agedc, **covar, idx;
           SHFT(*fb,*fc,fu,(*func)(u))  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
           }  double *lsurv, *lpop, *tpop;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       fu=(*func)(u);  double ftolhess; /* Tolerance for computing hessian */
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /**************** split *************************/
       fu=(*func)(u);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     }  {
     SHFT(*ax,*bx,*cx,u)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       SHFT(*fa,*fb,*fc,fu)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       }    */ 
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 /*************** linmin ************************/  
     l1 = strlen(path );                   /* length of path */
 int ncom;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 double *pcom,*xicom;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 double (*nrfunc)(double []);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
        strcpy( name, path );               /* we got the fullname name because no directory */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double brent(double ax, double bx, double cx,      /* get current working directory */
                double (*f)(double), double tol, double *xmin);      /*    extern  char* getcwd ( char *buf , int len);*/
   double f1dim(double x);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,        return( GLOCK_ERROR_GETCWD );
               double *fc, double (*func)(double));      }
   int j;      /* got dirc from getcwd*/
   double xx,xmin,bx,ax;      printf(" DIRC = %s \n",dirc);
   double fx,fb,fa;    } else {                              /* strip direcotry from path */
        ss++;                               /* after this, the filename */
   ncom=n;      l2 = strlen( ss );                  /* length of filename */
   pcom=vector(1,n);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   xicom=vector(1,n);      strcpy( name, ss );         /* save file name */
   nrfunc=func;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for (j=1;j<=n;j++) {      dirc[l1-l2] = 0;                    /* add zero */
     pcom[j]=p[j];      printf(" DIRC2 = %s \n",dirc);
     xicom[j]=xi[j];    }
   }    /* We add a separator at the end of dirc if not exists */
   ax=0.0;    l1 = strlen( dirc );                  /* length of directory */
   xx=1.0;    if( dirc[l1-1] != DIRSEPARATOR ){
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      dirc[l1] =  DIRSEPARATOR;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      dirc[l1+1] = 0; 
 #ifdef DEBUG      printf(" DIRC3 = %s \n",dirc);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    }
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    ss = strrchr( name, '.' );            /* find last / */
 #endif    if (ss >0){
   for (j=1;j<=n;j++) {      ss++;
     xi[j] *= xmin;      strcpy(ext,ss);                     /* save extension */
     p[j] += xi[j];      l1= strlen( name);
   }      l2= strlen(ss)+1;
   free_vector(xicom,1,n);      strncpy( finame, name, l1-l2);
   free_vector(pcom,1,n);      finame[l1-l2]= 0;
 }    }
   
 /*************** powell ************************/    return( 0 );                          /* we're done */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  }
             double (*func)(double []))  
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /******************************************/
               double (*func)(double []));  
   int i,ibig,j;  void replace_back_to_slash(char *s, char*t)
   double del,t,*pt,*ptt,*xit;  {
   double fp,fptt;    int i;
   double *xits;    int lg=0;
   pt=vector(1,n);    i=0;
   ptt=vector(1,n);    lg=strlen(t);
   xit=vector(1,n);    for(i=0; i<= lg; i++) {
   xits=vector(1,n);      (s[i] = t[i]);
   *fret=(*func)(p);      if (t[i]== '\\') s[i]='/';
   for (j=1;j<=n;j++) pt[j]=p[j];    }
   for (*iter=1;;++(*iter)) {  }
     fp=(*fret);  
     ibig=0;  char *trimbb(char *out, char *in)
     del=0.0;  { /* Trim multiple blanks in line */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    char *s;
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    s=out;
     for (i=1;i<=n;i++)    while (*in != '\0'){
       printf(" %d %.12f",i, p[i]);      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
     fprintf(ficlog," %d %.12f",i, p[i]);        in++;
     printf("\n");      }
     fprintf(ficlog,"\n");      *out++ = *in++;
     for (i=1;i<=n;i++) {    }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    *out='\0';
       fptt=(*fret);    return s;
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);  int nbocc(char *s, char occ)
 #endif  {
       printf("%d",i);fflush(stdout);    int i,j=0;
       fprintf(ficlog,"%d",i);fflush(ficlog);    int lg=20;
       linmin(p,xit,n,fret,func);    i=0;
       if (fabs(fptt-(*fret)) > del) {    lg=strlen(s);
         del=fabs(fptt-(*fret));    for(i=0; i<= lg; i++) {
         ibig=i;    if  (s[i] == occ ) j++;
       }    }
 #ifdef DEBUG    return j;
       printf("%d %.12e",i,(*fret));  }
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  void cutv(char *u,char *v, char*t, char occ)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  {
         printf(" x(%d)=%.12e",j,xit[j]);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       }       gives u="abcedf" and v="ghi2j" */
       for(j=1;j<=n;j++) {    int i,lg,j,p=0;
         printf(" p=%.12e",p[j]);    i=0;
         fprintf(ficlog," p=%.12e",p[j]);    for(j=0; j<=strlen(t)-1; j++) {
       }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       printf("\n");    }
       fprintf(ficlog,"\n");  
 #endif    lg=strlen(t);
     }    for(j=0; j<p; j++) {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      (u[j] = t[j]);
 #ifdef DEBUG    }
       int k[2],l;       u[p]='\0';
       k[0]=1;  
       k[1]=-1;     for(j=0; j<= lg; j++) {
       printf("Max: %.12e",(*func)(p));      if (j>=(p+1))(v[j-p-1] = t[j]);
       fprintf(ficlog,"Max: %.12e",(*func)(p));    }
       for (j=1;j<=n;j++) {  }
         printf(" %.12e",p[j]);  
         fprintf(ficlog," %.12e",p[j]);  /********************** nrerror ********************/
       }  
       printf("\n");  void nrerror(char error_text[])
       fprintf(ficlog,"\n");  {
       for(l=0;l<=1;l++) {    fprintf(stderr,"ERREUR ...\n");
         for (j=1;j<=n;j++) {    fprintf(stderr,"%s\n",error_text);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    exit(EXIT_FAILURE);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /*********************** vector *******************/
         }  double *vector(int nl, int nh)
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  {
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double *v;
       }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 #endif    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
   }
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /************************ free vector ******************/
       free_vector(ptt,1,n);  void free_vector(double*v, int nl, int nh)
       free_vector(pt,1,n);  {
       return;    free((FREE_ARG)(v+nl-NR_END));
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /************************ivector *******************************/
       ptt[j]=2.0*p[j]-pt[j];  int *ivector(long nl,long nh)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    int *v;
     }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     fptt=(*func)(ptt);    if (!v) nrerror("allocation failure in ivector");
     if (fptt < fp) {    return v-nl+NR_END;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /******************free ivector **************************/
         for (j=1;j<=n;j++) {  void free_ivector(int *v, long nl, long nh)
           xi[j][ibig]=xi[j][n];  {
           xi[j][n]=xit[j];    free((FREE_ARG)(v+nl-NR_END));
         }  }
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /************************lvector *******************************/
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  long *lvector(long nl,long nh)
         for(j=1;j<=n;j++){  {
           printf(" %.12e",xit[j]);    long *v;
           fprintf(ficlog," %.12e",xit[j]);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         }    if (!v) nrerror("allocation failure in ivector");
         printf("\n");    return v-nl+NR_END;
         fprintf(ficlog,"\n");  }
 #endif  
       }  /******************free lvector **************************/
     }  void free_lvector(long *v, long nl, long nh)
   }  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /**** Prevalence limit ****************/  
   /******************* imatrix *******************************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  { 
      matrix by transitions matrix until convergence is reached */    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
   int i, ii,j,k;    
   double min, max, maxmin, maxmax,sumnew=0.;    /* allocate pointers to rows */ 
   double **matprod2();    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   double **out, cov[NCOVMAX], **pmij();    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double **newm;    m += NR_END; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    m -= nrl; 
     
   for (ii=1;ii<=nlstate+ndeath;ii++)    
     for (j=1;j<=nlstate+ndeath;j++){    /* allocate rows and set pointers to them */ 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
    cov[1]=1.;    m[nrl] -= ncl; 
      
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    
     newm=savm;    /* return pointer to array of pointers to rows */ 
     /* Covariates have to be included here again */    return m; 
      cov[2]=agefin;  } 
    
       for (k=1; k<=cptcovn;k++) {  /****************** free_imatrix *************************/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  void free_imatrix(m,nrl,nrh,ncl,nch)
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        int **m;
       }        long nch,ncl,nrh,nrl; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];       /* free an int matrix allocated by imatrix() */ 
       for (k=1; k<=cptcovprod;k++)  { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  } 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /******************* matrix *******************************/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
     savm=oldm;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     oldm=newm;    double **m;
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       min=1.;    if (!m) nrerror("allocation failure 1 in matrix()");
       max=0.;    m += NR_END;
       for(i=1; i<=nlstate; i++) {    m -= nrl;
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         prlim[i][j]= newm[i][j]/(1-sumnew);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         max=FMAX(max,prlim[i][j]);    m[nrl] += NR_END;
         min=FMIN(min,prlim[i][j]);    m[nrl] -= ncl;
       }  
       maxmin=max-min;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       maxmax=FMAX(maxmax,maxmin);    return m;
     }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     if(maxmax < ftolpl){     */
       return prlim;  }
     }  
   }  /*************************free matrix ************************/
 }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 /*************** transition probabilities ***************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  }
 {  
   double s1, s2;  /******************* ma3x *******************************/
   /*double t34;*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   int i,j,j1, nc, ii, jj;  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for(i=1; i<= nlstate; i++){    double ***m;
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         /*s2 += param[i][j][nc]*cov[nc];*/    if (!m) nrerror("allocation failure 1 in matrix()");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m += NR_END;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m -= nrl;
       }  
       ps[i][j]=s2;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     for(j=i+1; j<=nlstate+ndeath;j++){    m[nrl] -= ncl;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       ps[i][j]=s2;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     }    m[nrl][ncl] += NR_END;
   }    m[nrl][ncl] -= nll;
     /*ps[3][2]=1;*/    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
   for(i=1; i<= nlstate; i++){    
      s1=0;    for (i=nrl+1; i<=nrh; i++) {
     for(j=1; j<i; j++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       s1+=exp(ps[i][j]);      for (j=ncl+1; j<=nch; j++) 
     for(j=i+1; j<=nlstate+ndeath; j++)        m[i][j]=m[i][j-1]+nlay;
       s1+=exp(ps[i][j]);    }
     ps[i][i]=1./(s1+1.);    return m; 
     for(j=1; j<i; j++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       ps[i][j]= exp(ps[i][j])*ps[i][i];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for(j=i+1; j<=nlstate+ndeath; j++)    */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       ps[ii][jj]=0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       ps[ii][ii]=1;    free((FREE_ARG)(m+nrl-NR_END));
     }  }
   }  
   /*************** function subdirf ***********/
   char *subdirf(char fileres[])
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    /* Caution optionfilefiname is hidden */
      printf("%lf ",ps[ii][jj]);    strcpy(tmpout,optionfilefiname);
    }    strcat(tmpout,"/"); /* Add to the right */
     printf("\n ");    strcat(tmpout,fileres);
     }    return tmpout;
     printf("\n ");printf("%lf ",cov[2]);*/  }
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /*************** function subdirf2 ***********/
   goto end;*/  char *subdirf2(char fileres[], char *preop)
     return ps;  {
 }    
     /* Caution optionfilefiname is hidden */
 /**************** Product of 2 matrices ******************/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    strcat(tmpout,preop);
 {    strcat(tmpout,fileres);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    return tmpout;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  }
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /*************** function subdirf3 ***********/
      a pointer to pointers identical to out */  char *subdirf3(char fileres[], char *preop, char *preop2)
   long i, j, k;  {
   for(i=nrl; i<= nrh; i++)    
     for(k=ncolol; k<=ncoloh; k++)    /* Caution optionfilefiname is hidden */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    strcpy(tmpout,optionfilefiname);
         out[i][k] +=in[i][j]*b[j][k];    strcat(tmpout,"/");
     strcat(tmpout,preop);
   return out;    strcat(tmpout,preop2);
 }    strcat(tmpout,fileres);
     return tmpout;
   }
 /************* Higher Matrix Product ***************/  
   /***************** f1dim *************************/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  extern int ncom; 
 {  extern double *pcom,*xicom;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  extern double (*nrfunc)(double []); 
      duration (i.e. until   
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  double f1dim(double x) 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  { 
      (typically every 2 years instead of every month which is too big).    int j; 
      Model is determined by parameters x and covariates have to be    double f;
      included manually here.    double *xt; 
    
      */    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   int i, j, d, h, k;    f=(*nrfunc)(xt); 
   double **out, cov[NCOVMAX];    free_vector(xt,1,ncom); 
   double **newm;    return f; 
   } 
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  /*****************brent *************************/
     for (j=1;j<=nlstate+ndeath;j++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    int iter; 
     }    double a,b,d,etemp;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double fu,fv,fw,fx;
   for(h=1; h <=nhstepm; h++){    double ftemp;
     for(d=1; d <=hstepm; d++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       newm=savm;    double e=0.0; 
       /* Covariates have to be included here again */   
       cov[1]=1.;    a=(ax < cx ? ax : cx); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    b=(ax > cx ? ax : cx); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    x=w=v=bx; 
       for (k=1; k<=cptcovage;k++)    fw=fv=fx=(*f)(x); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (iter=1;iter<=ITMAX;iter++) { 
       for (k=1; k<=cptcovprod;k++)      xm=0.5*(a+b); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      fprintf(ficlog,".");fflush(ficlog);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  #ifdef DEBUG
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       savm=oldm;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       oldm=newm;  #endif
     }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for(i=1; i<=nlstate+ndeath; i++)        *xmin=x; 
       for(j=1;j<=nlstate+ndeath;j++) {        return fx; 
         po[i][j][h]=newm[i][j];      } 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      ftemp=fu;
          */      if (fabs(e) > tol1) { 
       }        r=(x-w)*(fx-fv); 
   } /* end h */        q=(x-v)*(fx-fw); 
   return po;        p=(x-v)*q-(x-w)*r; 
 }        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
         q=fabs(q); 
 /*************** log-likelihood *************/        etemp=e; 
 double func( double *x)        e=d; 
 {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   int i, ii, j, k, mi, d, kk;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        else { 
   double **out;          d=p/q; 
   double sw; /* Sum of weights */          u=x+d; 
   double lli; /* Individual log likelihood */          if (u-a < tol2 || b-u < tol2) 
   long ipmx;            d=SIGN(tol1,xm-x); 
   /*extern weight */        } 
   /* We are differentiating ll according to initial status */      } else { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /*for(i=1;i<imx;i++)      } 
     printf(" %d\n",s[4][i]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   */      fu=(*f)(u); 
   cov[1]=1.;      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        SHFT(v,w,x,u) 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          SHFT(fv,fw,fx,fu) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          } else { 
     for(mi=1; mi<= wav[i]-1; mi++){            if (u < x) a=u; else b=u; 
       for (ii=1;ii<=nlstate+ndeath;ii++)            if (fu <= fw || w == x) { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);              v=w; 
       for(d=0; d<dh[mi][i]; d++){              w=u; 
         newm=savm;              fv=fw; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              fw=fu; 
         for (kk=1; kk<=cptcovage;kk++) {            } else if (fu <= fv || v == x || v == w) { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              v=u; 
         }              fv=fu; 
                    } 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          } 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    } 
         savm=oldm;    nrerror("Too many iterations in brent"); 
         oldm=newm;    *xmin=x; 
            return fx; 
          } 
       } /* end mult */  
        /****************** mnbrak ***********************/
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       ipmx +=1;              double (*func)(double)) 
       sw += weight[i];  { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double ulim,u,r,q, dum;
     } /* end of wave */    double fu; 
   } /* end of individual */   
     *fa=(*func)(*ax); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    *fb=(*func)(*bx); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    if (*fb > *fa) { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      SHFT(dum,*ax,*bx,dum) 
   return -l;        SHFT(dum,*fb,*fa,dum) 
 }        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 /*********** Maximum Likelihood Estimation ***************/    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      q=(*bx-*cx)*(*fb-*fa); 
 {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   int i,j, iter;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double **xi,*delti;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   double fret;      if ((*bx-u)*(u-*cx) > 0.0) { 
   xi=matrix(1,npar,1,npar);        fu=(*func)(u); 
   for (i=1;i<=npar;i++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for (j=1;j<=npar;j++)        fu=(*func)(u); 
       xi[i][j]=(i==j ? 1.0 : 0.0);        if (fu < *fc) { 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   powell(p,xi,npar,ftol,&iter,&fret,func);            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        u=ulim; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        fu=(*func)(u); 
       } else { 
 }        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
 /**** Computes Hessian and covariance matrix ***/      } 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      SHFT(*ax,*bx,*cx,u) 
 {        SHFT(*fa,*fb,*fc,fu) 
   double  **a,**y,*x,pd;        } 
   double **hess;  } 
   int i, j,jk;  
   int *indx;  /*************** linmin ************************/
   
   double hessii(double p[], double delta, int theta, double delti[]);  int ncom; 
   double hessij(double p[], double delti[], int i, int j);  double *pcom,*xicom;
   void lubksb(double **a, int npar, int *indx, double b[]) ;  double (*nrfunc)(double []); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   hess=matrix(1,npar,1,npar);  { 
     double brent(double ax, double bx, double cx, 
   printf("\nCalculation of the hessian matrix. Wait...\n");                 double (*f)(double), double tol, double *xmin); 
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    double f1dim(double x); 
   for (i=1;i<=npar;i++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     printf("%d",i);fflush(stdout);                double *fc, double (*func)(double)); 
     fprintf(ficlog,"%d",i);fflush(ficlog);    int j; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    double xx,xmin,bx,ax; 
     /*printf(" %f ",p[i]);*/    double fx,fb,fa;
     /*printf(" %lf ",hess[i][i]);*/   
   }    ncom=n; 
      pcom=vector(1,n); 
   for (i=1;i<=npar;i++) {    xicom=vector(1,n); 
     for (j=1;j<=npar;j++)  {    nrfunc=func; 
       if (j>i) {    for (j=1;j<=n;j++) { 
         printf(".%d%d",i,j);fflush(stdout);      pcom[j]=p[j]; 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      xicom[j]=xi[j]; 
         hess[i][j]=hessij(p,delti,i,j);    } 
         hess[j][i]=hess[i][j];        ax=0.0; 
         /*printf(" %lf ",hess[i][j]);*/    xx=1.0; 
       }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   }  #ifdef DEBUG
   printf("\n");    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   fprintf(ficlog,"\n");    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    for (j=1;j<=n;j++) { 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      xi[j] *= xmin; 
        p[j] += xi[j]; 
   a=matrix(1,npar,1,npar);    } 
   y=matrix(1,npar,1,npar);    free_vector(xicom,1,n); 
   x=vector(1,npar);    free_vector(pcom,1,n); 
   indx=ivector(1,npar);  } 
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  char *asc_diff_time(long time_sec, char ascdiff[])
   ludcmp(a,npar,indx,&pd);  {
     long sec_left, days, hours, minutes;
   for (j=1;j<=npar;j++) {    days = (time_sec) / (60*60*24);
     for (i=1;i<=npar;i++) x[i]=0;    sec_left = (time_sec) % (60*60*24);
     x[j]=1;    hours = (sec_left) / (60*60) ;
     lubksb(a,npar,indx,x);    sec_left = (sec_left) %(60*60);
     for (i=1;i<=npar;i++){    minutes = (sec_left) /60;
       matcov[i][j]=x[i];    sec_left = (sec_left) % (60);
     }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   }    return ascdiff;
   }
   printf("\n#Hessian matrix#\n");  
   fprintf(ficlog,"\n#Hessian matrix#\n");  /*************** powell ************************/
   for (i=1;i<=npar;i++) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (j=1;j<=npar;j++) {              double (*func)(double [])) 
       printf("%.3e ",hess[i][j]);  { 
       fprintf(ficlog,"%.3e ",hess[i][j]);    void linmin(double p[], double xi[], int n, double *fret, 
     }                double (*func)(double [])); 
     printf("\n");    int i,ibig,j; 
     fprintf(ficlog,"\n");    double del,t,*pt,*ptt,*xit;
   }    double fp,fptt;
     double *xits;
   /* Recompute Inverse */    int niterf, itmp;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    pt=vector(1,n); 
   ludcmp(a,npar,indx,&pd);    ptt=vector(1,n); 
     xit=vector(1,n); 
   /*  printf("\n#Hessian matrix recomputed#\n");    xits=vector(1,n); 
     *fret=(*func)(p); 
   for (j=1;j<=npar;j++) {    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (i=1;i<=npar;i++) x[i]=0;    for (*iter=1;;++(*iter)) { 
     x[j]=1;      fp=(*fret); 
     lubksb(a,npar,indx,x);      ibig=0; 
     for (i=1;i<=npar;i++){      del=0.0; 
       y[i][j]=x[i];      last_time=curr_time;
       printf("%.3e ",y[i][j]);      (void) gettimeofday(&curr_time,&tzp);
       fprintf(ficlog,"%.3e ",y[i][j]);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     printf("\n");  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     fprintf(ficlog,"\n");     for (i=1;i<=n;i++) {
   }        printf(" %d %.12f",i, p[i]);
   */        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   free_matrix(a,1,npar,1,npar);      }
   free_matrix(y,1,npar,1,npar);      printf("\n");
   free_vector(x,1,npar);      fprintf(ficlog,"\n");
   free_ivector(indx,1,npar);      fprintf(ficrespow,"\n");fflush(ficrespow);
   free_matrix(hess,1,npar,1,npar);      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
 }  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
 /*************** hessian matrix ****************/        itmp = strlen(strcurr);
 double hessii( double x[], double delta, int theta, double delti[])        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 {          strcurr[itmp-1]='\0';
   int i;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   int l=1, lmax=20;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double k1,k2;        for(niterf=10;niterf<=30;niterf+=10){
   double p2[NPARMAX+1];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   double res;          tmf = *localtime(&forecast_time.tv_sec);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /*      asctime_r(&tmf,strfor); */
   double fx;          strcpy(strfor,asctime(&tmf));
   int k=0,kmax=10;          itmp = strlen(strfor);
   double l1;          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
   fx=func(x);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=1;i<=npar;i++) p2[i]=x[i];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for(l=0 ; l <=lmax; l++){        }
     l1=pow(10,l);      }
     delts=delt;      for (i=1;i<=n;i++) { 
     for(k=1 ; k <kmax; k=k+1){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       delt = delta*(l1*k);        fptt=(*fret); 
       p2[theta]=x[theta] +delt;  #ifdef DEBUG
       k1=func(p2)-fx;        printf("fret=%lf \n",*fret);
       p2[theta]=x[theta]-delt;        fprintf(ficlog,"fret=%lf \n",*fret);
       k2=func(p2)-fx;  #endif
       /*res= (k1-2.0*fx+k2)/delt/delt; */        printf("%d",i);fflush(stdout);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        fprintf(ficlog,"%d",i);fflush(ficlog);
              linmin(p,xit,n,fret,func); 
 #ifdef DEBUG        if (fabs(fptt-(*fret)) > del) { 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          del=fabs(fptt-(*fret)); 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          ibig=i; 
 #endif        } 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  #ifdef DEBUG
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        printf("%d %.12e",i,(*fret));
         k=kmax;        fprintf(ficlog,"%d %.12e",i,(*fret));
       }        for (j=1;j<=n;j++) {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         k=kmax; l=lmax*10.;          printf(" x(%d)=%.12e",j,xit[j]);
       }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        }
         delts=delt;        for(j=1;j<=n;j++) {
       }          printf(" p=%.12e",p[j]);
     }          fprintf(ficlog," p=%.12e",p[j]);
   }        }
   delti[theta]=delts;        printf("\n");
   return res;        fprintf(ficlog,"\n");
    #endif
 }      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 double hessij( double x[], double delti[], int thetai,int thetaj)  #ifdef DEBUG
 {        int k[2],l;
   int i;        k[0]=1;
   int l=1, l1, lmax=20;        k[1]=-1;
   double k1,k2,k3,k4,res,fx;        printf("Max: %.12e",(*func)(p));
   double p2[NPARMAX+1];        fprintf(ficlog,"Max: %.12e",(*func)(p));
   int k;        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
   fx=func(x);          fprintf(ficlog," %.12e",p[j]);
   for (k=1; k<=2; k++) {        }
     for (i=1;i<=npar;i++) p2[i]=x[i];        printf("\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;        fprintf(ficlog,"\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(l=0;l<=1;l++) {
     k1=func(p2)-fx;          for (j=1;j<=n;j++) {
              ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     p2[thetai]=x[thetai]+delti[thetai]/k;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     k2=func(p2)-fx;          }
            printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     p2[thetai]=x[thetai]-delti[thetai]/k;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k3=func(p2)-fx;  #endif
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        free_vector(xit,1,n); 
     k4=func(p2)-fx;        free_vector(xits,1,n); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        free_vector(ptt,1,n); 
 #ifdef DEBUG        free_vector(pt,1,n); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        return; 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      } 
 #endif      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   }      for (j=1;j<=n;j++) { 
   return res;        ptt[j]=2.0*p[j]-pt[j]; 
 }        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
 /************** Inverse of matrix **************/      } 
 void ludcmp(double **a, int n, int *indx, double *d)      fptt=(*func)(ptt); 
 {      if (fptt < fp) { 
   int i,imax,j,k;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   double big,dum,sum,temp;        if (t < 0.0) { 
   double *vv;          linmin(p,xit,n,fret,func); 
            for (j=1;j<=n;j++) { 
   vv=vector(1,n);            xi[j][ibig]=xi[j][n]; 
   *d=1.0;            xi[j][n]=xit[j]; 
   for (i=1;i<=n;i++) {          }
     big=0.0;  #ifdef DEBUG
     for (j=1;j<=n;j++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       if ((temp=fabs(a[i][j])) > big) big=temp;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          for(j=1;j<=n;j++){
     vv[i]=1.0/big;            printf(" %.12e",xit[j]);
   }            fprintf(ficlog," %.12e",xit[j]);
   for (j=1;j<=n;j++) {          }
     for (i=1;i<j;i++) {          printf("\n");
       sum=a[i][j];          fprintf(ficlog,"\n");
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  #endif
       a[i][j]=sum;        }
     }      } 
     big=0.0;    } 
     for (i=j;i<=n;i++) {  } 
       sum=a[i][j];  
       for (k=1;k<j;k++)  /**** Prevalence limit (stable or period prevalence)  ****************/
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       if ( (dum=vv[i]*fabs(sum)) >= big) {  {
         big=dum;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         imax=i;       matrix by transitions matrix until convergence is reached */
       }  
     }    int i, ii,j,k;
     if (j != imax) {    double min, max, maxmin, maxmax,sumnew=0.;
       for (k=1;k<=n;k++) {    double **matprod2();
         dum=a[imax][k];    double **out, cov[NCOVMAX+1], **pmij();
         a[imax][k]=a[j][k];    double **newm;
         a[j][k]=dum;    double agefin, delaymax=50 ; /* Max number of years to converge */
       }  
       *d = -(*d);    for (ii=1;ii<=nlstate+ndeath;ii++)
       vv[imax]=vv[j];      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     indx[j]=imax;      }
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {     cov[1]=1.;
       dum=1.0/(a[j][j]);   
       for (i=j+1;i<=n;i++) a[i][j] *= dum;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   }      newm=savm;
   free_vector(vv,1,n);  /* Doesn't work */      /* Covariates have to be included here again */
 ;       cov[2]=agefin;
 }    
         for (k=1; k<=cptcovn;k++) {
 void lubksb(double **a, int n, int *indx, double b[])          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   int i,ii=0,ip,j;        }
   double sum;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
   for (i=1;i<=n;i++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     ip=indx[i];  
     sum=b[ip];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     b[ip]=b[i];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     if (ii)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     else if (sum) ii=i;  
     b[i]=sum;      savm=oldm;
   }      oldm=newm;
   for (i=n;i>=1;i--) {      maxmax=0.;
     sum=b[i];      for(j=1;j<=nlstate;j++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        min=1.;
     b[i]=sum/a[i][i];        max=0.;
   }        for(i=1; i<=nlstate; i++) {
 }          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 /************ Frequencies ********************/          prlim[i][j]= newm[i][j]/(1-sumnew);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          max=FMAX(max,prlim[i][j]);
 {  /* Some frequencies */          min=FMIN(min,prlim[i][j]);
          }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        maxmin=max-min;
   int first;        maxmax=FMAX(maxmax,maxmin);
   double ***freq; /* Frequencies */      }
   double *pp;      if(maxmax < ftolpl){
   double pos, k2, dateintsum=0,k2cpt=0;        return prlim;
   FILE *ficresp;      }
   char fileresp[FILENAMELENGTH];    }
    }
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*************** transition probabilities ***************/ 
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   if((ficresp=fopen(fileresp,"w"))==NULL) {  {
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double s1, s2;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    /*double t34;*/
     exit(0);    int i,j,j1, nc, ii, jj;
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for(i=1; i<= nlstate; i++){
   j1=0;        for(j=1; j<i;j++){
            for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   j=cptcoveff;            /*s2 += param[i][j][nc]*cov[nc];*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   first=1;          }
           ps[i][j]=s2;
   for(k1=1; k1<=j;k1++){  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     for(i1=1; i1<=ncodemax[k1];i1++){        }
       j1++;        for(j=i+1; j<=nlstate+ndeath;j++){
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         scanf("%d", i);*/            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for (i=-1; i<=nlstate+ndeath; i++)    /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         for (jk=-1; jk<=nlstate+ndeath; jk++)            }
           for(m=agemin; m <= agemax+3; m++)          ps[i][j]=s2;
             freq[i][jk][m]=0;        }
            }
       dateintsum=0;      /*ps[3][2]=1;*/
       k2cpt=0;      
       for (i=1; i<=imx; i++) {      for(i=1; i<= nlstate; i++){
         bool=1;        s1=0;
         if  (cptcovn>0) {        for(j=1; j<i; j++){
           for (z1=1; z1<=cptcoveff; z1++)          s1+=exp(ps[i][j]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
               bool=0;        }
         }        for(j=i+1; j<=nlstate+ndeath; j++){
         if (bool==1) {          s1+=exp(ps[i][j]);
           for(m=firstpass; m<=lastpass; m++){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             k2=anint[m][i]+(mint[m][i]/12.);        }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        ps[i][i]=1./(s1+1.);
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for(j=1; j<i; j++)
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ps[i][j]= exp(ps[i][j])*ps[i][i];
               if (m<lastpass) {        for(j=i+1; j<=nlstate+ndeath; j++)
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
               }      } /* end i */
                    
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                 dateintsum=dateintsum+k2;        for(jj=1; jj<= nlstate+ndeath; jj++){
                 k2cpt++;          ps[ii][jj]=0;
               }          ps[ii][ii]=1;
             }        }
           }      }
         }      
       }  
          /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
       if  (cptcovn>0) {  /*       } */
         fprintf(ficresp, "\n#********** Variable ");  /*       printf("\n "); */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*        } */
         fprintf(ficresp, "**********\n#");  /*        printf("\n ");printf("%lf ",cov[2]); */
       }         /*
       for(i=1; i<=nlstate;i++)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        goto end;*/
       fprintf(ficresp, "\n");      return ps;
        }
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         if(i==(int)agemax+3){  /**************** Product of 2 matrices ******************/
           fprintf(ficlog,"Total");  
         }else{  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           if(first==1){  {
             first=0;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             printf("See log file for details...\n");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           }    /* in, b, out are matrice of pointers which should have been initialized 
           fprintf(ficlog,"Age %d", i);       before: only the contents of out is modified. The function returns
         }       a pointer to pointers identical to out */
         for(jk=1; jk <=nlstate ; jk++){    long i, j, k;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    for(i=nrl; i<= nrh; i++)
             pp[jk] += freq[jk][m][i];      for(k=ncolol; k<=ncoloh; k++)
         }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         for(jk=1; jk <=nlstate ; jk++){          out[i][k] +=in[i][j]*b[j][k];
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];    return out;
           if(pp[jk]>=1.e-10){  }
             if(first==1){  
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
             }  /************* Higher Matrix Product ***************/
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           }else{  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             if(first==1)  {
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    /* Computes the transition matrix starting at age 'age' over 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);       'nhstepm*hstepm*stepm' months (i.e. until
           }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         }       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         for(jk=1; jk <=nlstate ; jk++){       (typically every 2 years instead of every month which is too big 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)       for the memory).
             pp[jk] += freq[jk][m][i];       Model is determined by parameters x and covariates have to be 
         }       included manually here. 
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)       */
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){    int i, j, d, h, k;
           if(pos>=1.e-5){    double **out, cov[NCOVMAX+1];
             if(first==1)    double **newm;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    /* Hstepm could be zero and should return the unit matrix */
           }else{    for (i=1;i<=nlstate+ndeath;i++)
             if(first==1)      for (j=1;j<=nlstate+ndeath;j++){
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        oldm[i][j]=(i==j ? 1.0 : 0.0);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        po[i][j][0]=(i==j ? 1.0 : 0.0);
           }      }
           if( i <= (int) agemax){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             if(pos>=1.e-5){    for(h=1; h <=nhstepm; h++){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      for(d=1; d <=hstepm; d++){
               probs[i][jk][j1]= pp[jk]/pos;        newm=savm;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        /* Covariates have to be included here again */
             }        cov[1]=1.;
             else        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        for (k=1; k<=cptcovn;k++) 
           }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         }        for (k=1; k<=cptcovage;k++)
                  cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for(jk=-1; jk <=nlstate+ndeath; jk++)        for (k=1; k<=cptcovprod;k++)
           for(m=-1; m <=nlstate+ndeath; m++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             if(freq[jk][m][i] !=0 ) {  
             if(first==1)  
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         if(i <= (int) agemax)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           fprintf(ficresp,"\n");        savm=oldm;
         if(first==1)        oldm=newm;
           printf("Others in log...\n");      }
         fprintf(ficlog,"\n");      for(i=1; i<=nlstate+ndeath; i++)
       }        for(j=1;j<=nlstate+ndeath;j++) {
     }          po[i][j][h]=newm[i][j];
   }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   dateintmean=dateintsum/k2cpt;        }
        /*printf("h=%d ",h);*/
   fclose(ficresp);    } /* end h */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*     printf("\n H=%d \n",h); */
   free_vector(pp,1,nlstate);    return po;
    }
   /* End of Freq */  
 }  
   /*************** log-likelihood *************/
 /************ Prevalence ********************/  double func( double *x)
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  {
 {  /* Some frequencies */    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    double **out;
   double ***freq; /* Frequencies */    double sw; /* Sum of weights */
   double *pp;    double lli; /* Individual log likelihood */
   double pos, k2;    int s1, s2;
     double bbh, survp;
   pp=vector(1,nlstate);    long ipmx;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*extern weight */
      /* We are differentiating ll according to initial status */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   j1=0;    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   j=cptcoveff;    */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    cov[1]=1.;
    
   for(k1=1; k1<=j;k1++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;    if(mle==1){
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for(mi=1; mi<= wav[i]-1; mi++){
           for(m=agemin; m <= agemax+3; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             freq[i][jk][m]=0;            for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=1; i<=imx; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         bool=1;            }
         if  (cptcovn>0) {          for(d=0; d<dh[mi][i]; d++){
           for (z1=1; z1<=cptcoveff; z1++)            newm=savm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               bool=0;            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (bool==1) {            }
           for(m=firstpass; m<=lastpass; m++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             k2=anint[m][i]+(mint[m][i]/12.);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            savm=oldm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            oldm=newm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;          } /* end mult */
               if (m<lastpass) {        
                 if (calagedate>0)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          /* But now since version 0.9 we anticipate for bias at large stepm.
                 else           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * (in months) between two waves is not a multiple of stepm, we rounded to 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];           * the nearest (and in case of equal distance, to the lowest) interval but now
               }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           }           * probability in order to take into account the bias as a fraction of the way
         }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       }           * -stepm/2 to stepm/2 .
       for(i=(int)agemin; i <= (int)agemax+3; i++){           * For stepm=1 the results are the same as for previous versions of Imach.
         for(jk=1; jk <=nlstate ; jk++){           * For stepm > 1 the results are less biased than in previous versions. 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           */
             pp[jk] += freq[jk][m][i];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          bbh=(double)bh[mi][i]/(double)stepm; 
           for(m=-1, pos=0; m <=0 ; m++)          /* bias bh is positive if real duration
             pos += freq[jk][m][i];           * is higher than the multiple of stepm and negative otherwise.
         }           */
                  /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         for(jk=1; jk <=nlstate ; jk++){          if( s2 > nlstate){ 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            /* i.e. if s2 is a death state and if the date of death is known 
             pp[jk] += freq[jk][m][i];               then the contribution to the likelihood is the probability to 
         }               die between last step unit time and current  step unit time, 
                       which is also equal to probability to die before dh 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];               minus probability to die before dh-stepm . 
                       In version up to 0.92 likelihood was computed
         for(jk=1; jk <=nlstate ; jk++){              as if date of death was unknown. Death was treated as any other
           if( i <= (int) agemax){          health state: the date of the interview describes the actual state
             if(pos>=1.e-5){          and not the date of a change in health state. The former idea was
               probs[i][jk][j1]= pp[jk]/pos;          to consider that at each interview the state was recorded
             }          (healthy, disable or death) and IMaCh was corrected; but when we
           }          introduced the exact date of death then we should have modified
         }/* end jk */          the contribution of an exact death to the likelihood. This new
       }/* end i */          contribution is smaller and very dependent of the step unit
     } /* end i1 */          stepm. It is no more the probability to die between last interview
   } /* end k1 */          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
            probability to die within a month. Thanks to Chris
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          Jackson for correcting this bug.  Former versions increased
   free_vector(pp,1,nlstate);          mortality artificially. The bad side is that we add another loop
            which slows down the processing. The difference can be up to 10%
 }  /* End of Freq */          lower mortality.
             */
 /************* Waves Concatenation ***************/            lli=log(out[s1][s2] - savm[s1][s2]);
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {          } else if  (s2==-2) {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            for (j=1,survp=0. ; j<=nlstate; j++) 
      Death is a valid wave (if date is known).              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            /*survp += out[s1][j]; */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            lli= log(survp);
      and mw[mi+1][i]. dh depends on stepm.          }
      */          
           else if  (s2==-4) { 
   int i, mi, m;            for (j=3,survp=0. ; j<=nlstate; j++)  
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      double sum=0., jmean=0.;*/            lli= log(survp); 
   int first;          } 
   int j, k=0,jk, ju, jl;  
   double sum=0.;          else if  (s2==-5) { 
   first=0;            for (j=1,survp=0. ; j<=2; j++)  
   jmin=1e+5;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   jmax=-1;            lli= log(survp); 
   jmean=0.;          } 
   for(i=1; i<=imx; i++){          
     mi=0;          else{
     m=firstpass;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     while(s[m][i] <= nlstate){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       if(s[m][i]>=1)          } 
         mw[++mi][i]=m;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       if(m >=lastpass)          /*if(lli ==000.0)*/
         break;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       else          ipmx +=1;
         m++;          sw += weight[i];
     }/* end while */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (s[m][i] > nlstate){        } /* end of wave */
       mi++;     /* Death is another wave */      } /* end of individual */
       /* if(mi==0)  never been interviewed correctly before death */    }  else if(mle==2){
          /* Only death is a correct wave */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       mw[mi][i]=m;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     wav[i]=mi;            for (j=1;j<=nlstate+ndeath;j++){
     if(mi==0){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(first==0){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);            }
         first=1;          for(d=0; d<=dh[mi][i]; d++){
       }            newm=savm;
       if(first==1){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     } /* end mi==0 */            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=imx; i++){            savm=oldm;
     for(mi=1; mi<wav[i];mi++){            oldm=newm;
       if (stepm <=0)          } /* end mult */
         dh[mi][i]=1;        
       else{          s1=s[mw[mi][i]][i];
         if (s[mw[mi+1][i]][i] > nlstate) {          s2=s[mw[mi+1][i]][i];
           if (agedc[i] < 2*AGESUP) {          bbh=(double)bh[mi][i]/(double)stepm; 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           if(j==0) j=1;  /* Survives at least one month after exam */          ipmx +=1;
           k=k+1;          sw += weight[i];
           if (j >= jmax) jmax=j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if (j <= jmin) jmin=j;        } /* end of wave */
           sum=sum+j;      } /* end of individual */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    }  else if(mle==3){  /* exponential inter-extrapolation */
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else{        for(mi=1; mi<= wav[i]-1; mi++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          for (ii=1;ii<=nlstate+ndeath;ii++)
           k=k+1;            for (j=1;j<=nlstate+ndeath;j++){
           if (j >= jmax) jmax=j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           else if (j <= jmin)jmin=j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            }
           sum=sum+j;          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
         jk= j/stepm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         jl= j -jk*stepm;            for (kk=1; kk<=cptcovage;kk++) {
         ju= j -(jk+1)*stepm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(jl <= -ju)            }
           dh[mi][i]=jk;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           dh[mi][i]=jk+1;            savm=oldm;
         if(dh[mi][i]==0)            oldm=newm;
           dh[mi][i]=1; /* At least one step */          } /* end mult */
       }        
     }          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   jmean=sum/k;          bbh=(double)bh[mi][i]/(double)stepm; 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          ipmx +=1;
  }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*********** Tricode ****************************/        } /* end of wave */
 void tricode(int *Tvar, int **nbcode, int imx)      } /* end of individual */
 {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   int Ndum[20],ij=1, k, j, i;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int cptcode=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   cptcoveff=0;        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   for (k=0; k<19; k++) Ndum[k]=0;            for (j=1;j<=nlstate+ndeath;j++){
   for (k=1; k<=7; k++) ncodemax[k]=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            }
     for (i=1; i<=imx; i++) {          for(d=0; d<dh[mi][i]; d++){
       ij=(int)(covar[Tvar[j]][i]);            newm=savm;
       Ndum[ij]++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            for (kk=1; kk<=cptcovage;kk++) {
       if (ij > cptcode) cptcode=ij;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
           
     for (i=0; i<=cptcode; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if(Ndum[i]!=0) ncodemax[j]++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
     ij=1;            oldm=newm;
           } /* end mult */
         
     for (i=1; i<=ncodemax[j]; i++) {          s1=s[mw[mi][i]][i];
       for (k=0; k<=19; k++) {          s2=s[mw[mi+1][i]][i];
         if (Ndum[k] != 0) {          if( s2 > nlstate){ 
           nbcode[Tvar[j]][ij]=k;            lli=log(out[s1][s2] - savm[s1][s2]);
                    }else{
           ij++;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
         if (ij > ncodemax[j]) break;          ipmx +=1;
       }            sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
  for (k=0; k<19; k++) Ndum[k]=0;      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
  for (i=1; i<=ncovmodel-2; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    ij=Tvar[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    Ndum[ij]++;        for(mi=1; mi<= wav[i]-1; mi++){
  }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
  ij=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (i=1; i<=10; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    if((Ndum[i]!=0) && (i<=ncovcol)){            }
      Tvaraff[ij]=i;          for(d=0; d<dh[mi][i]; d++){
      ij++;            newm=savm;
    }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  }            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  cptcoveff=ij-1;            }
 }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*********** Health Expectancies ****************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            oldm=newm;
           } /* end mult */
 {        
   /* Health expectancies */          s1=s[mw[mi][i]][i];
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          s2=s[mw[mi+1][i]][i];
   double age, agelim, hf;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double ***p3mat,***varhe;          ipmx +=1;
   double **dnewm,**doldm;          sw += weight[i];
   double *xp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **gp, **gm;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double ***gradg, ***trgradg;        } /* end of wave */
   int theta;      } /* end of individual */
     } /* End of if */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   xp=vector(1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   dnewm=matrix(1,nlstate*2,1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   doldm=matrix(1,nlstate*2,1,nlstate*2);    return -l;
    }
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  /*************** log-likelihood *************/
   for(i=1; i<=nlstate;i++)  double funcone( double *x)
     for(j=1; j<=nlstate;j++)  {
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    /* Same as likeli but slower because of a lot of printf and if */
   fprintf(ficreseij,"\n");    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   if(estepm < stepm){    double **out;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double lli; /* Individual log likelihood */
   }    double llt;
   else  hstepm=estepm;      int s1, s2;
   /* We compute the life expectancy from trapezoids spaced every estepm months    double bbh, survp;
    * This is mainly to measure the difference between two models: for example    /*extern weight */
    * if stepm=24 months pijx are given only every 2 years and by summing them    /* We are differentiating ll according to initial status */
    * we are calculating an estimate of the Life Expectancy assuming a linear    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
    * progression inbetween and thus overestimating or underestimating according    /*for(i=1;i<imx;i++) 
    * to the curvature of the survival function. If, for the same date, we      printf(" %d\n",s[4][i]);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    */
    * to compare the new estimate of Life expectancy with the same linear    cov[1]=1.;
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
   /* For example we decided to compute the life expectancy with the smallest unit */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      nhstepm is the number of hstepm from age to agelim      for(mi=1; mi<= wav[i]-1; mi++){
      nstepm is the number of stepm from age to agelin.        for (ii=1;ii<=nlstate+ndeath;ii++)
      Look at hpijx to understand the reason of that which relies in memory size          for (j=1;j<=nlstate+ndeath;j++){
      and note for a fixed period like estepm months */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            savm[ii][j]=(ii==j ? 1.0 : 0.0);
      survival function given by stepm (the optimization length). Unfortunately it          }
      means that if the survival funtion is printed only each two years of age and if        for(d=0; d<dh[mi][i]; d++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          newm=savm;
      results. So we changed our mind and took the option of the best precision.          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   */          for (kk=1; kk<=cptcovage;kk++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
   agelim=AGESUP;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /* nhstepm age range expressed in number of stepm */          savm=oldm;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          oldm=newm;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        } /* end mult */
     /* if (stepm >= YEARM) hstepm=1;*/        
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        s1=s[mw[mi][i]][i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        s2=s[mw[mi+1][i]][i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        bbh=(double)bh[mi][i]/(double)stepm; 
     gp=matrix(0,nhstepm,1,nlstate*2);        /* bias is positive if real duration
     gm=matrix(0,nhstepm,1,nlstate*2);         * is higher than the multiple of stepm and negative otherwise.
          */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        if( s2 > nlstate && (mle <5) ){  /* Jackson */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          lli=log(out[s1][s2] - savm[s1][s2]);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          } else if  (s2==-2) {
            for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          lli= log(survp);
         }else if (mle==1){
     /* Computing Variances of health expectancies */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
      for(theta=1; theta <=npar; theta++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(i=1; i<=npar; i++){        } else if(mle==3){  /* exponential inter-extrapolation */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli=log(out[s1][s2]); /* Original formula */
          } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       cptj=0;          lli=log(out[s1][s2]); /* Original formula */
       for(j=1; j<= nlstate; j++){        } /* End of if */
         for(i=1; i<=nlstate; i++){        ipmx +=1;
           cptj=cptj+1;        sw += weight[i];
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           }        if(globpr){
         }          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       }   %11.6f %11.6f %11.6f ", \
                        num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                        2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       for(i=1; i<=npar; i++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            llt +=ll[k]*gipmx/gsw;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                }
       cptj=0;          fprintf(ficresilk," %10.6f\n", -llt);
       for(j=1; j<= nlstate; j++){        }
         for(i=1;i<=nlstate;i++){      } /* end of wave */
           cptj=cptj+1;    } /* end of individual */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         }    if(globpr==0){ /* First time we count the contributions and weights */
       }      gipmx=ipmx;
       for(j=1; j<= nlstate*2; j++)      gsw=sw;
         for(h=0; h<=nhstepm-1; h++){    }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    return -l;
         }  }
      }  
      
 /* End theta */  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  {
     /* This routine should help understanding what is done with 
      for(h=0; h<=nhstepm-1; h++)       the selection of individuals/waves and
       for(j=1; j<=nlstate*2;j++)       to check the exact contribution to the likelihood.
         for(theta=1; theta <=npar; theta++)       Plotting could be done.
           trgradg[h][j][theta]=gradg[h][theta][j];     */
          int k;
   
      for(i=1;i<=nlstate*2;i++)    if(*globpri !=0){ /* Just counts and sums, no printings */
       for(j=1;j<=nlstate*2;j++)      strcpy(fileresilk,"ilk"); 
         varhe[i][j][(int)age] =0.;      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
      printf("%d|",(int)age);fflush(stdout);        printf("Problem with resultfile: %s\n", fileresilk);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
      for(h=0;h<=nhstepm-1;h++){      }
       for(k=0;k<=nhstepm-1;k++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         for(i=1;i<=nlstate*2;i++)      for(k=1; k<=nlstate; k++) 
           for(j=1;j<=nlstate*2;j++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       }    }
     }  
     /* Computing expectancies */    *fretone=(*funcone)(p);
     for(i=1; i<=nlstate;i++)    if(*globpri !=0){
       for(j=1; j<=nlstate;j++)      fclose(ficresilk);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      fflush(fichtm); 
              } 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    return;
   }
         }  
   
     fprintf(ficreseij,"%3.0f",age );  /*********** Maximum Likelihood Estimation ***************/
     cptj=0;  
     for(i=1; i<=nlstate;i++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(j=1; j<=nlstate;j++){  {
         cptj++;    int i,j, iter;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    double **xi;
       }    double fret;
     fprintf(ficreseij,"\n");    double fretone; /* Only one call to likelihood */
        /*  char filerespow[FILENAMELENGTH];*/
     free_matrix(gm,0,nhstepm,1,nlstate*2);    xi=matrix(1,npar,1,npar);
     free_matrix(gp,0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      for (j=1;j<=npar;j++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        xi[i][j]=(i==j ? 1.0 : 0.0);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   }    strcpy(filerespow,"pow"); 
   printf("\n");    strcat(filerespow,fileres);
   fprintf(ficlog,"\n");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
   free_vector(xp,1,npar);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   free_matrix(dnewm,1,nlstate*2,1,npar);    }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    for (i=1;i<=nlstate;i++)
 }      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 /************ Variance ******************/    fprintf(ficrespow,"\n");
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)  
 {    powell(p,xi,npar,ftol,&iter,&fret,func);
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    free_matrix(xi,1,npar,1,npar);
   /* double **newm;*/    fclose(ficrespow);
   double **dnewm,**doldm;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double **dnewmp,**doldmp;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int i, j, nhstepm, hstepm, h, nstepm ;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int k, cptcode;  
   double *xp;  }
   double **gp, **gm;  /* for var eij */  
   double ***gradg, ***trgradg; /*for var eij */  /**** Computes Hessian and covariance matrix ***/
   double **gradgp, **trgradgp; /* for var p point j */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double *gpp, *gmp; /* for var p point j */  {
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    double  **a,**y,*x,pd;
   double ***p3mat;    double **hess;
   double age,agelim, hf;    int i, j,jk;
   int theta;    int *indx;
   char digit[4];  
   char digitp[16];    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   char fileresprobmorprev[FILENAMELENGTH];    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
   if(popbased==1)    double gompertz(double p[]);
     strcpy(digitp,"-populbased-");    hess=matrix(1,npar,1,npar);
   else  
     strcpy(digitp,"-stablbased-");    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   strcpy(fileresprobmorprev,"prmorprev");    for (i=1;i<=npar;i++){
   sprintf(digit,"%-d",ij);      printf("%d",i);fflush(stdout);
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      fprintf(ficlog,"%d",i);fflush(ficlog);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */     
   strcat(fileresprobmorprev,digitp); /* Popbased or not */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   strcat(fileresprobmorprev,fileres);      
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      /*  printf(" %f ",p[i]);
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    }
   }    
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    for (i=1;i<=npar;i++) {
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      for (j=1;j<=npar;j++)  {
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");        if (j>i) { 
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);          printf(".%d%d",i,j);fflush(stdout);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     fprintf(ficresprobmorprev," p.%-d SE",j);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     for(i=1; i<=nlstate;i++)          
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          hess[j][i]=hess[i][j];    
   }            /*printf(" %lf ",hess[i][j]);*/
   fprintf(ficresprobmorprev,"\n");        }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    }
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    printf("\n");
     exit(0);    fprintf(ficlog,"\n");
   }  
   else{    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficgp,"\n# Routine varevsij");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   }    
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    a=matrix(1,npar,1,npar);
     printf("Problem with html file: %s\n", optionfilehtm);    y=matrix(1,npar,1,npar);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    x=vector(1,npar);
     exit(0);    indx=ivector(1,npar);
   }    for (i=1;i<=npar;i++)
   else{      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    ludcmp(a,npar,indx,&pd);
   }  
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      x[j]=1;
   fprintf(ficresvij,"# Age");      lubksb(a,npar,indx,x);
   for(i=1; i<=nlstate;i++)      for (i=1;i<=npar;i++){ 
     for(j=1; j<=nlstate;j++)        matcov[i][j]=x[i];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      }
   fprintf(ficresvij,"\n");    }
   
   xp=vector(1,npar);    printf("\n#Hessian matrix#\n");
   dnewm=matrix(1,nlstate,1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=npar;i++) { 
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      for (j=1;j<=npar;j++) { 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);      }
   gpp=vector(nlstate+1,nlstate+ndeath);      printf("\n");
   gmp=vector(nlstate+1,nlstate+ndeath);      fprintf(ficlog,"\n");
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    }
    
   if(estepm < stepm){    /* Recompute Inverse */
     printf ("Problem %d lower than %d\n",estepm, stepm);    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   else  hstepm=estepm;      ludcmp(a,npar,indx,&pd);
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    /*  printf("\n#Hessian matrix recomputed#\n");
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    for (j=1;j<=npar;j++) {
      Look at hpijx to understand the reason of that which relies in memory size      for (i=1;i<=npar;i++) x[i]=0;
      and note for a fixed period like k years */      x[j]=1;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      lubksb(a,npar,indx,x);
      survival function given by stepm (the optimization length). Unfortunately it      for (i=1;i<=npar;i++){ 
      means that if the survival funtion is printed only each two years of age and if        y[i][j]=x[i];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        printf("%.3e ",y[i][j]);
      results. So we changed our mind and took the option of the best precision.        fprintf(ficlog,"%.3e ",y[i][j]);
   */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      printf("\n");
   agelim = AGESUP;      fprintf(ficlog,"\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(a,1,npar,1,npar);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    free_matrix(y,1,npar,1,npar);
     gp=matrix(0,nhstepm,1,nlstate);    free_vector(x,1,npar);
     gm=matrix(0,nhstepm,1,nlstate);    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
   
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  /*************** hessian matrix ****************/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
     int i;
       if (popbased==1) {    int l=1, lmax=20;
         for(i=1; i<=nlstate;i++)    double k1,k2;
           prlim[i][i]=probs[(int)age][i][ij];    double p2[MAXPARM+1]; /* identical to x */
       }    double res;
      double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(j=1; j<= nlstate; j++){    double fx;
         for(h=0; h<=nhstepm; h++){    int k=0,kmax=10;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double l1;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    fx=func(x);
       }    for (i=1;i<=npar;i++) p2[i]=x[i];
       /* This for computing forces of mortality (h=1)as a weighted average */    for(l=0 ; l <=lmax; l++){
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){      l1=pow(10,l);
         for(i=1; i<= nlstate; i++)      delts=delt;
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      for(k=1 ; k <kmax; k=k+1){
       }            delt = delta*(l1*k);
       /* end force of mortality */        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
       for(i=1; i<=npar; i++) /* Computes gradient */        p2[theta]=x[theta]-delt;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        k2=func(p2)-fx;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /*res= (k1-2.0*fx+k2)/delt/delt; */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          
       if (popbased==1) {  #ifdef DEBUGHESS
         for(i=1; i<=nlstate;i++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(j=1; j<= nlstate; j++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         for(h=0; h<=nhstepm; h++){          k=kmax;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         }          k=kmax; l=lmax*10.;
       }        }
       /* This for computing force of mortality (h=1)as a weighted average */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          delts=delt;
         for(i=1; i<= nlstate; i++)        }
           gmp[j] += prlim[i][i]*p3mat[i][j][1];      }
       }        }
       /* end force of mortality */    delti[theta]=delts;
     return res; 
       for(j=1; j<= nlstate; j++) /* vareij */    
         for(h=0; h<=nhstepm; h++){  }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  {
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    int i;
       }    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     } /* End theta */    double p2[MAXPARM+1];
     int k;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  
     fx=func(x);
     for(h=0; h<=nhstepm; h++) /* veij */    for (k=1; k<=2; k++) {
       for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++) p2[i]=x[i];
         for(theta=1; theta <=npar; theta++)      p2[thetai]=x[thetai]+delti[thetai]/k;
           trgradg[h][j][theta]=gradg[h][theta][j];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    
       for(theta=1; theta <=npar; theta++)      p2[thetai]=x[thetai]+delti[thetai]/k;
         trgradgp[j][theta]=gradgp[theta][j];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    
     for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(j=1;j<=nlstate;j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         vareij[i][j][(int)age] =0.;      k3=func(p2)-fx;
     
     for(h=0;h<=nhstepm;h++){      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(k=0;k<=nhstepm;k++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      k4=func(p2)-fx;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         for(i=1;i<=nlstate;i++)  #ifdef DEBUG
           for(j=1;j<=nlstate;j++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }  #endif
     }    }
     return res;
     /* pptj */  }
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  /************** Inverse of matrix **************/
     for(j=nlstate+1;j<=nlstate+ndeath;j++)  void ludcmp(double **a, int n, int *indx, double *d) 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  { 
         varppt[j][i]=doldmp[j][i];    int i,imax,j,k; 
     /* end ppptj */    double big,dum,sum,temp; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      double *vv; 
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);   
      vv=vector(1,n); 
     if (popbased==1) {    *d=1.0; 
       for(i=1; i<=nlstate;i++)    for (i=1;i<=n;i++) { 
         prlim[i][i]=probs[(int)age][i][ij];      big=0.0; 
     }      for (j=1;j<=n;j++) 
            if ((temp=fabs(a[i][j])) > big) big=temp; 
     /* This for computing force of mortality (h=1)as a weighted average */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      vv[i]=1.0/big; 
       for(i=1; i<= nlstate; i++)    } 
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    for (j=1;j<=n;j++) { 
     }          for (i=1;i<j;i++) { 
     /* end force of mortality */        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        a[i][j]=sum; 
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      } 
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));      big=0.0; 
       for(i=1; i<=nlstate;i++){      for (i=j;i<=n;i++) { 
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        sum=a[i][j]; 
       }        for (k=1;k<j;k++) 
     }          sum -= a[i][k]*a[k][j]; 
     fprintf(ficresprobmorprev,"\n");        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
     fprintf(ficresvij,"%.0f ",age );          big=dum; 
     for(i=1; i<=nlstate;i++)          imax=i; 
       for(j=1; j<=nlstate;j++){        } 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      } 
       }      if (j != imax) { 
     fprintf(ficresvij,"\n");        for (k=1;k<=n;k++) { 
     free_matrix(gp,0,nhstepm,1,nlstate);          dum=a[imax][k]; 
     free_matrix(gm,0,nhstepm,1,nlstate);          a[imax][k]=a[j][k]; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          a[j][k]=dum; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        } 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        *d = -(*d); 
   } /* End age */        vv[imax]=vv[j]; 
   free_vector(gpp,nlstate+1,nlstate+ndeath);      } 
   free_vector(gmp,nlstate+1,nlstate+ndeath);      indx[j]=imax; 
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      if (a[j][j] == 0.0) a[j][j]=TINY; 
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      if (j != n) { 
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        dum=1.0/(a[j][j]); 
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      } 
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    } 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    free_vector(vv,1,n);  /* Doesn't work */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);  ;
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);  } 
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
   free_vector(xp,1,npar);    int i,ii=0,ip,j; 
   free_matrix(doldm,1,nlstate,1,nlstate);    double sum; 
   free_matrix(dnewm,1,nlstate,1,npar);   
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    for (i=1;i<=n;i++) { 
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      ip=indx[i]; 
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      sum=b[ip]; 
   fclose(ficresprobmorprev);      b[ip]=b[i]; 
   fclose(ficgp);      if (ii) 
   fclose(fichtm);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
 }      b[i]=sum; 
     } 
 /************ Variance of prevlim ******************/    for (i=n;i>=1;i--) { 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      sum=b[i]; 
 {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   /* Variance of prevalence limit */      b[i]=sum/a[i][i]; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    } 
   double **newm;  } 
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;  void pstamp(FILE *fichier)
   int k, cptcode;  {
   double *xp;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   double *gp, *gm;  }
   double **gradg, **trgradg;  
   double age,agelim;  /************ Frequencies ********************/
   int theta;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
      {  /* Some frequencies */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    
   fprintf(ficresvpl,"# Age");    int i, m, jk, k1,i1, j1, bool, z1,j;
   for(i=1; i<=nlstate;i++)    int first;
       fprintf(ficresvpl," %1d-%1d",i,i);    double ***freq; /* Frequencies */
   fprintf(ficresvpl,"\n");    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
   xp=vector(1,npar);    char fileresp[FILENAMELENGTH];
   dnewm=matrix(1,nlstate,1,npar);    
   doldm=matrix(1,nlstate,1,nlstate);    pp=vector(1,nlstate);
      prop=matrix(1,nlstate,iagemin,iagemax+3);
   hstepm=1*YEARM; /* Every year of age */    strcpy(fileresp,"p");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    strcat(fileresp,fileres);
   agelim = AGESUP;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("Problem with prevalence resultfile: %s\n", fileresp);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     if (stepm >= YEARM) hstepm=1;      exit(0);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    }
     gradg=matrix(1,npar,1,nlstate);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     gp=vector(1,nlstate);    j1=0;
     gm=vector(1,nlstate);    
     j=cptcoveff;
     for(theta=1; theta <=npar; theta++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    first=1;
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(k1=1; k1<=j;k1++){
       for(i=1;i<=nlstate;i++)      for(i1=1; i1<=ncodemax[k1];i1++){
         gp[i] = prlim[i][i];        j1++;
            /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for(i=1; i<=npar; i++) /* Computes gradient */          scanf("%d", i);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (i=-5; i<=nlstate+ndeath; i++)  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       for(i=1;i<=nlstate;i++)            for(m=iagemin; m <= iagemax+3; m++)
         gm[i] = prlim[i][i];              freq[i][jk][m]=0;
   
       for(i=1;i<=nlstate;i++)      for (i=1; i<=nlstate; i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        for(m=iagemin; m <= iagemax+3; m++)
     } /* End theta */          prop[i][m]=0;
         
     trgradg =matrix(1,nlstate,1,npar);        dateintsum=0;
         k2cpt=0;
     for(j=1; j<=nlstate;j++)        for (i=1; i<=imx; i++) {
       for(theta=1; theta <=npar; theta++)          bool=1;
         trgradg[j][theta]=gradg[theta][j];          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
     for(i=1;i<=nlstate;i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       varpl[i][(int)age] =0.;                bool=0;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          if (bool==1){
     for(i=1;i<=nlstate;i++)            for(m=firstpass; m<=lastpass; m++){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     fprintf(ficresvpl,"%.0f ",age );                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(i=1; i<=nlstate;i++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficresvpl,"\n");                if (m<lastpass) {
     free_vector(gp,1,nlstate);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     free_vector(gm,1,nlstate);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     free_matrix(gradg,1,npar,1,nlstate);                }
     free_matrix(trgradg,1,nlstate,1,npar);                
   } /* End age */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   free_vector(xp,1,npar);                  k2cpt++;
   free_matrix(doldm,1,nlstate,1,npar);                }
   free_matrix(dnewm,1,nlstate,1,nlstate);                /*}*/
             }
 }          }
         }
 /************ Variance of one-step probabilities  ******************/         
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 {        pstamp(ficresp);
   int i, j=0,  i1, k1, l1, t, tj;        if  (cptcovn>0) {
   int k2, l2, j1,  z1;          fprintf(ficresp, "\n#********** Variable "); 
   int k=0,l, cptcode;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int first=1, first1;          fprintf(ficresp, "**********\n#");
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;        }
   double **dnewm,**doldm;        for(i=1; i<=nlstate;i++) 
   double *xp;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   double *gp, *gm;        fprintf(ficresp, "\n");
   double **gradg, **trgradg;        
   double **mu;        for(i=iagemin; i <= iagemax+3; i++){
   double age,agelim, cov[NCOVMAX];          if(i==iagemax+3){
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */            fprintf(ficlog,"Total");
   int theta;          }else{
   char fileresprob[FILENAMELENGTH];            if(first==1){
   char fileresprobcov[FILENAMELENGTH];              first=0;
   char fileresprobcor[FILENAMELENGTH];              printf("See log file for details...\n");
             }
   double ***varpij;            fprintf(ficlog,"Age %d", i);
           }
   strcpy(fileresprob,"prob");          for(jk=1; jk <=nlstate ; jk++){
   strcat(fileresprob,fileres);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {              pp[jk] += freq[jk][m][i]; 
     printf("Problem with resultfile: %s\n", fileresprob);          }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=-1, pos=0; m <=0 ; m++)
   strcpy(fileresprobcov,"probcov");              pos += freq[jk][m][i];
   strcat(fileresprobcov,fileres);            if(pp[jk]>=1.e-10){
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {              if(first==1){
     printf("Problem with resultfile: %s\n", fileresprobcov);                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);              }
   }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   strcpy(fileresprobcor,"probcor");            }else{
   strcat(fileresprobcor,fileres);              if(first==1)
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     printf("Problem with resultfile: %s\n", fileresprobcor);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);            }
   }          }
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          for(jk=1; jk <=nlstate ; jk++){
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);              pp[jk] += freq[jk][m][i];
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          }       
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
              pos += pp[jk];
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            posprop += prop[jk][i];
   fprintf(ficresprob,"# Age");          }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresprobcov,"# Age");            if(pos>=1.e-5){
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");              if(first==1)
   fprintf(ficresprobcov,"# Age");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
   for(i=1; i<=nlstate;i++)              if(first==1)
     for(j=1; j<=(nlstate+ndeath);j++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);            }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);            if( i <= iagemax){
     }                if(pos>=1.e-5){
   fprintf(ficresprob,"\n");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   fprintf(ficresprobcov,"\n");                /*probs[i][jk][j1]= pp[jk]/pos;*/
   fprintf(ficresprobcor,"\n");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   xp=vector(1,npar);              }
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              else
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            }
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          }
   first=1;          
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          for(jk=-1; jk <=nlstate+ndeath; jk++)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            for(m=-1; m <=nlstate+ndeath; m++)
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);              if(freq[jk][m][i] !=0 ) {
     exit(0);              if(first==1)
   }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   else{                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     fprintf(ficgp,"\n# Routine varprob");              }
   }          if(i <= iagemax)
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            fprintf(ficresp,"\n");
     printf("Problem with html file: %s\n", optionfilehtm);          if(first==1)
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);            printf("Others in log...\n");
     exit(0);          fprintf(ficlog,"\n");
   }        }
   else{      }
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    }
     fprintf(fichtm,"\n");    dateintmean=dateintsum/k2cpt; 
    
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    fclose(ficresp);
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   }    /* End of Freq */
   }
    
   cov[1]=1;  /************ Prevalence ********************/
   tj=cptcoveff;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  {  
   j1=0;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   for(t=1; t<=tj;t++){       in each health status at the date of interview (if between dateprev1 and dateprev2).
     for(i1=1; i1<=ncodemax[t];i1++){       We still use firstpass and lastpass as another selection.
       j1++;    */
         
       if  (cptcovn>0) {    int i, m, jk, k1, i1, j1, bool, z1,j;
         fprintf(ficresprob, "\n#********** Variable ");    double ***freq; /* Frequencies */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double *pp, **prop;
         fprintf(ficresprob, "**********\n#");    double pos,posprop; 
         fprintf(ficresprobcov, "\n#********** Variable ");    double  y2; /* in fractional years */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int iagemin, iagemax;
         fprintf(ficresprobcov, "**********\n#");  
            iagemin= (int) agemin;
         fprintf(ficgp, "\n#********** Variable ");    iagemax= (int) agemax;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /*pp=vector(1,nlstate);*/
         fprintf(ficgp, "**********\n#");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
            /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
            j1=0;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    j=cptcoveff;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
            
         fprintf(ficresprobcor, "\n#********** Variable ");        for(k1=1; k1<=j;k1++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(ficgp, "**********\n#");            j1++;
       }        
              for (i=1; i<=nlstate; i++)  
       for (age=bage; age<=fage; age ++){          for(m=iagemin; m <= iagemax+3; m++)
         cov[2]=age;            prop[i][m]=0.0;
         for (k=1; k<=cptcovn;k++) {       
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for (i=1; i<=imx; i++) { /* Each individual */
         }          bool=1;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          if  (cptcovn>0) {
         for (k=1; k<=cptcovprod;k++)            for (z1=1; z1<=cptcoveff; z1++) 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                        bool=0;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          } 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          if (bool==1) { 
         gp=vector(1,(nlstate)*(nlstate+ndeath));            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         gm=vector(1,(nlstate)*(nlstate+ndeath));              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                  if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         for(theta=1; theta <=npar; theta++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           for(i=1; i<=npar; i++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                          if (s[m][i]>0 && s[m][i]<=nlstate) { 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                            prop[s[m][i]][(int)agev[m][i]] += weight[i];
           k=0;                  prop[s[m][i]][iagemax+3] += weight[i]; 
           for(i=1; i<= (nlstate); i++){                } 
             for(j=1; j<=(nlstate+ndeath);j++){              }
               k=k+1;            } /* end selection of waves */
               gp[k]=pmmij[i][j];          }
             }        }
           }        for(i=iagemin; i <= iagemax+3; i++){  
                    
           for(i=1; i<=npar; i++)          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            posprop += prop[jk][i]; 
              } 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;          for(jk=1; jk <=nlstate ; jk++){     
           for(i=1; i<=(nlstate); i++){            if( i <=  iagemax){ 
             for(j=1; j<=(nlstate+ndeath);j++){              if(posprop>=1.e-5){ 
               k=k+1;                probs[i][jk][j1]= prop[jk][i]/posprop;
               gm[k]=pmmij[i][j];              } else
             }                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
           }            } 
                }/* end jk */ 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        }/* end i */ 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        } /* end i1 */
         }    } /* end k1 */
     
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           for(theta=1; theta <=npar; theta++)    /*free_vector(pp,1,nlstate);*/
             trgradg[j][theta]=gradg[theta][j];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
          }  /* End of prevalence */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  /************* Waves Concatenation ***************/
          
         pmij(pmmij,cov,ncovmodel,x,nlstate);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
          {
         k=0;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         for(i=1; i<=(nlstate); i++){       Death is a valid wave (if date is known).
           for(j=1; j<=(nlstate+ndeath);j++){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             k=k+1;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             mu[k][(int) age]=pmmij[i][j];       and mw[mi+1][i]. dh depends on stepm.
           }       */
         }  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    int i, mi, m;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             varpij[i][j][(int)age] = doldm[i][j];       double sum=0., jmean=0.;*/
     int first;
         /*printf("\n%d ",(int)age);    int j, k=0,jk, ju, jl;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double sum=0.;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    first=0;
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    jmin=1e+5;
      }*/    jmax=-1;
     jmean=0.;
         fprintf(ficresprob,"\n%d ",(int)age);    for(i=1; i<=imx; i++){
         fprintf(ficresprobcov,"\n%d ",(int)age);      mi=0;
         fprintf(ficresprobcor,"\n%d ",(int)age);      m=firstpass;
       while(s[m][i] <= nlstate){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          mw[++mi][i]=m;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        if(m >=lastpass)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          break;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        else
         }          m++;
         i=0;      }/* end while */
         for (k=1; k<=(nlstate);k++){      if (s[m][i] > nlstate){
           for (l=1; l<=(nlstate+ndeath);l++){        mi++;     /* Death is another wave */
             i=i++;        /* if(mi==0)  never been interviewed correctly before death */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);           /* Only death is a correct wave */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        mw[mi][i]=m;
             for (j=1; j<=i;j++){      }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      wav[i]=mi;
             }      if(mi==0){
           }        nbwarn++;
         }/* end of loop for state */        if(first==0){
       } /* end of loop for age */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
       /* Confidence intervalle of pij  */        }
       /*        if(first==1){
       fprintf(ficgp,"\nset noparametric;unset label");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        }
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      } /* end mi==0 */
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    } /* End individuals */
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    for(i=1; i<=imx; i++){
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);      for(mi=1; mi<wav[i];mi++){
       */        if (stepm <=0)
           dh[mi][i]=1;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        else{
       first1=1;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for (k1=1; k1<=(nlstate);k1++){            if (agedc[i] < 2*AGESUP) {
         for (l1=1; l1<=(nlstate+ndeath);l1++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           if(l1==k1) continue;              if(j==0) j=1;  /* Survives at least one month after exam */
           i=(k1-1)*(nlstate+ndeath)+l1;              else if(j<0){
           for (k2=1; k2<=(nlstate);k2++){                nberr++;
             for (l2=1; l2<=(nlstate+ndeath);l2++){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               if(l2==k2) continue;                j=1; /* Temporary Dangerous patch */
               j=(k2-1)*(nlstate+ndeath)+l2;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               if(j<=i) continue;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               for (age=bage; age<=fage; age ++){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 if ((int)age %5==0){              }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;              k=k+1;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              if (j >= jmax){
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;                jmax=j;
                   mu1=mu[i][(int) age]/stepm*YEARM ;                ijmax=i;
                   mu2=mu[j][(int) age]/stepm*YEARM;              }
                   /* Computing eigen value of matrix of covariance */              if (j <= jmin){
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));                jmin=j;
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));                ijmin=i;
                   if(first1==1){              }
                     first1=0;              sum=sum+j;
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);            }
                   /* Eigen vectors */          }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          else{
                   v21=sqrt(1.-v11*v11);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                   v12=-v21;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
                   v22=v11;  
                   /*printf(fignu*/            k=k+1;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            if (j >= jmax) {
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */              jmax=j;
                   if(first==1){              ijmax=i;
                     first=0;            }
                     fprintf(ficgp,"\nset parametric;set nolabel");            else if (j <= jmin){
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);              jmin=j;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              ijmin=i;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);            }
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            if(j<0){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);              nberr++;
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);            }
                     */            sum=sum+j;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          jk= j/stepm;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));          jl= j -jk*stepm;
                   }else{          ju= j -(jk+1)*stepm;
                     first=0;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            if(jl==0){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              dh[mi][i]=jk;
                     /*              bh[mi][i]=0;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            }else{ /* We want a negative bias in order to only have interpolation ie
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \                    * at the price of an extra matrix product in likelihood */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              dh[mi][i]=jk+1;
                     */              bh[mi][i]=ju;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          }else{
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));            if(jl <= -ju){
                   }/* if first */              dh[mi][i]=jk;
                 } /* age mod 5 */              bh[mi][i]=jl;       /* bias is positive if real duration
               } /* end loop age */                                   * is higher than the multiple of stepm and negative otherwise.
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);                                   */
               first=1;            }
             } /*l12 */            else{
           } /* k12 */              dh[mi][i]=jk+1;
         } /*l1 */              bh[mi][i]=ju;
       }/* k1 */            }
     } /* loop covariates */            if(dh[mi][i]==0){
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);              dh[mi][i]=1; /* At least one step */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              bh[mi][i]=ju; /* At least one step */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);            }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          } /* end if mle */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }
   }      } /* end wave */
   free_vector(xp,1,npar);    }
   fclose(ficresprob);    jmean=sum/k;
   fclose(ficresprobcov);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   fclose(ficresprobcor);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   fclose(ficgp);   }
   fclose(fichtm);  
 }  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
   {
 /******************* Printing html file ***********/    
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
                   int popforecast, int estepm ,\    int cptcode=0;
                   double jprev1, double mprev1,double anprev1, \    cptcoveff=0; 
                   double jprev2, double mprev2,double anprev2){   
   int jj1, k1, i1, cpt;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   /*char optionfilehtm[FILENAMELENGTH];*/    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   }                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n        Ndum[ij]++; /*counts the occurence of this modality */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n                                         Tvar[j]. If V=sex and male is 0 and 
  - Life expectancies by age and initial health status (estepm=%2d months):                                         female is 1, then  cptcode=1.*/
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
       for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
                                          th covariate. In fact
  m=cptcoveff;                                         ncodemax[j]=2
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                                         (dichotom. variables only) but
                                          it can be more */
  jj1=0;      } /* Ndum[-1] number of undefined modalities */
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){      ij=1; 
      jj1++;      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
      if (cptcovn > 0) {        for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
        for (cpt=1; cpt<=cptcoveff;cpt++)            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                                       k is a modality. If we have model=V1+V1*sex 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      }            ij++;
      /* Pij */          }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          if (ij > ncodemax[j]) break; 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            }  
      /* Quasi-incidences */      } 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    }  
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
        /* Stable prevalence in each health state */   for (k=0; k< maxncov; k++) Ndum[k]=0;
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
        }     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
      for(cpt=1; cpt<=nlstate;cpt++) {     Ndum[ij]++;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>   }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }   ij=1;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and   for (i=1; i<= maxncov; i++) {
 health expectancies in states (1) and (2): e%s%d.png<br>     if((Ndum[i]!=0) && (i<=ncovcol)){
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);       Tvaraff[ij]=i; /*For printing */
    } /* end i1 */       ij++;
  }/* End k1 */     }
  fprintf(fichtm,"</ul>");   }
    ij--;
    cptcoveff=ij; /*Number of simple covariates*/
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n  }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  /*********** Health Expectancies ****************/
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  {
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
  if(popforecast==1) fprintf(fichtm,"\n    int nhstepma, nstepma; /* Decreasing with age */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    double age, agelim, hf;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    double ***p3mat;
         <br>",fileres,fileres,fileres,fileres);    double eip;
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    pstamp(ficreseij);
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
  m=cptcoveff;    for(i=1; i<=nlstate;i++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
  jj1=0;      }
  for(k1=1; k1<=m;k1++){      fprintf(ficreseij," e%1d. ",i);
    for(i1=1; i1<=ncodemax[k1];i1++){    }
      jj1++;    fprintf(ficreseij,"\n");
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    
        for (cpt=1; cpt<=cptcoveff;cpt++)    if(estepm < stepm){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      printf ("Problem %d lower than %d\n",estepm, stepm);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    }
      }    else  hstepm=estepm;   
      for(cpt=1; cpt<=nlstate;cpt++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident     * This is mainly to measure the difference between two models: for example
 interval) in state (%d): v%s%d%d.png <br>     * if stepm=24 months pijx are given only every 2 years and by summing them
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       * we are calculating an estimate of the Life Expectancy assuming a linear 
      }     * progression in between and thus overestimating or underestimating according
    } /* end i1 */     * to the curvature of the survival function. If, for the same date, we 
  }/* End k1 */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
  fprintf(fichtm,"</ul>");     * to compare the new estimate of Life expectancy with the same linear 
 fclose(fichtm);     * hypothesis. A more precise result, taking into account a more precise
 }     * curvature will be obtained if estepm is as small as stepm. */
   
 /******************* Gnuplot file **************/    /* For example we decided to compute the life expectancy with the smallest unit */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;       nstepm is the number of stepm from age to agelin. 
   int ng;       Look at hpijx to understand the reason of that which relies in memory size
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {       and note for a fixed period like estepm months */
     printf("Problem with file %s",optionfilegnuplot);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 #ifdef windows       results. So we changed our mind and took the option of the best precision.
     fprintf(ficgp,"cd \"%s\" \n",pathc);    */
 #endif    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 m=pow(2,cptcoveff);  
      agelim=AGESUP;
  /* 1eme*/    /* If stepm=6 months */
   for (cpt=1; cpt<= nlstate ; cpt ++) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
    for (k1=1; k1<= m ; k1 ++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
 #ifdef windows  /* nhstepm age range expressed in number of stepm */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 #endif    /* if (stepm >= YEARM) hstepm=1;*/
 #ifdef unix    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  
 #endif    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 for (i=1; i<= nlstate ; i ++) {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      /* if (stepm >= YEARM) hstepm=1;*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      /* If stepm=6 months */
     for (i=1; i<= nlstate ; i ++) {      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      
 }      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      
      for (i=1; i<= nlstate ; i ++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      
   else fprintf(ficgp," \%%*lf (\%%*lf)");      printf("%d|",(int)age);fflush(stdout);
 }        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      
 #ifdef unix      /* Computing expectancies */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");      for(i=1; i<=nlstate;i++)
 #endif        for(j=1; j<=nlstate;j++)
    }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   /*2 eme*/            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  
          fprintf(ficreseij,"%3.0f",age );
     for (i=1; i<= nlstate+1 ; i ++) {      for(i=1; i<=nlstate;i++){
       k=2*i;        eip=0;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<=nlstate;j++){
       for (j=1; j<= nlstate+1 ; j ++) {          eip +=eij[i][j][(int)age];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }          fprintf(ficreseij,"%9.4f", eip );
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      fprintf(ficreseij,"\n");
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      
       for (j=1; j<= nlstate+1 ; j ++) {    }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    printf("\n");
 }      fprintf(ficlog,"\n");
       fprintf(ficgp,"\" t\"\" w l 0,");    
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    {
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    /* Covariances of health expectancies eij and of total life expectancies according
       else fprintf(ficgp,"\" t\"\" w l 0,");     to initial status i, ei. .
     }    */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
      int nhstepma, nstepma; /* Decreasing with age */
   /*3eme*/    double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
   for (k1=1; k1<= m ; k1 ++) {    double **dnewm,**doldm;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    double *xp, *xm;
       k=2+nlstate*(2*cpt-2);    double **gp, **gm;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    double ***gradg, ***trgradg;
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    int theta;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double eip, vip;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    xp=vector(1,npar);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
 */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       for (i=1; i< nlstate ; i ++) {    
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       }    fprintf(ficresstdeij,"# Age");
     }    for(i=1; i<=nlstate;i++){
   }      for(j=1; j<=nlstate;j++)
          fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   /* CV preval stat */      fprintf(ficresstdeij," e%1d. ",i);
     for (k1=1; k1<= m ; k1 ++) {    }
     for (cpt=1; cpt<nlstate ; cpt ++) {    fprintf(ficresstdeij,"\n");
       k=3;  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    pstamp(ficrescveij);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
       for (i=1; i< nlstate ; i ++)    for(i=1; i<=nlstate;i++)
         fprintf(ficgp,"+$%d",k+i+1);      for(j=1; j<=nlstate;j++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        cptj= (j-1)*nlstate+i;
              for(i2=1; i2<=nlstate;i2++)
       l=3+(nlstate+ndeath)*cpt;          for(j2=1; j2<=nlstate;j2++){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            cptj2= (j2-1)*nlstate+i2;
       for (i=1; i< nlstate ; i ++) {            if(cptj2 <= cptj)
         l=3+(nlstate+ndeath)*cpt;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         fprintf(ficgp,"+$%d",l+i+1);          }
       }      }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(ficrescveij,"\n");
     }    
   }      if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   /* proba elementaires */    }
    for(i=1,jk=1; i <=nlstate; i++){    else  hstepm=estepm;   
     for(k=1; k <=(nlstate+ndeath); k++){    /* We compute the life expectancy from trapezoids spaced every estepm months
       if (k != i) {     * This is mainly to measure the difference between two models: for example
         for(j=1; j <=ncovmodel; j++){     * if stepm=24 months pijx are given only every 2 years and by summing them
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           jk++;     * progression in between and thus overestimating or underestimating according
           fprintf(ficgp,"\n");     * to the curvature of the survival function. If, for the same date, we 
         }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       }     * to compare the new estimate of Life expectancy with the same linear 
     }     * hypothesis. A more precise result, taking into account a more precise
    }     * curvature will be obtained if estepm is as small as stepm. */
   
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    /* For example we decided to compute the life expectancy with the smallest unit */
      for(jk=1; jk <=m; jk++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);       nhstepm is the number of hstepm from age to agelim 
        if (ng==2)       nstepm is the number of stepm from age to agelin. 
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");       Look at hpijx to understand the reason of that which relies in memory size
        else       and note for a fixed period like estepm months */
          fprintf(ficgp,"\nset title \"Probability\"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);       survival function given by stepm (the optimization length). Unfortunately it
        i=1;       means that if the survival funtion is printed only each two years of age and if
        for(k2=1; k2<=nlstate; k2++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
          k3=i;       results. So we changed our mind and took the option of the best precision.
          for(k=1; k<=(nlstate+ndeath); k++) {    */
            if (k != k2){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
              if(ng==2)  
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    /* If stepm=6 months */
              else    /* nhstepm age range expressed in number of stepm */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    agelim=AGESUP;
              ij=1;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
              for(j=3; j <=ncovmodel; j++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* if (stepm >= YEARM) hstepm=1;*/
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                  ij++;    
                }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                else    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
              }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
              fprintf(ficgp,")/(1");    gp=matrix(0,nhstepm,1,nlstate*nlstate);
                  gm=matrix(0,nhstepm,1,nlstate*nlstate);
              for(k1=1; k1 <=nlstate; k1++){    
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    for (age=bage; age<=fage; age ++){ 
                ij=1;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                for(j=3; j <=ncovmodel; j++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      /* if (stepm >= YEARM) hstepm=1;*/
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                    ij++;  
                  }      /* If stepm=6 months */
                  else      /* Computed by stepm unit matrices, product of hstepma matrices, stored
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                }      
                fprintf(ficgp,")");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);      /* Computing  Variances of health expectancies */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
              i=i+ncovmodel;         decrease memory allocation */
            }      for(theta=1; theta <=npar; theta++){
          } /* end k */        for(i=1; i<=npar; i++){ 
        } /* end k2 */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      } /* end jk */          xm[i] = x[i] - (i==theta ?delti[theta]:0);
    } /* end ng */        }
    fclose(ficgp);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 }  /* end gnuplot */        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
 /*************** Moving average **************/          for(i=1; i<=nlstate; i++){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   int i, cpt, cptcod;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            }
       for (i=1; i<=nlstate;i++)          }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        }
           mobaverage[(int)agedeb][i][cptcod]=0.;       
            for(ij=1; ij<= nlstate*nlstate; ij++)
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          for(h=0; h<=nhstepm-1; h++){
       for (i=1; i<=nlstate;i++){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          }
           for (cpt=0;cpt<=4;cpt++){      }/* End theta */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      
           }      
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      for(h=0; h<=nhstepm-1; h++)
         }        for(j=1; j<=nlstate*nlstate;j++)
       }          for(theta=1; theta <=npar; theta++)
     }            trgradg[h][j][theta]=gradg[h][theta][j];
          
 }  
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
 /************** Forecasting ******************/          varhe[ij][ji][(int)age] =0.;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  
         printf("%d|",(int)age);fflush(stdout);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   int *popage;       for(h=0;h<=nhstepm-1;h++){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        for(k=0;k<=nhstepm-1;k++){
   double *popeffectif,*popcount;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   double ***p3mat;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   char fileresf[FILENAMELENGTH];          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
  agelim=AGESUP;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        }
       }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        /* Computing expectancies */
        hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   strcpy(fileresf,"f");      for(i=1; i<=nlstate;i++)
   strcat(fileresf,fileres);        for(j=1; j<=nlstate;j++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     printf("Problem with forecast resultfile: %s\n", fileresf);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);            
   }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);          }
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   if (mobilav==1) {        eip=0.;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        vip=0.;
     movingaverage(agedeb, fage, ageminpar, mobaverage);        for(j=1; j<=nlstate;j++){
   }          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   stepsize=(int) (stepm+YEARM-1)/YEARM;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   if (stepm<=12) stepsize=1;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
          }
   agelim=AGESUP;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
        }
   hstepm=1;      fprintf(ficresstdeij,"\n");
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);      fprintf(ficrescveij,"%3.0f",age );
   anprojmean=yp;      for(i=1; i<=nlstate;i++)
   yp2=modf((yp1*12),&yp);        for(j=1; j<=nlstate;j++){
   mprojmean=yp;          cptj= (j-1)*nlstate+i;
   yp1=modf((yp2*30.5),&yp);          for(i2=1; i2<=nlstate;i2++)
   jprojmean=yp;            for(j2=1; j2<=nlstate;j2++){
   if(jprojmean==0) jprojmean=1;              cptj2= (j2-1)*nlstate+i2;
   if(mprojmean==0) jprojmean=1;              if(cptj2 <= cptj)
                  fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            }
          }
   for(cptcov=1;cptcov<=i2;cptcov++){      fprintf(ficrescveij,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     
       k=k+1;    }
       fprintf(ficresf,"\n#******");    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       for(j=1;j<=cptcoveff;j++) {    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       fprintf(ficresf,"******\n");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresf,"# StartingAge FinalAge");    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    printf("\n");
          fprintf(ficlog,"\n");
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    free_vector(xm,1,npar);
         fprintf(ficresf,"\n");    free_vector(xp,1,npar);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  }
           nhstepm = nhstepm/hstepm;  
            /************ Variance ******************/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
           oldm=oldms;savm=savms;  {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* Variance of health expectancies */
            /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           for (h=0; h<=nhstepm; h++){    /* double **newm;*/
             if (h==(int) (calagedate+YEARM*cpt)) {    double **dnewm,**doldm;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    double **dnewmp,**doldmp;
             }    int i, j, nhstepm, hstepm, h, nstepm ;
             for(j=1; j<=nlstate+ndeath;j++) {    int k, cptcode;
               kk1=0.;kk2=0;    double *xp;
               for(i=1; i<=nlstate;i++) {                  double **gp, **gm;  /* for var eij */
                 if (mobilav==1)    double ***gradg, ***trgradg; /*for var eij */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double **gradgp, **trgradgp; /* for var p point j */
                 else {    double *gpp, *gmp; /* for var p point j */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                 }    double ***p3mat;
                    double age,agelim, hf;
               }    double ***mobaverage;
               if (h==(int)(calagedate+12*cpt)){    int theta;
                 fprintf(ficresf," %.3f", kk1);    char digit[4];
                            char digitp[25];
               }  
             }    char fileresprobmorprev[FILENAMELENGTH];
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(popbased==1){
         }      if(mobilav!=0)
       }        strcpy(digitp,"-populbased-mobilav-");
     }      else strcpy(digitp,"-populbased-nomobil-");
   }    }
            else 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      strcpy(digitp,"-stablbased-");
   
   fclose(ficresf);    if (mobilav!=0) {
 }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /************** Forecasting ******************/      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      }
   int *popage;    }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    strcpy(fileresprobmorprev,"prmorprev"); 
   double ***p3mat,***tabpop,***tabpopprev;    sprintf(digit,"%-d",ij);
   char filerespop[FILENAMELENGTH];    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(fileresprobmorprev,fileres);
   agelim=AGESUP;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     
   strcpy(filerespop,"pop");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   strcat(filerespop,fileres);    pstamp(ficresprobmorprev);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     printf("Problem with forecast resultfile: %s\n", filerespop);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }      fprintf(ficresprobmorprev," p.%-d SE",j);
   printf("Computing forecasting: result on file '%s' \n", filerespop);      for(i=1; i<=nlstate;i++)
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
   if (mobilav==1) {    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     movingaverage(agedeb, fage, ageminpar, mobaverage);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   }  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    pstamp(ficresvij);
   if (stepm<=12) stepsize=1;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
      if(popbased==1)
   agelim=AGESUP;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
      else
   hstepm=1;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   hstepm=hstepm/stepm;    fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
   if (popforecast==1) {      for(j=1; j<=nlstate;j++)
     if((ficpop=fopen(popfile,"r"))==NULL) {        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       printf("Problem with population file : %s\n",popfile);exit(0);    fprintf(ficresvij,"\n");
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  
     }    xp=vector(1,npar);
     popage=ivector(0,AGESUP);    dnewm=matrix(1,nlstate,1,npar);
     popeffectif=vector(0,AGESUP);    doldm=matrix(1,nlstate,1,nlstate);
     popcount=vector(0,AGESUP);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
        doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
        gpp=vector(nlstate+1,nlstate+ndeath);
     imx=i;    gmp=vector(nlstate+1,nlstate+ndeath);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    
     if(estepm < stepm){
   for(cptcov=1;cptcov<=i2;cptcov++){      printf ("Problem %d lower than %d\n",estepm, stepm);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
       k=k+1;    else  hstepm=estepm;   
       fprintf(ficrespop,"\n#******");    /* For example we decided to compute the life expectancy with the smallest unit */
       for(j=1;j<=cptcoveff;j++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
       fprintf(ficrespop,"******\n");       Look at function hpijx to understand why (it is linked to memory size questions) */
       fprintf(ficrespop,"# Age");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       survival function given by stepm (the optimization length). Unfortunately it
       if (popforecast==1)  fprintf(ficrespop," [Population]");       means that if the survival funtion is printed every two years of age and if
             you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for (cpt=0; cpt<=0;cpt++) {       results. So we changed our mind and took the option of the best precision.
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      */
            hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    agelim = AGESUP;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           nhstepm = nhstepm/hstepm;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        gp=matrix(0,nhstepm,1,nlstate);
              gm=matrix(0,nhstepm,1,nlstate);
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(theta=1; theta <=npar; theta++){
             }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
             for(j=1; j<=nlstate+ndeath;j++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                      hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                 if (mobilav==1)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {        if (popbased==1) {
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          if(mobilav ==0){
                 }            for(i=1; i<=nlstate;i++)
               }              prlim[i][i]=probs[(int)age][i][ij];
               if (h==(int)(calagedate+12*cpt)){          }else{ /* mobilav */ 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            for(i=1; i<=nlstate;i++)
                   /*fprintf(ficrespop," %.3f", kk1);              prlim[i][i]=mobaverage[(int)age][i][ij];
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          }
               }        }
             }    
             for(i=1; i<=nlstate;i++){        for(j=1; j<= nlstate; j++){
               kk1=0.;          for(h=0; h<=nhstepm; h++){
                 for(j=1; j<=nlstate;j++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                 }          }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        }
             }        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)           as a weighted average of prlim.
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        */
           }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
          /* end probability of death */
   /******/  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   
           nhstepm = nhstepm/hstepm;        if (popbased==1) {
                    if(mobilav ==0){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1; i<=nlstate;i++)
           oldm=oldms;savm=savms;              prlim[i][i]=probs[(int)age][i][ij];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }else{ /* mobilav */ 
           for (h=0; h<=nhstepm; h++){            for(i=1; i<=nlstate;i++)
             if (h==(int) (calagedate+YEARM*cpt)) {              prlim[i][i]=mobaverage[(int)age][i][ij];
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          }
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
               for(i=1; i<=nlstate;i++) {                        for(h=0; h<=nhstepm; h++){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          }
             }        }
           }        /* This for computing probability of death (h=1 means
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           computed over hstepm matrices product = hstepm*stepm months) 
         }           as a weighted average of prlim.
       }        */
    }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             gmp[j] += prlim[i][i]*p3mat[i][j][1];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }    
         /* end probability of death */
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);        for(j=1; j<= nlstate; j++) /* vareij */
     free_vector(popeffectif,0,AGESUP);          for(h=0; h<=nhstepm; h++){
     free_vector(popcount,0,AGESUP);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   }          }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   fclose(ficrespop);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 }        }
   
 /***********************************************/      } /* End theta */
 /**************** Main Program *****************/  
 /***********************************************/      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
 int main(int argc, char *argv[])      for(h=0; h<=nhstepm; h++) /* veij */
 {        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            trgradg[h][j][theta]=gradg[h][theta][j];
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   double fret;          trgradgp[j][theta]=gradgp[theta][j];
   double **xi,tmp,delta;    
   
   double dum; /* Dummy variable */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double ***p3mat;      for(i=1;i<=nlstate;i++)
   int *indx;        for(j=1;j<=nlstate;j++)
   char line[MAXLINE], linepar[MAXLINE];          vareij[i][j][(int)age] =0.;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];  
   int firstobs=1, lastobs=10;      for(h=0;h<=nhstepm;h++){
   int sdeb, sfin; /* Status at beginning and end */        for(k=0;k<=nhstepm;k++){
   int c,  h , cpt,l;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   int ju,jl, mi;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          for(i=1;i<=nlstate;i++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            for(j=1;j<=nlstate;j++)
   int mobilav=0,popforecast=0;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   int hstepm, nhstepm;        }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      }
     
   double bage, fage, age, agelim, agebase;      /* pptj */
   double ftolpl=FTOL;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   double **prlim;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   double *severity;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   double ***param; /* Matrix of parameters */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   double  *p;          varppt[j][i]=doldmp[j][i];
   double **matcov; /* Matrix of covariance */      /* end ppptj */
   double ***delti3; /* Scale */      /*  x centered again */
   double *delti; /* Scale */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   double ***eij, ***vareij;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   double **varpl; /* Variances of prevalence limits by age */   
   double *epj, vepp;      if (popbased==1) {
   double kk1, kk2;        if(mobilav ==0){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
   char *alph[]={"a","a","b","c","d","e"}, str[4];          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
   char z[1]="c", occ;      }
 #include <sys/time.h>               
 #include <time.h>      /* This for computing probability of death (h=1 means
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
   /* long total_usecs;      */
   struct timeval start_time, end_time;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   getcwd(pathcd, size);      }    
       /* end probability of death */
   printf("\n%s",version);  
   if(argc <=1){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     printf("\nEnter the parameter file name: ");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     scanf("%s",pathtot);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   }        for(i=1; i<=nlstate;i++){
   else{          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     strcpy(pathtot,argv[1]);        }
   }      } 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      fprintf(ficresprobmorprev,"\n");
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      fprintf(ficresvij,"%.0f ",age );
   /* cutv(path,optionfile,pathtot,'\\');*/      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        }
   chdir(path);      fprintf(ficresvij,"\n");
   replace(pathc,path);      free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
 /*-------- arguments in the command line --------*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   /* Log file */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(filelog, optionfilefiname);    } /* End age */
   strcat(filelog,".log");    /* */    free_vector(gpp,nlstate+1,nlstate+ndeath);
   if((ficlog=fopen(filelog,"w"))==NULL)    {    free_vector(gmp,nlstate+1,nlstate+ndeath);
     printf("Problem with logfile %s\n",filelog);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     goto end;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
   fprintf(ficlog,"Log filename:%s\n",filelog);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   fprintf(ficlog,"\n%s",version);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   fprintf(ficlog,"\nEnter the parameter file name: ");  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fflush(ficlog);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   /* */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   strcpy(fileres,"r");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   strcat(fileres, optionfilefiname);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   strcat(fileres,".txt");    /* Other files have txt extension */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   /*---------arguments file --------*/  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     printf("Problem with optionfile %s\n",optionfile);  
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    free_vector(xp,1,npar);
     goto end;    free_matrix(doldm,1,nlstate,1,nlstate);
   }    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcpy(filereso,"o");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   strcat(filereso,fileres);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficparo=fopen(filereso,"w"))==NULL) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with Output resultfile: %s\n", filereso);    fclose(ficresprobmorprev);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    fflush(ficgp);
     goto end;    fflush(fichtm); 
   }  }  /* end varevsij */
   
   /* Reads comments: lines beginning with '#' */  /************ Variance of prevlim ******************/
   while((c=getc(ficpar))=='#' && c!= EOF){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    /* Variance of prevalence limit */
     puts(line);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     fputs(line,ficparo);    double **newm;
   }    double **dnewm,**doldm;
   ungetc(c,ficpar);    int i, j, nhstepm, hstepm;
     int k, cptcode;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double *xp;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    double *gp, *gm;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double **gradg, **trgradg;
 while((c=getc(ficpar))=='#' && c!= EOF){    double age,agelim;
     ungetc(c,ficpar);    int theta;
     fgets(line, MAXLINE, ficpar);    
     puts(line);    pstamp(ficresvpl);
     fputs(line,ficparo);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   }    fprintf(ficresvpl,"# Age");
   ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %1d-%1d",i,i);
        fprintf(ficresvpl,"\n");
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;    xp=vector(1,npar);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   ncovmodel=2+cptcovn;    
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    hstepm=1*YEARM; /* Every year of age */
      hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   /* Read guess parameters */    agelim = AGESUP;
   /* Reads comments: lines beginning with '#' */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   while((c=getc(ficpar))=='#' && c!= EOF){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     ungetc(c,ficpar);      if (stepm >= YEARM) hstepm=1;
     fgets(line, MAXLINE, ficpar);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     puts(line);      gradg=matrix(1,npar,1,nlstate);
     fputs(line,ficparo);      gp=vector(1,nlstate);
   }      gm=vector(1,nlstate);
   ungetc(c,ficpar);  
        for(theta=1; theta <=npar; theta++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for(i=1; i<=npar; i++){ /* Computes gradient */
     for(i=1; i <=nlstate; i++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for(j=1; j <=nlstate+ndeath-1; j++){        }
       fscanf(ficpar,"%1d%1d",&i1,&j1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficparo,"%1d%1d",i1,j1);        for(i=1;i<=nlstate;i++)
       if(mle==1)          gp[i] = prlim[i][i];
         printf("%1d%1d",i,j);      
       fprintf(ficlog,"%1d%1d",i,j);        for(i=1; i<=npar; i++) /* Computes gradient */
       for(k=1; k<=ncovmodel;k++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fscanf(ficpar," %lf",&param[i][j][k]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         if(mle==1){        for(i=1;i<=nlstate;i++)
           printf(" %lf",param[i][j][k]);          gm[i] = prlim[i][i];
           fprintf(ficlog," %lf",param[i][j][k]);  
         }        for(i=1;i<=nlstate;i++)
         else          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           fprintf(ficlog," %lf",param[i][j][k]);      } /* End theta */
         fprintf(ficparo," %lf",param[i][j][k]);  
       }      trgradg =matrix(1,nlstate,1,npar);
       fscanf(ficpar,"\n");  
       if(mle==1)      for(j=1; j<=nlstate;j++)
         printf("\n");        for(theta=1; theta <=npar; theta++)
       fprintf(ficlog,"\n");          trgradg[j][theta]=gradg[theta][j];
       fprintf(ficparo,"\n");  
     }      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   p=param[1][1];      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresvpl,"%.0f ",age );
     ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     puts(line);      fprintf(ficresvpl,"\n");
     fputs(line,ficparo);      free_vector(gp,1,nlstate);
   }      free_vector(gm,1,nlstate);
   ungetc(c,ficpar);      free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    } /* End age */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){    free_vector(xp,1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(doldm,1,nlstate,1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_matrix(dnewm,1,nlstate,1,nlstate);
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);  }
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);  /************ Variance of one-step probabilities  ******************/
         printf(" %le",delti3[i][j][k]);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
         fprintf(ficparo," %le",delti3[i][j][k]);  {
       }    int i, j=0,  i1, k1, l1, t, tj;
       fscanf(ficpar,"\n");    int k2, l2, j1,  z1;
       printf("\n");    int k=0,l, cptcode;
       fprintf(ficparo,"\n");    int first=1, first1;
     }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   }    double **dnewm,**doldm;
   delti=delti3[1][1];    double *xp;
      double *gp, *gm;
   /* Reads comments: lines beginning with '#' */    double **gradg, **trgradg;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **mu;
     ungetc(c,ficpar);    double age,agelim, cov[NCOVMAX];
     fgets(line, MAXLINE, ficpar);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     puts(line);    int theta;
     fputs(line,ficparo);    char fileresprob[FILENAMELENGTH];
   }    char fileresprobcov[FILENAMELENGTH];
   ungetc(c,ficpar);    char fileresprobcor[FILENAMELENGTH];
    
   matcov=matrix(1,npar,1,npar);    double ***varpij;
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);    strcpy(fileresprob,"prob"); 
     if(mle==1)    strcat(fileresprob,fileres);
       printf("%s",str);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     fprintf(ficlog,"%s",str);      printf("Problem with resultfile: %s\n", fileresprob);
     fprintf(ficparo,"%s",str);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     for(j=1; j <=i; j++){    }
       fscanf(ficpar," %le",&matcov[i][j]);    strcpy(fileresprobcov,"probcov"); 
       if(mle==1){    strcat(fileresprobcov,fileres);
         printf(" %.5le",matcov[i][j]);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
         fprintf(ficlog," %.5le",matcov[i][j]);      printf("Problem with resultfile: %s\n", fileresprobcov);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       else    }
         fprintf(ficlog," %.5le",matcov[i][j]);    strcpy(fileresprobcor,"probcor"); 
       fprintf(ficparo," %.5le",matcov[i][j]);    strcat(fileresprobcor,fileres);
     }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     fscanf(ficpar,"\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
     if(mle==1)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       printf("\n");    }
     fprintf(ficlog,"\n");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficparo,"\n");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   for(i=1; i <=npar; i++)    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     for(j=i+1;j<=npar;j++)    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       matcov[i][j]=matcov[j][i];    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        pstamp(ficresprob);
   if(mle==1)    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     printf("\n");    fprintf(ficresprob,"# Age");
   fprintf(ficlog,"\n");    pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     /*-------- Rewriting paramater file ----------*/    pstamp(ficresprobcor);
      strcpy(rfileres,"r");    /* "Rparameterfile */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    fprintf(ficresprobcor,"# Age");
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {    for(i=1; i<=nlstate;i++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     fprintf(ficres,"#%s\n",version);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
          }  
     /*-------- data file ----------*/   /* fprintf(ficresprob,"\n");
     if((fic=fopen(datafile,"r"))==NULL)    {    fprintf(ficresprobcov,"\n");
       printf("Problem with datafile: %s\n", datafile);goto end;    fprintf(ficresprobcor,"\n");
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;   */
     }    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     n= lastobs;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     severity = vector(1,maxwav);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     outcome=imatrix(1,maxwav+1,1,n);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     num=ivector(1,n);    first=1;
     moisnais=vector(1,n);    fprintf(ficgp,"\n# Routine varprob");
     annais=vector(1,n);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     moisdc=vector(1,n);    fprintf(fichtm,"\n");
     andc=vector(1,n);  
     agedc=vector(1,n);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     cod=ivector(1,n);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     weight=vector(1,n);    file %s<br>\n",optionfilehtmcov);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     mint=matrix(1,maxwav,1,n);  and drawn. It helps understanding how is the covariance between two incidences.\
     anint=matrix(1,maxwav,1,n);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     s=imatrix(1,maxwav+1,1,n);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     adl=imatrix(1,maxwav+1,1,n);      It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     tab=ivector(1,NCOVMAX);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     ncodemax=ivector(1,8);  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     i=1;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     while (fgets(line, MAXLINE, fic) != NULL)    {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       if ((i >= firstobs) && (i <=lastobs)) {  
            cov[1]=1;
         for (j=maxwav;j>=1;j--){    tj=cptcoveff;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           strcpy(line,stra);    j1=0;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for(t=1; t<=tj;t++){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(i1=1; i1<=ncodemax[t];i1++){ 
         }        j1++;
                if  (cptcovn>0) {
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprob, "\n#********** Variable "); 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcov, "\n#********** Variable "); 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          
         for (j=ncovcol;j>=1;j--){          fprintf(ficgp, "\n#********** Variable "); 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficgp, "**********\n#\n");
         num[i]=atol(stra);          
                  
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         i=i+1;          
       }          fprintf(ficresprobcor, "\n#********** Variable ");    
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     /* printf("ii=%d", ij);          fprintf(ficresprobcor, "**********\n#");    
        scanf("%d",i);*/        }
   imx=i-1; /* Number of individuals */        
         for (age=bage; age<=fage; age ++){ 
   /* for (i=1; i<=imx; i++){          cov[2]=age;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          for (k=1; k<=cptcovn;k++) {
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          }
     }*/          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    /*  for (i=1; i<=imx; i++){          for (k=1; k<=cptcovprod;k++)
      if (s[4][i]==9)  s[4][i]=-1;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          
            gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
            trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   /* Calculation of the number of parameter from char model*/          gp=vector(1,(nlstate)*(nlstate+ndeath));
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */          gm=vector(1,(nlstate)*(nlstate+ndeath));
   Tprod=ivector(1,15);      
   Tvaraff=ivector(1,15);          for(theta=1; theta <=npar; theta++){
   Tvard=imatrix(1,15,1,2);            for(i=1; i<=npar; i++)
   Tage=ivector(1,15);                    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                
   if (strlen(model) >1){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     j=0, j1=0, k1=1, k2=1;            
     j=nbocc(model,'+');            k=0;
     j1=nbocc(model,'*');            for(i=1; i<= (nlstate); i++){
     cptcovn=j+1;              for(j=1; j<=(nlstate+ndeath);j++){
     cptcovprod=j1;                k=k+1;
                    gp[k]=pmmij[i][j];
     strcpy(modelsav,model);              }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            }
       printf("Error. Non available option model=%s ",model);            
       fprintf(ficlog,"Error. Non available option model=%s ",model);            for(i=1; i<=npar; i++)
       goto end;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     }      
                pmij(pmmij,cov,ncovmodel,xp,nlstate);
     for(i=(j+1); i>=1;i--){            k=0;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */            for(i=1; i<=(nlstate); i++){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */              for(j=1; j<=(nlstate+ndeath);j++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                k=k+1;
       /*scanf("%d",i);*/                gm[k]=pmmij[i][j];
       if (strchr(strb,'*')) {  /* Model includes a product */              }
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/            }
         if (strcmp(strc,"age")==0) { /* Vn*age */       
           cptcovprod--;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           cutv(strb,stre,strd,'V');              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/          }
           cptcovage++;  
             Tage[cptcovage]=i;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             /*printf("stre=%s ", stre);*/            for(theta=1; theta <=npar; theta++)
         }              trgradg[j][theta]=gradg[theta][j];
         else if (strcmp(strd,"age")==0) { /* or age*Vn */          
           cptcovprod--;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           cutv(strb,stre,strc,'V');          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           Tvar[i]=atoi(stre);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           cptcovage++;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           Tage[cptcovage]=i;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         else {  /* Age is not in the model */  
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          pmij(pmmij,cov,ncovmodel,x,nlstate);
           Tvar[i]=ncovcol+k1;          
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */          k=0;
           Tprod[k1]=i;          for(i=1; i<=(nlstate); i++){
           Tvard[k1][1]=atoi(strc); /* m*/            for(j=1; j<=(nlstate+ndeath);j++){
           Tvard[k1][2]=atoi(stre); /* n */              k=k+1;
           Tvar[cptcovn+k2]=Tvard[k1][1];              mu[k][(int) age]=pmmij[i][j];
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            }
           for (k=1; k<=lastobs;k++)          }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           k1++;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           k2=k2+2;              varpij[i][j][(int)age] = doldm[i][j];
         }  
       }          /*printf("\n%d ",(int)age);
       else { /* no more sum */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        /*  scanf("%d",i);*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       cutv(strd,strc,strb,'V');            }*/
       Tvar[i]=atoi(strc);  
       }          fprintf(ficresprob,"\n%d ",(int)age);
       strcpy(modelsav,stra);            fprintf(ficresprobcov,"\n%d ",(int)age);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          fprintf(ficresprobcor,"\n%d ",(int)age);
         scanf("%d",i);*/  
     } /* end of loop + */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   } /* end model */            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   printf("cptcovprod=%d ", cptcovprod);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);          }
   scanf("%d ",i);*/          i=0;
     fclose(fic);          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
     /*  if(mle==1){*/              i=i++;
     if (weightopt != 1) { /* Maximisation without weights*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       for(i=1;i<=n;i++) weight[i]=1.0;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     }              for (j=1; j<=i;j++){
     /*-calculation of age at interview from date of interview and age at death -*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     agev=matrix(1,maxwav,1,imx);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
     for (i=1; i<=imx; i++) {            }
       for(m=2; (m<= maxwav); m++) {          }/* end of loop for state */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        } /* end of loop for age */
          anint[m][i]=9999;  
          s[m][i]=-1;        /* Confidence intervalle of pij  */
        }        /*
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          fprintf(ficgp,"\nunset parametric;unset label");
       }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     for (i=1; i<=imx; i++)  {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       for(m=1; (m<= maxwav); m++){          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         if(s[m][i] >0){        */
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
               if(moisdc[i]!=99 && andc[i]!=9999)        first1=1;
                 agev[m][i]=agedc[i];        for (k2=1; k2<=(nlstate);k2++){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
            else {            if(l2==k2) continue;
               if (andc[i]!=9999){            j=(k2-1)*(nlstate+ndeath)+l2;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            for (k1=1; k1<=(nlstate);k1++){
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
               agev[m][i]=-1;                if(l1==k1) continue;
               }                i=(k1-1)*(nlstate+ndeath)+l1;
             }                if(i<=j) continue;
           }                for (age=bage; age<=fage; age ++){ 
           else if(s[m][i] !=9){ /* Should no more exist */                  if ((int)age %5==0){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
             if(mint[m][i]==99 || anint[m][i]==9999)                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
               agev[m][i]=1;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
             else if(agev[m][i] <agemin){                    mu1=mu[i][(int) age]/stepm*YEARM ;
               agemin=agev[m][i];                    mu2=mu[j][(int) age]/stepm*YEARM;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                    c12=cv12/sqrt(v1*v2);
             }                    /* Computing eigen value of matrix of covariance */
             else if(agev[m][i] >agemax){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
               agemax=agev[m][i];                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                    /* Eigen vectors */
             }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
             /*agev[m][i]=anint[m][i]-annais[i];*/                    /*v21=sqrt(1.-v11*v11); *//* error */
             /*   agev[m][i] = age[i]+2*m;*/                    v21=(lc1-v1)/cv12*v11;
           }                    v12=-v21;
           else { /* =9 */                    v22=v11;
             agev[m][i]=1;                    tnalp=v21/v11;
             s[m][i]=-1;                    if(first1==1){
           }                      first1=0;
         }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         else /*= 0 Unknown */                    }
           agev[m][i]=1;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       }                    /*printf(fignu*/
                        /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     for (i=1; i<=imx; i++)  {                    if(first==1){
       for(m=1; (m<= maxwav); m++){                      first=0;
         if (s[m][i] > (nlstate+ndeath)) {                      fprintf(ficgp,"\nset parametric;unset label");
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                        fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           goto end;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     free_vector(severity,1,maxwav);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     free_imatrix(outcome,1,maxwav+1,1,n);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     free_vector(moisnais,1,n);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     free_vector(annais,1,n);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     /* free_matrix(mint,1,maxwav,1,n);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
        free_matrix(anint,1,maxwav,1,n);*/                    }else{
     free_vector(moisdc,1,n);                      first=0;
     free_vector(andc,1,n);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                          fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     wav=ivector(1,imx);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                        }/* if first */
     /* Concatenates waves */                  } /* age mod 5 */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
       Tcode=ivector(1,100);              } /*l12 */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            } /* k12 */
       ncodemax[1]=1;          } /*l1 */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        }/* k1 */
            } /* loop covariates */
    codtab=imatrix(1,100,1,10);    }
    h=0;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
    m=pow(2,cptcoveff);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
    for(k=1;k<=cptcoveff; k++){    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
      for(i=1; i <=(m/pow(2,k));i++){    free_vector(xp,1,npar);
        for(j=1; j <= ncodemax[k]; j++){    fclose(ficresprob);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    fclose(ficresprobcov);
            h++;    fclose(ficresprobcor);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    fflush(ficgp);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    fflush(fichtmcov);
          }  }
        }  
      }  
    }  /******************* Printing html file ***********/
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       codtab[1][2]=1;codtab[2][2]=2; */                    int lastpass, int stepm, int weightopt, char model[],\
    /* for(i=1; i <=m ;i++){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       for(k=1; k <=cptcovn; k++){                    int popforecast, int estepm ,\
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                    double jprev1, double mprev1,double anprev1, \
       }                    double jprev2, double mprev2,double anprev2){
       printf("\n");    int jj1, k1, i1, cpt;
       }  
       scanf("%d",i);*/     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
         <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
    /* Calculates basic frequencies. Computes observed prevalence at single age  </ul>");
        and prints on file fileres'p'. */     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                 jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
         fprintf(fichtm,"\
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     fprintf(fichtm,"\
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
           fprintf(fichtm,"\
     /* For Powell, parameters are in a vector p[] starting at p[1]   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */     <a href=\"%s\">%s</a> <br>\n",
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
     if(mle==1){   - Population projections by age and states: \
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
     }  
      fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);   m=cptcoveff;
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jk=1;   jj1=0;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   for(k1=1; k1<=m;k1++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     for(i1=1; i1<=ncodemax[k1];i1++){
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       jj1++;
    for(i=1,jk=1; i <=nlstate; i++){       if (cptcovn > 0) {
      for(k=1; k <=(nlstate+ndeath); k++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        if (k != i)         for (cpt=1; cpt<=cptcoveff;cpt++) 
          {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
            printf("%d%d ",i,k);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
            fprintf(ficlog,"%d%d ",i,k);       }
            fprintf(ficres,"%1d%1d ",i,k);       /* Pij */
            for(j=1; j <=ncovmodel; j++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
              printf("%f ",p[jk]);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
              fprintf(ficlog,"%f ",p[jk]);       /* Quasi-incidences */
              fprintf(ficres,"%f ",p[jk]);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
              jk++;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
            }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
            printf("\n");         /* Period (stable) prevalence in each health state */
            fprintf(ficlog,"\n");         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(ficres,"\n");           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
          }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
      }         }
    }       for(cpt=1; cpt<=nlstate;cpt++) {
    if(mle==1){          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
      /* Computing hessian and covariance matrix */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
      ftolhess=ftol; /* Usually correct */       }
      hesscov(matcov, p, npar, delti, ftolhess, func);     } /* end i1 */
    }   }/* End k1 */
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");   fprintf(fichtm,"</ul>");
    printf("# Scales (for hessian or gradient estimation)\n");  
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");  
    for(i=1,jk=1; i <=nlstate; i++){   fprintf(fichtm,"\
      for(j=1; j <=nlstate+ndeath; j++){  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
        if (j!=i) {   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
          fprintf(ficres,"%1d%1d",i,j);  
          printf("%1d%1d",i,j);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
          fprintf(ficlog,"%1d%1d",i,j);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
          for(k=1; k<=ncovmodel;k++){   fprintf(fichtm,"\
            printf(" %.5e",delti[jk]);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            fprintf(ficlog," %.5e",delti[jk]);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
            fprintf(ficres," %.5e",delti[jk]);  
            jk++;   fprintf(fichtm,"\
          }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
          printf("\n");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
          fprintf(ficlog,"\n");   fprintf(fichtm,"\
          fprintf(ficres,"\n");   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
        }     <a href=\"%s\">%s</a> <br>\n</li>",
      }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    }   fprintf(fichtm,"\
       - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
    k=1;     <a href=\"%s\">%s</a> <br>\n</li>",
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    if(mle==1)   fprintf(fichtm,"\
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    for(i=1;i<=npar;i++){   fprintf(fichtm,"\
      /*  if (k>nlstate) k=1;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
          i1=(i-1)/(ncovmodel*nlstate)+1;           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   fprintf(fichtm,"\
          printf("%s%d%d",alph[k],i1,tab[i]);*/   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
      fprintf(ficres,"%3d",i);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
      if(mle==1)  
        printf("%3d",i);  /*  if(popforecast==1) fprintf(fichtm,"\n */
      fprintf(ficlog,"%3d",i);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
      for(j=1; j<=i;j++){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
        fprintf(ficres," %.5e",matcov[i][j]);  /*      <br>",fileres,fileres,fileres,fileres); */
        if(mle==1)  /*  else  */
          printf(" %.5e",matcov[i][j]);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
        fprintf(ficlog," %.5e",matcov[i][j]);   fflush(fichtm);
      }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
      fprintf(ficres,"\n");  
      if(mle==1)   m=cptcoveff;
        printf("\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      fprintf(ficlog,"\n");  
      k++;   jj1=0;
    }   for(k1=1; k1<=m;k1++){
         for(i1=1; i1<=ncodemax[k1];i1++){
    while((c=getc(ficpar))=='#' && c!= EOF){       jj1++;
      ungetc(c,ficpar);       if (cptcovn > 0) {
      fgets(line, MAXLINE, ficpar);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
      puts(line);         for (cpt=1; cpt<=cptcoveff;cpt++) 
      fputs(line,ficparo);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    ungetc(c,ficpar);       }
    estepm=0;       for(cpt=1; cpt<=nlstate;cpt++) {
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
    if (estepm==0 || estepm < stepm) estepm=stepm;  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
    if (fage <= 2) {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
      bage = ageminpar;       }
      fage = agemaxpar;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    }  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
      true period expectancies (those weighted with period prevalences are also\
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   drawn in addition to the population based expectancies computed using\
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   observed and cahotic prevalences: %s%d.png<br>\
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         } /* end i1 */
    while((c=getc(ficpar))=='#' && c!= EOF){   }/* End k1 */
      ungetc(c,ficpar);   fprintf(fichtm,"</ul>");
      fgets(line, MAXLINE, ficpar);   fflush(fichtm);
      puts(line);  }
      fputs(line,ficparo);  
    }  /******************* Gnuplot file **************/
    ungetc(c,ficpar);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    char dirfileres[132],optfileres[132];
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int ng=0;
      /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
    while((c=getc(ficpar))=='#' && c!= EOF){  /*     printf("Problem with file %s",optionfilegnuplot); */
      ungetc(c,ficpar);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
      fgets(line, MAXLINE, ficpar);  /*   } */
      puts(line);  
      fputs(line,ficparo);    /*#ifdef windows */
    }    fprintf(ficgp,"cd \"%s\" \n",pathc);
    ungetc(c,ficpar);      /*#endif */
      m=pow(2,cptcoveff);
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    strcpy(dirfileres,optionfilefiname);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    strcpy(optfileres,"vpl");
    /* 1eme*/
   fscanf(ficpar,"pop_based=%d\n",&popbased);    for (cpt=1; cpt<= nlstate ; cpt ++) {
   fprintf(ficparo,"pop_based=%d\n",popbased);       for (k1=1; k1<= m ; k1 ++) {
   fprintf(ficres,"pop_based=%d\n",popbased);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"set xlabel \"Age\" \n\
     ungetc(c,ficpar);  set ylabel \"Probability\" \n\
     fgets(line, MAXLINE, ficpar);  set ter png small\n\
     puts(line);  set size 0.65,0.65\n\
     fputs(line,ficparo);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   }  
   ungetc(c,ficpar);       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);         else        fprintf(ficgp," \%%*lf (\%%*lf)");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 while((c=getc(ficpar))=='#' && c!= EOF){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     ungetc(c,ficpar);       } 
     fgets(line, MAXLINE, ficpar);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     puts(line);       for (i=1; i<= nlstate ; i ++) {
     fputs(line,ficparo);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   }         else fprintf(ficgp," \%%*lf (\%%*lf)");
   ungetc(c,ficpar);       }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);     }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /*2 eme*/
     
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 /*------------ gnuplot -------------*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   strcpy(optionfilegnuplot,optionfilefiname);      
   strcat(optionfilegnuplot,".gp");      for (i=1; i<= nlstate+1 ; i ++) {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        k=2*i;
     printf("Problem with file %s",optionfilegnuplot);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   fclose(ficgp);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          else fprintf(ficgp," \%%*lf (\%%*lf)");
 /*--------- index.htm --------*/        }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   strcpy(optionfilehtm,optionfile);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   strcat(optionfilehtm,".htm");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        for (j=1; j<= nlstate+1 ; j ++) {
     printf("Problem with %s \n",optionfilehtm), exit(0);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        fprintf(ficgp,"\" t\"\" w l 0,");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 \n        for (j=1; j<= nlstate+1 ; j ++) {
 Total number of observations=%d <br>\n          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          else fprintf(ficgp," \%%*lf (\%%*lf)");
 <hr  size=\"2\" color=\"#EC5E5E\">        }   
  <ul><li><h4>Parameter files</h4>\n        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        else fprintf(ficgp,"\" t\"\" w l 0,");
  - Log file of the run: <a href=\"%s\">%s</a><br>\n      }
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    }
   fclose(fichtm);    
     /*3eme*/
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    
      for (k1=1; k1<= m ; k1 ++) { 
 /*------------ free_vector  -------------*/      for (cpt=1; cpt<= nlstate ; cpt ++) {
  chdir(path);        /*       k=2+nlstate*(2*cpt-2); */
          k=2+(nlstate+1)*(cpt-1);
  free_ivector(wav,1,imx);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        fprintf(ficgp,"set ter png small\n\
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    set size 0.65,0.65\n\
  free_ivector(num,1,n);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
  free_vector(agedc,1,n);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
  fclose(ficparo);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
  fclose(ficres);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   /*--------------- Prevalence limit --------------*/          
          */
   strcpy(filerespl,"pl");        for (i=1; i< nlstate ; i ++) {
   strcat(filerespl,fileres);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;        } 
   }        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      }
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);    }
   fprintf(ficrespl,"#Prevalence limit\n");    
   fprintf(ficrespl,"#Age ");    /* CV preval stable (period) */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    for (k1=1; k1<= m ; k1 ++) { 
   fprintf(ficrespl,"\n");      for (cpt=1; cpt<=nlstate ; cpt ++) {
          k=3;
   prlim=matrix(1,nlstate,1,nlstate);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  set ter png small\nset size 0.65,0.65\n\
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  unset log y\n\
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        
   k=0;        for (i=1; i< nlstate ; i ++)
   agebase=ageminpar;          fprintf(ficgp,"+$%d",k+i+1);
   agelim=agemaxpar;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   ftolpl=1.e-10;        
   i1=cptcoveff;        l=3+(nlstate+ndeath)*cpt;
   if (cptcovn < 1){i1=1;}        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
   for(cptcov=1;cptcov<=i1;cptcov++){          l=3+(nlstate+ndeath)*cpt;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficgp,"+$%d",l+i+1);
         k=k+1;        }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
         fprintf(ficrespl,"\n#******");      } 
         printf("\n#******");    }  
         fprintf(ficlog,"\n#******");    
         for(j=1;j<=cptcoveff;j++) {    /* proba elementaires */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1,jk=1; i <=nlstate; i++){
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(k=1; k <=(nlstate+ndeath); k++){
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (k != i) {
         }          for(j=1; j <=ncovmodel; j++){
         fprintf(ficrespl,"******\n");            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         printf("******\n");            jk++; 
         fprintf(ficlog,"******\n");            fprintf(ficgp,"\n");
                  }
         for (age=agebase; age<=agelim; age++){        }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      }
           fprintf(ficrespl,"%.0f",age );     }
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
           fprintf(ficrespl,"\n");       for(jk=1; jk <=m; jk++) {
         }         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
       }         if (ng==2)
     }           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   fclose(ficrespl);         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
   /*------------- h Pij x at various ages ------------*/         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           i=1;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);         for(k2=1; k2<=nlstate; k2++) {
   if((ficrespij=fopen(filerespij,"w"))==NULL) {           k3=i;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;           for(k=1; k<=(nlstate+ndeath); k++) {
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;             if (k != k2){
   }               if(ng==2)
   printf("Computing pij: result on file '%s' \n", filerespij);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);               else
                   fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   stepsize=(int) (stepm+YEARM-1)/YEARM;               ij=1;
   /*if (stepm<=24) stepsize=2;*/               for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   agelim=AGESUP;                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   hstepm=stepsize*YEARM; /* Every year of age */                   ij++;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                 }
                  else
   /* hstepm=1;   aff par mois*/                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
   k=0;               fprintf(ficgp,")/(1");
   for(cptcov=1;cptcov<=i1;cptcov++){               
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){               for(k1=1; k1 <=nlstate; k1++){   
       k=k+1;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
         fprintf(ficrespij,"\n#****** ");                 ij=1;
         for(j=1;j<=cptcoveff;j++)                 for(j=3; j <=ncovmodel; j++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         fprintf(ficrespij,"******\n");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                             ij++;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                   }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                   else
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
           /*      nhstepm=nhstepm*YEARM; aff par mois*/                 fprintf(ficgp,")");
                }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
           oldm=oldms;savm=savms;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                 i=i+ncovmodel;
           fprintf(ficrespij,"# Age");             }
           for(i=1; i<=nlstate;i++)           } /* end k */
             for(j=1; j<=nlstate+ndeath;j++)         } /* end k2 */
               fprintf(ficrespij," %1d-%1d",i,j);       } /* end jk */
           fprintf(ficrespij,"\n");     } /* end ng */
            for (h=0; h<=nhstepm; h++){     fflush(ficgp); 
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  }  /* end gnuplot */
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  /*************** Moving average **************/
             fprintf(ficrespij,"\n");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
              }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, cpt, cptcod;
           fprintf(ficrespij,"\n");    int modcovmax =1;
         }    int mobilavrange, mob;
     }    double age;
   }  
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                             a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   fclose(ficrespij);  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
   /*---------- Forecasting ------------------*/      else mobilavrange=mobilav;
   if((stepm == 1) && (strcmp(model,".")==0)){      for (age=bage; age<=fage; age++)
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        for (i=1; i<=nlstate;i++)
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   else{      /* We keep the original values on the extreme ages bage, fage and for 
     erreur=108;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);         we use a 5 terms etc. until the borders are no more concerned. 
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      */ 
   }      for (mob=3;mob <=mobilavrange;mob=mob+2){
          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
   /*---------- Health expectancies and variances ------------*/            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   strcpy(filerest,"t");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   strcat(filerest,fileres);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   if((ficrest=fopen(filerest,"w"))==NULL) {                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                }
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   }            }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          }
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);        }/* end age */
       }/* end mob */
     }else return -1;
   strcpy(filerese,"e");    return 0;
   strcat(filerese,fileres);  }/* End movingaverage */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /************** Forecasting ******************/
   }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    /* proj1, year, month, day of starting projection 
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);       agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
   strcpy(fileresv,"v");       anproj2 year of en of projection (same day and month as proj1).
   strcat(fileresv,fileres);    */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    int *popage;
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    double agec; /* generic age */
   }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double *popeffectif,*popcount;
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double ***p3mat;
   calagedate=-1;    double ***mobaverage;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    char fileresf[FILENAMELENGTH];
   
   k=0;    agelim=AGESUP;
   for(cptcov=1;cptcov<=i1;cptcov++){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   
       k=k+1;    strcpy(fileresf,"f"); 
       fprintf(ficrest,"\n#****** ");    strcat(fileresf,fileres);
       for(j=1;j<=cptcoveff;j++)    if((ficresf=fopen(fileresf,"w"))==NULL) {
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficrest,"******\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
       fprintf(ficreseij,"\n#****** ");    printf("Computing forecasting: result on file '%s' \n", fileresf);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
       fprintf(ficresvij,"\n#****** ");    if (mobilav!=0) {
       for(j=1;j<=cptcoveff;j++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       fprintf(ficresvij,"******\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;    }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
      stepsize=(int) (stepm+YEARM-1)/YEARM;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if (stepm<=12) stepsize=1;
       oldm=oldms;savm=savms;    if(estepm < stepm){
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);      printf ("Problem %d lower than %d\n",estepm, stepm);
       if(popbased==1){    }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    else  hstepm=estepm;   
        }  
     hstepm=hstepm/stepm; 
      yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                                 fractional in yp1 */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    anprojmean=yp;
       fprintf(ficrest,"\n");    yp2=modf((yp1*12),&yp);
     mprojmean=yp;
       epj=vector(1,nlstate+1);    yp1=modf((yp2*30.5),&yp);
       for(age=bage; age <=fage ;age++){    jprojmean=yp;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if(jprojmean==0) jprojmean=1;
         if (popbased==1) {    if(mprojmean==0) jprojmean=1;
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];    i1=cptcoveff;
         }    if (cptcovn < 1){i1=1;}
            
         fprintf(ficrest," %4.0f",age);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    fprintf(ficresf,"#****** Routine prevforecast **\n");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  /*            if (h==(int)(YEARM*yearp)){ */
           }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
           epj[nlstate+1] +=epj[j];      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         }        k=k+1;
         fprintf(ficresf,"\n#******");
         for(i=1, vepp=0.;i <=nlstate;i++)        for(j=1;j<=cptcoveff;j++) {
           for(j=1;j <=nlstate;j++)          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             vepp += vareij[i][j][(int)age];        }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        fprintf(ficresf,"******\n");
         for(j=1;j <=nlstate;j++){        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        for(j=1; j<=nlstate+ndeath;j++){ 
         }          for(i=1; i<=nlstate;i++)              
         fprintf(ficrest,"\n");            fprintf(ficresf," p%d%d",i,j);
       }          fprintf(ficresf," p.%d",j);
     }        }
   }        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 free_matrix(mint,1,maxwav,1,n);          fprintf(ficresf,"\n");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     free_vector(weight,1,n);  
   fclose(ficreseij);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   fclose(ficresvij);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   fclose(ficrest);            nhstepm = nhstepm/hstepm; 
   fclose(ficpar);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_vector(epj,1,nlstate+1);            oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   /*------- Variance limit prevalence------*/            
             for (h=0; h<=nhstepm; h++){
   strcpy(fileresvpl,"vpl");              if (h*hstepm/YEARM*stepm ==yearp) {
   strcat(fileresvpl,fileres);                fprintf(ficresf,"\n");
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                for(j=1;j<=cptcoveff;j++) 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     exit(0);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   }              } 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
   k=0;                for(i=1; i<=nlstate;i++) {
   for(cptcov=1;cptcov<=i1;cptcov++){                  if (mobilav==1) 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       k=k+1;                  else {
       fprintf(ficresvpl,"\n#****** ");                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
       for(j=1;j<=cptcoveff;j++)                  }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  if (h*hstepm/YEARM*stepm== yearp) {
       fprintf(ficresvpl,"******\n");                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                        }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                } /* end i */
       oldm=oldms;savm=savms;                if (h*hstepm/YEARM*stepm==yearp) {
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                  fprintf(ficresf," %.3f", ppij);
     }                }
  }              }/* end j */
             } /* end h */
   fclose(ficresvpl);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
   /*---------- End : free ----------------*/        } /* end yearp */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      } /* end cptcod */
      } /* end  cptcov */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);         
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    
      fclose(ficresf);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  /************** Forecasting *****not tested NB*************/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
      
   free_matrix(matcov,1,npar,1,npar);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   free_vector(delti,1,npar);    int *popage;
   free_matrix(agev,1,maxwav,1,imx);    double calagedatem, agelim, kk1, kk2;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
   fprintf(fichtm,"\n</body>");    double ***mobaverage;
   fclose(fichtm);    char filerespop[FILENAMELENGTH];
   fclose(ficgp);  
      tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if(erreur >0){    agelim=AGESUP;
     printf("End of Imach with error or warning %d\n",erreur);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    
   }else{    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    printf("End of Imach\n");    
    fprintf(ficlog,"End of Imach\n");    
   }    strcpy(filerespop,"pop"); 
   printf("See log file on %s\n",filelog);    strcat(filerespop,fileres);
   fclose(ficlog);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      printf("Problem with forecast resultfile: %s\n", filerespop);
        fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    }
   /*printf("Total time was %d uSec.\n", total_usecs);*/    printf("Computing forecasting: result on file '%s' \n", filerespop);
   /*------ End -----------*/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
  end:  
 #ifdef windows    if (mobilav!=0) {
   /* chdir(pathcd);*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 #endif      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
  /*system("wgnuplot graph.plt");*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  /*system("../gp37mgw/wgnuplot graph.plt");*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  /*system("cd ../gp37mgw");*/      }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    }
  strcpy(plotcmd,GNUPLOTPROGRAM);  
  strcat(plotcmd," ");    stepsize=(int) (stepm+YEARM-1)/YEARM;
  strcat(plotcmd,optionfilegnuplot);    if (stepm<=12) stepsize=1;
  system(plotcmd);    
     agelim=AGESUP;
 #ifdef windows    
   while (z[0] != 'q') {    hstepm=1;
     /* chdir(path); */    hstepm=hstepm/stepm; 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    
     scanf("%s",z);    if (popforecast==1) {
     if (z[0] == 'c') system("./imach");      if((ficpop=fopen(popfile,"r"))==NULL) {
     else if (z[0] == 'e') system(optionfilehtm);        printf("Problem with population file : %s\n",popfile);exit(0);
     else if (z[0] == 'g') system(plotcmd);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     else if (z[0] == 'q') exit(0);      } 
   }      popage=ivector(0,AGESUP);
 #endif      popeffectif=vector(0,AGESUP);
 }      popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.134


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>